101
|
Briddon SJ, Kilpatrick LE, Hill SJ. Studying GPCR Pharmacology in Membrane Microdomains: Fluorescence Correlation Spectroscopy Comes of Age. Trends Pharmacol Sci 2017; 39:158-174. [PMID: 29277246 DOI: 10.1016/j.tips.2017.11.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) are organised within the cell membrane into highly ordered macromolecular complexes along with other receptors and signalling proteins. Understanding how heterogeneity in these complexes affects the pharmacology and functional response of these receptors is crucial for developing new and more selective ligands. Fluorescence correlation spectroscopy (FCS) and related techniques such as photon counting histogram (PCH) analysis and image-based FCS can be used to interrogate the properties of GPCRs in these membrane microdomains, as well as their interaction with fluorescent ligands. FCS analyses fluorescence fluctuations within a small-defined excitation volume to yield information about their movement, concentration and molecular brightness (aggregation). These techniques can be used on live cells with single-molecule sensitivity and high spatial resolution. Once the preserve of specialist equipment, FCS techniques can now be applied using standard confocal microscopes. This review describes how FCS and related techniques have revealed novel insights into GPCR biology.
Collapse
Affiliation(s)
- Stephen J Briddon
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK; Centre for Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, UK
| | - Laura E Kilpatrick
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK; Centre for Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, UK
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK; Centre for Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, UK.
| |
Collapse
|
102
|
Lippert A, Janeczek AA, Fürstenberg A, Ponjavic A, Moerner WE, Nusse R, Helms JA, Evans ND, Lee SF. Single-Molecule Imaging of Wnt3A Protein Diffusion on Living Cell Membranes. Biophys J 2017; 113:2762-2767. [PMID: 29262368 PMCID: PMC5925569 DOI: 10.1016/j.bpj.2017.08.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/13/2017] [Accepted: 08/02/2017] [Indexed: 01/31/2023] Open
Abstract
Wnt proteins are secreted, hydrophobic, lipidated proteins found in all animals that play essential roles in development and disease. Lipid modification is thought to facilitate the interaction of the protein with its receptor, Frizzled, but may also regulate the transport of Wnt protein and its localization at the cell membrane. Here, by employing single-molecule fluorescence techniques, we show that Wnt proteins associate with and diffuse on the plasma membranes of living cells in the absence of any receptor binding. We find that labeled Wnt3A transiently and dynamically associates with the membranes of Drosophila Schneider 2 cells, diffuses with Brownian kinetics on flattened membranes and on cellular protrusions, and does not transfer between cells in close contact. In S2 receptor-plus (S2R+) cells, which express Frizzled receptors, membrane diffusion rate is reduced and membrane residency time is increased. These results provide direct evidence of Wnt3A interaction with living cell membranes, and represent, to our knowledge, a new system for investigating the dynamics of Wnt transport.
Collapse
Affiliation(s)
- Anna Lippert
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Agnieszka A Janeczek
- Centre for Human Development, Stem Cells and Regeneration, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Alexandre Fürstenberg
- Department of Chemistry, Stanford University, Palo Alto, California; Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, Genève, Switzerland
| | - Aleks Ponjavic
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - W E Moerner
- Department of Chemistry, Stanford University, Palo Alto, California
| | - Roel Nusse
- Department of Developmental Biology, Stanford University, Palo Alto, California
| | - Jill A Helms
- Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, California
| | - Nicholas D Evans
- Centre for Human Development, Stem Cells and Regeneration, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom.
| | - Steven F Lee
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; Department of Chemistry, Stanford University, Palo Alto, California.
| |
Collapse
|
103
|
Single-molecule fluorescence-based analysis of protein conformation, interaction, and oligomerization in cellular systems. Biophys Rev 2017; 10:317-326. [PMID: 29243093 PMCID: PMC5899725 DOI: 10.1007/s12551-017-0366-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/19/2017] [Indexed: 12/23/2022] Open
Abstract
Single-molecule imaging (SMI) of proteins in operation has a history of intensive investigations over 20 years and is now widely used in various fields of biology and biotechnology. We review the recent advances in SMI of fluorescently-tagged proteins in structural biology, focusing on technical applicability of SMI to the measurements in living cells. Basic technologies and recent applications of SMI in structural biology are introduced. Distinct from other methods in structural biology, SMI directly observes single molecules and single-molecule events one-by-one, thus, explicitly analyzing the distribution of protein structures and the history of protein dynamics. It also allows one to detect single events of protein interaction. One unique feature of SMI is that it is applicable in complicated and heterogeneous environments, including living cells. The numbers, location, movements, interaction, oligomerization, and conformation of single-protein molecules have been determined using SMI in cellular systems.
Collapse
|
104
|
Kasai RS, Ito SV, Awane RM, Fujiwara TK, Kusumi A. The Class-A GPCR Dopamine D2 Receptor Forms Transient Dimers Stabilized by Agonists: Detection by Single-Molecule Tracking. Cell Biochem Biophys 2017; 76:29-37. [PMID: 29116599 PMCID: PMC5913388 DOI: 10.1007/s12013-017-0829-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/18/2017] [Indexed: 01/06/2023]
Abstract
Whether class-A G-protein coupled receptors (GPCRs) exist and work as monomers or dimers has drawn extensive attention. A class-A GPCR dopamine D2 receptor (D2R) is involved in many physiological and pathological processes and diseases, indicating its critical role in proper functioning of neuronal circuits. In particular, D2R homodimers might play key roles in schizophrenia development and amphetamine-induced psychosis. Here, using single-molecule imaging, we directly tracked single D2R molecules in the plasma membrane at a physiological temperature of 37 °C, and unequivocally determined that D2R forms transient dimers with a lifetime of 68 ms in its resting state. Agonist addition prolonged the dimer lifetime by a factor of ~1.5, suggesting the possibility that transient dimers might be involved in signaling.
Collapse
Affiliation(s)
- Rinshi S Kasai
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Shuichi V Ito
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Ryo M Awane
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Takahiro K Fujiwara
- Center for Meso-Bio Single-Molecule Imaging (CeMI), Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8507, Japan
| | - Akihiro Kusumi
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan. .,Center for Meso-Bio Single-Molecule Imaging (CeMI), Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8507, Japan. .,Membrane Cooperativity Unit, Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan.
| |
Collapse
|
105
|
Thompson MD, Sakurai T, Rainero I, Maj MC, Kukkonen JP. Orexin Receptor Multimerization versus Functional Interactions: Neuropharmacological Implications for Opioid and Cannabinoid Signalling and Pharmacogenetics. Pharmaceuticals (Basel) 2017; 10:ph10040079. [PMID: 28991183 PMCID: PMC5748636 DOI: 10.3390/ph10040079] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 12/17/2022] Open
Abstract
Orexins/hypocretins are neuropeptides formed by proteolytic cleavage of a precursor peptide, which are produced by neurons found in the lateral hypothalamus. The G protein-coupled receptors (GPCRs) for these ligands, the OX₁ and OX₂ orexin receptors, are more widely expressed throughout the central nervous system. The orexin/hypocretin system has been implicated in many pathways, and its dysregulation is under investigation in a number of diseases. Disorders in which orexinergic mechanisms are being investigated include narcolepsy, idiopathic sleep disorders, cluster headache and migraine. Human narcolepsy has been associated with orexin deficiency; however, it has only rarely been attributed to mutations in the gene encoding the precursor peptide. While gene variations within the canine OX₂ gene hcrtr2 have been directly linked with narcolepsy, the majority of human orexin receptor variants are weakly associated with diseases (the idiopathic sleep disorders, cluster headache and polydipsia-hyponatremia in schizophrenia) or are of potential pharmacogenetic significance. Evidence for functional interactions and/or heterodimerization between wild-type and variant orexin receptors and opioid and cannabinoid receptors is discussed in the context of its relevance to depression and epilepsy.
Collapse
Affiliation(s)
- Miles D Thompson
- Department of Pediatrics, University of California, San Diego 92093, CA, USA.
| | - Takeshi Sakurai
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University, Kanazawa 920-8620, Japan.
| | - Innocenzo Rainero
- Department of Neuroscience, University of Turin, Torino 10124, Italy.
| | - Mary C Maj
- Department of Biochemistry, School of Medicine, Saint George's University, Saint George's 11739, Grenada.
| | - Jyrki P Kukkonen
- Biochemistry and Cell Biology, Department of Veterinary Biosciences, University of Helsinki, Helsinki 11739, Finland.
- Department of Physiology, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Helsinki 00100, Finland.
| |
Collapse
|
106
|
Abstract
Measuring the kinetics of protein-protein interactions between molecules in the plasma membrane of live cells provides valuable information for understanding dynamic processes, like cellular signaling, on a molecular scale. Two-color single-molecule tracking is a fluorescence microscopy-based method to detect and quantify specific protein-protein interactions on a single-event level, providing sensitivity to heterogeneities and rare events. Fundamentally, it allows following the movement of single molecules of two different protein species in live cells with a localization precision beyond the diffraction limit of light in real time. It hence provides information about the diffusion behavior of every protein as well as about their dimerization kinetics. Here, we describe all the necessary steps to obtain two-color tracking data of plasma membrane-associated proteins in live cells using SNAP-tag and HaloTag fusion constructs and total internal reflection fluorescence (TIRF) microscopy. Also, we outline the main steps needed for analyzing the recorded data.
