101
|
Chen Z, Wang X, Song Y, Zeng Q, Zhang Y, Luo H. Prochlorococcus have low global mutation rate and small effective population size. Nat Ecol Evol 2022; 6:183-194. [PMID: 34949817 DOI: 10.1038/s41559-021-01591-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 10/14/2021] [Indexed: 12/27/2022]
Abstract
Prochlorococcus are the most abundant free-living photosynthetic carbon-fixing organisms in the ocean. Prochlorococcus show small genome sizes, low genomic G+C content, reduced DNA repair gene pool and fast evolutionary rates, which are typical features of endosymbiotic bacteria. Nevertheless, their evolutionary mechanisms are believed to be different. Evolution of endosymbiotic bacteria is dominated by genetic drift owing to repeated population bottlenecks, whereas Prochlorococcus are postulated to have extremely large effective population sizes (Ne) and thus drift has rarely been considered. However, accurately extrapolating Ne requires measuring an unbiased global mutation rate through mutation accumulation, which is challenging for Prochlorococcus. Here, we managed this experiment over 1,065 days using Prochlorococcus marinus AS9601, sequenced genomes of 141 mutant lines and determined its mutation rate to be 3.50 × 10-10 per site per generation. Extrapolating Ne additionally requires identifying population boundaries, which we defined using PopCOGenT and over 400 genomes related to AS9601. Accordingly, we calculated its Ne to be 1.68 × 107, which is only reasonably greater than that of endosymbiotic bacteria but surprisingly smaller than that of many free-living bacteria extrapolated using the same approach. Our results therefore suggest that genetic drift is a key driver of Prochlorococcus evolution.
Collapse
Affiliation(s)
- Zhuoyu Chen
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xiaojun Wang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yu Song
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR.,Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Clear Water Bay, Hong Kong SAR
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China. .,Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Clear Water Bay, Hong Kong SAR.
| |
Collapse
|
102
|
Monroe JG, Srikant T, Carbonell-Bejerano P, Becker C, Lensink M, Exposito-Alonso M, Klein M, Hildebrandt J, Neumann M, Kliebenstein D, Weng ML, Imbert E, Ågren J, Rutter MT, Fenster CB, Weigel D. Mutation bias reflects natural selection in Arabidopsis thaliana. Nature 2022; 602:101-105. [PMID: 35022609 PMCID: PMC8810380 DOI: 10.1038/s41586-021-04269-6] [Citation(s) in RCA: 161] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/17/2021] [Indexed: 12/24/2022]
Abstract
Since the first half of the twentieth century, evolutionary theory has been dominated by the idea that mutations occur randomly with respect to their consequences1. Here we test this assumption with large surveys of de novo mutations in the plant Arabidopsis thaliana. In contrast to expectations, we find that mutations occur less often in functionally constrained regions of the genome-mutation frequency is reduced by half inside gene bodies and by two-thirds in essential genes. With independent genomic mutation datasets, including from the largest Arabidopsis mutation accumulation experiment conducted to date, we demonstrate that epigenomic and physical features explain over 90% of variance in the genome-wide pattern of mutation bias surrounding genes. Observed mutation frequencies around genes in turn accurately predict patterns of genetic polymorphisms in natural Arabidopsis accessions (r = 0.96). That mutation bias is the primary force behind patterns of sequence evolution around genes in natural accessions is supported by analyses of allele frequencies. Finally, we find that genes subject to stronger purifying selection have a lower mutation rate. We conclude that epigenome-associated mutation bias2 reduces the occurrence of deleterious mutations in Arabidopsis, challenging the prevailing paradigm that mutation is a directionless force in evolution.
Collapse
Affiliation(s)
- J Grey Monroe
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
- Department of Plant Sciences, University of California Davis, Davis, CA, USA.
