101
|
Liu Y, Hüttenhain R, Collins B, Aebersold R. Mass spectrometric protein maps for biomarker discovery and clinical research. Expert Rev Mol Diagn 2013; 13:811-25. [PMID: 24138574 PMCID: PMC3833812 DOI: 10.1586/14737159.2013.845089] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Among the wide range of proteomic technologies, targeted mass spectrometry (MS) has shown great potential for biomarker studies. To extend the degree of multiplexing achieved by selected reaction monitoring (SRM), we recently developed SWATH MS. SWATH MS is a variant of the emerging class of data-independent acquisition (DIA) methods and essentially converts the molecules in a physical sample into perpetually re-usable digital maps. The thus generated SWATH maps are then mined using a targeted data extraction strategy, allowing us to profile disease-related proteomes at a high degree of reproducibility. The successful application of both SRM and SWATH MS requires the a priori generation of reference spectral maps that provide coordinates for quantification. Herein, we demonstrate that the application of the mass spectrometric reference maps and the acquisition of personalized SWATH maps hold a particular promise for accelerating the current process of biomarker discovery.
Collapse
Affiliation(s)
- Yansheng Liu
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Wolfgang-Pauli-Str.16, 8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
102
|
Végvári Á, Sjödin K, Rezeli M, Malm J, Lilja H, Laurell T, Marko-Varga G. Identification of a novel proteoform of prostate specific antigen (SNP-L132I) in clinical samples by multiple reaction monitoring. Mol Cell Proteomics 2013; 12:2761-73. [PMID: 23842001 PMCID: PMC3790289 DOI: 10.1074/mcp.m113.028365] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 07/07/2013] [Indexed: 12/12/2022] Open
Abstract
Prostate specific antigen (PSA) is a well-established tumor marker that is frequently employed as model biomarker in the development and evaluation of emerging quantitative proteomics techniques, partially as a result of wide access to commercialized immunoassays serving as "gold standards." We designed a multiple reaction monitoring (MRM) assay to detect PSA proteoforms in clinical samples (n = 72), utilizing the specificity and sensitivity of the method. We report, for the first time, a PSA proteoform coded by SNP-L132I (rs2003783) that was observed in nine samples in both heterozygous (n = 7) and homozygous (n = 2) expression profiles. Other isoforms of PSA, derived from protein databases, were not identified by four unique proteotypic tryptic peptides. We have also utilized our MRM assay for precise quantitative analysis of PSA concentrations in both seminal and blood plasma samples. The analytical performance was evaluated, and close agreement was noted between quantitations based on three selected peptides (LSEPAELTDAVK, IVGGWECEK, and SVILLGR) and a routinely used commercialized immunoassay. Additionally, we disclose that the peptide IVGGWECEK is shared with kallikrein-related peptidase 2 and therefore is not unique for PSA. Thus, we propose the use of another tryptic sequence (SVILLGR) for accurate MRM quantification of PSA in clinical samples.
Collapse
Affiliation(s)
- Ákos Végvári
- From ‡Clinical Protein Science & Imaging, Biomedical Center, Dept. of Measurement Technology and Industrial Electrical Engineering, Lund University, BMC C13, 221 84 Lund, Sweden
| | - Karin Sjödin
- From ‡Clinical Protein Science & Imaging, Biomedical Center, Dept. of Measurement Technology and Industrial Electrical Engineering, Lund University, BMC C13, 221 84 Lund, Sweden
| | - Melinda Rezeli
- From ‡Clinical Protein Science & Imaging, Biomedical Center, Dept. of Measurement Technology and Industrial Electrical Engineering, Lund University, BMC C13, 221 84 Lund, Sweden
| | - Johan Malm
- ¶Dept. of Laboratory Medicine, Division of Clinical Chemistry, Lund University, Skåne University Hospital in Malmö, SE-205 02 Malmö, Sweden
| | - Hans Lilja
- ¶Dept. of Laboratory Medicine, Division of Clinical Chemistry, Lund University, Skåne University Hospital in Malmö, SE-205 02 Malmö, Sweden
- ‖Depts. of Laboratory Medicine, Surgery (Urology), and Medicine (GU-Oncology), Memorial Sloan-Kettering Cancer Center, New York, New York 10065
- **Nuffield Dept. of Surgical Sciences, University of Oxford, Oxford, OX3 9DU UK
- ‡‡Institute of Biomedical Technology, University of Tampere, Biokatu 8, 33520 Tampere, Finland
| | - Thomas Laurell
- From ‡Clinical Protein Science & Imaging, Biomedical Center, Dept. of Measurement Technology and Industrial Electrical Engineering, Lund University, BMC C13, 221 84 Lund, Sweden
- §§Dept. of Biomedical Engineering, Dongguk University, Seoul, 100-715, South Korea
| | - György Marko-Varga
- From ‡Clinical Protein Science & Imaging, Biomedical Center, Dept. of Measurement Technology and Industrial Electrical Engineering, Lund University, BMC C13, 221 84 Lund, Sweden
- ¶¶First Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjiku Shinjiku-ku, Tokyo, 160-0023 Japan
| |
Collapse
|
103
|
Molecular diagnostics of pancreatic cysts. Langenbecks Arch Surg 2013; 398:1021-7. [DOI: 10.1007/s00423-013-1116-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/02/2013] [Indexed: 01/04/2023]
|
104
|
Shi T, Fillmore TL, Gao Y, Zhao R, He J, Schepmoes AA, Nicora CD, Wu C, Chambers JL, Moore RJ, Kagan J, Srivastava S, Liu AY, Rodland KD, Liu T, Camp DG, Smith RD, Qian WJ. Long-gradient separations coupled with selected reaction monitoring for highly sensitive, large scale targeted protein quantification in a single analysis. Anal Chem 2013; 85:9196-203. [PMID: 24004026 DOI: 10.1021/ac402105s] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Long-gradient separations coupled to tandem mass spectrometry (MS) were recently demonstrated to provide a deep proteome coverage for global proteomics; however, such long-gradient separations have not been explored for targeted proteomics. Herein, we investigate the potential performance of the long-gradient separations coupled with selected reaction monitoring (LG-SRM) for targeted protein quantification. Direct comparison of LG-SRM (5 h gradient) and conventional liquid chromatography (LC)-SRM (45 min gradient) showed that the long-gradient separations significantly reduced background interference levels and provided an 8- to 100-fold improvement in limit of quantification (LOQ) for target proteins in human female serum. On the basis of at least one surrogate peptide per protein, an LOQ of 10 ng/mL was achieved for the two spiked proteins in nondepleted human serum. The LG-SRM detection of seven out of eight endogenous plasma proteins expressed at ng/mL or subng/mL levels in clinical patient sera was also demonstrated. A correlation coefficient of >0.99 was observed for the results of LG-SRM and enzyme-linked immunosorbent assay (ELISA) measurements for prostate-specific antigen (PSA) in selected patient sera. Further enhancement of LG-SRM sensitivity was achieved by applying front-end IgY14 immunoaffinity depletion. Besides improved sensitivity, LG-SRM potentially offers much higher multiplexing capacity than conventional LC-SRM due to an increase in average peak widths (~3-fold) for a 300 min gradient compared to a 45 min gradient. Therefore, LG-SRM holds great potential for bridging the gap between global and targeted proteomics due to its advantages in both sensitivity and multiplexing capacity.
