101
|
Jin S, Yin E, Feng C, Sun Y, Yang T, Yuan H, Guo Z, Wang X. Regulating tumor glycometabolism and the immune microenvironment by inhibiting lactate dehydrogenase with platinum(iv) complexes. Chem Sci 2023; 14:8327-8337. [PMID: 37564403 PMCID: PMC10411615 DOI: 10.1039/d3sc01874a] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Lactate dehydrogenase (LDH) is a key enzyme involved in the process of glycolysis, assisting cancer cells to take in glucose and generate lactate, as well as to suppress and evade the immune system by altering the tumor microenvironment (TME). Platinum(iv) complexes MDP and DDP were prepared by modifying cisplatin with diclofenac at the axial position(s). These complexes exhibited potent antiproliferative activity against a panel of human cancer cell lines. In particular, DDP downregulated the expression of LDHA, LDHB, and MCTs to inhibit the production and influx/efflux of lactate in cancer cells, impeding both glycolysis and glucose oxidation. MDP and DDP also reduced the expression of HIF-1α, ARG1 and VEGF, thereby disrupting the formation of tumor vasculature. Furthermore, they promoted the repolarization of macrophages from the tumor-supportive M2 phenotype to the tumor-suppressive M1 phenotype in the TME, thus enhancing the antitumor immune response. The antitumor mechanism involves reprogramming the energy metabolism of tumor cells and relieving the immunosuppressive TME.
Collapse
Affiliation(s)
- Suxing Jin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210023 P. R. China +86 25 89684549 +86 25 89684549
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University Nanjing 210023 P. R. China
| | - Enmao Yin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210023 P. R. China +86 25 89684549 +86 25 89684549
| | - Chenyao Feng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210023 P. R. China +86 25 89684549 +86 25 89684549
| | - Yuewen Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210023 P. R. China +86 25 89684549 +86 25 89684549
| | - Tao Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
- Chemistry and Biomedicine Innovation Center, Nanjing University Nanjing 210023 P. R. China
| | - Hao Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
- Chemistry and Biomedicine Innovation Center, Nanjing University Nanjing 210023 P. R. China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210023 P. R. China +86 25 89684549 +86 25 89684549
| |
Collapse
|
102
|
Varlı M, Kim SJ, Noh MG, Kim YG, Ha HH, Kim KK, Kim H. KITENIN promotes aerobic glycolysis through PKM2 induction by upregulating the c-Myc/hnRNPs axis in colorectal cancer. Cell Biosci 2023; 13:146. [PMID: 37553596 PMCID: PMC10410973 DOI: 10.1186/s13578-023-01089-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023] Open
Abstract
PURPOSE The oncoprotein KAI1 C-terminal interacting tetraspanin (KITENIN; vang-like 1) promotes cell metastasis, invasion, and angiogenesis, resulting in shorter survival times in cancer patients. Here, we aimed to determine the effects of KITENIN on the energy metabolism of human colorectal cancer cells. EXPERIMENTAL DESIGN The effects of KITENIN on energy metabolism were evaluated using in vitro assays. The GEPIA web tool was used to extrapolate the clinical relevance of KITENIN in cancer cell metabolism. The bioavailability and effect of the disintegrator of KITENIN complex compounds were evaluated by LC-MS, in vivo animal assay. RESULTS KITENIN markedly upregulated the glycolytic proton efflux rate and aerobic glycolysis by increasing the expression of GLUT1, HK2, PKM2, and LDHA. β-catenin, CD44, CyclinD1 and HIF-1A, including c-Myc, were upregulated by KITENIN expression. In addition, KITENIN promoted nuclear PKM2 and PKM2-induced transactivation, which in turn, increased the expression of downstream mediators. This was found to be mediated through an effect of c-Myc on the transcription of hnRNP isoforms and a switch to the M2 isoform of pyruvate kinase, which increased aerobic glycolysis. The disintegration of KITENIN complex by silencing the KITENIN or MYO1D downregulated aerobic glycolysis. The disintegrator of KITENIN complex compound DKC1125 and its optimized form, DKC-C14S, exhibited the inhibition activity of KITENIN-mediated aerobic glycolysis in vitro and in vivo. CONCLUSIONS The oncoprotein KITENIN induces PKM2-mediated aerobic glycolysis by upregulating the c-Myc/hnRNPs axis.
Collapse
Affiliation(s)
- Mücahit Varlı
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea
| | - Sung Jin Kim
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, 160 Baekseoro, Dong-gu, Gwangju, 61469, Republic of Korea
| | - Myung-Giun Noh
- Department of Pathology, Chonnam National University Medical School, 160 Baekseoro, Dong-gu, Gwanju, 61469, Republic of Korea
| | - Yoon Gyoon Kim
- College of Pharmacy, Dankook University, 119 Dandaero, Dongnam-gu, 31116, Cheonan-si, Republic of Korea
| | - Hyung-Ho Ha
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea
| | - Kyung Keun Kim
- Department of Pharmacology, Chonnam National University Medical School, 160 Baekseoro, Dong-gu, Gwangju, 61469, Republic of Korea
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea.
| |
Collapse
|
103
|
Chu YD, Chen CW, Lai MW, Lim SN, Lin WR. Bioenergetic alteration in gastrointestinal cancers: The good, the bad and the ugly. World J Gastroenterol 2023; 29:4499-4527. [PMID: 37621758 PMCID: PMC10445009 DOI: 10.3748/wjg.v29.i29.4499] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/23/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023] Open
Abstract
Cancer cells exhibit metabolic reprogramming and bioenergetic alteration, utilizing glucose fermentation for energy production, known as the Warburg effect. However, there are a lack of comprehensive reviews summarizing the metabolic reprogramming, bioenergetic alteration, and their oncogenetic links in gastrointestinal (GI) cancers. Furthermore, the efficacy and treatment potential of emerging anticancer drugs targeting these alterations in GI cancers require further evaluation. This review highlights the interplay between aerobic glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS) in cancer cells, as well as hypotheses on the molecular mechanisms that trigger this alteration. The role of hypoxia-inducible transcription factors, tumor suppressors, and the oncogenetic link between hypoxia-related enzymes, bioenergetic changes, and GI cancer are also discussed. This review emphasizes the potential of targeting bioenergetic regulators for anti-cancer therapy, particularly for GI cancers. Emphasizing the potential of targeting bioenergetic regulators for GI cancer therapy, the review categorizes these regulators into aerobic glycolysis/ lactate biosynthesis/transportation and TCA cycle/coupled OXPHOS. We also detail various anti-cancer drugs and strategies that have produced pre-clinical and/or clinical evidence in treating GI cancers, as well as the challenges posed by these drugs. Here we highlight that understanding dysregulated cancer cell bioenergetics is critical for effective treatments, although the diverse metabolic patterns present challenges for targeted therapies. Further research is needed to comprehend the specific mechanisms of inhibiting bioenergetic enzymes, address side effects, and leverage high-throughput multi-omics and spatial omics to gain insights into cancer cell heterogeneity for targeted bioenergetic therapies.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chun-Wei Chen
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ming-Wei Lai
- Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Siew-Na Lim
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Wey-Ran Lin
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
104
|
Tavares-Valente D, Cannone S, Greco MR, Carvalho TMA, Baltazar F, Queirós O, Agrimi G, Reshkin SJ, Cardone RA. Extracellular Matrix Collagen I Differentially Regulates the Metabolic Plasticity of Pancreatic Ductal Adenocarcinoma Parenchymal Cell and Cancer Stem Cell. Cancers (Basel) 2023; 15:3868. [PMID: 37568684 PMCID: PMC10417137 DOI: 10.3390/cancers15153868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a 5-year survival rate of less than 10 percent largely due to the intense fibrotic desmoplastic reaction, characterized by high levels of extracellular matrix (ECM) collagen I that constitutes a niche for a subset of cancer cells, the cancer stem cells (CSCs). Cancer cells undergo a complex metabolic adaptation characterized by changes in metabolic pathways and biosynthetic processes. The use of the 3D organotypic model in this study allowed us to manipulate the ECM constituents and mimic the progression of PDAC from an early tumor to an ever more advanced tumor stage. To understand the role of desmoplasia on the metabolism of PDAC parenchymal (CPC) and CSC populations, we studied their basic metabolic parameters in organotypic cultures of increasing collagen content to mimic in vivo conditions. We further measured the ability of the bioenergetic modulators (BMs), 2-deoxyglucose, dichloroacetate and phenformin, to modify their metabolic dependence and the therapeutic activity of paclitaxel albumin nanoparticles (NAB-PTX). While all the BMs decreased cell viability and increased cell death in all ECM types, a distinct, collagen I-dependent profile was observed in CSCs. As ECM collagen I content increased (e.g., more aggressive conditions), the CSCs switched from glucose to mostly glutamine metabolism. All three BMs synergistically potentiated the cytotoxicity of NAB-PTX in both cell lines, which, in CSCs, was collagen I-dependent and the strongest when treated with phenformin + NAB-PTX. Metabolic disruption in PDAC can be useful both as monotherapy or combined with conventional drugs to more efficiently block tumor growth.
Collapse
Affiliation(s)
- Diana Tavares-Valente
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga, Portugal
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal;
| | - Stefania Cannone
- Department of Biosciences, Biotechnology and Environment, University of Bari, 70125 Bari, Italy; (S.C.); (M.R.G.); (T.M.A.C.); (G.A.); (R.A.C.)
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnology and Environment, University of Bari, 70125 Bari, Italy; (S.C.); (M.R.G.); (T.M.A.C.); (G.A.); (R.A.C.)
| | - Tiago Miguel Amaral Carvalho
- Department of Biosciences, Biotechnology and Environment, University of Bari, 70125 Bari, Italy; (S.C.); (M.R.G.); (T.M.A.C.); (G.A.); (R.A.C.)
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga, Portugal
| | - Odília Queirós
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal;
| | - Gennaro Agrimi
- Department of Biosciences, Biotechnology and Environment, University of Bari, 70125 Bari, Italy; (S.C.); (M.R.G.); (T.M.A.C.); (G.A.); (R.A.C.)
| | - Stephan J. Reshkin
- Department of Biosciences, Biotechnology and Environment, University of Bari, 70125 Bari, Italy; (S.C.); (M.R.G.); (T.M.A.C.); (G.A.); (R.A.C.)
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnology and Environment, University of Bari, 70125 Bari, Italy; (S.C.); (M.R.G.); (T.M.A.C.); (G.A.); (R.A.C.)
| |
Collapse
|
105
|
Li J, Wang Y, Deng H, Li S, Qiu HJ. Cellular metabolism hijacked by viruses for immunoevasion: potential antiviral targets. Front Immunol 2023; 14:1228811. [PMID: 37559723 PMCID: PMC10409484 DOI: 10.3389/fimmu.2023.1228811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023] Open
Abstract
Cellular metabolism plays a central role in the regulation of both innate and adaptive immunity. Immune cells utilize metabolic pathways to modulate the cellular differentiation or death. The intricate interplay between metabolism and immune response is critical for maintaining homeostasis and effective antiviral activities. In recent years, immunometabolism induced by viral infections has been extensively investigated, and accumulating evidence has indicated that cellular metabolism can be hijacked to facilitate viral replication. Generally, virus-induced changes in cellular metabolism lead to the reprogramming of metabolites and metabolic enzymes in different pathways (glucose, lipid, and amino acid metabolism). Metabolic reprogramming affects the function of immune cells, regulates the expression of immune molecules and determines cell fate. Therefore, it is important to explore the effector molecules with immunomodulatory properties, including metabolites, metabolic enzymes, and other immunometabolism-related molecules as the antivirals. This review summarizes the relevant advances in the field of metabolic reprogramming induced by viral infections, providing novel insights for the development of antivirals.