Collapse
|
107
|
Felce JH, Latty SL, Knox RG, Mattick SR, Lui Y, Lee SF, Klenerman D, Davis SJ. Receptor Quaternary Organization Explains G Protein-Coupled Receptor Family Structure. Cell Rep 2017; 20:2654-2665. [PMID: 28903045 PMCID: PMC5608970 DOI: 10.1016/j.celrep.2017.08.072] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/14/2017] [Accepted: 08/23/2017] [Indexed: 12/15/2022] Open
Abstract
The organization of Rhodopsin-family G protein-coupled receptors (GPCRs) at the cell surface is controversial. Support both for and against the existence of dimers has been obtained in studies of mostly individual receptors. Here, we use a large-scale comparative study to examine the stoichiometric signatures of 60 receptors expressed by a single human cell line. Using bioluminescence resonance energy transfer- and single-molecule microscopy-based assays, we found that a relatively small fraction of Rhodopsin-family GPCRs behaved as dimers and that these receptors otherwise appear to be monomeric. Overall, the analysis predicted that fewer than 20% of ∼700 Rhodopsin-family receptors form dimers. The clustered distribution of the dimers in our sample and a striking correlation between receptor organization and GPCR family size that we also uncover each suggest that receptor stoichiometry might have profoundly influenced GPCR expansion and diversification.
Collapse
Affiliation(s)
- James H Felce
- Radcliffe Department of Medicine and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Sarah L Latty
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Rachel G Knox
- Radcliffe Department of Medicine and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Susan R Mattick
- Radcliffe Department of Medicine and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Yuan Lui
- Radcliffe Department of Medicine and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Steven F Lee
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
| | - Simon J Davis
- Radcliffe Department of Medicine and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
108
|
Visualization of ligand-induced dopamine D 2S and D 2L receptor internalization by TIRF microscopy. Sci Rep 2017; 7:10894. [PMID: 28883522 PMCID: PMC5589927 DOI: 10.1038/s41598-017-11436-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/23/2017] [Indexed: 01/11/2023] Open
Abstract
G protein-coupled receptors (GPCRs), including the dopamine receptors, represent a group of important pharmacological targets. Upon agonist binding, GPCRs frequently undergo internalization, a process that is known to attenuate functional responses upon prolonged exposure to agonists. In this study, internalization was visualized by means of total internal reflection fluorescence (TIRF) microscopy at a level of discrete single events near the plasma membrane with high spatial resolution. A novel method has been developed to determine the relative extent of internalized fluorescent receptor-ligand complexes by comparative fluorescence quantification in living CHO cells. The procedure entails treatment with the reducing agent sodium borohydride, which converts cyanine-based fluorescent ligands on the membrane surface to a long-lived reduced form. Because the highly polar reducing agent is not able to pass the cell membrane, the fluorescent receptor-ligand complexes located in internalized compartments remain fluorescent under TIRF illumination. We applied the method to investigate differences of the short (D2S) and the long (D2L) isoforms of dopamine D2 receptors in their ability to undergo agonist-induced internalization.
Collapse
|
109
|
Albee LJ, Eby JM, Tripathi A, LaPorte HM, Gao X, Volkman BF, Gaponenko V, Majetschak M. α 1-Adrenergic Receptors Function Within Hetero-Oligomeric Complexes With Atypical Chemokine Receptor 3 and Chemokine (C-X-C motif) Receptor 4 in Vascular Smooth Muscle Cells. J Am Heart Assoc 2017; 6:JAHA.117.006575. [PMID: 28862946 PMCID: PMC5586474 DOI: 10.1161/jaha.117.006575] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background Recently, we provided evidence that α1‐adrenergic receptors (ARs) in vascular smooth muscle are regulated by chemokine (C‐X‐C motif) receptor (CXCR) 4 and atypical chemokine receptor 3 (ACKR3). While we showed that CXCR4 controls α1‐ARs through formation of heteromeric receptor complexes in human vascular smooth muscle cells (hVSMCs), the molecular basis underlying cross‐talk between ACKR3 and α1‐ARs is unknown. Methods and Results We show that ACKR3 agonists inhibit inositol trisphosphate production in hVSMCs on stimulation with phenylephrine. In proximity ligation assays and co‐immunoprecipitation experiments, we observed that recombinant and endogenous ACKR3 form heteromeric complexes with α1A/B/D‐AR. While small interfering RNA knockdown of ACKR3 in hVSMCs reduced α1B/D‐AR:ACKR3, CXCR4:ACKR3, and α1B/D‐AR:CXCR4 complexes, small interfering RNA knockdown of CXCR4 reduced α1B/D‐AR:ACKR3 heteromers. Phenylephrine‐induced inositol trisphosphate production from hVSMCs was abolished after ACKR3 and CXCR4 small interfering RNA knockdown. Peptide analogs of transmembrane domains 2/4/7 of ACKR3 showed differential effects on heteromerization between ACKR3, α1A/B/D‐AR, and CXCR4. While the transmembrane domain 2 peptide interfered with α1B/D‐AR:ACKR3 and CXCR4:ACKR3 heteromerization, it increased heteromerization between CXCR4 and α1A/B‐AR. The transmembrane domain 2 peptide inhibited ACKR3 but did not affect α1b‐AR in β‐arrestin recruitment assays. Furthermore, the transmembrane domain 2 peptide inhibited phenylephrine‐induced inositol trisphosphate production in hVSMCs and attenuated phenylephrine‐induced constriction of mesenteric arteries. Conclusions α1‐ARs form hetero‐oligomeric complexes with the ACKR3:CXCR4 heteromer, which is required for α1B/D‐AR function, and activation of ACKR3 negatively regulates α1‐ARs. G protein–coupled receptor hetero‐oligomerization is a dynamic process, which depends on the relative abundance of available receptor partners. Endogenous α1‐ARs function within a network of hetero‐oligomeric receptor complexes.
Collapse
Affiliation(s)
- Lauren J Albee
- Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | - Jonathan M Eby
- Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | - Abhishek Tripathi
- Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | - Heather M LaPorte
- Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | - Xianlong Gao
- Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, IL
| | - Matthias Majetschak
- Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL .,Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| |
Collapse
|
110
|
Agonist-induced dimer dissociation as a macromolecular step in G protein-coupled receptor signaling. Nat Commun 2017; 8:226. [PMID: 28790300 PMCID: PMC5548745 DOI: 10.1038/s41467-017-00253-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 06/14/2017] [Indexed: 01/28/2023] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of cell surface receptors. They can exist and act as dimers, but the requirement of dimers for agonist-induced signal initiation and structural dynamics remains largely unknown. Frizzled 6 (FZD6) is a member of Class F GPCRs, which bind WNT proteins to initiate signaling. Here, we show that FZD6 dimerizes and that the dimer interface of FZD6 is formed by the transmembrane α-helices four and five. Most importantly, we present the agonist-induced dissociation/re-association of a GPCR dimer through the use of live cell imaging techniques. Further analysis of a dimerization-impaired FZD6 mutant indicates that dimer dissociation is an integral part of FZD6 signaling to extracellular signal-regulated kinases1/2. The discovery of agonist-dependent dynamics of dimers as an intrinsic process of receptor activation extends our understanding of Class F and other dimerizing GPCRs, offering novel targets for dimer-interfering small molecules. Frizzled 6 (FZD6) is a G protein-coupled receptor (GPCR) involved in several cellular processes. Here, the authors use live cell imaging and spectroscopy to show that FZD6 forms dimers, whose association is regulated by WNT proteins and that dimer dissociation is crucial for FZD6 signaling.
Collapse
|
111
|
Jonas KC, Hanyaloglu AC. Impact of G protein-coupled receptor heteromers in endocrine systems. Mol Cell Endocrinol 2017; 449:21-27. [PMID: 28115188 DOI: 10.1016/j.mce.2017.01.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/05/2017] [Accepted: 01/19/2017] [Indexed: 12/26/2022]
Abstract
The fine-tuning of endocrine homeostasis is regulated by dynamic receptor mediated processes. The superfamily of G protein-coupled receptors (GPCRs) have diverse roles in the modulation of all endocrine axes, thus understanding the mechanisms underpinning their functionality is paramount for treatment of endocrinopathies. Evidence over the last 20 years has highlighted homo and heteromerization as a key mode of mediating GPCR functional diversity. This review will discuss the concept of GPCR heteromerization and its relevance to endocrine function, detailing in vitro and in vivo evidence, and exploring current and potential pharmacological strategies for specific targeting of GPCR heteromers in endocrine heath and disease.
Collapse
Affiliation(s)
- K C Jonas
- Cell Biology and Genetics Research Centre, Centre for Medical and Biomedical Education, St George's, University of London, UK.
| | - A C Hanyaloglu
- Institute of Reproductive and Developmental Biology, Dept. Surgery and Cancer, Imperial College London, UK
| |
Collapse
|
112
|
Abstract
The central mechanism for the transmission of the prion protein misfolding is the structural conversion of the normal cellular prion protein to the pathogenic misfolded prion protein, by the interaction with misfolded prion protein. This process might be enhanced due to the homo-dimerization/oligomerization of normal prion protein. However, the behaviors of normal prion protein in the plasma membrane have remained largely unknown. Here, using single fluorescent-molecule imaging, we found that both prion protein and Thy1, a control glycosylphosphatidylinositol-anchored protein, exhibited very similar intermittent transient immobilizations lasting for a few seconds within an area of 24.2 and 3.5 nm in diameter in CHO-K1 and hippocampal neurons cultured for 1- and 2-weeks, respectively. Prion protein molecules were immobile during 72% of the time, approximately 1.4× more than Thy1, due to prion protein’s higher immobilization frequency. When mobile, prion protein diffused 1.7× slower than Thy1. Prion protein’s slower diffusion might be caused by its transient interaction with other prion protein molecules, whereas its brief immobilization might be due to temporary association with prion protein clusters. Prion protein molecules might be newly recruited to prion protein clusters all the time, and simultaneously, prion protein molecules in the cluster might be departing continuously. Such dynamic interactions of normal prion protein molecules would strongly enhance the spreading of misfolded prion protein.