Collapse
Affiliation(s)
- Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Thakkar V, Patel P, Prajapati N, Kaur R, Nandave M. Serum Levels of Glycoproteins are Elevated in Patients with Ovarian Cancer. Indian J Clin Biochem 2013; 29:345-50. [PMID: 24966484 DOI: 10.1007/s12291-013-0380-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 08/29/2013] [Indexed: 01/05/2023]
Abstract
Identification of reliable biomarkers for detection and staging of cancer and monitoring the outcome of anticancer therapy has been considered to be of high importance. We aimed to estimate the levels of serum glycoproteins, protein bound-hexose, protein bound hexosamine, protein bound fucose, protein bound sialic acid and protein bound carbohydrate in 32 ovarian cancer patients and compared them with the levels that found in 25 normal subjects. As compared to the normal subjects, all the four fractions of glycoproteins level were significantly elevated in ovarian cancer patients (p < 0.05). Chemotherapy in these patients significantly decreased the levels of serum glycoproteins (p < 0.05). Thus, high levels of serum glycoproteins in ovarian cancer patients could be due to abnormal protein glycosylation indicating malignant transformation of the cells.
Collapse
Affiliation(s)
- Vikram Thakkar
- Pharmacy Department, M. S. University of Baroda, Vadodara, India
| | - Purvi Patel
- Department of Obstetrics and Gynecology, S.S.G. Hospital, Baroda, India
| | - Neelam Prajapati
- Department of Obstetrics and Gynecology, S.S.G. Hospital, Baroda, India
| | - Ranjit Kaur
- Pharmacy Department, M. S. University of Baroda, Vadodara, India
| | - Mukesh Nandave
- Department of Pharmacology, SPP School of Pharmacy and Technology Management, SVKM's NMIMS, Vile Parle (w), Mumbai, 400056 India
| |
Collapse
|
106
|
Wolfgang CL, Herman JM, Laheru DA, Klein AP, Erdek MA, Fishman EK, Hruban RH. Recent progress in pancreatic cancer. CA Cancer J Clin 2013; 63:318-48. [PMID: 23856911 PMCID: PMC3769458 DOI: 10.3322/caac.21190] [Citation(s) in RCA: 677] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/22/2013] [Accepted: 03/22/2013] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is currently one of the deadliest of the solid malignancies. However, surgery to resect neoplasms of the pancreas is safer and less invasive than ever, novel drug combinations have been shown to improve survival, advances in radiation therapy have resulted in less toxicity, and enormous strides have been made in the understanding of the fundamental genetics of pancreatic cancer. These advances provide hope but they also increase the complexity of caring for patients. It is clear that multidisciplinary care that provides comprehensive and coordinated evaluation and treatment is the most effective way to manage patients with pancreatic cancer.
Collapse
Affiliation(s)
- Christopher L. Wolfgang
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine
| | - Joseph M. Herman
- Department of Radiation Oncology & Molecular Radiation Sciences, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine
| | - Daniel A. Laheru
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine
| | - Alison P. Klein
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine
- Department of Epidemiology, the Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Michael A. Erdek
- Department of Anesthesiology and Critical Care Medicine, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine
| | - Elliot K. Fishman
- Department of Radiology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine
| | - Ralph H. Hruban
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine
| |
Collapse
|
107
|
Wolfgang CL, Herman JM, Laheru DA, Klein AP, Erdek MA, Fishman EK, Hruban RH. Recent progress in pancreatic cancer. CA Cancer J Clin 2013. [PMID: 23856911 DOI: 10.1002/caac.21190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer is currently one of the deadliest of the solid malignancies. However, surgery to resect neoplasms of the pancreas is safer and less invasive than ever, novel drug combinations have been shown to improve survival, advances in radiation therapy have resulted in less toxicity, and enormous strides have been made in the understanding of the fundamental genetics of pancreatic cancer. These advances provide hope but they also increase the complexity of caring for patients. It is clear that multidisciplinary care that provides comprehensive and coordinated evaluation and treatment is the most effective way to manage patients with pancreatic cancer.
Collapse
Affiliation(s)
- Christopher L Wolfgang
- Associate Professor, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD; Associate Professor, Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD; Associate Professor, Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD
| | | | | | | | | | | | | |
Collapse
|
108
|
Conlon KP, Basrur V, Rolland D, Wolfe T, Nesvizhskii AI, MacCoss MJ, Lim MS, Elenitoba-Johnson KSJ. Fusion peptides from oncogenic chimeric proteins as putative specific biomarkers of cancer. Mol Cell Proteomics 2013; 12:2714-23. [PMID: 23836920 DOI: 10.1074/mcp.m113.029926] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromosomal translocations encoding chimeric fusion proteins constitute one of the most common mechanisms underlying oncogenic transformation in human cancer. Fusion peptides resulting from such oncogenic chimeric fusions, though unique to specific cancer subtypes, are unexplored as cancer biomarkers. Here we show, using an approach termed fusion peptide multiple reaction monitoring mass spectrometry, the direct identification of different cancer-specific fusion peptides arising from protein chimeras that are generated from the juxtaposition of heterologous genes fused by recurrent chromosomal translocations. Using fusion peptide multiple reaction monitoring mass spectrometry in a clinically relevant scenario, we demonstrate the specific, sensitive, and unambiguous detection of a specific diagnostic fusion peptide in clinical samples of anaplastic large cell lymphoma, but not in a diverse array of benign lymph nodes or other forms of primary malignant lymphomas and cancer-derived cell lines. Our studies highlight the utility of fusion peptides as cancer biomarkers and carry broad implications for the use of protein biomarkers in cancer detection and monitoring.