Collapse
Affiliation(s)
| | | | | | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
106
|
Lynch A, Pearson P, Savinov SN, Li AY, Rich SM. Lactate Dehydrogenase Inhibitors Suppress Borrelia burgdorferi Growth In Vitro. Pathogens 2023; 12:962. [PMID: 37513809 PMCID: PMC10384987 DOI: 10.3390/pathogens12070962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, has a highly reduced genome and relies heavily on glycolysis for carbon metabolism. As such, established inhibitors of lactate dehydrogenase (LDH) were evaluated in cultures to determine the extent of their impacts on B. burgdorferi growth. Both racemic and enantiopure (AT-101) gossypol, as well as oxamate, galloflavin, and stiripentol, caused the dose-dependent suppression of B. burgdorferi growth in vitro. Racemic gossypol and AT-101 were shown to fully inhibit spirochetal growth at concentrations of 70.5 and 187.5 μM, respectively. Differences between racemic gossypol and AT-101 efficacy may indicate that the dextrorotatory enantiomer of gossypol is a more effective inhibitor of B. burgdorferi growth than the levorotatory enantiomer. As a whole, LDH inhibition appears to be a promising mechanism for suppressing Borrelia growth, particularly with bulky LDH inhibitors like gossypol.
Collapse
Affiliation(s)
- Adam Lynch
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Patrick Pearson
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Sergey N Savinov
- Department of Biochemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Andrew Y Li
- Invasive Insect Biocontrol & Behavior Laboratory, USDA-ARS, Beltsville, MD 20705, USA
| | - Stephen M Rich
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
107
|
Damavandi S, Shiri F, Emamjomeh A, Pirhadi S, Beyzaei H. A study of the interaction space of two lactate dehydrogenase isoforms (LDHA and LDHB) and some of their inhibitors using proteochemometrics modeling. BMC Chem 2023; 17:70. [PMID: 37415191 DOI: 10.1186/s13065-023-00991-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023] Open
Abstract
Lactate dehydrogenase (LDH) is a tetramer enzyme that converts pyruvate to lactate reversibly. This enzyme becomes important because it is associated with diseases such as cancers, heart disease, liver problems, and most importantly, corona disease. As a system-based method, proteochemometrics does not require knowledge of the protein's three-dimensional structure, but rather depends on the amino acid sequence and protein descriptors. Here, we applied this methodology to model a set of LDHA and LDHB isoenzyme inhibitors. To implement the proteochemetrics method, the camb package in the R Studio Server programming environment was used. The activity of 312 compounds of LDHA and LDHB isoenzyme inhibitors from the valid Binding DB database was retrieved. The proteochemometrics method was applied to three machine learning algorithms gradient amplification model, random forest, and support vector machine as regression methods to find the best model. Through the combination of different models into an ensemble (greedy and stacking optimization), we explored the possibility of improving the performance of models. For the RF best ensemble model of inhibitors of LDHA and LDHB isoenzymes, and were 0.66 and 0.62, respectively. LDH inhibitory activation is influenced by Morgan fingerprints and topological structure descriptors.
Collapse
Affiliation(s)
- Sedigheh Damavandi
- Department of Bioinformatics, Laboratory of Computational Biotechnology and Bioinformatics (CBB Lab), University of Zabol, Zabol, Iran
| | - Fereshteh Shiri
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran.
| | - Abbasali Emamjomeh
- Department of Bioinformatics, Laboratory of Computational Biotechnology and Bioinformatics (CBB Lab), University of Zabol, Zabol, Iran
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Beyzaei
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| |
Collapse
|
108
|
Han A, Mukha D, Chua V, Purwin TJ, Tiago M, Modasia B, Baqai U, Aumiller JL, Bechtel N, Hunter E, Danielson M, Terai M, Wedegaertner PB, Sato T, Landreville S, Davies MA, Kurtenbach S, Harbour JW, Schug ZT, Aplin AE. Co-Targeting FASN and mTOR Suppresses Uveal Melanoma Growth. Cancers (Basel) 2023; 15:3451. [PMID: 37444561 PMCID: PMC10341317 DOI: 10.3390/cancers15133451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Uveal melanoma (UM) displays a high frequency of metastasis; however, effective therapies for metastatic UM are limited. Identifying unique metabolic features of UM may provide a potential targeting strategy. A lipid metabolism protein expression signature was induced in a normal choroidal melanocyte (NCM) line transduced with GNAQ (Q209L), a driver in UM growth and development. Consistently, UM cells expressed elevated levels of fatty acid synthase (FASN) compared to NCMs. FASN upregulation was associated with increased mammalian target of rapamycin (mTOR) activation and sterol regulatory element-binding protein 1 (SREBP1) levels. FASN and mTOR inhibitors alone significantly reduced UM cell growth. Concurrent inhibition of FASN and mTOR further reduced UM cell growth by promoting cell cycle arrest and inhibiting glucose utilization, TCA cycle metabolism, and de novo fatty acid biosynthesis. Our findings indicate that FASN is important for UM cell growth and co-inhibition of FASN and mTOR signaling may be considered for treatment of UM.
Collapse
Affiliation(s)
- Anna Han
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Republic of Korea
| | - Dzmitry Mukha
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA; (D.M.); (Z.T.S.)
| | - Vivian Chua
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
| | - Timothy J. Purwin
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
| | - Manoela Tiago
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
| | - Bhavik Modasia
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
| | - Usman Baqai
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
| | - Jenna L. Aumiller
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (J.L.A.); (P.B.W.)
| | - Nelisa Bechtel
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
| | - Emily Hunter
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
| | - Meggie Danielson
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (M.D.); (M.T.); (T.S.)
| | - Mizue Terai
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (M.D.); (M.T.); (T.S.)
| | - Philip B. Wedegaertner
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (J.L.A.); (P.B.W.)
| | - Takami Sato
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (M.D.); (M.T.); (T.S.)
| | - Solange Landreville
- Department of Ophthalmology and Otorhinolaryngology-Cervical-Facial Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada;
| | - Michael A. Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Stefan Kurtenbach
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33101, USA; (S.K.); (J.W.H.)
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33101, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - J. William Harbour
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33101, USA; (S.K.); (J.W.H.)
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33101, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33101, USA
- Department of Ophthalmology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zachary T. Schug
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA; (D.M.); (Z.T.S.)
| | - Andrew E. Aplin
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
109
|
Xie H, Lu X. circNFATC3 facilitated the progression of oral squamous cell carcinoma via the miR-520h/LDHA axis. Open Med (Wars) 2023; 18:20230630. [PMID: 37398901 PMCID: PMC10308242 DOI: 10.1515/med-2023-0630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/16/2022] [Accepted: 01/05/2023] [Indexed: 07/04/2023] Open
Abstract
The aim of this study was to verify the effects of circular RNA nuclear factor of activated T-cells, cytoplasmic 3 (circNFATC3), in oral squamous cell carcinoma (OSCC) development. The levels of circNFATC3, microRNA-520h (miR-520h), and lactate dehydrogenase A (LDHA) were measured by qRT-PCR and western blot analysis. The cellular functions were assessed by using commercial kits, MTT assay, EdU assay, flow cytometry analysis, and transwell assay. The interactions between miR-520h and circNFATC3 or LDHA were confirmed by dual-luciferase reporter assay. Finally, the mice test was enforced to evaluate the character of circNFATC3. We observed that the contents of circNFATC3 and LDHA were upregulated and miR-520h levels were downregulated in OSCC tissues compared with those in paracancerous tissues. For functional analysis, circNFATC3 knockdown repressed the cell glycolysis metabolism, cell proliferation, migration, and invasion, although it improved cell apoptosis in OSCC cells. LDHA could regulate the development of OSCC. circNFATC3 acted as a miR-520h sponge to modulate LDHA expression. In addition, the absence of circNFATC3 subdued tumor growth in vivo. In conclusion, circNFATC3 promoted the advancement of OSCC by adjusting the miR-520h/LDHA axis.
Collapse
Affiliation(s)
- Hongguo Xie
- Department of Stomatology, Jingmen No. 1 People’s Hospital, Jingmen, 448000, Hubei, China
| | - Xiaopeng Lu
- Department of Stomatology, Jingmen No. 1 People’s Hospital, No. 168, Xiangshan Avenue, Duodao District,, Jingmen, 448000, Hubei, China
| |
Collapse
|
110
|
Faraoni P, Bellumori M, Cecchi L, Zonfrillo B, Innocenti M, Gnerucci A, Mulinacci N, Ranaldi F. AGS Gastric Cells: Antioxidant Activity and Metabolic Effects of Phenolic Extracts from Different Monocultivar Virgin Olive Oils. Antioxidants (Basel) 2023; 12:1347. [PMID: 37507887 PMCID: PMC10376124 DOI: 10.3390/antiox12071347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
The effects of the phenolic compounds of extra virgin olive oil (EVOO) on AGS cells have never been studied so far, which is the aim of this study. The profiles of the main phenolic components in EVOOs, mainly secoiridoid compounds derived from the transformation of oleuropein during the olive milling process, were evaluated and compared. Oils of different origins were evaluated aiming at verifying whether chemical differences in the phenolic composition of the dry extracts played a role in the metabolism and in maintaining the cellular redox state of AGS cells. The following key enzymes of some metabolic pathways were studied: lactate dehydrogenase, enolase, pyruvate kinase, glucose 6-phosphate dehydrogenase, citrate synthase, 3-Hydroxyacyl-CoA dehydrogenase and hexokinase. As confirmed through PCA analysis, pretreatments with the dry extracts of EVOOs at different concentrations appeared to be able to counteract the enzymatic activity alterations due to oxidative stress induced by H2O2 1 mM and 2 mM. The studied phytocomplexes showed the ability to protect AGS cells from oxidative damage and the secoiridoid derivatives from both oleuropein and ligstroside contributed to the observed effects. The results suggested that EVOOs with medium to high concentrations of phenols can exert this protection.
Collapse
Affiliation(s)
- Paola Faraoni
- Department of Experimental and Clinic Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139 Florence, FI, Italy
| | - Maria Bellumori
- Department of NEUROFARBA, Division of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, FI, Italy
| | - Lorenzo Cecchi
- Department of Agricultural, Food and Forestry Systems Management (DAGRI), University of Florence, Piazzale Delle Cascine 16, 50144 Florence, FI, Italy
| | - Beatrice Zonfrillo
- Department of NEUROFARBA, Division of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, FI, Italy
| | - Marzia Innocenti
- Department of NEUROFARBA, Division of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, FI, Italy
| | - Alessio Gnerucci
- Department of Physics and Astronomy, University of Florence, Via Sansone, 1, 50019 Sesto Fiorentino, FI, Italy
| | - Nadia Mulinacci
- Department of NEUROFARBA, Division of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, FI, Italy
| | - Francesco Ranaldi
- Department of Experimental and Clinic Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139 Florence, FI, Italy
| |
Collapse
|
111
|
Chen M, Cen K, Song Y, Zhang X, Liou YC, Liu P, Huang J, Ruan J, He J, Ye W, Wang T, Huang X, Yang J, Jia Y, Liang X, Shen P, Wang Q, Liang T. NUSAP1-LDHA-Glycolysis-Lactate feedforward loop promotes Warburg effect and metastasis in pancreatic ductal adenocarcinoma. Cancer Lett 2023:216285. [PMID: 37354982 DOI: 10.1016/j.canlet.2023.216285] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by hypoxia and hypovascular tumor microenvironment. Nucleolar and spindle associated protein 1 (NUSAP1) is a microtubule-associated protein that is known to be involved in cancer biology. Our study aimed to investigate the role of NUSAP1 in glycolytic metabolism and metastasis in PDAC. Expression and prognostic value of NUSAP1 in PDAC and common gastrointestinal tumors was evaluated. The function of NUSAP1 in PDAC progression was clarified by single-cell RNA-seq and further experiments in vitro, xenograft mouse model, spontaneous PDAC mice model and human tissue microarray. The downstream genes and signaling pathways regulated by NUSAP1 were explored by RNA-Seq. And the regulation of NUSAP1 on Lactate dehydrogenase A (LDHA)-mediated glycolysis and its underlying mechanism was further clarified by CHIP-seq. NUSAP1 was an independent unfavorable predictor of PDAC prognosis that playing a critical role in metastasis of PDAC by regulating LDHA-mediated glycolysis. Mechanically, NUSAP1 could bind to c-Myc and HIF-1α that forming a transcription regulatory complex localized to LDHA promoter region and enhanced its expression. Intriguingly, lactate upregulated NUSAP1 expression by inhibiting NUSAP1 protein degradation through lysine lactylated (Kla) modification, thus forming a NUSAP1-LDHA-glycolysis-lactate feedforward loop. The NUSAP1-LDHA-glycolysis-lactate feedforward loop is one of the underlying mechanisms to explain the metastasis and glycolytic metabolic potential in PDAC, which also provides a novel insights to understand the Warburg effect in cancer. Targeting NUSAP1 would be an attractive paradigm for PDAC treatment.