| | - Thanvi Srikant
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | | | - Claude Becker
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Faculty of Biology, Ludwig Maximilian University, Martinsried, Germany
| | - Mariele Lensink
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Moises Exposito-Alonso
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Marie Klein
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Julia Hildebrandt
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Manuela Neumann
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Daniel Kliebenstein
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Mao-Lun Weng
- Department of Biology, Westfield State University, Westfield, MA, USA
| | - Eric Imbert
- ISEM, University of Montpellier, Montpellier, France
| | - Jon Ågren
- Department of Ecology and Genetics, EBC, Uppsala University, Uppsala, Sweden
| | - Matthew T Rutter
- Department of Biology, College of Charleston, Charleston, SC, USA
| | - Charles B Fenster
- Oak Lake Field Station, South Dakota State University, Brookings, SD, USA
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| |
Collapse
|
103
|
Genome Plasticity of African Swine Fever Virus: Implications for Diagnostics and Live-Attenuated Vaccines. Pathogens 2022; 11:pathogens11020145. [PMID: 35215087 PMCID: PMC8875878 DOI: 10.3390/pathogens11020145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 01/27/2023] Open
Abstract
African swine fever (ASF) is a highly contagious transboundary viral hemorrhagic disease of domestic and wild pigs presenting a significant threat to the global swine industry. Following its introduction in Caucasus, Georgia, in 2007, the genome of the genotype II of African swine fever virus (ASFV) strain Georgia-07 and its derivatives accumulated significant mutations, resulting in the emergence of genetic variants within short epidemiological timescales as it spreads and infects different hosts in diverse ecosystems, causing outbreaks in Europe, South Asia, South East Asia and the Caribbean. This suggests that ASFV, with a comparatively large and complex DNA genome, is susceptible to genetic mutations including deletions and that although the virus is environmentally stable, it is genetically unstable. This has implications for the development of vaccines and diagnostic tests for disease detection and surveillance. Analysis of the ASFV genome revealed recombination hotspots, which in double-stranded DNA (dsDNA) viruses represent key drivers of genetic diversity. The ability of pox virus, a dsDNA virus with a genome complexity similar to ASFV, regaining virulence following the deletion of a virulence gene via gene amplification, coupled with the recent emergence and spread of live-attenuated ASFV vaccine strains causing disease and death in pigs in China, raise legitimate concerns around the use of live-attenuated ASFV vaccines in non-endemic regions to control the potential introduction. Further research into the risk of using live-attenuated ASFV in non-endemic regions is highly needed.
Collapse
|
104
|
Ding L, Huang H, Lu F, Lu J, Zhou X, Zhang Y, Cai M. Transposon insertion mutation of Antarctic psychrotrophic fungus for red pigment production adaptive to normal temperature. J Ind Microbiol Biotechnol 2022; 49:kuab073. [PMID: 34661657 PMCID: PMC9113092 DOI: 10.1093/jimb/kuab073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Abstract
Polar regions are rich in microbial and product resources. Geomyces sp. WNF-15A is an Antarctic psy chrotrophic filamentous fungus producing high quality red pigment with potential for industrial use. However, efficient biosynthesis of red pigment can only realize at low temperature, which brings difficult control and high cost for the large-scale fermentation. This study aims to develop transposon insertion mutation method to improve cell growth and red pigment production adaptive to normal temperature. Genetic manipulation system of this fungus was firstly developed by antibiotic marker screening, protoplast preparation and transformation optimization, by which transformation efficiency of ∼50% was finally achieved. Then transposable insertion systems were established using Helitron, Fot1, and Impala transposons. The transposition efficiency reached 11.9%, 9.4%, and 4.6%, respectively. Mutant MP1 achieved the highest red pigment production (OD520 of 39) at 14°C, which was 40% higher than the wild-type strain. Mutant MP14 reached a maximum red pigment production (OD520 of 14.8) at 20°C, which was about twofold of the wild-type strain. Mutants MP2 and MP10 broke the repression mechanism of red pigment biosynthesis in the wild-type and allowed production at 25°C. For cell growth, eight mutants grew remarkably better (12%∼30% biomass higher) than the wild-type at 25°C. This study established an efficient genetic manipulation and transposon insertion mutation platform for polar filamentous fungus. It provides reference for genetic breeding of psychrotrophic fungi from polar and other regions.
Collapse
Affiliation(s)
- Lulu Ding
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hezhou Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fengning Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiangshan Zhou
- China Resources Angde Biotech Pharma Co., Ltd., 78 E-jiao Street, Liaocheng, Shandong 252299, China
- China Resources Biopharmaceutical Co., Ltd., 1301-84 Sightseeing Road, Shenzhen 518110, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai 200237, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
105
|
Context-Dependent Substitution Dynamics in Plastid DNA Across a Wide Range of Taxonomic Groups. J Mol Evol 2022; 90:44-55. [PMID: 35037071 DOI: 10.1007/s00239-021-10040-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
The influence of neighboring base composition, or context, on substitution bias at fourfold degenerate coding sites and in intergenic regions in plastid DNA is compared across the angiosperms, gymnosperms, ferns, liverworts, chlorophytes, stramenopiles and rhodophytes. An influence of flanking base G + C content on the relative rates of transitions and transversions is observed in all lineages and extends up to four nucleotides from the site of substitution in some. Despite finding context effects in all lineages, significant differences were observed between lineages. Overall, the data suggest that context is a general factor affecting mutation bias in plastid DNA but that the dynamics of the influence have evolved over time. It is also shown that, although there are similar effects of context on substitution bias at fourfold degenerate coding sites and at sites within intergenic regions, there are also small but significant differences, suggesting that there could be some selection on some of these sites and that there could be some difference in the mutation and/or repair process between coding and noncoding DNA.