Collapse
Affiliation(s)
- Kevin P Conlon
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Tang HY, Beer LA, Tanyi JL, Zhang R, Liu Q, Speicher DW. Protein isoform-specific validation defines multiple chloride intracellular channel and tropomyosin isoforms as serological biomarkers of ovarian cancer. J Proteomics 2013; 89:165-78. [PMID: 23792823 DOI: 10.1016/j.jprot.2013.06.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/18/2013] [Accepted: 06/10/2013] [Indexed: 01/14/2023]
Abstract
UNLABELLED New serological biomarkers for early detection and clinical management of ovarian cancer are urgently needed, and many candidates have been reported. A major challenge frequently encountered when validating candidates in patients is establishing quantitative assays that distinguish between highly homologous proteins. The current study tested whether multiple members of two recently discovered ovarian cancer biomarker protein families, chloride intracellular channel (CLIC) proteins and tropomyosins (TPM), were detectable in ovarian cancer patient sera. A multiplexed, label-free multiple reaction monitoring (MRM) assay was established to target peptides specific to all detected CLIC and TPM family members, and their serum levels were quantitated for ovarian cancer patients and non-cancer controls. In addition to CLIC1 and TPM1, which were the proteins initially discovered in a xenograft mouse model, CLIC4, TPM2, TPM3, and TPM4 were present in ovarian cancer patient sera at significantly elevated levels compared with controls. Some of the additional biomarkers identified in this homolog-centric verification and validation approach may be superior to the previously identified biomarkers at discriminating between ovarian cancer and non-cancer patients. This demonstrates the importance of considering all potential protein homologs and using quantitative assays for cancer biomarker validation with well-defined isoform specificity. BIOLOGICAL SIGNIFICANCE This manuscript addresses the importance of distinguishing between protein homologs and isoforms when identifying and validating cancer biomarkers in plasma or serum. Specifically, it describes the use of targeted in-depth LC-MS/MS analysis to determine the members of two protein families, chloride intracellular channel (CLIC) and tropomyosin (TPM) proteins that are detectable in sera of ovarian cancer patients. It then establishes a multiplexed isoform- and homology-specific MRM assay to quantify all observed gene products in these two protein families as well as many of the closely related tropomyosin isoforms. Using this assay, levels of all detected CLICs and TPMs were quantified in ovarian cancer patient and control subject sera. These results demonstrate that in addition to the previously known CLIC1, multiple tropomyosins and CLIC4 are promising new ovarian cancer biomarkers. Based on these initial validation studies, these new ovarian cancer biomarkers appear to be superior to most previously known ovarian cancer biomarkers.
Collapse
Affiliation(s)
- Hsin-Yao Tang
- Center for Systems and Computational Biology and Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
110
|
Kim JS, Lee Y, Lee MY, Shin J, Han JM, Yang EG, Yu MH, Kim S, Hwang D, Lee C. Multiple reaction monitoring of multiple low-abundance transcription factors in whole lung cancer cell lysates. J Proteome Res 2013; 12:2582-96. [PMID: 23586733 DOI: 10.1021/pr3011414] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lung cancer-related transcription factors (TFs) were identified by integrating previously reported genomic, transcriptomic, and proteomic data and were quantified by multiple reaction monitoring (MRM) in various cell lines. All experiments were performed without affinity depletion or subfractionation of cell lysates. Since the target proteins were expected to be present in low abundance, we experimentally optimized MRM transition parameters with chemically synthesized peptides. Quantitation was based on stable isotope-labeled standard peptides (SIS peptides). Out of 288 MRM measurements (36 peptides representing 28 TFs × 8 cell lines), 241 were successfully obtained within a quantitation limit of 15 amol, 221 measurements (91.7%) showed coefficients of variation (CVs) of ≤ 20%, and 149 (61.8%) showed CVs of ≤ 10%, quantifying as low as 19.4 amol/μg protein for STAT2 with a CV of 6.3% in an A549 cell. Comparisons between MRM measurements and levels of the corresponding mRNAs revealed linear, nonlinear, or no relationship between protein and mRNA levels, indicating the need for an MRM assay. An integrative analysis of MRM and gene expression profiles from doxorubicin-resistant H69AR and sensitive H69 cells further showed that 14 differentially expressed TFs, such as STAT1 and SMAD4, regulated genes associated with drug resistance and cell differentiation-related processes. Thus, the analytical performance of MRM for the quantitation of low abundance TFs suggests its usefulness for biological application.
Collapse
Affiliation(s)
- Jun Seok Kim
- Theragnosis Research Center, Korea Institute of Science and Technology, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry. Nat Methods 2013; 10:28-34. [PMID: 23269374 DOI: 10.1038/nmeth.2309] [Citation(s) in RCA: 363] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/03/2012] [Indexed: 02/06/2023]
Abstract
Targeted mass spectrometry (MS) is becoming widely used in academia and in pharmaceutical and biotechnology industries for sensitive and quantitative detection of proteins, peptides and post-translational modifications. Here we describe the increasing importance of targeted MS technologies in clinical proteomics and the potential key roles these techniques will have in bridging biomedical discovery and clinical implementation.
Collapse
|
112
|
de Wit M, Fijneman RJ, Verheul HM, Meijer GA, Jimenez CR. Proteomics in colorectal cancer translational research: Biomarker discovery for clinical applications. Clin Biochem 2013; 46:466-79. [PMID: 23159294 DOI: 10.1016/j.clinbiochem.2012.10.039] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 12/22/2022]
|
113
|
Tang Z, Wu M, Li Y, Zheng X, Liu H, Cheng X, Xu L, Wang G, Hao H. Absolute quantification of NAD(P)H:quinone oxidoreductase 1 in human tumor cell lines and tissues by liquid chromatography-mass spectrometry/mass spectrometry using both isotopic and non-isotopic internal standards. Anal Chim Acta 2013; 772:59-67. [PMID: 23540248 DOI: 10.1016/j.aca.2013.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 02/01/2013] [Accepted: 02/08/2013] [Indexed: 12/19/2022]
Abstract
NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-diaphorase) is a prognostic biomarker and a potential therapeutic target for various tumors. Therefore, it is of significance to develop a robust method for the absolute quantification of NQO1. This study aimed to develop and validate a LC-MS/MS based method and to test the appropriateness of using non-isotopic analog peptide as the internal standard (IS) by comparing with a stable isotope labeled (SIL) peptide. The chromatographic performance and mass spectra between the selected signature peptide of NQO1 and the non-isotopic peptide were observed to be very similar. The use of the two internal standards was validated appropriate for the absolute quantification of NQO1, as evidenced by satisfactory validation results over a concentration range of 1.62-162 fmol μL(-1). This method has been successfully applied to the absolute quantification of NQO1 expression in various tumor cell lines and tissues. NQO1 expression in human tumor tissues is much higher than that in the neighboring normal tissues in both the cases of lung and colon cancer. The quantitative results obtained from the isotopic and non-isotopic methods are quite similar, further supporting that the use of non-isotopic analog peptide as internal standard is appropriate and feasible for the quantification of NQO1. By comparing with a classical isotopic IS, the present study indicates that the use of a non-isotopic peptide analog to the proteotypic peptide as the internal standard can get equal accuracy and preciseness in measuring NQO1. The universal applicability of the non-isotopic IS approach for the quantification of proteins warrants further research.