Collapse
|
113
|
Kawano K, Yagi T, Fukada N, Yano Y, Matsuzaki K. Stoichiometric analysis of oligomeric states of three class-A GPCRs, chemokine-CXCR4, dopamine-D2, and prostaglandin-EP1 receptors, on living cells. J Pept Sci 2017. [PMID: 28626925 DOI: 10.1002/psc.3020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
G-protein-coupled receptors (GPCRs) form the largest family of transmembrane receptors, and their oligomerization has been suggested to be related to their functions. Despite extensive studies, their oligomeric states are highly controversial. One of the reasons is the overestimation of oligomerization by conventional methods. We recently established a stoichiometric analysis method for precisely determining the oligomeric state of membrane proteins on living cells with the combined use of the coiled-coil labeling method and a spectral imaging technique and showed that the prototypical class-A GPCR β2 -adrenergic receptor (β2 AR) did not form functional oligomers. In this study, we expanded our study to three well-studied class-A GPCRs: C-X-C chemokine receptor of stromal cell-derived factor-1α (CXCR4), dopamine receptor D2 short isotype (D2R), and prostaglandin E receptor subtype 1 (EP1R). We found that these receptors did not form constitutive homooligomers. The receptors exhibited calcium signaling upon agonist stimulation as monomers, although CXCR4 and EP1R gradually clustered after fast signaling. We conclude that homooligomerization is not necessary for the signal transductions of these four class-A GPCRs. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kenichi Kawano
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachicho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tetsuya Yagi
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachicho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Nozomu Fukada
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachicho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yoshiaki Yano
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachicho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachicho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
114
|
Masuda S, Yanase Y, Usukura E, Ryuzaki S, Wang P, Okamoto K, Kuboki T, Kidoaki S, Tamada K. High-resolution imaging of a cell-attached nanointerface using a gold-nanoparticle two-dimensional sheet. Sci Rep 2017. [PMID: 28623338 PMCID: PMC5473937 DOI: 10.1038/s41598-017-04000-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This paper proposes a simple, effective, non-scanning method for the visualization of a cell-attached nanointerface. The method uses localized surface plasmon resonance (LSPR) excited homogeneously on a two-dimensional (2D) self-assembled gold-nanoparticle sheet. The LSPR of the gold-nanoparticle sheet provides high-contrast interfacial images due to the confined light within a region a few tens of nanometers from the particles and the enhancement of fluorescence. Test experiments on rat basophilic leukemia (RBL-2H3) cells with fluorescence-labeled actin filaments revealed high axial and lateral resolution even under a regular epifluorescence microscope, which produced higher quality images than those captured under a total internal reflection fluorescence (TIRF) microscope. This non-scanning-type, high-resolution imaging method will be an effective tool for monitoring interfacial phenomena that exhibit relatively rapid reaction kinetics in various cellular and molecular dynamics.
Collapse
Affiliation(s)
- Shihomi Masuda
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yuhki Yanase
- Graduate School of Biomedical & Health Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City Hiroshima, 734-8553, Japan
| | - Eiji Usukura
- Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Sou Ryuzaki
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Pangpang Wang
- Education Center for Global Leaders in Molecular Systems for Devices, Kyushu University, Fukuoka, 819-0395, Japan
| | - Koichi Okamoto
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Thasaneeya Kuboki
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Satoru Kidoaki
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kaoru Tamada
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
115
|
Harikumar KG, Lau S, Sexton PM, Wootten D, Miller LJ. Coexpressed Class B G Protein-Coupled Secretin and GLP-1 Receptors Self- and Cross-Associate: Impact on Pancreatic Islets. Endocrinology 2017; 158:1685-1700. [PMID: 28368447 DOI: 10.1210/en.2017-00023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/17/2017] [Indexed: 11/19/2022]
Abstract
Class B guanine nucleotide-binding protein (G protein)-coupled receptors form symmetrical homodimeric complexes along the lipid face of transmembrane segment 4 (TM4) and can form heterodimeric complexes, although their structure is unknown. The current study demonstrates that the lipid face of TM4 is also the predominant determinant for formation of heteroreceptor complexes between two class B receptors, secretin receptor (SecR) and glucagonlike peptide-1 receptor (GLP-1R), which are expressed on pancreatic islet cells. Because these receptors use the same interface for formation of homo- and heteroreceptor complexes, competitive forces may affect expression of different complexes. Assessment of SecR and GLP-1R dimeric complexes via recombinant expression in Chinese hamster ovary cells revealed that homodimeric receptor complexes were more stable than the heterodimeric complexes, and the homodimeric SecR/SecR is more stable than the GLP-1R/GLP-1R complex. Given the greater tendency for homodimeric compared with heterodimeric complex formation, the heteroreceptor complexes lacked the expression that might have been predicted by geometry alone. Nevertheless, cells coexpressing these receptors formed heterodimeric complexes that correlated with reduced intracellular calcium responses to secretin, but no change in the cyclic adenosine monophosphate responses to each natural agonist. This functional effect was confirmed in pancreatic islets isolated from wild-type and GLP-1R knockout mice. In these cells, the increased calcium response mediated by secretin in the absence of GLP-1R was paralleled by an increased glucose-dependent insulin response, indicating that the heterodimeric receptor complexes modulate secretin responses. Furthermore, the heterodimeric receptor complexes also mediated agonist-induced cross-receptor internalization, a process that could have broad functional significance in sites of natural receptor coexpression.
Collapse
Affiliation(s)
- Kaleeckal G Harikumar
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259
| | - Shannen Lau
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia
| | - Laurence J Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
116
|
Spatial intensity distribution analysis quantifies the extent and regulation of homodimerization of the secretin receptor. Biochem J 2017; 474:1879-1895. [PMID: 28424368 PMCID: PMC5442643 DOI: 10.1042/bcj20170184] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 01/02/2023]
Abstract
Previous studies have indicated that the G-protein-coupled secretin receptor is present as a homodimer, organized through symmetrical contacts in transmembrane domain IV, and that receptor dimerization is critical for high-potency signalling by secretin. However, whether all of the receptor exists in the dimeric form or if this is regulated is unclear. We used measures of quantal brightness of the secretin receptor tagged with monomeric enhanced green fluorescent protein (mEGFP) and spatial intensity distribution analysis to assess this. Calibration using cells expressing plasma membrane-anchored forms of mEGFP initially allowed us to demonstrate that the epidermal growth factor receptor is predominantly monomeric in the absence of ligand and while wild-type receptor was rapidly converted into a dimeric form by ligand, a mutated form of this receptor remained monomeric. Equivalent studies showed that, at moderate expression levels, the secretin receptor exists as a mixture of monomeric and dimeric forms, with little evidence of higher-order complexity. However, sodium butyrate-induced up-regulation of the receptor resulted in a shift from monomeric towards oligomeric organization. In contrast, a form of the secretin receptor containing a pair of mutations on the lipid-facing side of transmembrane domain IV was almost entirely monomeric. Down-regulation of the secretin receptor-interacting G-protein Gαs did not alter receptor organization, indicating that dimerization is defined specifically by direct protein–protein interactions between copies of the receptor polypeptide, while short-term treatment with secretin had no effect on organization of the wild-type receptor but increased the dimeric proportion of the mutated receptor variant.
Collapse
|
117
|
Deshpande SA, Pawar AB, Dighe A, Athale CA, Sengupta D. Role of spatial inhomogenity in GPCR dimerisation predicted by receptor association–diffusion models. Phys Biol 2017; 14:036002. [DOI: 10.1088/1478-3975/aa6b68] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
118
|
Marsango S, Caltabiano G, Jiménez-Rosés M, Millan MJ, Pediani JD, Ward RJ, Milligan G. A Molecular Basis for Selective Antagonist Destabilization of Dopamine D 3 Receptor Quaternary Organization. Sci Rep 2017; 7:2134. [PMID: 28522847 PMCID: PMC5437050 DOI: 10.1038/s41598-017-02249-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/07/2017] [Indexed: 12/17/2022] Open
Abstract
The dopamine D3 receptor (D3R) is a molecular target for both first-generation and several recently-developed antipsychotic agents. Following stable expression of this mEGFP-tagged receptor, Spatial Intensity Distribution Analysis indicated that a substantial proportion of the receptor was present within dimeric/oligomeric complexes and that increased expression levels of the receptor favored a greater dimer to monomer ratio. Addition of the antipsychotics, spiperone or haloperidol, resulted in re-organization of D3R quaternary structure to promote monomerization. This action was dependent on ligand concentration and reversed upon drug washout. By contrast, a number of other antagonists with high affinity at the D3R, did not alter the dimer/monomer ratio. Molecular dynamics simulations following docking of each of the ligands into a model of the D3R derived from the available atomic level structure, and comparisons to the receptor in the absence of ligand, were undertaken. They showed that, in contrast to the other antagonists, spiperone and haloperidol respectively increased the atomic distance between reference α carbon atoms of transmembrane domains IV and V and I and II, both of which provide key interfaces for D3R dimerization. These results offer a molecular explanation for the distinctive ability of spiperone and haloperidol to disrupt D3R dimerization.
Collapse
Affiliation(s)
- Sara Marsango
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK.
| | - Gianluigi Caltabiano
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Mireia Jiménez-Rosés
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Mark J Millan
- Institut de Recherches Servier, Centre for Innovation in Neuropsychiatry, 125 Chemin de Ronde, Croissy sur Seine, France, 78290
| | - John D Pediani
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
| | - Richard J Ward
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
| | - Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK.
| |
Collapse
|
119
|
Methods used to study the oligomeric structure of G-protein-coupled receptors. Biosci Rep 2017; 37:BSR20160547. [PMID: 28062602 PMCID: PMC5398257 DOI: 10.1042/bsr20160547] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 02/02/2023] Open
Abstract
G-protein-coupled receptors (GPCRs), which constitute the largest family of cell surface receptors, were originally thought to function as monomers, but are now recognized as being able to act in a wide range of oligomeric states and indeed, it is known that the oligomerization state of a GPCR can modulate its pharmacology and function. A number of experimental techniques have been devised to study GPCR oligomerization including those based upon traditional biochemistry such as blue-native PAGE (BN-PAGE), co-immunoprecipitation (Co-IP) and protein-fragment complementation assays (PCAs), those based upon resonance energy transfer, FRET, time-resolved FRET (TR-FRET), FRET spectrometry and bioluminescence resonance energy transfer (BRET). Those based upon microscopy such as FRAP, total internal reflection fluorescence microscopy (TIRFM), spatial intensity distribution analysis (SpIDA) and various single molecule imaging techniques. Finally with the solution of a growing number of crystal structures, X-ray crystallography must be acknowledged as an important source of discovery in this field. A different, but in many ways complementary approach to the use of more traditional experimental techniques, are those involving computational methods that possess obvious merit in the study of the dynamics of oligomer formation and function. Here, we summarize the latest developments that have been made in the methods used to study GPCR oligomerization and give an overview of their application.