Collapse
|
106
|
Kucukyildirim S. Whole-population genomic sequencing reveals the mutational profiles of the antibiotic-treated Escherichia coli populations. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-00959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
107
|
Schröder NCH, Korša A, Wami H, Mantel O, Dobrindt U, Kurtz J. Serial passage in an insect host indicates genetic stability of the human probiotic Escherichia coli Nissle 1917. Evol Med Public Health 2022; 10:71-86. [PMID: 35186295 PMCID: PMC8853844 DOI: 10.1093/emph/eoac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 12/17/2021] [Indexed: 11/14/2022] Open
Abstract
Background and objectives The probiotic Escherichia coli strain Nissle 1917 (EcN) has been shown to effectively prevent and alleviate intestinal diseases. Despite the widespread medical application of EcN, we still lack basic knowledge about persistence and evolution of EcN outside the human body. Such knowledge is important also for public health aspects, as in contrast to abiotic therapeutics, probiotics are living organisms that have the potential to evolve. This study made use of experimental evolution of EcN in an insect host, the red flour beetle Tribolium castaneum, and its flour environment. Methodology Using a serial passage approach, we orally introduced EcN to larvae of T.castaneum as a new host, and also propagated it in the flour environment. After eight propagation cycles, we analyzed phenotypic attributes of the passaged replicate EcN lines, their effects on the host in the context of immunity and infection with the entomopathogen Bacillus thuringiensis, and potential genomic changes using WGS of three of the evolved lines. Results We observed weak phenotypic differences between the ancestral EcN and both, beetle and flour passaged EcN lines, in motility and growth at 30°C, but neither any genetic changes, nor the expected increased persistence of the beetle-passaged lines. One of these lines displayed distinct morphological and physiological characteristics. Conclusions and implications Our findings suggest that EcN remains rather stable during serial passage in an insect. Weak phenotypic changes in growth and motility combined with a lack of genetic changes indicate a certain degree of phenotypic plasticity of EcN. Lay Summary For studying adaptation of the human probiotic Escherichia coli strain Nissle 1917, we introduced it to a novel insect host system and its environment using a serial passage approach. After passage, we observed weak phenotypic changes in growth and motility but no mutations or changes in persistence inside the host.
Collapse
Affiliation(s)
- Nicolas C H Schröder
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Ana Korša
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Haleluya Wami
- Institute for Hygiene, UKM Münster, Münster, Germany
| | - Olena Mantel
- Institute for Hygiene, UKM Münster, Münster, Germany
| | | | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
108
|
Katju V, Konrad A, Deiss TC, Bergthorsson U. Mutation rate and spectrum in obligately outcrossing Caenorhabditis elegans mutation accumulation lines subjected to RNAi-induced knockdown of the mismatch repair gene msh-2. G3 GENES|GENOMES|GENETICS 2022; 12:6407146. [PMID: 34849777 PMCID: PMC8727991 DOI: 10.1093/g3journal/jkab364] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 10/13/2021] [Indexed: 01/09/2023]
Abstract
DNA mismatch repair (MMR), an evolutionarily conserved repair pathway shared by prokaryotic and eukaryotic species alike, influences molecular evolution by detecting and correcting mismatches, thereby protecting genetic fidelity, reducing the mutational load, and preventing lethality. Herein we conduct the first genome-wide evaluation of the alterations to the mutation rate and spectrum under impaired activity of the MutSα homolog, msh-2, in Caenorhabditis elegans male–female fog-2(lf) lines. We performed mutation accumulation (MA) under RNAi-induced knockdown of msh-2 for up to 50 generations, followed by next-generation sequencing of 19 MA lines and the ancestral control. msh-2 impairment in the male–female background substantially increased the frequency of nuclear base substitutions (∼23×) and small indels (∼328×) relative to wildtype hermaphrodites. However, we observed no increase in the mutation rates of mtDNA, and copy-number changes of single-copy genes. There was a marked increase in copy-number variation of rDNA genes under MMR impairment. In C. elegans, msh-2 repairs transitions more efficiently than transversions and increases the AT mutational bias relative to wildtype. The local sequence context, including sequence complexity, G + C-content, and flanking bases influenced the mutation rate. The X chromosome exhibited lower substitution and higher indel rates than autosomes, which can either result from sex-specific mutation rates or a nonrandom distribution of mutable sites between chromosomes. Provided the observed difference in mutational pattern is mostly due to MMR impairment, our results indicate that the specificity of MMR varies between taxa, and is more efficient in detecting and repairing small indels in eukaryotes relative to prokaryotes.