Collapse
Affiliation(s)
- Ming Chen
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaili Cen
- Department of Hemooncology, Taizhou Hospital, Taizhou, China
| | - Yinjing Song
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Pu Liu
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinyan Huang
- Center for Biomedical Big Data, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia He
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China; Teaching Experimental Center of Public Health, Zhejiang University, Hangzhou, China
| | - Wanyi Ye
- Center for Biomedical Big Data, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianyue Wang
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Xing Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunlu Jia
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xue Liang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Shen
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China; The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
112
|
Fang W, Chen S, Jin X, Liu S, Cao X, Liu B. Metabolomics in aging research: aging markers from organs. Front Cell Dev Biol 2023; 11:1198794. [PMID: 37397261 PMCID: PMC10313136 DOI: 10.3389/fcell.2023.1198794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
Metabolism plays an important role in regulating aging at several levels, and metabolic reprogramming is the main driving force of aging. Due to the different metabolic needs of different tissues, the change trend of metabolites during aging in different organs and the influence of different levels of metabolites on organ function are also different, which makes the relationship between the change of metabolite level and aging more complex. However, not all of these changes lead to aging. The development of metabonomics research has opened a door for people to understand the overall changes in the metabolic level in the aging process of organisms. The omics-based "aging clock" of organisms has been established at the level of gene, protein and epigenetic modifications, but there is still no systematic summary at the level of metabolism. Here, we reviewed the relevant research published in the last decade on aging and organ metabolomic changes, discussed several metabolites with high repetition rate, and explained their role in vivo, hoping to find a group of metabolites that can be used as metabolic markers of aging. This information should provide valuable information for future diagnosis or clinical intervention of aging and age-related diseases.
Collapse
Affiliation(s)
- Weicheng Fang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Shuxin Chen
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
113
|
Li Z, Gu Z, Wang L, Guan Y, Lyu Y, Zhang J, Wang Y, Wang X, Xiong J, Liu Y. Nuclear Translocation of LDHA Promotes the Catabolism of BCAAs to Sustain GBM Cell Proliferation through the TxN Antioxidant Pathway. Int J Mol Sci 2023; 24:ijms24119365. [PMID: 37298317 DOI: 10.3390/ijms24119365] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Glutamate is excitotoxic to neurons. The entry of glutamine or glutamate from the blood into the brain is limited. To overcome this, branched-chain amino acids (BCAAs) catabolism replenishes the glutamate in brain cells. Branched-chain amino acid transaminase 1 (BCAT1) activity is silenced by epigenetic methylation in IDH mutant gliomas. However, glioblastomas (GBMs) express wild type IDH. Here, we investigated how oxidative stress promotes BCAAs' metabolism to maintain intracellular redox balance and, consequently, the rapid progression of GBMs. We found that reactive oxygen species (ROS) accumulation promoted the nuclear translocation of lactate dehydrogenase A (LDHA), which triggered DOT1L (disruptor of telomeric silencing 1-like)-mediated histone H3K79 hypermethylation and enhanced BCAA catabolism in GBM cells. Glutamate derived from BCAAs catabolism participates in antioxidant thioredoxin (TxN) production. The inhibition of BCAT1 decreased the tumorigenicity of GBM cells in orthotopically transplanted nude mice, and prolonged their survival time. In GBM samples, BCAT1 expression was negatively correlated with the overall survival time (OS) of patients. These findings highlight the role of the non-canonical enzyme activity of LDHA on BCAT1 expression, which links the two major metabolic pathways in GBMs. Glutamate produced by the catabolism of BCAAs was involved in complementary antioxidant TxN synthesis to balance the redox state in tumor cells and promote the progression of GBMs.
Collapse
Affiliation(s)
- Zhujun Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Yixueyuan Rd. 138, Shanghai 200032, China
| | - Zhiyan Gu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Yixueyuan Rd. 138, Shanghai 200032, China
| | - Lan Wang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Yixueyuan Rd. 138, Shanghai 200032, China
| | - Yun Guan
- Cyberknife Center, Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Yingying Lyu
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
- Department of Oncology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jialong Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Yixueyuan Rd. 138, Shanghai 200032, China
| | - Yin Wang
- Department of Pathology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Xin Wang
- Cyberknife Center, Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Ji Xiong
- Department of Pathology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Ying Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Yixueyuan Rd. 138, Shanghai 200032, China
| |
Collapse
|
114
|
Solomou G, Finch A, Asghar A, Bardella C. Mutant IDH in Gliomas: Role in Cancer and Treatment Options. Cancers (Basel) 2023; 15:cancers15112883. [PMID: 37296846 DOI: 10.3390/cancers15112883] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Altered metabolism is a common feature of many cancers and, in some cases, is a consequence of mutation in metabolic genes, such as the ones involved in the TCA cycle. Isocitrate dehydrogenase (IDH) is mutated in many gliomas and other cancers. Physiologically, IDH converts isocitrate to α-ketoglutarate (α-KG), but when mutated, IDH reduces α-KG to D2-hydroxyglutarate (D2-HG). D2-HG accumulates at elevated levels in IDH mutant tumours, and in the last decade, a massive effort has been made to develop small inhibitors targeting mutant IDH. In this review, we summarise the current knowledge about the cellular and molecular consequences of IDH mutations and the therapeutic approaches developed to target IDH mutant tumours, focusing on gliomas.
Collapse
Affiliation(s)
- Georgios Solomou
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Alina Finch
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Asim Asghar
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Chiara Bardella
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
115
|
Sharma D, Singh M, Joshi J, Garg M, Chaudhary V, Blankenberg D, Chandna S, Kumar V, Rani R. Design and Synthesis of Thiazole Scaffold-Based Small Molecules as Anticancer Agents Targeting the Human Lactate Dehydrogenase A Enzyme. ACS OMEGA 2023; 8:17552-17562. [PMID: 37251149 PMCID: PMC10210175 DOI: 10.1021/acsomega.2c07569] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/24/2023] [Indexed: 05/31/2023]
Abstract
A new series of thiazole central scaffold-based small molecules of hLDHA inhibitors were designed using an in silico approach. Molecular docking analysis of designed molecules with hLDHA (PDB ID: 1I10) demonstrates that Ala 29, Val 30, Arg 98, Gln 99, Gly 96, and Thr 94 possessed strong interaction with the compounds. Compounds 8a, 8b, and 8d showed good binding affinity (-8.1 to -8.8 kcal/mol), whereas an additional interaction of NO2 at the ortho position in compounds 8c with Gln 99 through hydrogen bonding enhanced the affinity to -9.8 kcal/mol. Selected high-scored compounds were synthesized and screened for hLDHA inhibitory activities and in vitro anticancer activity in six cancer cell lines. Biochemical enzyme inhibition assays showed the highest hLDHA inhibitory activity observed with compounds 8b, 8c, and 8l. Compounds 8b, 8c, 8j, 8l, and 8m depicted significant anticancer activities, exhibiting IC50 values in the range of 1.65-8.60 μM in HeLa and SiHa cervical cancer cell lines. Compounds 8j and 8m exhibited notable anticancer activity with IC50 values of 7.90 and 5.15 μM, respectively, in liver cancer cells (HepG2). Interestingly, compounds 8j and 8m did not induce noticeable toxicity in the human embryonic kidney cells (HEK293). Insilico absorption, distribution, metabolism, and excretion profiling demonstrates that the compounds possess drug-likeness, and results may pave the way for the development of novel thiazole-based biologically active small molecules for therapeutics.
Collapse
Affiliation(s)
- Dolly Sharma
- Amity
Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
- Amity
Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201303, Uttar
Pradesh, India
| | - Mamta Singh
- Amity
Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201303, Uttar
Pradesh, India
| | - Jayadev Joshi
- Genomic
Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Manoj Garg
- Amity
Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201303, Uttar
Pradesh, India
| | | | - Daniel Blankenberg
- Genomic
Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Sudhir Chandna
- Institute
of Nuclear Medicine & Allied Science, Defense Research Development Organization, Delhi 110054, India
| | - Vinit Kumar
- Amity
Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201303, Uttar
Pradesh, India
| | - Reshma Rani
- Drug Discovery,
Jubilant Biosys, Knowledge
Park-2, Greater Noida 201306, India
| |
Collapse
|
116
|
Casas-Benito A, Martínez-Herrero S, Martínez A. Succinate-Directed Approaches for Warburg Effect-Targeted Cancer Management, an Alternative to Current Treatments? Cancers (Basel) 2023; 15:2862. [PMID: 37345199 DOI: 10.3390/cancers15102862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/22/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
Approximately a century ago, Otto Warburg discovered that cancer cells use a fermentative rather than oxidative metabolism even though the former is more inefficient in terms of energy production per molecule of glucose. Cancer cells increase the use of this fermentative metabolism even in the presence of oxygen, and this process is called aerobic glycolysis or the Warburg effect. This alternative metabolism is mainly characterized by higher glycolytic rates, which allow cancer cells to obtain higher amounts of total ATP, and the production of lactate, but there are also an activation of protumoral signaling pathways and the generation of molecules that favor cancer progression. One of these molecules is succinate, a Krebs cycle intermediate whose concentration is increased in cancer and which is considered an oncometabolite. Several protumoral actions have been associated to succinate and its role in several cancer types has been already described. Despite playing a major role in metabolism and cancer, so far, the potential of succinate as a target in cancer prevention and treatment has remained mostly unexplored, as most previous Warburg-directed anticancer strategies have focused on other intermediates. In this review, we aim to summarize succinate's protumoral functions and discuss the use of succinate expression regulators as a potential cancer therapy strategy.
Collapse
Affiliation(s)
- Adrian Casas-Benito
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Sonia Martínez-Herrero
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Alfredo Martínez
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| |
Collapse
|
117
|
You M, Xie Z, Zhang N, Zhang Y, Xiao D, Liu S, Zhuang W, Li L, Tao Y. Signaling pathways in cancer metabolism: mechanisms and therapeutic targets. Signal Transduct Target Ther 2023; 8:196. [PMID: 37164974 PMCID: PMC10172373 DOI: 10.1038/s41392-023-01442-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023] Open
Abstract
A wide spectrum of metabolites (mainly, the three major nutrients and their derivatives) can be sensed by specific sensors, then trigger a series of signal transduction pathways and affect the expression levels of genes in epigenetics, which is called metabolite sensing. Life body regulates metabolism, immunity, and inflammation by metabolite sensing, coordinating the pathophysiology of the host to achieve balance with the external environment. Metabolic reprogramming in cancers cause different phenotypic characteristics of cancer cell from normal cell, including cell proliferation, migration, invasion, angiogenesis, etc. Metabolic disorders in cancer cells further create a microenvironment including many kinds of oncometabolites that are conducive to the growth of cancer, thus forming a vicious circle. At the same time, exogenous metabolites can also affect the biological behavior of tumors. Here, we discuss the metabolite sensing mechanisms of the three major nutrients and their derivatives, as well as their abnormalities in the development of various cancers, and discuss the potential therapeutic targets based on metabolite-sensing signaling pathways to prevent the progression of cancer.
Collapse
Affiliation(s)
- Mengshu You
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Zhuolin Xie
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Nan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Yixuan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Wei Zhuang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, People's Republic of China.
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China.
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China.