Collapse
Affiliation(s)
- Zhiyuan Tang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
|
115
|
Demory Beckler M, Higginbotham JN, Franklin JL, Ham AJ, Halvey PJ, Imasuen IE, Whitwell C, Li M, Liebler DC, Coffey RJ. Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. Mol Cell Proteomics 2012; 12:343-55. [PMID: 23161513 DOI: 10.1074/mcp.m112.022806] [Citation(s) in RCA: 415] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Activating mutations in KRAS occur in 30% to 40% of colorectal cancers. How mutant KRAS alters cancer cell behavior has been studied intensively, but non-cell autonomous effects of mutant KRAS are less understood. We recently reported that exosomes isolated from mutant KRAS-expressing colon cancer cells enhanced the invasiveness of recipient cells relative to exosomes purified from wild-type KRAS-expressing cells, leading us to hypothesize mutant KRAS might affect neighboring and distant cells by regulating exosome composition and behavior. Herein, we show the results of a comprehensive proteomic analysis of exosomes from parental DLD-1 cells that contain both wild-type and G13D mutant KRAS alleles and isogenically matched derivative cell lines, DKO-1 (mutant KRAS allele only) and DKs-8 (wild-type KRAS allele only). Mutant KRAS status dramatically affects the composition of the exosome proteome. Exosomes from mutant KRAS cells contain many tumor-promoting proteins, including KRAS, EGFR, SRC family kinases, and integrins. DKs-8 cells internalize DKO-1 exosomes, and, notably, DKO-1 exosomes transfer mutant KRAS to DKs-8 cells, leading to enhanced three-dimensional growth of these wild-type KRAS-expressing non-transformed cells. These results have important implications for non-cell autonomous effects of mutant KRAS, such as field effect and tumor progression.
Collapse
|
116
|
Kaur S, Baine MJ, Jain M, Sasson AR, Batra SK. Early diagnosis of pancreatic cancer: challenges and new developments. Biomark Med 2012; 6:597-612. [PMID: 23075238 PMCID: PMC3546485 DOI: 10.2217/bmm.12.69] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Pancreatic cancer is a lethal malignancy with its incidence almost equivalent to mortality. The complex pathophysiology, absence of early diagnostic and prognostic markers and unresponsiveness to radiation and chemotherapies are major barriers against successful therapy. Poor performance of therapeutic agents, even in the initial stage of invasive cases, emphasizes the importance of early detection for improved survival. The present review discusses the challenges and advances in biomarkers including serological signatures, circulating tumor cells, autoantibodies, epigenetic markers and miRNAs that are being explored to detect this cancer at early stages. Considering the long time gap between the development of malignant lesions and full-blown primary and metastatic pancreatic cancer, unique opportunities are being contemplated for the development of potential diagnostic and prognostic markers.
Collapse
Affiliation(s)
- Sukhwinder Kaur
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael J Baine
- Eppley Institute for Research in Cancer & Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maneesh Jain
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aaron R Sasson
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Eppley Institute for Research in Cancer & Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
117
|
Detection of a rare BCR-ABL tyrosine kinase fusion protein in H929 multiple myeloma cells using immunoprecipitation (IP)-tandem mass spectrometry (MS/MS). Proc Natl Acad Sci U S A 2012; 109:16190-5. [PMID: 22988110 DOI: 10.1073/pnas.1212759109] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hypothesis directed proteomics offers higher throughput over global analyses. We show that immunoprecipitation (IP)-tandem mass spectrometry (LC-MS/MS) in H929 multiple myeloma (MM) cancer cells led to the discovery of a rare and unexpected BCR-ABL fusion, informing a therapeutic intervention using imatinib (Gleevec). BCR-ABL is the driving mutation in chronic myeloid leukemia (CML) and is uncommon to other cancers. Three different IP-MS experiments central to cell signaling pathways were sufficient to discover a BCR-ABL fusion in H929 cells: phosphotyrosine (pY) peptide IP, p85 regulatory subunit of phosphoinositide-3-kinase (PI3K) IP, and the GRB2 adaptor IP. The pY peptides inform tyrosine kinase activity, p85 IP informs the activating adaptors and receptor tyrosine kinases (RTKs) involved in AKT activation and GRB2 IP identifies RTKs and adaptors leading to ERK activation. Integration of the bait-prey data from the three separate experiments identified the BCR-ABL protein complex, which was confirmed by biochemistry, cytogenetic methods, and DNA sequencing revealed the e14a2 fusion transcript. The tyrosine phosphatase SHP2 and the GAB2 adaptor protein, important for MAPK signaling, were common to all three IP-MS experiments. The comparative treatment of tyrosine kinase inhibitor (TKI) drugs revealed only imatinib, the standard of care in CML, was inhibitory to BCR-ABL leading to down-regulation of pERK and pS6K and inhibiting cell proliferation. These data suggest a model for directed proteomics from patient tumor samples for selecting the appropriate TKI drug(s) based on IP and LC-MS/MS. The data also suggest that MM patients, in addition to CML patients, may benefit from BCR-ABL diagnostic screening.
Collapse
|
118
|
Lemoine J, Fortin T, Salvador A, Jaffuel A, Charrier JP, Choquet-Kastylevsky G. The current status of clinical proteomics and the use of MRM and MRM(3) for biomarker validation. Expert Rev Mol Diagn 2012; 12:333-42. [PMID: 22616699 DOI: 10.1586/erm.12.32] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The transfer of biomarkers from the discovery field to clinical use is still, despite progress, on a road filled with pitfalls. Since the emergence of proteomics, thousands of putative biomarkers have been published, often with overlapping diagnostic capacities. The strengthening of the robustness of discovery technologies, particularly in mass spectrometry, has been followed by intense discussions on establishing well-defined evaluation procedures for the identified targets to ultimately allow the clinical validation and then the clinical use of some of these biomarkers. Some of the obstacles to the evaluation process have been the lack of the availability of quick and easy-to-develop, easy-to-use, robust, specific and sensitive alternative quantitative methods when immunoaffinity-based tests are unavailable. Multiple reaction monitoring (MRM; also called selected reaction monitoring) is currently proving its capabilities as a complementary or alternative technique to ELISA for large biomarker panel evaluation. Here, we present how MRM(3) can overcome the lack of specificity and sensitivity often encountered by MRM when tracking minor proteins diluted by complex biological matrices.