Collapse
Affiliation(s)
- Vaishali Katju
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77845, USA
| | - Anke Konrad
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77845, USA
- Faculdade de Ciência da Universidade de Lisboa (FCUL), CE3C—Centre for Ecology, Evolution and Environmental Changes, 1749-016 Lisboa, Portugal
| | - Thaddeus C Deiss
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77845, USA
| | - Ulfar Bergthorsson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77845, USA
| |
Collapse
|
109
|
Stanton RA, Vlachos N, Halpin AL. GAMMA: a tool for the rapid identification, classification and annotation of translated gene matches from sequencing data. Bioinformatics 2022; 38:546-548. [PMID: 34415321 DOI: 10.1093/bioinformatics/btab607] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 07/19/2021] [Accepted: 08/18/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Tools used to identify genes in microbial sequences using a reference database generally report matches as a percent identity, which can be difficult to interpret in cases with <100% sequence identity, as changes to specific amino acids can have dramatic effects on protein function, such as when they occur in substrate binding regions or enzyme active sites, which in turn can have dramatic effects on phenotypes like antimicrobial resistance or virulence. RESULTS Here, we present GAMMA, an open-source tool for Gene Allele Mutation Microbial Assessment, which uses protein coding-level identity to make gene calls from any gene database and generates a classification (e.g. mutant, truncation) and translated annotation (e.g. Y190S mutation, truncation at residue 110) for these calls. GAMMA accurately called antimicrobial resistance genes from a large set of genomes faster than three other tools. It can also be used with any gene database, as we demonstrated by identifying virulence genes in the same genome set. Because of its speed and flexibility, GAMMA can be used to rapidly find and annotate any gene matches of interest in microbial sequencing data. AVAILABILITY AND IMPLEMENTATION GAMMA is freely available as a Bioconda package (https://bioconda.github.io/recipes/gamma/README.html) and as a command line script (https://github.com/rastanton/GAMMA). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Richard A Stanton
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Nicholas Vlachos
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Alison Laufer Halpin
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA.,U.S. Public Health Service, Rockville, MD 20852, USA
| |
Collapse
|
110
|
Sakhtemani R, Perera MLW, Hübschmann D, Siebert R, Lawrence M, Bhagwat A. OUP accepted manuscript. Nucleic Acids Res 2022; 50:5145-5157. [PMID: 35524550 PMCID: PMC9122604 DOI: 10.1093/nar/gkac296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/08/2022] [Accepted: 04/29/2022] [Indexed: 12/04/2022] Open
Abstract
Activation-induced deaminase (AID) is a DNA-cytosine deaminase that mediates maturation of antibodies through somatic hypermutation and class-switch recombination. While it causes mutations in immunoglobulin heavy and light chain genes and strand breaks in the switch regions of the immunoglobulin heavy chain gene, it largely avoids causing such damage in the rest of the genome. To help understand targeting by human AID, we expressed it in repair-deficient Escherichia coli and mapped the created uracils in the genomic DNA using uracil pull-down and sequencing, UPD-seq. We found that both AID and the human APOBEC3A preferentially target tRNA genes and transcription start sites, but do not show preference for highly transcribed genes. Unlike A3A, AID did not show a strong replicative strand bias or a preference for hairpin loops. Overlapping uracilation peaks between these enzymes contained binding sites for a protein, FIS, that helps create topological domains in the E. coli genome. To confirm whether these findings were relevant to B cells, we examined mutations from lymphoma and leukemia genomes within AID-preferred sequences. These mutations also lacked replicative strand bias or a hairpin loop preference. We propose here a model for how AID avoids causing mutations in the single-stranded DNA found within replication forks.
Collapse
Affiliation(s)
- Ramin Sakhtemani
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | | | - Daniel Hübschmann
- Molecular Precision Oncology Program, National Center for Tumor Diseases, Heidelberg and German Cancer Research Center, Heidelberg, Germany
- Heidelberg Institute for Stem cell Technology and Experimental Medicine, Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Michael S Lawrence
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Ashok S Bhagwat
- To whom correspondence should be addressed. Tel: +1 734 425 1749; Fax: +1 313 577 8822, 443;
| |
Collapse
|
111
|
Muthye V, Mackereth CD, Stewart JB, Lavrov DV. Large dataset of octocoral mitochondrial genomes provides new insights into mt-mutS evolution and function. DNA Repair (Amst) 2022; 110:103273. [DOI: 10.1016/j.dnarep.2022.103273] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 01/09/2023]
|
112
|
Ho WC, Behringer MG, Miller SF, Gonzales J, Nguyen A, Allahwerdy M, Boyer GF, Lynch M. Evolutionary Dynamics of Asexual Hypermutators Adapting to a Novel Environment. Genome Biol Evol 2021; 13:evab257. [PMID: 34864972 PMCID: PMC8643662 DOI: 10.1093/gbe/evab257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2021] [Indexed: 12/24/2022] Open
Abstract
How microbes adapt to a novel environment is a central question in evolutionary biology. Although adaptive evolution must be fueled by beneficial mutations, whether higher mutation rates facilitate the rate of adaptive evolution remains unclear. To address this question, we cultured Escherichia coli hypermutating populations, in which a defective methyl-directed mismatch repair pathway causes a 140-fold increase in single-nucleotide mutation rates. In parallel with wild-type E. coli, populations were cultured in tubes containing Luria-Bertani broth, a complex medium known to promote the evolution of subpopulation structure. After 900 days of evolution, in three transfer schemes with different population-size bottlenecks, hypermutators always exhibited similar levels of improved fitness as controls. Fluctuation tests revealed that the mutation rates of hypermutator lines converged evolutionarily on those of wild-type populations, which may have contributed to the absence of fitness differences. Further genome-sequence analysis revealed that, although hypermutator populations have higher rates of genomic evolution, this largely reflects strong genetic linkage. Despite these linkage effects, the evolved population exhibits parallelism in fixed mutations, including those potentially related to biofilm formation, transcription regulation, and mutation-rate evolution. Together, these results are generally inconsistent with a hypothesized positive relationship between the mutation rate and the adaptive speed of evolution, and provide insight into how clonal adaptation occurs in novel environments.