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, 410011, Changsha, China.
| |
Collapse
|
118
|
Truong Hoang Q, Huynh KA, Nguyen Cao TG, Kang JH, Dang XN, Ravichandran V, Kang HC, Lee M, Kim JE, Ko YT, Lee TI, Shim MS. Piezocatalytic 2D WS 2 Nanosheets for Ultrasound-Triggered and Mitochondria-Targeted Piezodynamic Cancer Therapy Synergized with Energy Metabolism-Targeted Chemotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300437. [PMID: 36780270 DOI: 10.1002/adma.202300437] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Indexed: 05/05/2023]
Abstract
Piezoelectric nanomaterials that can generate reactive oxygen species (ROS) by piezoelectric polarization under an external mechanical force have emerged as an effective platform for cancer therapy. In this study, piezoelectric 2D WS2 nanosheets are functionalized with mitochondria-targeting triphenylphosphonium (TPP) for ultrasound (US)-triggered, mitochondria-targeted piezodynamic cancer therapy. In addition, a glycolysis inhibitor (FX11) that can inhibit cellular energy metabolism is loaded into TPP- and poly(ethylene glycol) (PEG)-conjugated WS2 nanosheet (TPEG-WS2 ) to potentiate its therapeutic efficacy. Upon US irradiation, the sono-excited electrons and holes generated in the WS2 are efficiently separated by piezoelectric polarization, which subsequently promotes the production of ROS. FX11-loaded TPEG-WS2 (FX11@TPEG-WS2 ) selectively accumulates in the mitochondria of human breast cancer cells. In addition, FX11@TPEG-WS2 effectively inhibits the production of adenosine triphosphate . Thus, FX11@TPEG-WS2 exhibits outstanding anticancer effects under US irradiation. An in vivo study using tumor-xenograft mice demonstrates that FX11@TPEG-WS2 effectively accumulated in the tumors. Its tumor accumulation is visualized using in vivo computed tomography . Notably, FX11@TPEG-WS2 with US irradiation remarkably suppresses the tumor growth of mice without systemic toxicity. This study demonstrates that the combination of piezodynamic therapy and energy metabolism-targeted chemotherapy using mitochondria-targeting 2D WS2 is a novel strategy for the selective and effective treatment of tumors.
Collapse
Affiliation(s)
- Quan Truong Hoang
- Department of Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Kim Anh Huynh
- Department of Materials Science and Engineering, Gachon University, Seongnam, Gyeonggi-Do, 13306, Republic of Korea
| | - Thuy Giang Nguyen Cao
- Department of Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Ji Hee Kang
- College of Pharmacy, Gachon University, Incheon, 21936, Republic of Korea
| | - Xuan Nghia Dang
- Department of Materials Science and Engineering, Gachon University, Seongnam, Gyeonggi-Do, 13306, Republic of Korea
| | - Vasanthan Ravichandran
- Department of Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Han Chang Kang
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do, 14662, Republic of Korea
| | - Minjong Lee
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, 07804, Republic of Korea
| | - Jong-Eun Kim
- Department of Prosthodontics, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Young Tag Ko
- College of Pharmacy, Gachon University, Incheon, 21936, Republic of Korea
| | - Tae Il Lee
- Department of Materials Science and Engineering, Gachon University, Seongnam, Gyeonggi-Do, 13306, Republic of Korea
| | - Min Suk Shim
- Department of Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| |
Collapse
|
119
|
Podyacheva E, Toropova Y. The Role of NAD+, SIRTs Interactions in Stimulating and Counteracting Carcinogenesis. Int J Mol Sci 2023; 24:ijms24097925. [PMID: 37175631 PMCID: PMC10178434 DOI: 10.3390/ijms24097925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The World Health Organization has identified oncological diseases as one of the most serious health concerns of the current century. Current research on oncogenesis is focused on the molecular mechanisms of energy-biochemical reprogramming in cancer cell metabolism, including processes contributing to the Warburg effect and the pro-oncogenic and anti-oncogenic roles of sirtuins (SIRTs) and poly-(ADP-ribose) polymerases (PARPs). However, a clear understanding of the interaction between NAD+, SIRTs in cancer development, as well as their effects on carcinogenesis, has not been established, and literature data vary greatly. This work aims to provide a summary and structure of the available information on NAD+, SIRTs interactions in both stimulating and countering carcinogenesis, and to discuss potential approaches for pharmacological modulation of these interactions to achieve an anticancer effect.
Collapse
Affiliation(s)
- Ekaterina Podyacheva
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| | - Yana Toropova
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| |
Collapse
|
120
|
Sun ME, Zheng Q. The Tale of DJ-1 (PARK7): A Swiss Army Knife in Biomedical and Psychological Research. Int J Mol Sci 2023; 24:ijms24087409. [PMID: 37108572 PMCID: PMC10138432 DOI: 10.3390/ijms24087409] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
DJ-1 (also known as PARK7) is a multifunctional enzyme in human beings that is highly conserved and that has also been discovered in diverse species (ranging from prokaryotes to eukaryotes). Its complex enzymatic and non-enzymatic activities (such as anti-oxidation, anti-glycation, and protein quality control), as well as its role as a transcriptional coactivator, enable DJ-1 to serve as an essential regulator in multiple cellular processes (e.g., epigenetic regulations) and make it a promising therapeutic target for diverse diseases (especially cancer and Parkinson's disease). Due to its nature as a Swiss army knife enzyme with various functions, DJ-1 has attracted a large amount of research interest, from different perspectives. In this review, we give a brief summary of the recent advances with respect to DJ-1 research in biomedicine and psychology, as well as the progress made in attempts to develop DJ-1 into a druggable target for therapy.
Collapse
Affiliation(s)
- Mo E Sun
- Department of Psychology, Duquesne University, Pittsburgh, PA 15282, USA
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
121
|
Sharma S, Gowda P, Lathoria K, Mitra MK, Sen E. Dynamic modelling predicts lactate and IL-1β as interventional targets in metabolic-inflammation-clock regulatory loop in glioma. Integr Biol (Camb) 2023; 15:zyad008. [PMID: 37449740 DOI: 10.1093/intbio/zyad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
In an attempt to understand the role of dysregulated circadian rhythm in glioma, our recent findings highlighted the existence of a feed-forward loop between tumour metabolite lactate, pro-inflammatory cytokine IL-1β and circadian CLOCK. To further elucidate the implication of this complex interplay, we developed a mathematical model that quantitatively describes this lactate dehydrogenase A (LDHA)-IL-1β-CLOCK/BMAL1 circuit and predicts potential therapeutic targets. The model was calibrated on quantitative western blotting data in two glioma cell lines in response to either lactate inhibition or IL-1β stimulation. The calibrated model described the experimental data well and most of the parameters were identifiable, thus the model was predictive. Sensitivity analysis identified IL-1β and LDHA as potential intervention points. Mathematical models described here can be useful to understand the complex interrelationship between metabolism, inflammation and circadian rhythm, and in designing effective therapeutic strategies. Our findings underscore the importance of including the circadian clock when developing pharmacological approaches that target aberrant tumour metabolism and inflammation. Insight box The complex interplay of metabolism-inflammation-circadian rhythm in tumours is not well understood. Our recent findings provided evidence of a feed-forward loop between tumour metabolite lactate, pro-inflammatory cytokine IL-1β and circadian CLOCK/BMAL1 in glioma. To elucidate the implication of this complex interplay, we developed a mathematical model that quantitatively describes this LDHA-IL-1β-CLOCK/BMAL1 circuit and integrates experimental data to predict potential therapeutic targets. The study employed a multi-start optimization strategy and profile likelihood estimations for parameter estimation and assessing identifiability. The simulations are in reasonable agreement with the experimental data. Sensitivity analysis found LDHA and IL-1β as potential therapeutic points. Mathematical models described here can provide insights to understand the complex interrelationship between metabolism, inflammation and circadian rhythm, and in identifying effective therapeutic targets.
Collapse
Affiliation(s)
- Shalini Sharma
- Division of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana 122 052, India
| | - Pruthvi Gowda
- Division of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana 122 052, India
| | - Kirti Lathoria
- Division of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana 122 052, India
| | - Mithun K Mitra
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Ellora Sen
- Division of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana 122 052, India
| |
Collapse
|
122
|
Macharia JM, Kaposztas Z, Varjas T, Budán F, Zand A, Bodnar I, Bence RL. Targeted lactate dehydrogenase genes silencing in probiotic lactic acid bacteria: A possible paradigm shift in colorectal cancer treatment? Biomed Pharmacother 2023; 160:114371. [PMID: 36758316 DOI: 10.1016/j.biopha.2023.114371] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Even though the pathophysiology of colorectal cancer (CRC) is complicated and poorly understood, interactions between risk factors appear to be key in the development and progression of the malignancy. The popularity of using lactic acid bacteria (LAB) prebiotics and probiotics to modulate the tumor microenvironment (TME) has grown widely over the past decade. The objective of this study was therefore to determine the detrimental effects of LAB-derived lactic acid in the colonic mucosa in colorectal cancer management. Six library databases and a web search engine were used to execute a structured systematic search of the existing literature, considering all publications published up until August 2022. A total of 7817 papers were screened, all of which were published between 1995 and August 2022. However, only 118 articles met the inclusion criterion. Lactic acid has been directly linked to the massive proliferation of cancerous cells since the glycolytic pathway provides cancerous cells with not only ATP, but also biosynthetic intermediates for rapid growth and proliferation. Our research suggests that targeting LAB metabolic pathways is capable of suppressing tumor growth and that the LDH gene is critical for tumorigenesis. Silencing of Lactate dehydrogenase, A (LDHA), B (LDHB), (LDHL), and hicD genes should be explored to inhibit fermentative glycolysis yielding lactic acid as the by-product. More studies are necessary for a solid understanding of this topic so that LAB and their corresponding lactic acid by-products do not have more adverse effects than their widely touted positive outcomes in CRC management.
Collapse
Affiliation(s)
- John M Macharia
- Doctoral School of Health Sciences, Faculty of Health Science, University of Pẻcs, City of Pẻcs, Hungary.
| | | | - Tímea Varjas
- University of Pẻcs, Medical School, Department of Public Health Medicine, City of Pẻcs, Hungary
| | - Ferenc Budán
- University of Pẻcs, Medical School, Institute of Transdisciplinary Discoveries, City of Pẻcs, Hungary; University of Pécs, Medical School, Institute of Physiology, City of Pécs, Hungary
| | - Afshin Zand
- University of Pẻcs, Medical School, Department of Public Health Medicine, City of Pẻcs, Hungary
| | - Imre Bodnar
- Doctoral School of Health Sciences, Faculty of Health Science, University of Pẻcs, City of Pẻcs, Hungary
| | | |
Collapse
|
123
|
Hu S, Ottemann KM. Helicobacter pylori initiates successful gastric colonization by utilizing L-lactate to promote complement resistance. Nat Commun 2023; 14:1695. [PMID: 36973281 PMCID: PMC10042806 DOI: 10.1038/s41467-023-37160-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
The complement system has long been appreciated for its role in bloodborne infections, but its activities in other places, including the gastrointestinal tract, remain elusive. Here, we report that complement restricts gastric infection by the pathogen Helicobacter pylori. This bacterium colonized complement-deficient mice to higher levels than wild-type counterparts, particularly in the gastric corpus region. H. pylori uses uptake of the host molecule L-lactate to create a complement-resistant state that relies on blocking the deposition of the active complement C4b component on H. pylori's surface. H. pylori mutants unable to achieve this complement-resistant state have a significant mouse colonization defect that is largely corrected by mutational removal of complement. This work highlights a previously unknown role for complement in the stomach, and has revealed an unrecognized mechanism for microbial-derived complement resistance.
Collapse
Affiliation(s)
- Shuai Hu
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA
| | - Karen M Ottemann
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
124
|
Pang Y, Lu T, Xu-Monette ZY, Young KH. Metabolic Reprogramming and Potential Therapeutic Targets in Lymphoma. Int J Mol Sci 2023; 24:5493. [PMID: 36982568 PMCID: PMC10052731 DOI: 10.3390/ijms24065493] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Lymphoma is a heterogeneous group of diseases that often require their metabolism program to fulfill the demand of cell proliferation. Features of metabolism in lymphoma cells include high glucose uptake, deregulated expression of enzymes related to glycolysis, dual capacity for glycolytic and oxidative metabolism, elevated glutamine metabolism, and fatty acid synthesis. These aberrant metabolic changes lead to tumorigenesis, disease progression, and resistance to lymphoma chemotherapy. This metabolic reprogramming, including glucose, nucleic acid, fatty acid, and amino acid metabolism, is a dynamic process caused not only by genetic and epigenetic changes, but also by changes in the microenvironment affected by viral infections. Notably, some critical metabolic enzymes and metabolites may play vital roles in lymphomagenesis and progression. Recent studies have uncovered that metabolic pathways might have clinical impacts on the diagnosis, characterization, and treatment of lymphoma subtypes. However, determining the clinical relevance of biomarkers and therapeutic targets related to lymphoma metabolism is still challenging. In this review, we systematically summarize current studies on metabolism reprogramming in lymphoma, and we mainly focus on disorders of glucose, amino acids, and lipid metabolisms, as well as dysregulation of molecules in metabolic pathways, oncometabolites, and potential metabolic biomarkers. We then discuss strategies directly or indirectly for those potential therapeutic targets. Finally, we prospect the future directions of lymphoma treatment on metabolic reprogramming.