Collapse
Affiliation(s)
- Jérôme Lemoine
- UMR 5280 CNRS Université Lyon 1, Institut des Sciences Analytiques, Université de Lyon, 69622 Villeurbanne cedex, France
| | | | | | | | | | | |
Collapse
|
119
|
Ruppen-Cañás I, López-Casas PP, García F, Ximénez-Embún P, Muñoz M, Morelli MP, Real FX, Serna A, Hidalgo M, Ashman K. An improved quantitative mass spectrometry analysis of tumor specific mutant proteins at high sensitivity. Proteomics 2012; 12:1319-27. [PMID: 22589181 DOI: 10.1002/pmic.201100611] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
New disease specific biomarkers, especially for cancer, are urgently needed to improve individual diagnosis, prognosis, and treatment selection, that is, for personalized medicine. Genetic mutations that affect protein function drive cancer. Therefore, the detection of such mutations represents a source of cancer specific biomarkers. Here we confirm the implementation of the mutant protein specific immuno-SRM (where SRM is selective reaction monitoring) mass spectrometry method of RAS proteins reported by Wang et al. [Proc. Natl. Acad. Sci. USA 2011, 108, 2444-2449], which exploits an antibody to simultaneously capture the different forms of the target protein and the resolving power and sensitivity of LC-MS/MS and improve the technique by using a more sensitive mass spectrometer. The mutant form G12D was quantified by SRM on a QTRAP 5500 mass spectrometer and the MIDAS workflow was used to confirm the sequence of the targeted peptides. This assay has been applied to quantify wild type and mutant RAS proteins in patient tumors, xenografted human tissue, and benign human epidermal tumors at high sensitivity. The limit of detection for the target proteins was as low as 12 amol (0.25 pg). It requires low starting amounts of tissue (ca.15 mg) that could be obtained from a needle aspiration biopsy. The described strategy could find application in the clinical arena and be applied to the study of expression of protein variants in disease.
Collapse
Affiliation(s)
- Isabel Ruppen-Cañás
- Proteomics Unit, Spanish National Cancer Research Center, Melchor Fernández Almagro 3, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Antibody-free, targeted mass-spectrometric approach for quantification of proteins at low picogram per milliliter levels in human plasma/serum. Proc Natl Acad Sci U S A 2012; 109:15395-400. [PMID: 22949669 DOI: 10.1073/pnas.1204366109] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sensitive detection of low-abundance proteins in complex biological samples has typically been achieved by immunoassays that use antibodies specific to target proteins; however, de novo development of antibodies is associated with high costs, long development lead times, and high failure rates. To address these challenges, we developed an antibody-free strategy that involves PRISM (high-pressure, high-resolution separations coupled with intelligent selection and multiplexing) for sensitive selected reaction monitoring (SRM)-based targeted protein quantification. The strategy capitalizes on high-resolution reversed-phase liquid chromatographic separations for analyte enrichment, intelligent selection of target fractions via on-line SRM monitoring of internal standards, and fraction multiplexing before nano-liquid chromatography-SRM quantification. Application of this strategy to human plasma/serum demonstrated accurate and reproducible quantification of proteins at concentrations in the 50-100 pg/mL range, which represents a major advance in the sensitivity of targeted protein quantification without the need for specific-affinity reagents. Application to a set of clinical serum samples illustrated an excellent correlation between the results obtained from the PRISM-SRM assay and those from clinical immunoassay for the prostate-specific antigen level.
Collapse
|
121
|
Abstract
PURPOSE OF REVIEW Management of pancreatic cystic neoplasms is challenging due to limitations of current diagnostic tests. There is considerable interest in developing an accurate and cost-effective diagnostic test (or panel of tests) to differentiate cyst types and to identify those which would benefit most from surgical resection. RECENT FINDINGS Current multidetector computed tomography scans may have improved accuracy to distinguish between mucinous and nonmucinous cysts. Attempts to generate quantitative criteria from cross-sectional imaging to differentiate cyst types have yielded mixed results. DNA mutations and microRNA show promise in the ability to distinguish between mucinous and nonmucinous cysts. Cyst fluid mucin glycoproteins and cytokines may identify those cysts with high malignant potential. Proteomic analysis may yield other biomarker candidates. SUMMARY Analysis of DNA mutations and proteins within pancreatic cyst fluid have identified potential biomarkers to aid with the management of patients with pancreatic cystic neoplasms.
Collapse
|
122
|
Boja ES, Rodriguez H. Mass spectrometry-based targeted quantitative proteomics: achieving sensitive and reproducible detection of proteins. Proteomics 2012; 12:1093-110. [PMID: 22577011 DOI: 10.1002/pmic.201100387] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Traditional shotgun proteomics used to detect a mixture of hundreds to thousands of proteins through mass spectrometric analysis, has been the standard approach in research to profile protein content in a biological sample which could lead to the discovery of new (and all) protein candidates with diagnostic, prognostic, and therapeutic values. In practice, this approach requires significant resources and time, and does not necessarily represent the goal of the researcher who would rather study a subset of such discovered proteins (including their variations or posttranslational modifications) under different biological conditions. In this context, targeted proteomics is playing an increasingly important role in the accurate measurement of protein targets in biological samples in the hope of elucidating the molecular mechanism of cellular function via the understanding of intricate protein networks and pathways. One such (targeted) approach, selected reaction monitoring (or multiple reaction monitoring) mass spectrometry (MRM-MS), offers the capability of measuring multiple proteins with higher sensitivity and throughput than shotgun proteomics. Developing and validating MRM-MS-based assays, however, is an extensive and iterative process, requiring a coordinated and collaborative effort by the scientific community through the sharing of publicly accessible data and datasets, bioinformatic tools, standard operating procedures, and well characterized reagents.
Collapse
Affiliation(s)
- Emily S Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
123
|
Sharma N, Martin A, McCabe CJ. Mining the proteome: the application of tandem mass spectrometry to endocrine cancer research. Endocr Relat Cancer 2012; 19:R149-61. [PMID: 22555494 DOI: 10.1530/erc-12-0036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tandem mass spectrometry (MS/MS) permits the detection of femtomolar quantities of protein from a wide variety of tissue sources. As endocrine cancers are frequently aetiologically complex, they are particularly amenable to mass spectrometry. The most widely studied aspect is the search for novel reliable biomarkers that would allow cancers to be diagnosed earlier and distinguished from benign tumours. MS/MS allows for the rapid analysis of blood and urine in addition to tumour tissue, and in this regard it has been applied on research involving thyroid, pancreatic, adrenal and ovarian cancers with varying degrees of success, as well as additional organ sites including breast and lung. The description of an individual cancer proteome potentially allows for personalized management of each patient, avoiding unnecessary therapies and targeting treatments to those which will have the most effect. The application of MS/MS to interaction proteomics is a field that has generated recent novel targets for chemotherapy. However, the technology involved in MS/MS has a number of drawbacks that at present prevent its widespread use in translational cancer research, including a poor reproducibility of results, in part due to the large amount of data generated and the inability to accurately differentiate true from false-positive results. Further, the current cost of running MS/MS restricts the number of times the experiments can be repeated, contributing to the lack of significance and concordance between studies. Despite these problems, however, MS/MS is emerging as a front line tool in endocrine cancer research and it is likely that this will continue over the next decade.