Collapse
|
120
|
Yano Y, Kondo K, Watanabe Y, Zhang TO, Ho JJ, Oishi S, Fujii N, Zanni MT, Matsuzaki K. GXXXG-Mediated Parallel and Antiparallel Dimerization of Transmembrane Helices and Its Inhibition by Cholesterol: Single-Pair FRET and 2D IR Studies. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yoshiaki Yano
- Graduate School of Pharmaceutical Sciences; Kyoto University; Kyoto 606-8501 Japan
| | - Kotaro Kondo
- Graduate School of Pharmaceutical Sciences; Kyoto University; Kyoto 606-8501 Japan
| | - Yuta Watanabe
- Graduate School of Pharmaceutical Sciences; Kyoto University; Kyoto 606-8501 Japan
| | - Tianqi O. Zhang
- Department of Chemistry; University of Wisconsin; Madison WI 53706 USA
| | - Jia-Jung Ho
- Department of Chemistry; University of Wisconsin; Madison WI 53706 USA
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences; Kyoto University; Kyoto 606-8501 Japan
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical Sciences; Kyoto University; Kyoto 606-8501 Japan
| | - Martin T. Zanni
- Department of Chemistry; University of Wisconsin; Madison WI 53706 USA
| | - Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences; Kyoto University; Kyoto 606-8501 Japan
| |
Collapse
|
121
|
Cai X, Bai B, Zhang R, Wang C, Chen J. Apelin receptor homodimer-oligomers revealed by single-molecule imaging and novel G protein-dependent signaling. Sci Rep 2017; 7:40335. [PMID: 28091541 PMCID: PMC5238433 DOI: 10.1038/srep40335] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 12/05/2016] [Indexed: 12/24/2022] Open
Abstract
The apelin receptor (APJ) belongs to family A of the G protein-coupled receptors (GPCRs) and is a potential pharmacotherapeutic target for heart failure, hypertension, and other cardiovascular diseases. There is evidence APJ heterodimerizes with other GPCRs; however, the existence of APJ homodimers and oligomers remains to be investigated. Here, we measured APJ monomer-homodimer-oligomer interconversion by monitoring APJ dynamically on cells and compared their proportions, spatial arrangement, and mobility using total internal reflection fluorescence microscopy, resonance energy transfer, and proximity biotinylation. In cells with <0.3 receptor particles/μm2, approximately 60% of APJ molecules were present as dimers or oligomers. APJ dimers were present on the cell surface in a dynamic equilibrium with constant formation and dissociation of receptor complexes. Furthermore, we applied interference peptides and MALDI-TOF mass spectrometry to confirm APJ homo-dimer and explore the dimer-interfaces. Peptides corresponding to transmembrane domain (TMD)1, 2, 3, and 4, but not TMD5, 6, and 7, disrupted APJ dimerization. APJ mutants in TMD1 and TMD2 also decreased bioluminescence resonance energy transfer of APJ dimer. APJ dimerization resulted in novel functional characteristics, such as a distinct G-protein binding profile and cell responses after agonist stimulation. Thus, dimerization may serve as a unique mechanism for fine-tuning APJ-mediated functions.
Collapse
Affiliation(s)
- Xin Cai
- Department of Physiology, School of Medicine, Shandong University, Jinan, Shandong, 250012 P.R. China.,Neurobiology Institute, Jining Medical University, Jining, Shandong, 272067 P.R. China
| | - Bo Bai
- Neurobiology Institute, Jining Medical University, Jining, Shandong, 272067 P.R. China
| | - Rumin Zhang
- Neurobiology Institute, Jining Medical University, Jining, Shandong, 272067 P.R. China
| | - Chunmei Wang
- Neurobiology Institute, Jining Medical University, Jining, Shandong, 272067 P.R. China
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, Jining, Shandong, 272067 P.R. China.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
122
|
Yano Y, Kondo K, Watanabe Y, Zhang TO, Ho JJ, Oishi S, Fujii N, Zanni MT, Matsuzaki K. GXXXG-Mediated Parallel and Antiparallel Dimerization of Transmembrane Helices and Its Inhibition by Cholesterol: Single-Pair FRET and 2D IR Studies. Angew Chem Int Ed Engl 2017; 56:1756-1759. [PMID: 28071848 DOI: 10.1002/anie.201609708] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/05/2016] [Indexed: 02/06/2023]
Abstract
Small-residue-mediated interhelical packings are ubiquitously found in helical membrane proteins, although their interaction dynamics and lipid dependence remain mostly uncharacterized. We used a single-pair FRET technique to examine the effect of a GXXXG motif on the association of de novo designed (AALALAA)3 helices in liposomes. Dimerization occurred with sub-second lifetimes, which was abolished by cholesterol. Utilizing the nearly instantaneous time-resolution of 2D IR spectroscopy, parallel and antiparallel helix associations were identified by vibrational couplings across helices at their interface. Taken together, the data illustrate that the GXXXG motif controls helix packing but still allows for a dynamic and lipid-regulated oligomeric state.
Collapse
Affiliation(s)
- Yoshiaki Yano
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Kotaro Kondo
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Yuta Watanabe
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Tianqi O Zhang
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA
| | - Jia-Jung Ho
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA
| | - Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
123
|
Jastrzebska B, Comar WD, Kaliszewski MJ, Skinner KC, Torcasio MH, Esway AS, Jin H, Palczewski K, Smith AW. A G Protein-Coupled Receptor Dimerization Interface in Human Cone Opsins. Biochemistry 2017; 56:61-72. [PMID: 28045251 PMCID: PMC5274527 DOI: 10.1021/acs.biochem.6b00877] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
G protein-coupled receptors (GPCRs) detect a wide variety of physical and chemical signals and transmit that information across the cellular plasma membrane. Dimerization is a proposed modulator of GPCR signaling, but the structure and stability of class A GPCR dimerization have been difficult to establish. Here we investigated the dimerization affinity and binding interface of human cone opsins, which initiate and sustain daytime color vision. Using a time-resolved fluorescence approach, we found that human red cone opsin exhibits a strong propensity for dimerization, whereas the green and blue cone opsins do not. Through mutagenesis experiments, we identified a dimerization interface in the fifth transmembrane helix of human red cone opsin involving amino acids I230, A233, and M236. Insights into this dimerization interface of red cone opsin should aid ongoing investigations of the structure and function of GPCR quaternary interactions in cell signaling. Finally, we demonstrated that the same residues needed for dimerization are also partially responsible for the spectral tuning of red cone opsin. This last observation has the potential to open up new lines of inquiry regarding the functional role of dimerization for red cone opsin.
Collapse
Affiliation(s)
- Beata Jastrzebska
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106, United States
| | - William D. Comar
- Department of Chemistry, University of Akron, 190 Buchtel Common, Akron, Ohio 44325, United States
| | - Megan J. Kaliszewski
- Department of Chemistry, University of Akron, 190 Buchtel Common, Akron, Ohio 44325, United States
| | - Kevin C. Skinner
- Department of Chemistry, University of Akron, 190 Buchtel Common, Akron, Ohio 44325, United States
| | - Morgan H. Torcasio
- Department of Chemistry, University of Akron, 190 Buchtel Common, Akron, Ohio 44325, United States
| | - Anthony S. Esway
- Department of Chemistry, University of Akron, 190 Buchtel Common, Akron, Ohio 44325, United States
| | - Hui Jin
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Adam W. Smith
- Department of Chemistry, University of Akron, 190 Buchtel Common, Akron, Ohio 44325, United States
| |
Collapse
|
124
|
The use of fluorescence correlation spectroscopy to characterize the molecular mobility of fluorescently labelled G protein-coupled receptors. Biochem Soc Trans 2016; 44:624-9. [PMID: 27068980 PMCID: PMC5264494 DOI: 10.1042/bst20150285] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 01/10/2023]
Abstract
The membranes of living cells have been shown to be highly organized into distinct microdomains, which has spatial and temporal consequences for the interaction of membrane bound receptors and their signalling partners as complexes. Fluorescence correlation spectroscopy (FCS) is a technique with single cell sensitivity that sheds light on the molecular dynamics of fluorescently labelled receptors, ligands or signalling complexes within small plasma membrane regions of living cells. This review provides an overview of the use of FCS to probe the real time quantification of the diffusion and concentration of G protein-coupled receptors (GPCRs), primarily to gain insights into ligand–receptor interactions and the molecular composition of signalling complexes. In addition we document the use of photon counting histogram (PCH) analysis to investigate how changes in molecular brightness (ε) can be a sensitive indicator of changes in molecular mass of fluorescently labelled moieties.