Collapse
Affiliation(s)
- Yuyang Pang
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Hematology, Ninth People’s Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Tingxun Lu
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Durham, NC 27710, USA
| | - Zijun Y. Xu-Monette
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Durham, NC 27710, USA
| | - Ken H. Young
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Durham, NC 27710, USA
| |
Collapse
|
125
|
Wang L, Zhu M, Li Y, Yan P, Li Z, Chen X, Yang J, Pan X, Zhao H, Wang S, Yuan H, Zhao M, Sun X, Wan R, Li F, Wang X, Yu H, Rosas I, Ding C, Yu G. Serum proteomics identify biomarkers associated with the pathogenesis of idiopathic pulmonary fibrosis. Mol Cell Proteomics 2023; 22:100524. [PMID: 36870568 PMCID: PMC10113895 DOI: 10.1016/j.mcpro.2023.100524] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/31/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The heterogeneity of idiopathic pulmonary fibrosis (IPF) limits its diagnosis and treatment. The association between the pathophysiological features and the serum protein signatures of IPF currently remains unclear. The present study analyzed the specific proteins and patterns associated with the clinical parameters of IPF based on a serum proteomic dataset by Data-Independent Acquisition (DIA) using mass spectrometry. Differentiated proteins in sera distinguished in IPF patients into three subgroups in signal pathways and overall survival. Aging-associated signatures by WGCNA coincidently provided clear and direct evidence that aging is a critical risk factor for IPF rather than a single biomarker. LDHA and CCT6A expression, which were associated with glucose metabolic reprogramming, were correlated with high serum lactic acid content in the patients with IPF. Cross-model analysis and machine learning showed that a combinatorial biomarker accurately distinguished IPF patients from healthy subjects with an AUC of 0.848 (95% CI = 0.684-0.941) and validated from another cohort and ELISA assay. This serum proteomic profile provides rigorous evidence that enables understanding of the heterogeneity of IPF and protein alterations that could help in its diagnosis and treatment decisions.
Collapse
Affiliation(s)
- Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Sciences, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Minghui Zhu
- Henan Provincial Chest Hospital, Zhengzhou, Henan 450003, China
| | - Yan Li
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Peishuo Yan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Sciences, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhongzheng Li
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Sciences, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiuping Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Juntang Yang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Sciences, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xin Pan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Sciences, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Huabin Zhao
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Sciences, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shenghui Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Sciences, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hongmei Yuan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Sciences, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Mengxia Zhao
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Sciences, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaogang Sun
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Sciences, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ruyan Wan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Sciences, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Fei Li
- Henan Provincial Chest Hospital, Zhengzhou, Henan 450003, China
| | - Xiaobo Wang
- Henan Provincial Chest Hospital, Zhengzhou, Henan 450003, China
| | - Hongtao Yu
- Henan Provincial Chest Hospital, Zhengzhou, Henan 450003, China
| | - Ivan Rosas
- Division of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chen Ding
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200433, China.
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Sciences, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
126
|
Suri GS, Kaur G, Carbone GM, Shinde D. Metabolomics in oncology. Cancer Rep (Hoboken) 2023; 6:e1795. [PMID: 36811317 PMCID: PMC10026298 DOI: 10.1002/cnr2.1795] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/15/2023] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Oncogenic transformation alters intracellular metabolism and contributes to the growth of malignant cells. Metabolomics, or the study of small molecules, can reveal insight about cancer progression that other biomarker studies cannot. Number of metabolites involved in this process have been in spotlight for cancer detection, monitoring, and therapy. RECENT FINDINGS In this review, the "Metabolomics" is defined in terms of current technology having both clinical and translational applications. Researchers have shown metabolomics can be used to discern metabolic indicators non-invasively using different analytical methods like positron emission tomography, magnetic resonance spectroscopic imaging etc. Metabolomic profiling is a powerful and technically feasible way to track changes in tumor metabolism and gauge treatment response across time. Recent studies have shown metabolomics can also predict individual metabolic changes in response to cancer treatment, measure medication efficacy, and monitor drug resistance. Its significance in cancer development and treatment is summarized in this review. CONCLUSION Although in infancy, metabolomics can be used to identify treatment options and/or predict responsiveness to cancer treatments. Technical challenges like database management, cost and methodical knowhow still persist. Overcoming these challenges in near further can help in designing new treatment régimes with increased sensitivity and specificity.
Collapse
Affiliation(s)
- Gurparsad Singh Suri
- Department of Biological Sciences, California Baptist University, Riverside, California, USA
| | - Gurleen Kaur
- Department of Biological Sciences, California Baptist University, Riverside, California, USA
| | - Giuseppina M Carbone
- Institute of Oncology Research (IOR), Universita' della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Dheeraj Shinde
- Institute of Oncology Research (IOR), Universita' della Svizzera Italiana (USI), Bellinzona, Switzerland
| |
Collapse
|
127
|
Miholjcic TBS, Halse H, Bonvalet M, Bigorgne A, Rouanne M, Dercle L, Shankar V, Marabelle A. Rationale for LDH-targeted cancer immunotherapy. Eur J Cancer 2023; 181:166-178. [PMID: 36657325 DOI: 10.1016/j.ejca.2022.11.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022]
Abstract
Immunotherapies have significantly improved the survival of patients in many cancers over the last decade. However, primary and secondary resistances are encountered in most patients. Unravelling resistance mechanisms to cancer immunotherapies is an area of active investigation. Elevated levels of circulating enzyme lactate dehydrogenase (LDH) have been historically considered in oncology as a marker of bad prognosis, usually attributed to elevated tumour burden and cancer metabolism. Recent evidence suggests that elevated LDH levels could be independent from tumour burden and contain a negative predictive value, which could help in guiding treatment strategies in immuno-oncology. In this review, we decipher the rationale supporting the potential of LDH-targeted therapeutic strategies to tackle the direct immunosuppressive effects of LDH on a wide range of immune cells, and enhance the survival of patients treated with cancer immunotherapies.
Collapse
Affiliation(s)
- Tina B S Miholjcic
- Faculté de Médecine, Université de Genève, Genève, Switzerland; Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, Gustave Roussy, Villejuif, France
| | - Heloise Halse
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, Gustave Roussy, Villejuif, France; INSERM UMR 1163, Imagine Institute, Université de Paris, F-75015 Paris, France
| | - Mélodie Bonvalet
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, Gustave Roussy, Villejuif, France
| | - Amélie Bigorgne
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, Gustave Roussy, Villejuif, France; INSERM UMR 1163, Imagine Institute, Université de Paris, F-75015 Paris, France
| | - Mathieu Rouanne
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, Gustave Roussy, Villejuif, France; Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Département d'Urologie, Hôpital Foch, UVSQ, Université Paris-Saclay, 92150 Suresnes, France
| | - Laurent Dercle
- Department of Radiology, New York Presbyterian Hospital, Columbia University Irving Medical Center, New York, NY, USA
| | - Vishnu Shankar
- Immunology Program, School of Medicine, Stanford University, CA, USA
| | - Aurélien Marabelle
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, Gustave Roussy, Villejuif, France; Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, 94805 Villejuif, France; Centre d'Investigation Clinique BIOTHERIS, INSERM CIC1428, Gustave Roussy, Villejuif, France; Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.
| |
Collapse
|
128
|
The Role of Reprogrammed Glucose Metabolism in Cancer. Metabolites 2023; 13:metabo13030345. [PMID: 36984785 PMCID: PMC10051753 DOI: 10.3390/metabo13030345] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Cancer cells reprogram their metabolism to meet biosynthetic needs and to adapt to various microenvironments. Accelerated glycolysis offers proliferative benefits for malignant cells by generating glycolytic products that move into branched pathways to synthesize proteins, fatty acids, nucleotides, and lipids. Notably, reprogrammed glucose metabolism and its associated events support the hallmark features of cancer such as sustained cell proliferation, hijacked apoptosis, invasion, metastasis, and angiogenesis. Overproduced enzymes involved in the committed steps of glycolysis (hexokinase, phosphofructokinase-1, and pyruvate kinase) are promising pharmacological targets for cancer therapeutics. In this review, we summarize the role of reprogrammed glucose metabolism in cancer cells and how it can be manipulated for anti-cancer strategies.
Collapse
|
129
|
Alfaifi A, Refai MY, Alsaadi M, Bahashwan S, Malhan H, Al-Kahiry W, Dammag E, Ageel A, Mahzary A, Albiheyri R, Almehdar H, Qadri I. Metabolomics: A New Era in the Diagnosis or Prognosis of B-Cell Non-Hodgkin's Lymphoma. Diagnostics (Basel) 2023; 13:diagnostics13050861. [PMID: 36900005 PMCID: PMC10000528 DOI: 10.3390/diagnostics13050861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
A wide range of histological as well as clinical properties are exhibited by B-cell non-Hodgkin's lymphomas. These properties could make the diagnostics process complicated. The diagnosis of lymphomas at an initial stage is essential because early remedial actions taken against destructive subtypes are commonly deliberated as successful and restorative. Therefore, better protective action is needed to improve the condition of those patients who are extensively affected by cancer when diagnosed for the first time. The development of new and efficient methods for early detection of cancer has become crucial nowadays. Biomarkers are urgently needed for diagnosing B-cell non-Hodgkin's lymphoma and assessing the severity of the disease and its prognosis. New possibilities are now open for diagnosing cancer with the help of metabolomics. The study of all the metabolites synthesised in the human body is called "metabolomics." A patient's phenotype is directly linked with metabolomics, which can help in providing some clinically beneficial biomarkers and is applied in the diagnostics of B-cell non-Hodgkin's lymphoma. In cancer research, it can analyse the cancerous metabolome to identify the metabolic biomarkers. This review provides an understanding of B-cell non-Hodgkin's lymphoma metabolism and its applications in medical diagnostics. A description of the workflow based on metabolomics is also provided, along with the benefits and drawbacks of various techniques. The use of predictive metabolic biomarkers for the diagnosis and prognosis of B-cell non-Hodgkin's lymphoma is also explored. Thus, we can say that abnormalities related to metabolic processes can occur in a vast range of B-cell non-Hodgkin's lymphomas. The metabolic biomarkers could only be discovered and identified as innovative therapeutic objects if we explored and researched them. In the near future, the innovations involving metabolomics could prove fruitful for predicting outcomes and bringing out novel remedial approaches.