Collapse
Affiliation(s)
- Wei-Chin Ho
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Megan G Behringer
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Samuel F Miller
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Jadon Gonzales
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Amber Nguyen
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Meriem Allahwerdy
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Gwyneth F Boyer
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Michael Lynch
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
113
|
Osborne MG, Geiger CJ, Corzett CH, Kram KE, Finkel SE. Removal of Toxic Volatile Compounds in Batch Culture Prolongs Stationary Phase and Delays Death of Escherichia coli. Appl Environ Microbiol 2021; 87:e0186021. [PMID: 34613759 PMCID: PMC8612265 DOI: 10.1128/aem.01860-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 12/28/2022] Open
Abstract
The mechanisms controlling entry into and exit from the death phase in the bacterial life cycle remain unclear. Although bacterial growth studies in batch cultures traditionally focus on the first three phases during incubation, two additional phases, the death phase and the long-term stationary phase, are less understood. Although there are a number of stressors that arise during long-term batch culture, including nutrient depletion and the accumulation of metabolic toxins such as reactive oxidative species, their roles in cell death are not well-defined. By manipulating the environmental conditions of Escherichia coli incubated in long-term batch culture through chemical and mechanical means, we investigated the role of volatile metabolic toxins in modulating the onset of the death phase. Here, we demonstrate that with the introduction of substrates with high binding affinities for volatile compounds, toxic by-products of normal cell metabolism, into the headspace of batch cultures, cells display a prolonged stationary phase and delayed entry into the death phase. The addition of these substrates allows cultures to maintain a high cell density for hours to days longer than cultures incubated under standard growth conditions. A similar effect is observed when the gaseous headspace in culture flasks is continuously replaced with sterile air, mechanically preventing the accumulation of metabolic by-products in batch cultures. We establish that toxic compound(s) are produced during the exponential phase, demonstrate that buildup of toxic by-products influence entry into the death phase, and present a novel tool for improving high-density growth in batch culture that may be used in future research or industrial or biotechnology applications. IMPORTANCE Bacteria, such as Escherichia coli, are routinely used in the production of biomaterials because of their efficient and sustainable capacity for synthesis of bioproducts. Industrial applications of microbial synthesis typically utilize cells in the stationary phase, when cultures have the greatest density of viable cells. By manipulating culture conditions to delay the transition from the stationary phase to the death phase, we can prolong the stationary phase on a scale of hours to days, thereby maintaining the maximum density of cells that would otherwise quickly decline. Characterization of the mechanisms that control entry into the death phase for the model organism E. coli not only deepens our understanding of the bacterial life cycle but also presents an opportunity to enhance current protocols for batch culture growth and explore similar effects in a variety of widely used bacterial strains.
Collapse
Affiliation(s)
- Melisa G. Osborne
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Christopher J. Geiger
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Christopher H. Corzett
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Karin E. Kram
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Steven E. Finkel
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
114
|
Behrmann MS, Perera HM, Hoang JM, Venkat TA, Visser BJ, Bates D, Trakselis MA. Targeted chromosomal Escherichia coli:dnaB exterior surface residues regulate DNA helicase behavior to maintain genomic stability and organismal fitness. PLoS Genet 2021; 17:e1009886. [PMID: 34767550 PMCID: PMC8612530 DOI: 10.1371/journal.pgen.1009886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/24/2021] [Accepted: 10/18/2021] [Indexed: 12/05/2022] Open
Abstract
Helicase regulation involves modulation of unwinding speed to maintain coordination of DNA replication fork activities and is vital for replisome progression. Currently, mechanisms for helicase regulation that involve interactions with both DNA strands through a steric exclusion and wrapping (SEW) model and conformational shifts between dilated and constricted states have been examined in vitro. To better understand the mechanism and cellular impact of helicase regulation, we used CRISPR-Cas9 genome editing to study four previously identified SEW-deficient mutants of the bacterial replicative helicase DnaB. We discovered that these four SEW mutations stabilize constricted states, with more fully constricted mutants having a generally greater impact on genomic stress, suggesting a dynamic model for helicase regulation that involves both excluded strand interactions and conformational states. These dnaB mutations result in increased chromosome complexities, less stable genomes, and ultimately less viable and fit strains. Specifically, dnaB:mut strains present with increased mutational frequencies without significantly inducing SOS, consistent with leaving single-strand gaps in the genome during replication that are subsequently filled with lower fidelity. This work explores the genomic impacts of helicase dysregulation in vivo, supporting a combined dynamic regulatory mechanism involving a spectrum of DnaB conformational changes and relates current mechanistic understanding to functional helicase behavior at the replication fork. DNA replication is a vital biological process, and the proteins involved are structurally and functionally conserved across all domains of life. As our fundamental knowledge of genes and genetics grows, so does our awareness of links between acquired genetic mutations and disease. Understanding how genetic material is replicated accurately and efficiently and with high fidelity is the foundation to identifying and solving genome-based diseases. E. coli are model organisms, containing core replisome proteins, but lack the complexity of the human replication system, making them ideal for investigating conserved replisome behaviors. The helicase enzyme acts at the forefront of the replication fork to unwind the DNA helix and has also been shown to help coordinate other replisome functions. In this study, we examined specific mutations in the helicase that have been shown to regulate its conformation and speed of unwinding. We investigate how these mutations impact the growth, fitness, and cellular morphology of bacteria with the goal of understanding how helicase regulation mechanisms affect an organism’s ability to survive and maintain a stable genome.