Collapse
|
125
|
Stoneman MR, Paprocki JD, Biener G, Yokoi K, Shevade A, Kuchin S, Raicu V. Quaternary structure of the yeast pheromone receptor Ste2 in living cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:1456-1464. [PMID: 27993568 DOI: 10.1016/j.bbamem.2016.12.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/05/2016] [Accepted: 12/08/2016] [Indexed: 12/15/2022]
Abstract
Transmembrane proteins known as G protein-coupled receptors (GPCRs) have been shown to form functional homo- or hetero-oligomeric complexes, although agreement has been slow to emerge on whether homo-oligomerization plays functional roles. Here we introduce a platform to determine the identity and abundance of differing quaternary structures formed by GPCRs in living cells following changes in environmental conditions, such as changes in concentrations. The method capitalizes on the intrinsic capability of FRET spectrometry to extract oligomer geometrical information from distributions of FRET efficiencies (or FRET spectrograms) determined from pixel-level imaging of cells, combined with the ability of the statistical ensemble approaches to FRET to probe the proportion of different quaternary structures (such as dimers, rhombus or parallelogram shaped tetramers, etc.) from averages over entire cells. Our approach revealed that the yeast pheromone receptor Ste2 forms predominantly tetramers at average expression levels of 2 to 25 molecules per pixel (2.8·10-6 to 3.5·10-5molecules/nm2), and a mixture of tetramers and octamers at expression levels of 25-100 molecules per pixel (3.5·10-5 to 1.4·10-4molecules/nm2). Ste2 is a class D GPCR found in the yeast Saccharomyces cerevisiae of the mating type a, and binds the pheromone α-factor secreted by cells of the mating type α. Such investigations may inform development of antifungal therapies targeting oligomers of pheromone receptors. The proposed FRET imaging platform may be used to determine the quaternary structure sub-states and stoichiometry of any GPCR and, indeed, any membrane protein in living cells. This article is part of a Special Issue entitled: Interactions between membrane receptors in cellular membranes edited by Kalina Hristova.
Collapse
Affiliation(s)
- Michael R Stoneman
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| | - Joel D Paprocki
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Gabriel Biener
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Koki Yokoi
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Aishwarya Shevade
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Sergei Kuchin
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Valerică Raicu
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA; Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|
126
|
Capra V, Mauri M, Guzzi F, Busnelli M, Accomazzo MR, Gaussem P, Nisar SP, Mundell SJ, Parenti M, Rovati GE. Impaired thromboxane receptor dimerization reduces signaling efficiency: A potential mechanism for reduced platelet function in vivo. Biochem Pharmacol 2016; 124:43-56. [PMID: 27845050 DOI: 10.1016/j.bcp.2016.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/10/2016] [Indexed: 12/16/2022]
Abstract
Thromboxane A2 is a potent mediator of inflammation and platelet aggregation exerting its effects through the activation of a G protein-coupled receptor (GPCR), termed TP. Although the existence of dimers/oligomers in Class A GPCRs is widely accepted, their functional significance still remains controversial. Recently, we have shown that TPα and TPβ homo-/hetero-dimers interact through an interface of residues in transmembrane domain 1 (TM1) whose disruption impairs dimer formation. Here, biochemical and pharmacological characterization of this dimer deficient mutant (DDM) in living cells indicates a significant impairment in its response to agonists. Interestingly, two single loss-of-function TPα variants, namely W29C and N42S recently identified in two heterozygous patients affected by bleeding disorders, match some of the residues mutated in our DDM. These two naturally occurring variants display a reduced potency to TP agonists and are characterized by impaired dimer formation in transfected HEK-293T cells. These findings provide proofs that lack of homo-dimer formation is a crucial process for reduced TPα function in vivo, and might represent one molecular mechanism through which platelet TPα receptor dysfunction affects the patient(s) carrying these mutations.
Collapse
Key Words
- (Z)-7-[(1R,2R,3R,4S)-3-[[2-(phenylcarbamoyl)hydrazinyl]methyl]-7-oxabicyclo[2.2.1]heptan-2-yl]hept-5-enoic acid
- (Z)-7-[(1S,2S,3R,4R)-3-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxabicyclo[2.2.1]heptan-2-yl]hept-5-enoic acid
- (Z)-7-[(1S,2S,3S,4R)-3-[(E,3R)-3-hydroxy-4-(4-iodophenoxy)but-1-enyl]-7-oxabicyclo[2.2.1]heptan-2-yl]hept-5-enoic acid
- (Z)-7-[(1S,3R,4R,5S)-3-[(E,3R)-3-hydroxyoct-1-enyl]-6,6-dimethyl-4-bicyclo[3.1.1]heptanyl]hept-5-enoic acid
- 3-[(3R)-3-[(4-fluorophenyl)sulfonylamino]-1,2,3,4-tetrahydrocarbazol-9-yl]propanoic acid
- Eicosanoids
- G protein coupled receptors
- I-BOP (PubChem CID: 51015454)
- Pinane Thromboxane A2 (PTA2) (PubChem CID: 25834471)
- Platelets
- Ramatroban (PubChem CID: 123879)
- Receptor dimer
- SQ29,548 (PubChem CID: 6437074)
- Signal transduction
- Thromboxane A(2)
- U46619 (PubChem CID: 5311493)
Collapse
Affiliation(s)
- Valérie Capra
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milano, Italy; Department of Health Science, University of Milan, Milano, Italy.
| | - Mario Mauri
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| | - Francesca Guzzi
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| | - Marta Busnelli
- CNR, Institute of Neuroscience, University of Milan, Milan, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.
| | - Maria Rosa Accomazzo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milano, Italy.
| | - Pascale Gaussem
- Inserm UMR-S1140, Faculte' de Pharmacie, Université Paris Descartes, Sorbonne Paris Cité, Paris and AP-HP, Hopital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France.
| | - Shaista P Nisar
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK.
| | - Stuart J Mundell
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK.
| | - Marco Parenti
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| | - G Enrico Rovati
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milano, Italy.
| |
Collapse
|
127
|
Gaitonde SA, González-Maeso J. Contribution of heteromerization to G protein-coupled receptor function. Curr Opin Pharmacol 2016; 32:23-31. [PMID: 27835800 DOI: 10.1016/j.coph.2016.10.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/22/2016] [Accepted: 10/24/2016] [Indexed: 12/22/2022]
Abstract
G protein-coupled receptors (GPCRs) are a remarkably multifaceted family of transmembrane proteins that exert a variety of physiological effects. Although family A GPCRs are able to operate as monomers, there is increasing evidence that heteromerization represents a fundamental aspect of receptor function, trafficking and pharmacology. Most recently, it has been suggested that GPCR heteromers may play a crucial role as new molecular targets of heteromer-selective and bivalent ligands. The current review summarizes key recent developments in these topics.
Collapse
Affiliation(s)
- Supriya A Gaitonde
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States.
| |
Collapse
|
128
|
Goiko M, de Bruyn JR, Heit B. Short-Lived Cages Restrict Protein Diffusion in the Plasma Membrane. Sci Rep 2016; 6:34987. [PMID: 27725698 PMCID: PMC5057110 DOI: 10.1038/srep34987] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/22/2016] [Indexed: 01/08/2023] Open
Abstract
The plasma membrane is a heterogeneous environment characterized by anomalous diffusion and the presence of microdomains that are molecularly distinct from the bulk membrane. Using single particle tracking of the C-type lectin CD93, we have identified for the first time the transient trapping of transmembrane proteins in cage-like microdomains which restrict protein diffusion. These cages are stabilized by actin-dependent confinement regions, but are separate structures with sizes and lifespans uncorrelated to those of the underlying actin corral. These membrane cages require cholesterol for their strength and stability, with cholesterol depletion decreasing both. Despite this, cages are much larger in size and are longer lived than lipid rafts, suggesting instead that cholesterol-dependent effects on membrane fluidity or molecular packing play a role in cage formation. This diffusional compartment in the plasma membrane has characteristics of both a diffusional barrier and a membrane microdomain, with a size and lifespan intermediate between short-lived microdomains such as lipid rafts and long-lasting diffusional barriers created by the actin cytoskeleton.
Collapse
Affiliation(s)
- Maria Goiko
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, N6A 5C1 Canada.,Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, N6A 3K7 Canada
| | - John R de Bruyn
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, N6A 3K7 Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, N6A 5C1 Canada.,Centre for Human Immunology, The University of Western Ontario, London, Ontario, N6A 5C1 Canada
| |
Collapse
|
129
|
Lee SA, Ponjavic A, Siv C, Lee SF, Biteen JS. Nanoscopic Cellular Imaging: Confinement Broadens Understanding. ACS NANO 2016; 10:8143-8153. [PMID: 27602688 DOI: 10.1021/acsnano.6b02863] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In recent years, single-molecule fluorescence imaging has been reconciling a fundamental mismatch between optical microscopy and subcellular biophysics. However, the next step in nanoscale imaging in living cells can be accessed only by optical excitation confinement geometries. Here, we review three methods of confinement that can enable nanoscale imaging in living cells: excitation confinement by laser illumination with beam shaping; physical confinement by micron-scale geometries in bacterial cells; and nanoscale confinement by nanophotonics.
Collapse
Affiliation(s)
- Stephen A Lee
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Aleks Ponjavic
- Department of Chemistry, Cambridge University , Cambridge CB2 1EW, United Kingdom
| | - Chanrith Siv
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Steven F Lee
- Department of Chemistry, Cambridge University , Cambridge CB2 1EW, United Kingdom
| | - Julie S Biteen
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
130
|
Quaternary structures of opsin in live cells revealed by FRET spectrometry. Biochem J 2016; 473:3819-3836. [PMID: 27623775 DOI: 10.1042/bcj20160422] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/12/2016] [Indexed: 02/06/2023]
Abstract
Rhodopsin is a prototypical G-protein-coupled receptor (GPCR) that initiates phototransduction in the retina. The receptor consists of the apoprotein opsin covalently linked to the inverse agonist 11-cis retinal. Rhodopsin and opsin have been shown to form oligomers within the outer segment disc membranes of rod photoreceptor cells. However, the physiological relevance of the observed oligomers has been questioned since observations were made on samples prepared from the retina at low temperatures. To investigate the oligomeric status of opsin in live cells at body temperatures, we utilized a novel approach called Förster resonance energy transfer spectrometry, which previously has allowed the determination of the stoichiometry and geometry (i.e. quaternary structure) of various GPCRs. In the current study, we have extended the method to additionally determine whether or not a mixture of oligomeric forms of opsin exists and in what proportion. The application of this improved method revealed that opsin expressed in live Chinese hamster ovary (CHO) cells at 37°C exists as oligomers of various sizes. At lower concentrations, opsin existed in an equilibrium of dimers and tetramers. The tetramers were in the shape of a near-rhombus. At higher concentrations of the receptor, higher-order oligomers began to form. Thus, a mixture of different oligomeric forms of opsin is present in the membrane of live CHO cells and oligomerization occurs in a concentration-dependent manner. The general principles underlying the concentration-dependent oligomerization of opsin may be universal and apply to other GPCRs as well.