Collapse
Affiliation(s)
- Abdullah Alfaifi
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Fayfa General Hospital, Ministry of Health, Jazan 83581, Saudi Arabia
| | - Mohammed Y. Refai
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Mohammed Alsaadi
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Hematology Research Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Salem Bahashwan
- Hematology Research Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Hematology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hafiz Malhan
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Waiel Al-Kahiry
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Enas Dammag
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Ageel Ageel
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Amjed Mahzary
- Eradah Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Raed Albiheyri
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hussein Almehdar
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ishtiaq Qadri
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence:
| |
Collapse
|
130
|
Proliferating Astrocytes in Primary Culture Do Not Depend upon Mitochondrial Respiratory Complex I Activity or Oxidative Phosphorylation. Cells 2023; 12:cells12050683. [PMID: 36899819 PMCID: PMC10001222 DOI: 10.3390/cells12050683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Understanding the role of astrocytes in the development of the nervous system and neurodegenerative disorders implies a necessary knowledge of the oxidative metabolism of proliferating astrocytes. The electron flux through mitochondrial respiratory complexes and oxidative phosphorylation may impact the growth and viability of these astrocytes. Here, we aimed at assessing to which extent mitochondrial oxidative metabolism is required for astrocyte survival and proliferation. Primary astrocytes from the neonatal mouse cortex were cultured in a physiologically relevant medium with the addition of piericidin A or oligomycin at concentrations that fully inhibit complex I-linked respiration and ATP synthase, respectively. The presence of these mitochondrial inhibitors for up to 6 days in a culture medium elicited only minor effects on astrocyte growth. Moreover, neither the morphology nor the proportion of glial fibrillary acidic protein-positive astrocytes in culture was affected by piericidin A or oligomycin. Metabolic characterization of the astrocytes showed a relevant glycolytic metabolism under basal conditions, despite functional oxidative phosphorylation and large spare respiratory capacity. Our data suggest that astrocytes in primary culture can sustainably proliferate when their energy metabolism relies only on aerobic glycolysis since their growth and survival do not require electron flux through respiratory complex I or oxidative phosphorylation.
Collapse
|
131
|
The "Superoncogene" Myc at the Crossroad between Metabolism and Gene Expression in Glioblastoma Multiforme. Int J Mol Sci 2023; 24:ijms24044217. [PMID: 36835628 PMCID: PMC9966483 DOI: 10.3390/ijms24044217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The concept of the Myc (c-myc, n-myc, l-myc) oncogene as a canonical, DNA-bound transcription factor has consistently changed over the past few years. Indeed, Myc controls gene expression programs at multiple levels: directly binding chromatin and recruiting transcriptional coregulators; modulating the activity of RNA polymerases (RNAPs); and drawing chromatin topology. Therefore, it is evident that Myc deregulation in cancer is a dramatic event. Glioblastoma multiforme (GBM) is the most lethal, still incurable, brain cancer in adults, and it is characterized in most cases by Myc deregulation. Metabolic rewiring typically occurs in cancer cells, and GBM undergoes profound metabolic changes to supply increased energy demand. In nontransformed cells, Myc tightly controls metabolic pathways to maintain cellular homeostasis. Consistently, in Myc-overexpressing cancer cells, including GBM cells, these highly controlled metabolic routes are affected by enhanced Myc activity and show substantial alterations. On the other hand, deregulated cancer metabolism impacts Myc expression and function, placing Myc at the intersection between metabolic pathway activation and gene expression. In this review paper, we summarize the available information on GBM metabolism with a specific focus on the control of the Myc oncogene that, in turn, rules the activation of metabolic signals, ensuring GBM growth.
Collapse
|
132
|
Israël M, Berg E, Tenenbaum G. Cancer Metabolism: Fasting Reset, the Keto-Paradox and Drugs for Undoing. J Clin Med 2023; 12:jcm12041589. [PMID: 36836124 PMCID: PMC9960359 DOI: 10.3390/jcm12041589] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
In tumor cells, ketolysis "via" succinyl-CoA: 3-oxoacid-CoAtransferase (SCOT) and acetyl-CoA acetyltransferase 1 (ACAT1) is a major source of mitochondrial acetyl-CoA. Active ACAT1 tetramers stabilize by tyrosine phosphorylation, which facilitates the SCOT reaction and ketolysis. Tyrosine phosphorylation of pyruvate kinase PK M2 has the opposite effect, stabilizing inactive dimers, while pyruvate dehydrogenase (PDH), which is already inhibited by phosphorylation, is acetylated by ACAT1 and is doubly locked. This closes the glycolytic supply of acetyl-CoA. In addition, since tumor cells must synthesize fatty acids to create new membranes, they automatically turn off the degradation of fatty acids into acetyl-CoA ("via" the malonyl-CoA brake for the fatty acid carnityl transporter). Thus, inhibiting SCOT the specific ketolytic enzyme and ACAT1 should hold back tumor progression. However, tumor cells are still able to take up external acetate and convert it into acetyl-CoA in their cytosol "via" an acetyl-CoA synthetase, which feeds the lipogenic pathway; additionally, inhibiting this enzyme would make it difficult for tumor cells to form new lipid membrane and survive.
Collapse
Affiliation(s)
- Maurice Israël
- Institut Alfred Fessard, CNRS, 2 Av. Terrasse, 91190 Gif-sur-Yvette, France
- Correspondence:
| | - Eric Berg
- Independent Researcher, 4501 Ford Ave., Alexandria, VA 22302, USA
| | - Guy Tenenbaum
- Independent Researcher, 5558 E Leitner Drive, Coral Springs, FL 33067, USA
| |
Collapse
|
133
|
Liu Y, Feng Z, Zhang P, Chen H, Zhu S, Wang X. Advances in the study of aerobic glycolytic effects in resistance to radiotherapy in malignant tumors. PeerJ 2023; 11:e14930. [PMID: 36811010 PMCID: PMC9939019 DOI: 10.7717/peerj.14930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Aerobic glycolysis is a metabolic mode of tumor cells different from normal cells that plays an important role in tumor proliferation and distant metastasis. Radiotherapy has now become a routine and effective treatment for many malignancies, however, resistance to radiotherapy remains a major challenge in the treatment of malignant tumors. Recent studies have found that the abnormal activity of the aerobic glycolysis process in tumor cells is most likely involved in regulating chemoresistance and radiation therapy resistance in malignant tumors. However, research on the functions and mechanisms of aerobic glycolysis in the molecular mechanisms of resistance to radiotherapy in malignant tumors is still in its early stages. This review collects recent studies on the effects of aerobic glycolysis and radiation therapy resistance in malignant tumors, to further understand the progress in this area. This research may more effectively guide the clinical development of more powerful treatment plans for radiation therapy resistant subtypes of cancer patients, and take an important step to improve the disease control rate of radiation therapy resistant subtypes of cancer patients.
Collapse
|
134
|
Chen J, Zhu Y, Wu C, Shi J. Engineering lactate-modulating nanomedicines for cancer therapy. Chem Soc Rev 2023; 52:973-1000. [PMID: 36597879 DOI: 10.1039/d2cs00479h] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Lactate in tumors has long been considered "metabolic junk" derived from the glycolysis of cancer cells and utilized only as a biomarker of malignancy, but is presently believed to be a pivotal regulator of tumor development, maintenance and metastasis. Indeed, tumor lactate can be a "fuel" for energy supply and functions as a signaling molecule, which actively contributes to tumor progression, angiogenesis, immunosuppression, therapeutic resistance, etc., thus providing promising opportunities for cancer treatment. However, the current approaches for regulating lactate homeostasis with available agents are still challenging, which is mainly due to the short half-life, low bioavailability and poor specificity of these agents and their unsatisfactory therapeutic outcomes. In recent years, lactate modulation nanomedicines have emerged as a charming and efficient strategy for fighting cancer, which play important roles in optimizing the delivery of lactate-modulating agents for more precise and effective modulation and treatment. Integrating specific lactate-modulating functions in diverse therapeutic nanomedicines may overcome the intrinsic restrictions of different therapeutic modalities by remodeling the pathological microenvironment for achieving enhanced cancer therapy. In this review, the most recent advances in the engineering of functional nanomedicines that can modulate tumor lactate for cancer therapy are summarized and discussed, and the fundamental mechanisms by which lactate modulation benefits various therapeutics are elucidated. Finally, the challenges and perspectives of this emerging strategy in the anti-tumor field are highlighted.
Collapse
Affiliation(s)
- Jiajie Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yufang Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200331, P. R. China
| |
Collapse
|
135
|
Sanches JM, Zhao LN, Salehi A, Wollheim CB, Kaldis P. Pathophysiology of type 2 diabetes and the impact of altered metabolic interorgan crosstalk. FEBS J 2023; 290:620-648. [PMID: 34847289 DOI: 10.1111/febs.16306] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/14/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023]
Abstract
Diabetes is a complex and multifactorial disease that affects millions of people worldwide, reducing the quality of life significantly, and results in grave consequences for our health care system. In type 2 diabetes (T2D), the lack of β-cell compensatory mechanisms overcoming peripherally developed insulin resistance is a paramount factor leading to disturbed blood glucose levels and lipid metabolism. Impaired β-cell functions and insulin resistance have been studied extensively resulting in a good understanding of these pathways but much less is known about interorgan crosstalk, which we define as signaling between tissues by secreted factors. Besides hormones and organokines, dysregulated blood glucose and long-lasting hyperglycemia in T2D is associated with changes in metabolism with metabolites from different tissues contributing to the development of this disease. Recent data suggest that metabolites, such as lipids including free fatty acids and amino acids, play important roles in the interorgan crosstalk during the development of T2D. In general, metabolic remodeling affects physiological homeostasis and impacts the development of T2D. Hence, we highlight the importance of metabolic interorgan crosstalk in this review to gain enhanced knowledge of the pathophysiology of T2D, which may lead to new therapeutic approaches to treat this disease.
Collapse
Affiliation(s)
| | - Li Na Zhao
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Albert Salehi
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Claes B Wollheim
- Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Philipp Kaldis
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
136
|
Shen HC, Chen ZQ, Liu XC, Guan JF, Xie DZ, Li YY, Xu C. Sodium oxamate reduces lactate production to improve the glucose homeostasis of Micropterus salmoides fed high-carbohydrate diets. Am J Physiol Regul Integr Comp Physiol 2023; 324:R227-R241. [PMID: 36572554 DOI: 10.1152/ajpregu.00226.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The study was performed to evaluate the effects of the reduced lactate production by sodium oxamate (SO) on growth performance, lactate and glucose and lipid metabolism, and glucose tolerance of Micropterus salmoides fed high-carbohydrate (CHO) diets. In in vitro study, primary hepatocytes were incubated for 48 h in a control medium (5.5 mM glucose), a high-glucose medium (25 mM glucose, HG), or a SO-containing high-glucose medium (25 mM glucose + 50 mM SO, HG-SO). Results indicated lactate and triglyceride (TG) levels, and lactate dehydrogenase a (LDH-a) expression in the HG-SO group were remarkably lower than those of the HG group. In in vivo study, M. salmoides (5.23 ± 0.03 g) were fed four diets containing a control diet (10% CHO, C) and three SO contents [0 (HC), 100 (HC-SO1), and 200 (HC-SO2) mg·kg-1, respectively] of high-CHO diets (20% CHO) for 11 wk. High-CHO diets significantly reduced weight gain rate (WGR), specific growth rate (SGR), p-AMPK-to-t-AMPK ratio, and expression of insulin receptor substrate 1 (IRS1), insulin-like growth factor I (IGF-I), insulin-like growth factor I receptor (IGF-IR), fructose-1,6-biphosphatase (FBPase), peroxisome proliferator-activated receptor α (PPARα), and carnitine palmitoyl transferase 1α (CPT1α) compared with the C group, whereas the opposite was true for plasma levels of glucose, TG, lactate, tissue glycogen, and lipid contents, and expression of LDH-a, monocarboxylate transporter 1 and 4 (MCT1 and MCT4), insulin, glucokinase (GK), pyruvate dehydrogenase E1 subunit (PDH), sterol-regulatory element-binding protein 1 (SREBP1), fatty acid synthase (FAS). The HC-SO2 diets remarkably increased WGR, SGR, p-AMPK-to-t-AMPK ratio, and expression of IRS1, IGF-I, IGF-IR, GK, PDHα, PDHβ, FAS, acetyl-CoA carboxylase 1 (ACC1), PPARα, and CPT1α compared with the HC group. Besides, HC-SO2 diets also enhanced glucose tolerance of fish after a glucose loading. Overall, the reduced lactate production by SO benefits growth performance and glucose homeostasis of high-CHO-fed M. salmoides through the enhancement of glycolysis, lipogenesis, and fatty acid β-oxidation coupled with the suppression of glycogenesis and gluconeogenesis.