Collapse
Affiliation(s)
- Neil Sharma
- School of Clinical and Experimental Medicine, Institute for Biomedical Research and School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | | |
Collapse
|
124
|
Chan C, Santes O. [Pancreatic tumors: an update]. REVISTA DE GASTROENTEROLOGIA DE MEXICO 2012; 77 Suppl 1:108-111. [PMID: 22939502 DOI: 10.1016/j.rgmx.2012.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- C Chan
- Adscrito al Servicio de Cirugía General y Clínica de Páncreas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, SSA, México, D.F
| | | |
Collapse
|
125
|
Analysing signalling networks by mass spectrometry. Amino Acids 2012; 43:1061-74. [PMID: 22821269 DOI: 10.1007/s00726-012-1293-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 04/03/2012] [Indexed: 12/31/2022]
Abstract
Sequence analysis of the human genome and the association of genetic aberrations with diseases have provided a rough framework whereby the impact of individual genotypes can be assessed. To fully understand the effect of individual and co-occurring genetic aberrations, as well as their individual and collected contribution to the development of diseases, it is critical to analyse the matching proteome and to determine how the organisation, expression level and function of protein networks are affected. Sensitive mass spectrometric platforms in combination with innovative workflows allow qualitative and quantitative analyses of the cellular as well as the extracellular proteome. Importantly, in addition to specifically identifying the content of the proteome, several aspects of the proteomic organisation can be analysed including protein complexes, protein modifications, enzymatic activities and subcellular/organelle localisation. Together, these measurements will provide novel insight into the biological effect of disease-causing mutations ultimately coupling genotype and phenotype.
Collapse
|
126
|
Mathivanan S, Ji H, Tauro BJ, Chen YS, Simpson RJ. Identifying mutated proteins secreted by colon cancer cell lines using mass spectrometry. J Proteomics 2012; 76 Spec No.:141-9. [PMID: 22796352 DOI: 10.1016/j.jprot.2012.06.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 06/05/2012] [Accepted: 06/21/2012] [Indexed: 01/15/2023]
Abstract
Secreted proteins encoded by mutated genes (mutant proteins) are a particularly rich source of biomarkers being not only components of the cancer secretome but also actually implicated in tumorigenesis. One of the challenges of proteomics-driven biomarker discovery research is that the bulk of secreted mutant proteins cannot be identified directly and quantified by mass spectrometry due to the lack of mutated peptide information in extant proteomics databases. Here we identify, using an integrated genomics and proteomics strategy (referred to iMASp - identification of Mutated And Secreted proteins), 112 putative mutated tryptic peptides (corresponding to 57 proteins) in the collective secretomes derived from a panel of 18 human colorectal cancer (CRC) cell lines. Central to this iMASp was the creation of Human Protein Mutant Database (HPMD), against which experimentally-derived secretome peptide spectra were searched. Eight of the identified mutated tryptic peptides were confirmed by RT-PCR and cDNA sequencing of RNA extracted from those CRC cells from which the mutation was identified by mass spectrometry. The iMASp technology promises to improve the link between proteomics and genomic mutation data thereby providing an effective tool for targeting tryptic peptides with mutated amino acids as potential cancer biomarker candidates. This article is part of a Special Issue entitled: Integrated omics.
Collapse
Affiliation(s)
- Suresh Mathivanan
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | | | | | | | | |
Collapse
|
127
|
Halvey PJ, Ferrone CR, Liebler DC. GeLC-MRM quantitation of mutant KRAS oncoprotein in complex biological samples. J Proteome Res 2012; 11:3908-13. [PMID: 22671702 PMCID: PMC3400422 DOI: 10.1021/pr300161j] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tumor-derived mutant KRAS (v-Ki-ras-2 Kirsten rat sarcoma viral oncogene) oncoprotein is a critical driver of cancer phenotypes and a potential biomarker for many epithelial cancers. Targeted mass spectrometry analysis by multiple reaction monitoring (MRM) enables selective detection and quantitation of wild-type and mutant KRAS proteins in complex biological samples. A recently described immunoprecipitation approach (Proc. Nat. Acad. Sci.2011, 108, 2444-2449) can be used to enrich KRAS for MRM analysis, but requires large protein inputs (2-4 mg). Here, we describe sodium dodecyl sulfate-polyacrylamide gel electrophoresis-based enrichment of KRAS in a low molecular weight (20-25 kDa) protein fraction prior to MRM analysis (GeLC-MRM). This approach reduces background proteome complexity, thus, allowing mutant KRAS to be reliably quantified in low protein inputs (5-50 μg). GeLC-MRM detected KRAS mutant variants (G12D, G13D, G12V, G12S) in a panel of cancer cell lines. GeLC-MRM analysis of wild-type and mutant was linear with respect to protein input and showed low variability across process replicates (CV = 14%). Concomitant analysis of a peptide from the highly similar HRAS and NRAS proteins enabled correction of KRAS-targeted measurements for contributions from these other proteins. KRAS peptides were also quantified in fluid from benign pancreatic cysts and pancreatic cancers at concentrations from 0.08 to 1.1 fmol/μg protein. GeLC-MRM provides a robust, sensitive approach to quantitation of mutant proteins in complex biological samples.
Collapse
Affiliation(s)
- Patrick J. Halvey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville TN 37232-6350, USA
- Jim Ayers Institute for Precancer Detection and Diagnosis, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville TN 37232-6350, USA
| | - Cristina R. Ferrone
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Daniel C. Liebler
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville TN 37232-6350, USA
- Jim Ayers Institute for Precancer Detection and Diagnosis, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville TN 37232-6350, USA
| |
Collapse
|
128
|
Abstract
Pancreatic cancer is a disease caused by the accumulation of genetic alterations in specific genes. Elucidation of the human genome sequence, in conjunction with technical advances in the ability to perform whole exome sequencing, have provided new insight into the mutational spectra characteristic of this lethal tumour type. Most recently, exomic sequencing has been used to clarify the clonal evolution of pancreatic cancer as well as provide time estimates of pancreatic carcinogenesis, indicating that a long window of opportunity may exist for early detection of this disease while in the curative stage. Moving forward, these mutational analyses indicate potential targets for personalised diagnostic and therapeutic intervention as well as the optimal timing for intervention based on the natural history of pancreatic carcinogenesis and progression.
Collapse
|
129
|
Picotti P, Aebersold R. Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods 2012; 9:555-66. [PMID: 22669653 DOI: 10.1038/nmeth.2015] [Citation(s) in RCA: 960] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Selected reaction monitoring (SRM) is a targeted mass spectrometry technique that is emerging in the field of proteomics as a complement to untargeted shotgun methods. SRM is particularly useful when predetermined sets of proteins, such as those constituting cellular networks or sets of candidate biomarkers, need to be measured across multiple samples in a consistent, reproducible and quantitatively precise manner. Here we describe how SRM is applied in proteomics, review recent advances, present selected applications and provide a perspective on the future of this powerful technology.