Collapse
|
131
|
Tabor A, Weisenburger S, Banerjee A, Purkayastha N, Kaindl JM, Hübner H, Wei L, Grömer TW, Kornhuber J, Tschammer N, Birdsall NJM, Mashanov GI, Sandoghdar V, Gmeiner P. Visualization and ligand-induced modulation of dopamine receptor dimerization at the single molecule level. Sci Rep 2016; 6:33233. [PMID: 27615810 PMCID: PMC5018964 DOI: 10.1038/srep33233] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/23/2016] [Indexed: 12/19/2022] Open
Abstract
G protein–coupled receptors (GPCRs), including dopamine receptors, represent a group of important pharmacological targets. An increased formation of dopamine receptor D2 homodimers has been suggested to be associated with the pathophysiology of schizophrenia. Selective labeling and ligand-induced modulation of dimerization may therefore allow the investigation of the pathophysiological role of these dimers. Using TIRF microscopy at the single molecule level, transient formation of homodimers of dopamine receptors in the membrane of stably transfected CHO cells has been observed. The equilibrium between dimers and monomers was modulated by the binding of ligands; whereas antagonists showed a ratio that was identical to that of unliganded receptors, agonist-bound D2 receptor-ligand complexes resulted in an increase in dimerization. Addition of bivalent D2 receptor ligands also resulted in a large increase in D2 receptor dimers. A physical interaction between the protomers was confirmed using high resolution cryogenic localization microscopy, with ca. 9 nm between the centers of mass.
Collapse
Affiliation(s)
- Alina Tabor
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Siegfried Weisenburger
- Max Planck Institute for the Science of Light and Department of Physics, Friedrich-Alexander University, Günther-Scharowsky-Straße 1/ Bldg. 24, 91058 Erlangen, Germany
| | - Ashutosh Banerjee
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Nirupam Purkayastha
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Jonas M Kaindl
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Luxi Wei
- Max Planck Institute for the Science of Light and Department of Physics, Friedrich-Alexander University, Günther-Scharowsky-Straße 1/ Bldg. 24, 91058 Erlangen, Germany
| | - Teja W Grömer
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Nuska Tschammer
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Nigel J M Birdsall
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London NW7 1AA, UK
| | - Gregory I Mashanov
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London NW7 1AA, UK
| | - Vahid Sandoghdar
- Max Planck Institute for the Science of Light and Department of Physics, Friedrich-Alexander University, Günther-Scharowsky-Straße 1/ Bldg. 24, 91058 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| |
Collapse
|
132
|
Shivnaraine RV, Fernandes DD, Ji H, Li Y, Kelly B, Zhang Z, Han YR, Huang F, Sankar KS, Dubins DN, Rocheleau JV, Wells JW, Gradinaru CC. Single-Molecule Analysis of the Supramolecular Organization of the M2 Muscarinic Receptor and the Gαi1 Protein. J Am Chem Soc 2016; 138:11583-98. [DOI: 10.1021/jacs.6b04032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Rabindra V. Shivnaraine
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Dennis D. Fernandes
- Department
of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Huiqiao Ji
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Yuchong Li
- Department
of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Brendan Kelly
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Krembil Research
Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada
| | - Zhenfu Zhang
- Department
of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Yi Rang Han
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Fei Huang
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Krishana S. Sankar
- Department
of Physiology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - David N. Dubins
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Jonathan V. Rocheleau
- Department
of Physiology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Institute
of Biomedical and Biomaterial Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - James W. Wells
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Claudiu C. Gradinaru
- Department
of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
133
|
Baboolal TG, Mashanov GI, Nenasheva TA, Peckham M, Molloy JE. A Combination of Diffusion and Active Translocation Localizes Myosin 10 to the Filopodial Tip. J Biol Chem 2016; 291:22373-22385. [PMID: 27566544 PMCID: PMC5077179 DOI: 10.1074/jbc.m116.730689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/24/2016] [Indexed: 11/06/2022] Open
Abstract
Myosin 10 is an actin-based molecular motor that localizes to the tips of filopodia in mammalian cells. To understand how it is targeted to this distinct region of the cell, we have used total internal reflection fluorescence microscopy to study the movement of individual full-length and truncated GFP-tagged molecules. Truncation mutants lacking the motor region failed to localize to filopodial tips but still bound transiently at the plasma membrane. Deletion of the single α-helical and anti-parallel coiled-coil forming regions, which lie between the motor and pleckstrin homology domains, reduced the instantaneous velocity of intrafilopodial movement but did not affect the number of substrate adherent filopodia. Deletion of the anti-parallel coiled-coil forming region, but not the EKR-rich region of the single α-helical domain, restored intrafilopodial trafficking, suggesting this region is important in determining myosin 10 motility. We propose a model by which myosin 10 rapidly targets to the filopodial tip via a sequential reduction in dimensionality. Molecules first undergo rapid diffusion within the three-dimensional volume of the cell body. They then exhibit periods of slower two-dimensional diffusion in the plane of the plasma membrane. Finally, they move in a unidimensional, highly directed manner along the polarized actin filament bundle within the filopodium becoming confined to a single point at the tip. Here we have observed directly each phase of the trafficking process using single molecule fluorescence imaging of live cells and have quantified our observations using single particle tracking, autocorrelation analysis, and kymographs.
Collapse
Affiliation(s)
- Thomas G Baboolal
- From the Astbury Centre for Structural Molecular Biology and Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT and
| | - Gregory I Mashanov
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, United Kingdom
| | - Tatiana A Nenasheva
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, United Kingdom
| | - Michelle Peckham
- From the Astbury Centre for Structural Molecular Biology and Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT and
| | - Justin E Molloy
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, United Kingdom
| |
Collapse
|
134
|
Latty SL, Felce JH, Weimann L, Lee SF, Davis SJ, Klenerman D. Referenced Single-Molecule Measurements Differentiate between GPCR Oligomerization States. Biophys J 2016; 109:1798-806. [PMID: 26536257 PMCID: PMC4643199 DOI: 10.1016/j.bpj.2015.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 08/25/2015] [Accepted: 09/08/2015] [Indexed: 11/24/2022] Open
Abstract
The extent to which Rhodopsin family G-protein-coupled receptors (GPCRs) form invariant oligomers is contentious. Recent single-molecule fluorescence imaging studies mostly argue against the existence of constitutive receptor dimers and instead suggest that GPCRs only dimerize transiently, if at all. However, whether or not even transient dimers exist is not always clear due to difficulties in unambiguously distinguishing genuine interactions from chance colocalizations, particularly with respect to short-lived events. Previous single-molecule studies have depended critically on calculations of chance colocalization rates and/or comparison with unfixed control proteins whose diffusional behavior may or may not differ from that of the test receptor. Here, we describe a single-molecule imaging assay that 1) utilizes comparisons with well-characterized control proteins, i.e., the monomer CD86 and the homodimer CD28, and 2) relies on cell fixation to limit artifacts arising from differences in the distribution and diffusion of test proteins versus these controls. The improved assay reliably reports the stoichiometry of the Glutamate-family GPCR dimer, γ-amino butyric acid receptor b2, whereas two Rhodopsin-family GPCRs, β2-adrenergic receptor and mCannR2, exhibit colocalization levels comparable to those of CD86 monomers, strengthening the case against invariant GPCR oligomerization.
Collapse
Affiliation(s)
- Sarah L Latty
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - James H Felce
- Radcliffe Department of Clinical Medicine and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Laura Weimann
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Steven F Lee
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Simon J Davis
- Radcliffe Department of Clinical Medicine and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
135
|
Khan S, Conte I, Carter T, Bayer KU, Molloy JE. Multiple CaMKII Binding Modes to the Actin Cytoskeleton Revealed by Single-Molecule Imaging. Biophys J 2016; 111:395-408. [PMID: 27463141 PMCID: PMC4968397 DOI: 10.1016/j.bpj.2016.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 11/22/2022] Open
Abstract
Localization of the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) to dendritic spine synapses is determined in part by the actin cytoskeleton. We determined binding of GFP-tagged CaMKII to tag-RFP-labeled actin cytoskeleton within live cells using total internal reflection fluorescence microscopy and single-molecule tracking. Stepwise photobleaching showed that CaMKII formed oligomeric complexes. Photoactivation experiments demonstrated that diffusion out of the evanescent field determined the track lifetimes. Latrunculin treatment triggered a coupled loss of actin stress fibers and the colocalized, long-lived CaMKII tracks. The CaMKIIα (α) isoform, which was previously thought to lack F-actin interactions, also showed binding, but this was threefold weaker than that observed for CaMKIIβ (β). The βE' splice variant bound more weakly than α, showing that binding by β depends critically on the interdomain linker. The mutations βT287D and αT286D, which mimic autophosphorylation states, also abolished F-actin binding. Autophosphorylation triggers autonomous CaMKII activity, but does not impair GluN2B binding, another important synaptic protein interaction of CaMKII. The CaMKII inhibitor tatCN21 or CaMKII mutations that inhibit GluN2B association by blocking binding of ATP (βK43R and αK42M) or Ca(2+)/calmodulin (βA303R) had no effect on the interaction with F-actin. These results provide the first rationale for the reduced synaptic spine localization of the αT286D mutant, indicating that transient F-actin binding contributes to the synaptic localization of the CaMKIIα isoform. The track lifetime distributions had a stretched exponential form consistent with a heterogeneously diffusing population. This heterogeneity suggests that CaMKII adopts different F-actin binding modes, which is most easily rationalized by multiple subunit contacts between the CaMKII dodecamer and the F-actin cytoskeleton that stabilize the initial weak (micromolar) monovalent interaction.