Collapse
Affiliation(s)
- Hui-Chao Shen
- College of Marine Sciences, South China Agricultural University, Guangzhou, China.,University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Zhi-Qiang Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xiao-Cheng Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Jun-Feng Guan
- College of Marine Sciences, South China Agricultural University, Guangzhou, China.,University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Di-Zhi Xie
- College of Marine Sciences, South China Agricultural University, Guangzhou, China.,University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Yuan-You Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, China.,University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Chao Xu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China.,University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| |
Collapse
|
137
|
Zhang C, Hoang G, Attarwala N, Cooper AJL, Asaka R, Le A. Metabolic Recycling Enhances Proliferation in MYC-Transformed Lymphoma B Cells. Adv Biol (Weinh) 2023; 7:e2200233. [PMID: 36417583 PMCID: PMC10375452 DOI: 10.1002/adbi.202200233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/10/2022] [Indexed: 11/27/2022]
Abstract
Relapses negatively impact cancer patient survival due to the tumorigenesis ability of surviving cancer cells post-therapy. Efforts are needed to better understand and combat this problem. This study hypothesized that dead cell debris post-radiation therapy creates an advantageous microenvironment rich in metabolic materials promoting the growth of remaining live cancer cells. In this study, live cancer cells are co-cultured with dead cancer cells eradicated by UV radiation to mimic a post-therapy environment. Isotopic labeling metabolomics is used to investigate the metabolic behavior of cancer cells grown in a post-radiation-therapy environment. It is found that post-UV-eradicated dead cancer cells serve as nutritional sources of "off-the-shelf" and precursor metabolites for surviving cancer cells. The surviving cancer cells then take up these metabolites, integrate and upregulate multiple vital metabolic processes, thereby significantly increasing growth in vitro and probably in vivo beyond their intrinsic fast-growing characteristics. Importantly, this active metabolite uptake behavior is only observed in oncogenic but not in non-oncogenic cells, presenting opportunities for therapeutic approaches to interrupt the active uptake process of oncogenic cells without affecting normal cells. The process by which living cancer cells re-use vital metabolites released by dead cancer cells post-therapy is coined in this study as "metabolic recycling" of oncogenic cells.
Collapse
Affiliation(s)
- Cissy Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Giang Hoang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Nabeel Attarwala
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Arthur J L Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA
| | - Ryoichi Asaka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Anne Le
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, 21218, USA
| |
Collapse
|
138
|
Dai M, Wang L, Yang J, Chen J, Dou X, Chen R, Ge Y, Lin Y. LDHA as a regulator of T cell fate and its mechanisms in disease. Biomed Pharmacother 2023; 158:114164. [PMID: 36916398 DOI: 10.1016/j.biopha.2022.114164] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
T cells are the main force of anti-infection and antitumor and are also involved in autoimmune diseases. During the development of these diseases, T cells need to rapidly produce large amounts of energy to satisfy their activation, proliferation, and differentiation. In this review, we introduced lactate dehydrogenase A(LDHA), predominantly involved in glycolysis, which provides energy for T cells and plays a dual role in disease by mediating lactate production, non-classical enzyme activity, and oxidative stress. Mechanistically, the signaling molecule can interact with the LDHA promoter or regulate LDHA activity through post-translational modifications. These latest findings suggest that modulation of LDHA may have considerable therapeutic effects in diseases where T-cell activation is an important pathogenesis.
Collapse
Affiliation(s)
- Maosha Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Li Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Juexi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Jiayi Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Xiaoke Dou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Rui Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Yangyang Ge
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.
| |
Collapse
|
139
|
Tumor lactic acid: a potential target for cancer therapy. Arch Pharm Res 2023; 46:90-110. [PMID: 36729274 DOI: 10.1007/s12272-023-01431-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/27/2023] [Indexed: 02/03/2023]
Abstract
Tumor development is influenced by circulating metabolites and most tumors are exposed to substantially elevated levels of lactic acid and low levels of nutrients, such as glucose and glutamine. Tumor-derived lactic acid, the major circulating carbon metabolite, regulates energy metabolism and cancer cell signaling pathways, while also acting as an energy source and signaling molecule. Recent studies have yielded new insights into the pro-tumorigenic action of lactic acid and its metabolism. These insights suggest an anti-tumor therapeutic strategy targeting the oncometabolite lactic acid, with the aim of improving the efficacy and clinical safety of tumor metabolism inhibitors. This review describes the current understanding of the multifunctional roles of tumor lactic acid, as well as therapeutic approaches targeting lactic acid metabolism, including lactate dehydrogenase and monocarboxylate transporters, for anti-cancer therapy.
Collapse
|
140
|
Chelakkot C, Chelakkot VS, Shin Y, Song K. Modulating Glycolysis to Improve Cancer Therapy. Int J Mol Sci 2023; 24:2606. [PMID: 36768924 PMCID: PMC9916680 DOI: 10.3390/ijms24032606] [Citation(s) in RCA: 70] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Cancer cells undergo metabolic reprogramming and switch to a 'glycolysis-dominant' metabolic profile to promote their survival and meet their requirements for energy and macromolecules. This phenomenon, also known as the 'Warburg effect,' provides a survival advantage to the cancer cells and make the tumor environment more pro-cancerous. Additionally, the increased glycolytic dependence also promotes chemo/radio resistance. A similar switch to a glycolytic metabolic profile is also shown by the immune cells in the tumor microenvironment, inducing a competition between the cancer cells and the tumor-infiltrating cells over nutrients. Several recent studies have shown that targeting the enhanced glycolysis in cancer cells is a promising strategy to make them more susceptible to treatment with other conventional treatment modalities, including chemotherapy, radiotherapy, hormonal therapy, immunotherapy, and photodynamic therapy. Although several targeting strategies have been developed and several of them are in different stages of pre-clinical and clinical evaluation, there is still a lack of effective strategies to specifically target cancer cell glycolysis to improve treatment efficacy. Herein, we have reviewed our current understanding of the role of metabolic reprogramming in cancer cells and how targeting this phenomenon could be a potential strategy to improve the efficacy of conventional cancer therapy.
Collapse
Affiliation(s)
| | - Vipin Shankar Chelakkot
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Youngkee Shin
- Laboratory of Molecular Pathology and Cancer Genomics, Research Institute of Pharmaceutical Science, Department of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung Song
- College of Pharmacy, Duksung Women’s University, Seoul 01366, Republic of Korea
| |
Collapse
|
141
|
Pancreatic stellate cell-induced gemcitabine resistance in pancreatic cancer is associated with LDHA- and MCT4-mediated enhanced glycolysis. Cancer Cell Int 2023; 23:9. [PMID: 36658582 PMCID: PMC9850604 DOI: 10.1186/s12935-023-02852-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Profound resistance to chemotherapy remains a major challenge in achieving better clinical outcomes for patients with pancreatic ductal adenocarcinoma (PDAC). Recent studies indicate that gemcitabine (GEM) resistance is promoted both by pancreatic stellate cells (PSCs) and through increased glycolysis. However, it remains unknown whether PSCs affect GEM sensitivity via glycolytic regulation. METHODS Human pancreatic cancer cell (PCC) lines (BxPC-3, Capan-2, HPAF-II, Mia PaCa-2, Panc-1, SW-1990) were exposed to three different PSC-conditioned media (PSC-CM; PSC-1, PSC-2, HPaSteC), following either pre-treatment with glycolysis inhibitor NV-5440 or transfection for transient silencing of key glycolytic regulators (LDHA and MCT4). Proliferation, glucose transport, extracellular lactate, and GEM sensitivity were assessed. Protein expression was determined by Western blot and immunostaining. Moreover, secreted proteins in PSC-CMs were profiled by mass spectrometry (MS). RESULTS While exposure to PSC-CMs did not affect glucose transport in PCCs, it increased their lactate release and proliferation, and reduced the sensitivity for GEM. Both NV-5440 treatment and transient silencing of LDHA and MCT4 inhibited these PSC-induced changes in PCCs. MS analysis identified 688 unique proteins with differential expression, of which only 87 were common to the three PSC-CMs. Most PSC-secreted proteins were extracellular matrix-related, including SPARC, fibronectin, and collagens. Moreover, exposure to PSC-CMs increased the phosphorylation of ERK in PCCs, but the treatment of PCCs with the MEK/ERK inhibitor PD98059 resulted in a reduction of PSC-CM-induced glycolysis and improved GEM sensitivity. CONCLUSIONS The study findings suggest that PSC-secreted factors promote both glycolysis and GEM resistance in PCCs, and that glycolysis inhibition by NV-5440 and blocking of ERK phosphorylation by PD98059 protect PCCs from PSC-CM-induced loss of GEM sensitivity. Taken together, PSCs appear to promote GEM resistance in PDAC via glycolysis. Thus, targeting glycolysis may improve the effect of chemotherapy in PDAC.
Collapse
|
142
|
Sharma H, Sharma P, Urquiza U, Chastain LR, Ihnat MA. Exploration of a Large Virtual Chemical Space: Identification of Potent Inhibitors of Lactate Dehydrogenase-A against Pancreatic Cancer. J Chem Inf Model 2023; 63:1028-1043. [PMID: 36646658 PMCID: PMC9930117 DOI: 10.1021/acs.jcim.2c01544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
It is imperative to explore the gigantic available chemical space to identify new scaffolds for drug lead discovery. Identifying potent hits from virtual screening of large chemical databases is challenging and computationally demanding. Rather than the traditional two-dimensional (2D)/three-dimensional (3D) approaches on smaller chemical libraries of a few hundred thousand compounds, we screened a ZINC library of 15 million compounds using multiple computational methods. Here, we present the successful application of a virtual screening methodology that identifies several chemotypes as starting hits against lactate dehydrogenase-A (LDHA). From 29 compounds identified from virtual screening, 17 (58%) showed IC50 values < 63 μM, two showed single-digit micromolar inhibition, and the most potent hit compound had IC50 down to 117 nM. We enriched the database and employed an ensemble approach by combining 2D fingerprint similarity searches, pharmacophore modeling, molecular docking, and molecular dynamics. WaterMap calculations were carried out to explore the thermodynamics of surface water molecules and gain insights into the LDHA binding pocket. The present work has led to the discovery of two new chemical classes, including compounds with a succinic acid monoamide moiety or a hydroxy pyrimidinone ring system. Selected hits block lactate production in cells and inhibit pancreatic cancer cell lines with cytotoxicity IC50 down to 12.26 μM against MIAPaCa-2 cells and 14.64 μM against PANC-1, which, under normoxic conditions, is already comparable or more potent than most currently available known LDHA inhibitors.
Collapse
Affiliation(s)
- Horrick Sharma
- Department
of Pharmaceutical Sciences, College of Pharmacy, Southwestern Oklahoma State University, Weatherford, Oklahoma73096, United States,, . Phone: (+1)580-774-3064. Fax: (+1)(580)-774-7020
| | - Pragya Sharma
- Department
of Biological Sciences, Southwestern Oklahoma
State University, Weatherford, Oklahoma73096, United States
| | - Uzziah Urquiza
- Department
of Biological Sciences, Southwestern Oklahoma
State University, Weatherford, Oklahoma73096, United States
| | - Lerin R. Chastain
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma73117, United States
| | - Michael A. Ihnat
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma73117, United States
| |
Collapse
|
143
|
Lv N, Shen S, Chen Q, Tong J. Long noncoding RNAs: glycolysis regulators in gynaecologic cancers. Cancer Cell Int 2023; 23:4. [PMID: 36639695 PMCID: PMC9838043 DOI: 10.1186/s12935-023-02849-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
The three most common gynaecologic cancers that seriously threaten female lives and health are ovarian cancer, cervical cancer, and endometrial cancer. Glycolysis plays a vital role in gynaecologic cancers. Several long noncoding RNAs (lncRNAs) are known to function as oncogenic molecules. LncRNAs impact downstream target genes by acting as ceRNAs, guides, scaffolds, decoys, or signalling molecules. However, the role of glycolysis-related lncRNAs in regulating gynaecologic cancers remains poorly understood. In this review, we emphasize the functional roles of many lncRNAs that have been found to promote glycolysis in gynaecologic cancers and discuss reasonable strategies for future research.