Collapse
Affiliation(s)
- Megan S. Behrmann
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
| | - Himasha M. Perera
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
| | - Joy M. Hoang
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
| | - Trisha A. Venkat
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
| | - Bryan J. Visser
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - David Bates
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michael A. Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
- * E-mail:
| |
Collapse
|
115
|
Bennet D, Vo‐Dinh T, Zenhausern F. Current and emerging opportunities in biological medium‐based computing and digital data storage. NANO SELECT 2021. [DOI: 10.1002/nano.202100275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Devasier Bennet
- Center for Applied NanoBioscience and Medicine College of Medicine Phoenix The University of Arizona Phoenix USA
| | - Tuan Vo‐Dinh
- Department of Biomedical Engineering Department of Chemistry Fitzpatrick Institute for Photonics Duke University Durham North Carolina USA
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine College of Medicine Phoenix The University of Arizona Phoenix USA
- Department of Basic Medical Sciences College of Medicine Phoenix The University of Arizona Phoenix Arizona USA
- Department of Biomedical Engineering; and BIO5 Institute College of Engineering The University of Arizona Tucson Arizona USA
- School of Pharmaceutical Sciences University of Geneva Geneva Switzerland
| |
Collapse
|
116
|
Murray GGR, Balmer AJ, Herbert J, Hadjirin NF, Kemp CL, Matuszewska M, Bruchmann S, Hossain ASMM, Gottschalk M, Tucker AW, Miller E, Weinert LA. Mutation rate dynamics reflect ecological change in an emerging zoonotic pathogen. PLoS Genet 2021; 17:e1009864. [PMID: 34748531 PMCID: PMC8601623 DOI: 10.1371/journal.pgen.1009864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/18/2021] [Accepted: 10/06/2021] [Indexed: 11/18/2022] Open
Abstract
Mutation rates vary both within and between bacterial species, and understanding what drives this variation is essential for understanding the evolutionary dynamics of bacterial populations. In this study, we investigate two factors that are predicted to influence the mutation rate: ecology and genome size. We conducted mutation accumulation experiments on eight strains of the emerging zoonotic pathogen Streptococcus suis. Natural variation within this species allows us to compare tonsil carriage and invasive disease isolates, from both more and less pathogenic populations, with a wide range of genome sizes. We find that invasive disease isolates have repeatedly evolved mutation rates that are higher than those of closely related carriage isolates, regardless of variation in genome size. Independent of this variation in overall rate, we also observe a stronger bias towards G/C to A/T mutations in isolates from more pathogenic populations, whose genomes tend to be smaller and more AT-rich. Our results suggest that ecology is a stronger correlate of mutation rate than genome size over these timescales, and that transitions to invasive disease are consistently accompanied by rapid increases in mutation rate. These results shed light on the impact that ecology can have on the adaptive potential of bacterial pathogens.
Collapse
Affiliation(s)
- Gemma G. R. Murray
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Andrew J. Balmer
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Josephine Herbert
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nazreen F. Hadjirin
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Caroline L. Kemp
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Marta Matuszewska
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Sebastian Bruchmann
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Marcelo Gottschalk
- Département de Pathologie et Microbiologie, Université de Montréal, Montréal, Canada
| | - Alexander W. Tucker
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Eric Miller
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Lucy A. Weinert
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
117
|
DNA Replication-Transcription Conflicts Do Not Significantly Contribute to Spontaneous Mutations Due to Replication Errors in Escherichia coli. mBio 2021; 12:e0250321. [PMID: 34634932 PMCID: PMC8510543 DOI: 10.1128/mbio.02503-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Encounters between DNA replication and transcription can cause genomic disruption, particularly when the two meet head-on. Whether these conflicts produce point mutations is debated. This paper presents detailed analyses of a large collection of mutations generated during mutation accumulation experiments with mismatch repair (MMR)-defective Escherichia coli. With MMR absent, mutations are primarily due to DNA replication errors. Overall, there were no differences in the frequencies of base pair substitutions or small indels (i.e., insertion and deletions of ≤4 bp) in the coding sequences or promoters of genes oriented codirectionally versus head-on to replication. Among a subset of highly expressed genes, there was a 2- to 3-fold bias for indels in genes oriented head-on to replication, but this difference was almost entirely due to the asymmetrical genomic locations of tRNA genes containing mononucleotide runs, which are hot spots for indels. No additional orientation bias in mutation frequencies occurred when MMR− strains were also defective for transcription-coupled repair (TCR). However, in contrast to other reports, loss of TCR slightly increased the overall mutation rate, meaning that TCR is antimutagenic. There was no orientation bias in mutation frequencies among the stress response genes that are regulated by RpoS or induced by DNA damage. Thus, biases in the locations of mutational targets can account for most, if not all, apparent biases in mutation frequencies between genes oriented head-on versus codirectional to replication. In addition, the data revealed a strong correlation of the frequency of base pair substitutions with gene length but no correlation with gene expression levels.