Collapse
Affiliation(s)
- Shahid Khan
- Molecular Biology Consortium, Lawrence Berkeley National Laboratory, Berkeley, California.
| | - Ianina Conte
- Cardiovascular and Cell Science Research Institute, St. George's University of London, London, UK
| | - Tom Carter
- Cell Biology and Genetics, St. George's University of London, London, UK
| | - K Ulrich Bayer
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado
| | - Justin E Molloy
- The Francis Crick Institute, Mill Hill Laboratory, London, UK
| |
Collapse
|
136
|
Holloway T, Moreno JL, González-Maeso J. HSV-Mediated Transgene Expression of Chimeric Constructs to Study Behavioral Function of GPCR Heteromers in Mice. J Vis Exp 2016. [PMID: 27501227 DOI: 10.3791/53717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The heteromeric receptor complex between 5-HT2A and mGlu2 has been implicated in some of the behavioral phenotypes in mouse models of psychosis(1,2). Consequently, investigation of structural details of the interaction between 5-HT2A and mGlu2 affecting schizophrenia-related behaviors represents a powerful translational tool. As previously shown, the head-twitch response (HTR) in mice is elicited by hallucinogenic drugs and this behavioral response is absent in 5-HT2A knockout (KO) mice(3,4). Additionally, by conditionally expressing the 5-HT2A receptor only in cortex, it was demonstrated that 5-HT2A receptor-dependent signaling pathways on cortical pyramidal neurons are sufficient to elicit head-twitch behavior in response to hallucinogenic drugs(3). Finally, it has been shown that the head-twitch behavioral response induced by the hallucinogens DOI and lysergic acid diethylamide (LSD) is significantly decreased in mGlu2-KO mice(5). These findings suggest that mGlu2 is at least in part necessary for the 5-HT2A receptor-dependent psychosis-like behavioral effects induced by LSD-like drugs. However, this does not provide evidence as to whether the 5-HT2A-mGlu2 receptor complex is necessary for this behavioral phenotype. To address this question, herpes simplex virus (HSV) constructs to express either mGlu2 or mGlu2ΔTM4N (mGlu2/mGlu3 chimeric construct that does not form the 5-HT2A-mGlu2 receptor complex) in the frontal cortex of mGlu2-KO mice were used to examine whether this GPCR heteromeric complex is needed for the behavioral effects induced by LSD-like drugs(6).
Collapse
Affiliation(s)
- Terrell Holloway
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai
| | - Jose L Moreno
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai
| | - Javier González-Maeso
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai; Department of Neurology, Icahn School of Medicine at Mount Sinai; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; Department of Physiology and Biophysics, Virginia Commonwealth University Medical School;
| |
Collapse
|
137
|
Kleinau G, Müller A, Biebermann H. Oligomerization of GPCRs involved in endocrine regulation. J Mol Endocrinol 2016; 57:R59-80. [PMID: 27151573 DOI: 10.1530/jme-16-0049] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/04/2016] [Indexed: 12/27/2022]
Abstract
More than 800 different human membrane-spanning G-protein-coupled receptors (GPCRs) serve as signal transducers at biological barriers. These receptors are activated by a wide variety of ligands such as peptides, ions and hormones, and are able to activate a diverse set of intracellular signaling pathways. GPCRs are of central importance in endocrine regulation, which underpins the significance of comprehensively studying these receptors and interrelated systems. During the last decade, the capacity for multimerization of GPCRs was found to be a common and functionally relevant property. The interaction between GPCR monomers results in higher order complexes such as homomers (identical receptor subtype) or heteromers (different receptor subtypes), which may be present in a specific and dynamic monomer/oligomer equilibrium. It is widely accepted that the oligomerization of GPCRs is a mechanism for determining the fine-tuning and expansion of cellular processes by modification of ligand action, expression levels, and related signaling outcome. Accordingly, oligomerization provides exciting opportunities to optimize pharmacological treatment with respect to receptor target and tissue selectivity or for the development of diagnostic tools. On the other hand, GPCR heteromerization may be a potential reason for the undesired side effects of pharmacological interventions, faced with numerous and common mutual signaling modifications in heteromeric constellations. Finally, detailed deciphering of the physiological occurrence and relevance of specific GPCR/GPCR-ligand interactions poses a future challenge. This review will tackle the aspects of GPCR oligomerization with specific emphasis on family A GPCRs involved in endocrine regulation, whereby only a subset of these receptors will be discussed in detail.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology (IEPE)Charité-Universitätsmedizin, Berlin, Germany
| | - Anne Müller
- Institute of Experimental Pediatric Endocrinology (IEPE)Charité-Universitätsmedizin, Berlin, Germany
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology (IEPE)Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
138
|
Liu C, Liu YL, Perillo EP, Dunn AK, Yeh HC. Single-Molecule Tracking and Its Application in Biomolecular Binding Detection. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2016; 22:6804013. [PMID: 27660404 PMCID: PMC5028128 DOI: 10.1109/jstqe.2016.2568160] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In the past two decades significant advances have been made in single-molecule detection, which enables the direct observation of single biomolecules at work in real time and under physiological conditions. In particular, the development of single-molecule tracking (SMT) microscopy allows us to monitor the motion paths of individual biomolecules in living systems, unveiling the localization dynamics and transport modalities of the biomolecules that support the development of life. Beyond the capabilities of traditional camera-based tracking techniques, state-of-the-art SMT microscopies developed in recent years can record fluorescence lifetime while tracking a single molecule in the 3D space. This multiparameter detection capability can open the door to a wide range of investigations at the cellular or tissue level, including identification of molecular interaction hotspots and characterization of association/dissociation kinetics between molecules. In this review, we discuss various SMT techniques developed to date, with an emphasis on our recent development of the next generation 3D tracking system that not only achieves ultrahigh spatiotemporal resolution but also provides sufficient working depth suitable for live animal imaging. We also discuss the challenges that current SMT techniques are facing and the potential strategies to tackle those challenges.
Collapse
Affiliation(s)
- Cong Liu
- University of Texas at Austin, Austin, TX 78703 USA
| | | | | | | | | |
Collapse
|
139
|
Tian H, Fürstenberg A, Huber T. Labeling and Single-Molecule Methods To Monitor G Protein-Coupled Receptor Dynamics. Chem Rev 2016; 117:186-245. [DOI: 10.1021/acs.chemrev.6b00084] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- He Tian
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Alexandre Fürstenberg
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Thomas Huber
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| |
Collapse
|
140
|
Affiliation(s)
- Ji Yu
- Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut 06030;
| |
Collapse
|
141
|
Pediani JD, Ward RJ, Godin AG, Marsango S, Milligan G. Dynamic Regulation of Quaternary Organization of the M1 Muscarinic Receptor by Subtype-selective Antagonist Drugs. J Biol Chem 2016; 291:13132-46. [PMID: 27080256 PMCID: PMC4933229 DOI: 10.1074/jbc.m115.712562] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Indexed: 12/14/2022] Open
Abstract
Although rhodopsin-like G protein-coupled receptors can exist as both monomers and non-covalently associated dimers/oligomers, the steady-state proportion of each form and whether this is regulated by receptor ligands are unknown. Herein we address these topics for the M1 muscarinic acetylcholine receptor, a key molecular target for novel cognition enhancers, by using spatial intensity distribution analysis. This method can measure fluorescent particle concentration and assess oligomerization states of proteins within defined regions of living cells. Imaging and analysis of the basolateral surface of cells expressing some 50 molecules·μm−2 human muscarinic M1 receptor identified a ∼75:25 mixture of receptor monomers and dimers/oligomers. Both sustained and shorter term treatment with the selective M1 antagonist pirenzepine resulted in a large shift in the distribution of receptor species to favor the dimeric/oligomeric state. Although sustained treatment with pirenzepine also resulted in marked up-regulation of the receptor, simple mass action effects were not the basis for ligand-induced stabilization of receptor dimers/oligomers. The related antagonist telenzepine also produced stabilization and enrichment of the M1 receptor dimer population, but the receptor subtype non-selective antagonists atropine and N-methylscopolamine did not. In contrast, neither pirenzepine nor telenzepine altered the quaternary organization of the related M3 muscarinic receptor. These data provide unique insights into the selective capacity of receptor ligands to promote and/or stabilize receptor dimers/oligomers and demonstrate that the dynamics of ligand regulation of the quaternary organization of G protein-coupled receptors is markedly more complex than previously appreciated. This may have major implications for receptor function and behavior.
Collapse
Affiliation(s)
- John D Pediani
- From the Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom and
| | - Richard J Ward
- From the Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom and
| | - Antoine G Godin
- Institut d'Optique and CNRS, Laboratoire Photonique, Numérique et Nanosciences (LP2N) and Université de Bordeaux, LP2N, F-33405, UMR 5298, 33405 Talence Cedex, France
| | - Sara Marsango
- From the Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom and
| | - Graeme Milligan
- From the Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom and
| |
Collapse
|
142
|
Quaternary structure of a G-protein-coupled receptor heterotetramer in complex with Gi and Gs. BMC Biol 2016; 14:26. [PMID: 27048449 PMCID: PMC4822319 DOI: 10.1186/s12915-016-0247-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 03/16/2016] [Indexed: 12/04/2022] Open
Abstract
Background G-protein-coupled receptors (GPCRs), in the form of monomers or homodimers that bind heterotrimeric G proteins, are fundamental in the transfer of extracellular stimuli to intracellular signaling pathways. Different GPCRs may also interact to form heteromers that are novel signaling units. Despite the exponential growth in the number of solved GPCR crystal structures, the structural properties of heteromers remain unknown. Results We used single-particle tracking experiments in cells expressing functional adenosine A1-A2A receptors fused to fluorescent proteins to show the loss of Brownian movement of the A1 receptor in the presence of the A2A receptor, and a preponderance of cell surface 2:2 receptor heteromers (dimer of dimers). Using computer modeling, aided by bioluminescence resonance energy transfer assays to monitor receptor homomerization and heteromerization and G-protein coupling, we predict the interacting interfaces and propose a quaternary structure of the GPCR tetramer in complex with two G proteins. Conclusions The combination of results points to a molecular architecture formed by a rhombus-shaped heterotetramer, which is bound to two different interacting heterotrimeric G proteins (Gi and Gs). These novel results constitute an important advance in understanding the molecular intricacies involved in GPCR function. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0247-4) contains supplementary material, which is available to authorized users.