Collapse
Affiliation(s)
- Paola Picotti
- Department of Biology, Institute of Biochemistry, ETH Zurich, Switzerland.
| | | |
Collapse
|
130
|
Shi T, Su D, Liu T, Tang K, Camp DG, Qian WJ, Smith RD. Advancing the sensitivity of selected reaction monitoring-based targeted quantitative proteomics. Proteomics 2012; 12:1074-92. [PMID: 22577010 PMCID: PMC3375056 DOI: 10.1002/pmic.201100436] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 01/12/2012] [Indexed: 12/13/2022]
Abstract
Selected reaction monitoring (SRM) - also known as multiple reaction monitoring (MRM) - has emerged as a promising high-throughput targeted protein quantification technology for candidate biomarker verification and systems biology applications. A major bottleneck for current SRM technology, however, is insufficient sensitivity for, e.g. detecting low-abundance biomarkers likely present at the low ng/mL to pg/mL range in human blood plasma or serum, or extremely low-abundance signaling proteins in cells or tissues. Herein, we review recent advances in methods and technologies, including front-end immunoaffinity depletion, fractionation, selective enrichment of target proteins/peptides including posttranslational modifications, as well as advances in MS instrumentation which have significantly enhanced the overall sensitivity of SRM assays and enabled the detection of low-abundance proteins at low- to sub-ng/mL level in human blood plasma or serum. General perspectives on the potential of achieving sufficient sensitivity for detection of pg/mL level proteins in plasma are also discussed.
Collapse
Affiliation(s)
- Tujin Shi
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Dian Su
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Tao Liu
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Keqi Tang
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
| | - David G. Camp
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Richard D. Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
| |
Collapse
|
131
|
Xiang Y, Koomen JM. Evaluation of direct infusion-multiple reaction monitoring mass spectrometry for quantification of heat shock proteins. Anal Chem 2012; 84:1981-6. [PMID: 22293045 DOI: 10.1021/ac203011j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein quantification with liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM) has emerged as a powerful platform for assessing panels of biomarkers. In this study, direct infusion, using automated, chip-based nanoelectrospray ionization, coupled with MRM (DI-MRM) is used for protein quantification. Removal of the LC separation step increases the importance of evaluating the ratios between the transitions. Therefore, the effects of solvent composition, analyte concentration, spray voltage, and quadrupole resolution settings on fragmentation patterns have been studied using peptide and protein standards. After DI-MRM quantification was evaluated for standards, quantitative assays for the expression of heat shock proteins (HSPs) were translated from LC-MRM to DI-MRM for implementation in cell line models of multiple myeloma. Requirements for DI-MRM assay development are described. Then, the two methods are compared; criteria for effective DI-MRM analysis are reported on the basis of the analysis of HSP expression in digests of whole cell lysates. The increased throughput of DI-MRM analysis is useful for rapid analysis of large batches of similar samples, such as time course measurements of cellular responses to therapy.
Collapse
Affiliation(s)
- Yun Xiang
- Molecular Oncology, Moffitt Cancer Center at the University of South Florida, Tampa, Florida 33612, USA
| | | |
Collapse
|
132
|
Breitwieser FP, Colinge J. Analysis of Labeled Quantitative Mass Spectrometry Proteomics Data. COMPUTATIONAL MEDICINE 2012:79-91. [DOI: 10.1007/978-3-7091-0947-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
133
|
de Wilde RF, Hruban RH, Maitra A, Offerhaus GJA. Reporting precursors to invasive pancreatic cancer: pancreatic intraepithelial neoplasia, intraductal neoplasms and mucinous cystic neoplasm. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.mpdhp.2011.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
134
|
Krisp C, Randall SA, McKay MJ, Molloy MP. Towards clinical applications of selected reaction monitoring for plasma protein biomarker studies. Proteomics Clin Appl 2011; 6:42-59. [PMID: 22213646 DOI: 10.1002/prca.201100062] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/21/2011] [Accepted: 10/25/2011] [Indexed: 01/13/2023]
Abstract
The widespread clinical adoption of protein biomarkers with diagnostic, prognostic and/or predictive value remains a formidable challenge for the biomedical community. From discovery to validation, the path to biomarkers of clinical relevance abounds with many protein candidates, yet so few concrete examples have been substantiated. In this review, we focus on the recent adoption of selected reaction monitoring (SRM) of plasma proteins in the path to clinical use for a broad range of diseases including cancer, cardiovascular disease, genetic disorders and various metabolic disorders. Recent progress reveals a promising outlook for clinical applications using SRM, which now provides the routine analysis of clinically relevant protein markers at low nanogram per millilitre in plasma.
Collapse
Affiliation(s)
- Christoph Krisp
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | | | | | | |
Collapse
|
135
|
Nowsheen S, Aziz K, Panayiotidis MI, Georgakilas AG. Molecular markers for cancer prognosis and treatment: have we struck gold? Cancer Lett 2011; 327:142-52. [PMID: 22120674 DOI: 10.1016/j.canlet.2011.11.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 11/16/2011] [Accepted: 11/17/2011] [Indexed: 12/22/2022]
Abstract
The last decade has witnessed an emerging role for molecular or biochemical markers indicating a specific cellular mechanism or tissue function, often called 'biomarkers'. Biomarkers such as altered DNA, proteins and inflammatory cytokines are critical in cancer research and strategizing treatment in the clinic. In this review we look at the application of biological indicators to cancer research and highlight their roles in cancer detection and treatment. With technological advances in gene expression, genomic and proteomic analysis, biomarker discovery is expanding fast. We focus on some of the predominantly used markers in different types of malignancies, their advantages, and their limitations. Finally we conclude by looking at the future of biomarkers, their utility in the tumorigenic studies, and the progress towards personalized treatment strategies.
Collapse
Affiliation(s)
- Somaira Nowsheen
- Department of Radiation Oncology, University of Alabama at Birmingham Comprehensive Cancer Center, 35294, USA
| | | | | | | |
Collapse
|
136
|
Abstract
Somatic, gain-of-function mutations in ras genes were the first specific genetic alterations identified in human cancer about 3 decades ago. Studies during the last quarter century have characterized the Ras proteins as essential components of signaling networks controlling cellular proliferation, differentiation, or survival. The oncogenic mutations of the H-ras, N-ras, or K-ras genes frequently found in human tumors are known to throw off balance the normal outcome of those signaling pathways, thus leading to tumor development. Oncogenic mutations in a number of other upstream or downstream components of Ras signaling pathways (including membrane RTKs or cytosolic kinases) have been detected more recently in association with a variety of cancers. Interestingly, the oncogenic Ras mutations and the mutations in other components of Ras/MAPK signaling pathways appear to be mutually exclusive events in most tumors, indicating that deregulation of Ras-dependent signaling is the essential requirement for tumorigenesis. In contrast to sporadic tumors, separate studies have identified germline mutations in Ras and various other components of Ras signaling pathways that occur in specific association with a number of different familial, developmental syndromes frequently sharing common phenotypic cardiofaciocutaneous features. Finally, even without being a causative force, defective Ras signaling has been cited as a contributing factor to many other human illnesses, including diabetes and immunological and inflammatory disorders. We aim this review at summarizing and updating current knowledge on the contribution of Ras mutations and altered Ras signaling to development of various tumoral and nontumoral pathologies.