Collapse
Affiliation(s)
- Nengyuan Lv
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| | - Siyi Shen
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| | - Qianying Chen
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| | - Jinyi Tong
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| |
Collapse
|
144
|
Wu Z, Wang J, Li Y, Liu J, Kang Z, Yan W. Characterization of a lactate metabolism-related signature for evaluation of immune features and prediction prognosis in glioma. Front Neurol 2023; 13:1064349. [PMID: 36698888 PMCID: PMC9868722 DOI: 10.3389/fneur.2022.1064349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Background Glioma is one of the most typical tumors in the central nervous system with a poor prognosis, and the optimal management strategy remains controversial. Lactate in the tumor microenvironment is known to promote cancer progression, but its impact on clinical outcomes of glioma is largely unknown. Methods Glioma RNA-seq data were obtained from TCGA and GCGA databases. Lactate metabolism genes (LMGs) were then evaluated to construct an LMG model in glioma using Cox and LASSO regression. Immune cell infiltration, immune checkpoint gene expression, enriched pathways, genetic alteration, and drug sensitivity were compared within the risk subgroups. Based on the risk score and clinicopathological features, a nomogram was developed to predict prognosis in patients with glioma. Results Five genes (LDHA, LDHB, MRS2, SL16A1, and SL25A12) showed a good prognostic value and were used to construct an LMG-based risk score. This risk score was shown as an independent prognostic factor with good predictive power in both training and validation cohorts (p < 0.001). The LMG signature was found to be correlated with the expression of immune checkpoint genes and immune infiltration and could shape the tumor microenvironment. Genetic alteration, dysregulated metabolism, and tumorigenesis pathways could be the underlying contributing factors that affect LMG risk stratification. The patients with glioma in the LMG high-risk group showed high sensitivity to EGFR inhibitors. In addition, our nomogram model could effectively predict overall survival with an area under the curve value of 0.894. Conclusion We explored the characteristics of LMGs in glioma and proposed an LMG-based signature. This prognostic model could predict the survival of patients with glioma and help clinical oncologists plan more individualized and effective therapeutic regimens.
Collapse
Affiliation(s)
- Zhiqiang Wu
- Department of Musculoskeletal Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Wang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yanan Li
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianmin Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China,*Correspondence: Jianmin Liu ✉
| | - Zijian Kang
- Department of Musculoskeletal Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,Department of Rheumatology and Immunology, Second Affiliated Hospital of Naval Medical University, Shanghai, China,Zijian Kang ✉
| | - Wangjun Yan
- Department of Musculoskeletal Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,Wangjun Yan ✉
| |
Collapse
|
145
|
Mijit M, Liu S, Sishtla K, Hartman GD, Wan J, Corson TW, Kelley MR. Identification of Novel Pathways Regulated by APE1/Ref-1 in Human Retinal Endothelial Cells. Int J Mol Sci 2023; 24:1101. [PMID: 36674619 PMCID: PMC9865623 DOI: 10.3390/ijms24021101] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
APE1/Ref-1 (apurinic/apyrimidinic endonuclease 1, APE1 or APEX1; redox factor-1, Ref-1) is a dual-functional enzyme with crucial roles in DNA repair, reduction/oxidation (redox) signaling, and RNA processing and metabolism. The redox function of Ref-1 regulates several transcription factors, such as NF-κB, STAT3, HIF-1α, and others, which have been implicated in multiple human diseases, including ocular angiogenesis, inflammation, and multiple cancers. To better understand how APE1 influences these disease processes, we investigated the effects of APEX1 knockdown (KD) on gene expression in human retinal endothelial cells. This abolishes both DNA repair and redox signaling functions, as well as RNA interactions. Using RNA-seq analysis, we identified the crucial signaling pathways affected following APEX1 KD, with subsequent validation by qRT-PCR. Gene expression data revealed that multiple genes involved in DNA base excision repair, other DNA repair pathways, purine or pyrimidine metabolism signaling, and histidine/one carbon metabolism pathways were downregulated by APEX1 KD. This is in contrast with the alteration of pathways by APEX1 KD in human cancer lines, such as pancreatic ductal adenocarcinoma, lung, HeLa, and malignant peripheral nerve sheath tumors. These results highlight the unique role of APE1/Ref-1 and the clinical therapeutic potential of targeting APE1 and pathways regulated by APE1 in the eye. These findings provide novel avenues for ocular neovascularization treatment.
Collapse
Affiliation(s)
- Mahmut Mijit
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kamakshi Sishtla
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gabriella D. Hartman
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Timothy W. Corson
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark R. Kelley
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
146
|
Liao C, Liu X, Zhang C, Zhang Q. Tumor hypoxia: From basic knowledge to therapeutic implications. Semin Cancer Biol 2023; 88:172-186. [PMID: 36603793 PMCID: PMC9929926 DOI: 10.1016/j.semcancer.2022.12.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/07/2022] [Accepted: 12/31/2022] [Indexed: 01/04/2023]
Abstract
Diminished oxygen availability, termed hypoxia, within solid tumors is one of the most common characteristics of cancer. Hypoxia shapes the landscape of the tumor microenvironment (TME) into a pro-tumorigenic and pro-metastatic niche through arrays of pathological alterations such as abnormal vasculature, altered metabolism, immune-suppressive phenotype, etc. In addition, emerging evidence suggests that limited efficacy or the development of resistance towards antitumor therapy may be largely due to the hypoxic TME. This review will focus on summarizing the knowledge about the molecular machinery that mediates the hypoxic cellular responses and adaptations, as well as highlighting the effects and consequences of hypoxia, especially for angiogenesis regulation, cellular metabolism alteration, and immunosuppressive response within the TME. We also outline the current advances in novel therapeutic implications through targeting hypoxia in TME. A deep understanding of the basics and the role of hypoxia in the tumor will help develop better therapeutic avenues in cancer treatment.
Collapse
Affiliation(s)
- Chengheng Liao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xijuan Liu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA
| | - Cheng Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
147
|
Li Y, Huang H, Wu S, Zhou Y, Huang T, Jiang J. The Role of RNA m 6A Modification in Cancer Glycolytic Reprogramming. Curr Gene Ther 2023; 23:51-59. [PMID: 36043793 DOI: 10.2174/1566523222666220830150446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 02/08/2023]
Abstract
As one of the main characteristics of neoplasia, metabolic reprogramming provides nutrition and energy to enhance cell proliferation and maintain environment homeostasis. Glycolysis is one of the most important components of cancer metabolism and the Warburg effect contributes to the competitive advantages of cancer cells in the threatened microenvironment. Studies show strong links between N6-methyladenosine (m6A) modification and metabolic recombination of cancer cells. As the most abundant modification in eukaryotic RNA, m6A methylation plays important roles in regulating RNA processing, including splicing, stability, transportation, translation and degradation. The aberration of m6A modification can be observed in a variety of diseases such as diabetes, neurological diseases and cancers. This review describes the mechanisms of m6A on cancer glycolysis and their applications in cancer therapy and prognosis evaluation, aiming to emphasize the importance of targeting m6A in modulating cancer metabolism.
Collapse
Affiliation(s)
- Yuanqi Li
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Hao Huang
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Shaoxian Wu
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - You Zhou
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Tao Huang
- Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jingting Jiang
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| |
Collapse
|
148
|
Li Z, Wang Q, Huang X, Yang M, Zhou S, Li Z, Fang Z, Tang Y, Chen Q, Hou H, Li L, Fei F, Wang Q, Wu Y, Gong A. Lactate in the tumor microenvironment: A rising star for targeted tumor therapy. Front Nutr 2023; 10:1113739. [PMID: 36875841 PMCID: PMC9978120 DOI: 10.3389/fnut.2023.1113739] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Metabolic reprogramming is one of fourteen hallmarks of tumor cells, among which aerobic glycolysis, often known as the "Warburg effect," is essential to the fast proliferation and aggressive metastasis of tumor cells. Lactate, on the other hand, as a ubiquitous molecule in the tumor microenvironment (TME), is generated primarily by tumor cells undergoing glycolysis. To prevent intracellular acidification, malignant cells often remove lactate along with H+, yet the acidification of TME is inevitable. Not only does the highly concentrated lactate within the TME serve as a substrate to supply energy to the malignant cells, but it also works as a signal to activate multiple pathways that enhance tumor metastasis and invasion, intratumoral angiogenesis, as well as immune escape. In this review, we aim to discuss the latest findings on lactate metabolism in tumor cells, particularly the capacity of extracellular lactate to influence cells in the tumor microenvironment. In addition, we examine current treatment techniques employing existing medications that target and interfere with lactate generation and transport in cancer therapy. New research shows that targeting lactate metabolism, lactate-regulated cells, and lactate action pathways are viable cancer therapy strategies.
Collapse
Affiliation(s)
- Zhangzuo Li
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China.,Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Mengting Yang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shujing Zhou
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zhengrui Li
- School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhengzou Fang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yidan Tang
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Qian Chen
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hanjin Hou
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Li Li
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Fei Fei
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Qiaowei Wang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yuqing Wu
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Aihua Gong
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China.,Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
149
|
Bhat SA, Farooq Z, Ismail H, Corona-Avila I, Khan MW. Unraveling the Sweet Secrets of HCC: Glucometabolic Rewiring in Hepatocellular Carcinoma. Technol Cancer Res Treat 2023; 22:15330338231219434. [PMID: 38083797 PMCID: PMC10718058 DOI: 10.1177/15330338231219434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/06/2023] [Accepted: 11/13/2017] [Indexed: 12/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the primary form of liver cancer. It causes ∼ 800 000 deaths per year, which is expected to increase due to increasing rates of obesity and metabolic dysfunction associated steatotic liver disease (MASLD). Current therapies include immune checkpoint inhibitors, tyrosine kinase inhibitors, and monoclonal antibodies, but these therapies are not satisfactorily effective and often come with multiple side effects and recurrences. Metabolic reprogramming plays a significant role in HCC progression and is often conserved between tumor types. Thus, targeting rewired metabolic pathways could provide an attractive option for targeting tumor cells alone or in conjunction with existing treatments. Therefore, there is an urgent need to identify novel targets involved in cancer-mediated metabolic reprogramming in HCC. In this review, we provide an overview of molecular rewiring and metabolic reprogramming of glucose metabolism in HCC to understand better the concepts that might widen the therapeutic window against this deadly cancer.
Collapse
Affiliation(s)
- Sheraz Ahmad Bhat
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
- Sri Pratap College, Cluster University Srinagar, Srinagar, Jammu & Kashmir, India
| | - Zeenat Farooq
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Hagar Ismail
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Irene Corona-Avila
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Md. Wasim Khan
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
150
|
Yang H, Zou X, Yang S, Zhang A, Li N, Ma Z. Identification of lactylation related model to predict prognostic, tumor infiltrating immunocytes and response of immunotherapy in gastric cancer. Front Immunol 2023; 14:1149989. [PMID: 36936929 PMCID: PMC10020516 DOI: 10.3389/fimmu.2023.1149989] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Background The epigenetic regulatory chemical lactate is a product of glycolysis. It can regulate gene expression through histone lactylation, thereby promoting tumor proliferation, metastasis, and immunosuppression. Methods In this study, a lactylation-related model for gastric cancer (GC) was constructed, and its relationships to prognosis, immune cell infiltration, and immunotherapy were investigated. By contrasting normal tissues and tumor tissues, four lactylation-related pathways that were substantially expressed in GC tissues were found in the GSEA database. Six lactylation-related genes were screened for bioinformatic analysis. The GC data sets from the TCGA and GEO databases were downloaded and integrated to perform cluster analysis, and the lactylation related model was constructed by secondary clustering. Results The fingding demonstrated that the lactylation score has a strong correlation with the overall survival rate from GC and the progression of GC. Mechanistic experiments showed that abundant immune cell infiltration (macrophages showed the highest degree of infiltration) and increased genetic instability are traits of high lactylation scores. Immune checkpoint inhibitors (ICIs) demonstrated a reduced response rate in GC with high lactylation scores. At the same time, tumors with high lactylation scores had high Tumor Immune Dysfunction and Exclusion scores, which means that they had a higher risk of immune evasion and dysfunction. Discussion These findings indicate that the lactylation score can be used to predict the malignant progression and immune evasion of GC. This model also can guide the treatment response to ICIs of GC. The constructed model of the lactate gene is also expected to become a potential therapeutic target for GC and diagnostic marker.
Collapse
|