Collapse
|
143
|
Conte IL, Hellen N, Bierings R, Mashanov GI, Manneville JB, Kiskin NI, Hannah MJ, Molloy JE, Carter T. Interaction between MyRIP and the actin cytoskeleton regulates Weibel-Palade body trafficking and exocytosis. J Cell Sci 2016; 129:592-603. [PMID: 26675235 PMCID: PMC4760305 DOI: 10.1242/jcs.178285] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/03/2015] [Indexed: 12/11/2022] Open
Abstract
Weibel-Palade body (WPB)-actin interactions are essential for the trafficking and secretion of von Willebrand factor; however, the molecular basis for this interaction remains poorly defined. Myosin Va (MyoVa or MYO5A) is recruited to WPBs by a Rab27A-MyRIP complex and is thought to be the prime mediator of actin binding, but direct MyRIP-actin interactions can also occur. To evaluate the specific contribution of MyRIP-actin and MyRIP-MyoVa binding in WPB trafficking and Ca(2+)-driven exocytosis, we used EGFP-MyRIP point mutants with disrupted MyoVa and/or actin binding and high-speed live-cell fluorescence microscopy. We now show that the ability of MyRIP to restrict WPB movement depends upon its actin-binding rather than its MyoVa-binding properties. We also show that, although the role of MyRIP in Ca(2+)-driven exocytosis requires both MyoVa- and actin-binding potential, it is the latter that plays a dominant role. In view of these results and together with the analysis of actin disruption or stabilisation experiments, we propose that the role of MyRIP in regulating WPB trafficking and exocytosis is mediated largely through its interaction with actin rather than with MyoVa.
Collapse
Affiliation(s)
- Ianina L Conte
- Cardiovascular and Cell Science Research Institute, St George's University, London SW17 0RE, UK
| | - Nicola Hellen
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK
| | - Ruben Bierings
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK
| | | | | | - Nikolai I Kiskin
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK
| | - Matthew J Hannah
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK
| | - Justin E Molloy
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK
| | - Tom Carter
- Cardiovascular and Cell Science Research Institute, St George's University, London SW17 0RE, UK
| |
Collapse
|
144
|
Application of Variable Angle Total Internal Reflection Fluorescence Microscopy to Investigate Protein Dynamics in Intact Plant Cells. Methods Mol Biol 2016; 1363:123-32. [PMID: 26577785 DOI: 10.1007/978-1-4939-3115-6_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Variable angle total internal reflection fluorescence microscopy (VA-TIRFM) is an optical method to observe the molecular events occurring in an extremely thin region near the plasma membrane. Recently, the VA-TIRFM technique has been widely used to study fluorescently labeled target molecules in living animal and plant cells. Here, we describe the optical principle of the VA-TIRFM technique and provide a detailed experimental procedure for the study of living plant cells.
Collapse
|
145
|
|
146
|
|
147
|
Scarselli M, Annibale P, McCormick PJ, Kolachalam S, Aringhieri S, Radenovic A, Corsini GU, Maggio R. Revealing G-protein-coupled receptor oligomerization at the single-molecule level through a nanoscopic lens: methods, dynamics and biological function. FEBS J 2015; 283:1197-217. [PMID: 26509747 DOI: 10.1111/febs.13577] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/29/2015] [Accepted: 10/23/2015] [Indexed: 11/30/2022]
Abstract
The introduction of super-resolution fluorescence microscopy has allowed the visualization of single proteins in their biological environment. Recently, these techniques have been applied to determine the organization of class A G-protein-coupled receptors (GPCRs), and to determine whether they exist as monomers, dimers and/or higher-order oligomers. On this subject, this review highlights recent evidence from photoactivated localization microscopy (PALM), which allows the visualization of single molecules in dense samples, and single-molecule tracking (SMT), which determines how GPCRs move and interact in living cells in the presence of different ligands. PALM has demonstrated that GPCR oligomerization depends on the receptor subtype, the cell type, the actin cytoskeleton, and other proteins. Conversely, SMT has revealed the transient dynamics of dimer formation, whereby receptors show a monomer-dimer equilibrium characterized by rapid association and dissociation. At steady state, depending on the subtype, approximately 30-50% of receptors are part of dimeric complexes. Notably, the existence of many GPCR dimers/oligomers is also supported by well-known techniques, such as resonance energy transfer methodologies, and by approaches that exploit fluorescence fluctuations, such as fluorescence correlation spectroscopy (FCS). Future research using single-molecule methods will deepen our knowledge related to the function and druggability of homo-oligomers and hetero-oligomers.
Collapse
Affiliation(s)
- Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Paolo Annibale
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | | | - Shivakumar Kolachalam
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Stefano Aringhieri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - Giovanni U Corsini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Roberto Maggio
- Biotechnological and Applied Clinical Sciences Department, University of L'Aquila, Italy
| |
Collapse
|
148
|
Probing the dynamics of growth factor receptor by single-molecule fluorescence imaging. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 118:95-102. [DOI: 10.1016/j.pbiomolbio.2015.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 12/14/2022]
|
149
|
Roth S, Kholodenko BN, Smit MJ, Bruggeman FJ. G Protein-Coupled Receptor Signaling Networks from a Systems Perspective. Mol Pharmacol 2015; 88:604-16. [PMID: 26162865 DOI: 10.1124/mol.115.100057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/10/2015] [Indexed: 12/20/2022] Open
Abstract
The signal-transduction network of a mammalian cell integrates internal and external cues to initiate adaptive responses. Among the cell-surface receptors are the G protein-coupled receptors (GPCRs), which have remarkable signal-integrating capabilities. Binding of extracellular signals stabilizes intracellular-domain conformations that selectively activate intracellular proteins. Hereby, multiple signaling routes are activated simultaneously to degrees that are signal-combination dependent. Systems-biology studies indicate that signaling networks have emergent processing capabilities that go far beyond those of single proteins. Such networks are spatiotemporally organized and capable of gradual, oscillatory, all-or-none, and subpopulation-generating responses. Protein-protein interactions, generating feedback and feedforward circuitry, are generally required for these spatiotemporal phenomena. Understanding of information processing by signaling networks therefore requires network theories in addition to biochemical and biophysical concepts. Here we review some of the key signaling systems behaviors that have been discovered recurrently across signaling networks. We emphasize the role of GPCRs, so far underappreciated receptors in systems-biology research.
Collapse
Affiliation(s)
- S Roth
- Systems Bioinformatics (S.R., F.J.B.) and Amsterdam Institute for Molecules, Medicines & Systems, VU University, Amsterdam, The Netherlands (M.J.S.); and Systems Biology Ireland, University College Dublin, Dublin, Ireland (B.N.K.)
| | - B N Kholodenko
- Systems Bioinformatics (S.R., F.J.B.) and Amsterdam Institute for Molecules, Medicines & Systems, VU University, Amsterdam, The Netherlands (M.J.S.); and Systems Biology Ireland, University College Dublin, Dublin, Ireland (B.N.K.)
| | - M J Smit
- Systems Bioinformatics (S.R., F.J.B.) and Amsterdam Institute for Molecules, Medicines & Systems, VU University, Amsterdam, The Netherlands (M.J.S.); and Systems Biology Ireland, University College Dublin, Dublin, Ireland (B.N.K.)
| | - F J Bruggeman
- Systems Bioinformatics (S.R., F.J.B.) and Amsterdam Institute for Molecules, Medicines & Systems, VU University, Amsterdam, The Netherlands (M.J.S.); and Systems Biology Ireland, University College Dublin, Dublin, Ireland (B.N.K.)
| |
Collapse
|
150
|
Lohse MJ, Hofmann KP. Spatial and Temporal Aspects of Signaling by G-Protein-Coupled Receptors. Mol Pharmacol 2015; 88:572-8. [PMID: 26184590 DOI: 10.1124/mol.115.100248] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/10/2015] [Indexed: 01/07/2023] Open
Abstract
Signaling by G-protein-coupled receptors is often considered a uniform process, whereby a homogeneously activated proportion of randomly distributed receptors are activated under equilibrium conditions and produce homogeneous, steady-state intracellular signals. While this may be the case in some biologic systems, the example of rhodopsin with its strictly local single-quantum mode of function shows that homogeneity in space and time cannot be a general property of G-protein-coupled systems. Recent work has now revealed many other systems where such simplicity does not prevail. Instead, a plethora of mechanisms allows much more complex patterns of receptor activation and signaling: different mechanisms of protein-protein interaction; temporal changes under nonequilibrium conditions; localized receptor activation; and localized second messenger generation and degradation-all of which shape receptor-generated signals and permit the creation of multiple signal types. Here, we review the evidence for such pleiotropic receptor signaling in space and time.
Collapse
Affiliation(s)
- Martin J Lohse
- Institute of Pharmacology and Toxicology, Rudolf Virchow Center, and Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany (M.J.L.); Institut für Medizinische Physik und Biophysik (CC2), Charité-Universitätsmedizin Berlin, Berlin, Germany (K.P.H.); and Zentrum für Biophysik und Bioinformatik, Humboldt-Universität zu Berlin, Berlin, Germany (K.P.H.)
| | - Klaus Peter Hofmann
- Institute of Pharmacology and Toxicology, Rudolf Virchow Center, and Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany (M.J.L.); Institut für Medizinische Physik und Biophysik (CC2), Charité-Universitätsmedizin Berlin, Berlin, Germany (K.P.H.); and Zentrum für Biophysik und Bioinformatik, Humboldt-Universität zu Berlin, Berlin, Germany (K.P.H.)
| |
Collapse
|