Collapse
|
118
|
Kawall K. The Generic Risks and the Potential of SDN-1 Applications in Crop Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:2259. [PMID: 34834620 PMCID: PMC8622673 DOI: 10.3390/plants10112259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022]
Abstract
The use of site-directed nucleases (SDNs) in crop plants to alter market-oriented traits is expanding rapidly. At the same time, there is an on-going debate around the safety and regulation of crops altered with the site-directed nuclease 1 (SDN-1) technology. SDN-1 applications can be used to induce a variety of genetic alterations ranging from fairly 'simple' genetic alterations to complex changes in plant genomes using, for example, multiplexing approaches. The resulting plants can contain modified alleles and associated traits, which are either known or unknown in conventionally bred plants. The European Commission recently published a study on new genomic techniques suggesting an adaption of the current GMO legislation by emphasizing that targeted mutagenesis techniques can produce genomic alterations that can also be obtained by natural mutations or conventional breeding techniques. This review highlights the need for a case-specific risk assessment of crop plants derived from SDN-1 applications considering both the characteristics of the product and the process to ensure a high level of protection of human and animal health and the environment. The published literature on so-called market-oriented traits in crop plants altered with SDN-1 applications is analyzed here to determine the types of SDN-1 application in plants, and to reflect upon the complexity and the naturalness of such products. Furthermore, it demonstrates the potential of SDN-1 applications to induce complex alterations in plant genomes that are relevant to generic SDN-associated risks. In summary, it was found that nearly half of plants with so-called market-oriented traits contain complex genomic alterations induced by SDN-1 applications, which may also pose new types of risks. It further underscores the need for data on both the process and the end-product for a case-by-case risk assessment of plants derived from SDN-1 applications.
Collapse
Affiliation(s)
- Katharina Kawall
- Fachstelle Gentechnik und Umwelt, Frohschammerstr. 14, 80807 Munich, Germany
| |
Collapse
|
119
|
Decrulle AL, Frénoy A, Meiller-Legrand TA, Bernheim A, Lotton C, Gutierrez A, Lindner AB. Engineering gene overlaps to sustain genetic constructs in vivo. PLoS Comput Biol 2021; 17:e1009475. [PMID: 34624014 PMCID: PMC8528312 DOI: 10.1371/journal.pcbi.1009475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 10/20/2021] [Accepted: 09/23/2021] [Indexed: 11/20/2022] Open
Abstract
Evolution is often an obstacle to the engineering of stable biological systems due to the selection of mutations inactivating costly gene circuits. Gene overlaps induce important constraints on sequences and their evolution. We show that these constraints can be harnessed to increase the stability of costly genes by purging loss-of-function mutations. We combine computational and synthetic biology approaches to rationally design an overlapping reading frame expressing an essential gene within an existing gene to protect. Our algorithm succeeded in creating overlapping reading frames in 80% of E. coli genes. Experimentally, scoring mutations in both genes of such overlapping construct, we found that a significant fraction of mutations impacting the gene to protect have a deleterious effect on the essential gene. Such an overlap thus protects a costly gene from removal by natural selection by associating the benefit of this removal with a larger or even lethal cost. In our synthetic constructs, the overlap converts many of the possible mutants into evolutionary dead-ends, reducing the evolutionary potential of the system and thus increasing its stability over time. Genomes are translated by triplets of nucleotides on two different strands, allowing for six different reading frames. This permits the existence of gene overlaps, often observed in microbial genomes, where two different proteins are encoded on the same piece of DNA, but in different reading frames. Gene overlaps are classically considered an obstacle for both evolution and genetic engineering, as mutations in overlapping regions likely have pleitrotropic effects on several genes. In 2013, we identified specific evolutionary scenarios where the decrease in evolutionary potential caused by gene overlaps could instead be advantageous and selected for. In this work, we demonstrate the use of gene overlaps in another context where reducing evolutionary potential can be useful: preventing evolution from inactivating synthetic circuits. We show that gene overlaps can be engineered to increase the evolutionary stability of genes that are costly to their hosts, by entangling these costly genes with essential genes.