Collapse
|
137
|
Koomen JM, Smalley KSM. Using quantitative proteomic analysis to understand genotype specific intrinsic drug resistance in melanoma. Oncotarget 2011; 2:329-35. [PMID: 21505227 PMCID: PMC3248164 DOI: 10.18632/oncotarget.263] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The discovery of activating BRAF V600E mutations in 50% of all melanoma patients and the development of small molecule BRAF inhibitors looks set to revolutionize the therapy of disseminated melanoma. However, in the recent clinical trial of the BRAF inhibitor, vemurafenib (PLX4032), a significant percentage of BRAF V600E mutant melanoma patients did not meet the RECIST criteria for a response. Recent work from our lab identified loss of the tumor suppressor phosphatase and tensin homolog (PTEN) as being a possible mediator of intrinsic BRAF inhibitor resistance. In this commentary, we describe the development of a novel mass spectrometry based proteomic screen of Bcl-2 family proteins that was used to delineate the PTEN-dependent differences in apoptosis signaling observed when BRAF was inhibited. We further discuss how use of these sensitive quantitative proteomic methods gives unique insights into the signaling of cancer cells that are not captured through routine biochemical techniques and how this may lead to the development of combination therapy strategies for overcoming intrinsic BRAF inhibitor resistance.
Collapse
Affiliation(s)
- John M Koomen
- Program in Molecular Oncology, The Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | |
Collapse
|
138
|
Yang X, Turke AB, Qi J, Song Y, Rexer BN, Miller TW, Jänne PA, Arteaga CL, Cantley LC, Engelman JA, Asara JM. Using tandem mass spectrometry in targeted mode to identify activators of class IA PI3K in cancer. Cancer Res 2011; 71:5965-75. [PMID: 21775521 DOI: 10.1158/0008-5472.can-11-0445] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Phosphatiditylinositide-3-kinase (PI3K) is activated in some cancers by direct mutation, but it is activated more commonly in cancer by mutation of upstream acting receptor tyrosine kinases (TK). At present, there is no systematic method to determine which TK signaling cascades activate PI3K in certain cancers, despite the likely utility of such information to help guide selection of tyrosine kinase inhibitor (TKI) drug strategies for personalized therapy. Here, we present a quantitative liquid chromatography tandem mass spectrometry approach that identifies upstream activators of PI3K both in vitro and in vivo. Using non-small cell lung carcinoma to illustrate this approach, we show a correct identification of the mechanism of PI3K activation in several models, thereby identifying the most appropriate TKI to downregulate PI3K signaling. This approach also determined the molecular mechanisms and adaptors required for PI3K activation following inhibition of the mTOR kinase TORC1. We further validated the approach in breast cancer cells with mutational activation of PIK3CA, where tandem mass spectrometry detected and quantitatively measured the abundance of a helical domain mutant (E545K) of PIK3CA connected to PI3K activation. Overall, our findings establish a mass spectrometric approach to identify functional interactions that govern PI3K regulation in cancer cells. Using this technique to define the pathways that activate PI3K signaling in a given tumor could help inform clinical decision making by helping guide personalized therapeutic strategies for different patients.
Collapse
Affiliation(s)
- Xuemei Yang
- Beth Israel Deaconess Medical Center, Division of Signal Transduction, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Burbelo PD, Ching KH, Bren KE, Iadarola MJ. Emerging tactical strategies for fighting the war on cancer based on the genetic landscape. Am J Transl Res 2011; 3:251-258. [PMID: 21654880 PMCID: PMC3102569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 04/16/2011] [Indexed: 05/30/2023]
Abstract
Although it is well-established that cancer is driven by genetic mutations resulting in the acquisition of onco-genes and the loss of tumor suppressors, until recently many of the genomic details remained obscure. As a result of recent high-throughput DNA sequencing, basic insights into the spectrum of protein coding mutations in many cancers are now known. These findings provide an unprecedented framework of understanding and present new avenues for diagnosis, treatment, and prevention of cancer. In this article we discuss several high impact areas of global sequencing projects including developing drugs that specifically target cancer cells, creating personalized tools for better treatment and monitoring, and developing pre-symptomatic diagnostic tests. Capitalizing on these and other advances represent a new turning point in the war on cancer.
Collapse
Affiliation(s)
- Peter D Burbelo
- Neurobiology and Pain Therapeutics Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
140
|
Kwon RS, Simeone DM. The use of protein-based biomarkers for the diagnosis of cystic tumors of the pancreas. INTERNATIONAL JOURNAL OF PROTEOMICS 2011; 2011:413646. [PMID: 22110950 PMCID: PMC3202124 DOI: 10.1155/2011/413646] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 08/15/2011] [Indexed: 12/18/2022]
Abstract
Proteomics is a powerful method used to identify, characterize, and quantify proteins within biologic samples. Pancreatic cystic neoplasms are a common clinical entity and represent a diagnostic and management challenge due to difficulties in accurately diagnosing cystic lesions with malignant potential and assessing the risk of malignant degeneration. Currently, cytology and other biomarkers in cyst fluid have had limited success in accurately distinguishing both the type of cystic neoplasm and the presence of malignancy. Emerging data suggests that the use of protein-based biomarkers may have greater utility in helping clinicians correctly diagnose the type of cyst and to identify which cystic neoplasms are malignant. Several candidate proteins have been identified within pancreatic cystic neoplasms as potential biomarkers. Future studies will be needed to validate these findings and move these biomarkers into the clinical setting.
Collapse
Affiliation(s)
- Richard S. Kwon
- 1Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Drive, Taubman 3912, Ann Arbor, MI 48109-5362, USA
| | - Diane M. Simeone
- 2Departments of Surgery and Molecular and Integrative Physiology, University of Michigan, 1500 E. Medical Center Drive, Taubman 2210B, Ann Arbor, MI 48109-5343, USA
- *Diane M. Simeone:
| |
Collapse
|
141
|
Schwarz E, VanBeveren NJM, Guest PC, Izmailov R, Bahn S. The application of multiplexed assay systems for molecular diagnostics. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 101:259-278. [PMID: 22050855 DOI: 10.1016/b978-0-12-387718-5.00010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
For decades, the diagnosis of schizophrenia and other psychiatric disorders has relied on subjective assessments such as Diagnostic and Statistical Manual criteria. There is now increasing interest in the identification of altered molecular patterns in blood and other accessible body fluids that can be used to help identify, stratify, and monitor psychiatric patients. Since shorter periods of psychosis are associated with a better prognosis, an accurate molecular test may lead to early intervention and thereby improve patient outcomes. In addition, such a test would open up the possibility to stratify more accurately the disease and could represent a novel translational medicine tool, which is crucial for the discovery and development of more efficacious therapies.
Collapse
Affiliation(s)
- Emanuel Schwarz
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|