Collapse
Affiliation(s)
| | - Antoine Frénoy
- Université de Paris, INSERM U1001, Paris, France
- Université Grenoble Alpes, CNRS UMR5525, Grenoble, France
- * E-mail: (AF); (ABL)
| | | | | | | | | | - Ariel B. Lindner
- Université de Paris, INSERM U1001, Paris, France
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), Paris, France
- * E-mail: (AF); (ABL)
| |
Collapse
|
120
|
Pears CJ, Brustel J, Lakin ND. Dictyostelium discoideum as a Model to Assess Genome Stability Through DNA Repair. Front Cell Dev Biol 2021; 9:752175. [PMID: 34692705 PMCID: PMC8529158 DOI: 10.3389/fcell.2021.752175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/20/2021] [Indexed: 11/25/2022] Open
Abstract
Preserving genome integrity through repair of DNA damage is critical for human health and defects in these pathways lead to a variety of pathologies, most notably cancer. The social amoeba Dictyostelium discoideum is remarkably resistant to DNA damaging agents and genome analysis reveals it contains orthologs of several DNA repair pathway components otherwise limited to vertebrates. These include the Fanconi Anemia DNA inter-strand crosslink and DNA strand break repair pathways. Loss of function of these not only results in malignancy, but also neurodegeneration, immune-deficiencies and congenital abnormalities. Additionally, D. discoideum displays remarkable conservations of DNA repair factors that are targets in cancer and other therapies, including poly(ADP-ribose) polymerases that are targeted to treat breast and ovarian cancers. This, taken together with the genetic tractability of D. discoideum, make it an attractive model to assess the mechanistic basis of DNA repair to provide novel insights into how these pathways can be targeted to treat a variety of pathologies. Here we describe progress in understanding the mechanisms of DNA repair in D. discoideum, and how these impact on genome stability with implications for understanding development of malignancy.
Collapse
Affiliation(s)
- Catherine J. Pears
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
121
|
Patenall BL, Hathaway HJ, Laabei M, Young AE, Thet NT, Jenkins ATA, Short RD, Allinson SL. Assessment of mutations induced by cold atmospheric plasma jet treatment relative to known mutagens in Escherichia coli. Mutagenesis 2021; 36:380-387. [PMID: 34459491 DOI: 10.1093/mutage/geab030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 08/29/2021] [Indexed: 11/12/2022] Open
Abstract
The main bactericidal components of cold atmospheric plasma (CAP) are thought to be reactive oxygen and nitrogen species (RONS) and UV-radiation, both of which have the capacity to cause DNA damage and mutations. Here, the mutagenic effects of CAP on Escherichia coli were assessed in comparison to X- and UV-irradiation. DNA damage and mutagenesis were screened for using a diffusion-based DNA fragmentation assay and modified Ames test, respectively. Mutant colonies obtained from the latter were quantitated and sequenced. CAP was found to elicit a similar mutation spectrum to X-irradiation, which did not resemble that for UV implying that CAP-produced RONS are more likely the mutagenic component of CAP. CAP treatment was also shown to promote resistance to the antibiotic ciprofloxacin. Our data suggest that CAP treatment has mutagenic effects that may have important phenotypic consequences.
Collapse
Affiliation(s)
| | - Hollie J Hathaway
- Department of Chemistry, Faculty of Science and Technology, Lancaster University, Lancaster, LA1 4YB, UK
| | - Maisem Laabei
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AX, UK
| | - Amber E Young
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 1UD, UK
| | - Naing T Thet
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| | | | - Robert D Short
- Department of Chemistry, Faculty of Science and Technology, Lancaster University, Lancaster, LA1 4YB, UK
| | - Sarah L Allinson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| |
Collapse
|
122
|
Mielinis P, Sukackaitė R, Serapinaitė A, Samoilovas F, Alzbutas G, Matjošaitis K, Lubys A. MuA-based Molecular Indexing for Rare Mutation Detection by Next-Generation Sequencing. J Mol Biol 2021; 433:167209. [PMID: 34419430 DOI: 10.1016/j.jmb.2021.167209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022]
Abstract
Detection of low-frequency mutations in cancer genomes or other heterogeneous cell populations requires high-fidelity sequencing. Molecular barcoding is one of the key technologies that enables the differentiation of true mutations from errors, which can be caused by sequencing or library preparation processes. However, current approaches where barcodes are introduced via primer extension or adaptor ligation do not utilize the full power of barcoding, due to complicated library preparation workflows and biases. Here we demonstrate the remarkable tolerance of MuA transposase to the presence of multiple replacements in transposon sequence, and explore this unique feature to engineer the MuA transposome complex with randomised nucleotides in 12 transposon positions, which can be introduced as a barcode into the target molecule after transposition event. We applied the approach of Unique MuA-based Molecular Indexing (UMAMI) to assess the power of rare mutation detection by shortgun sequencing on the Illumina platform. Our results show that UMAMI allows detection of rare mutations readily and reliably, and in this paper we report error rate values for the number of thermophilic DNA polymerases measured by using UMAMI.
Collapse
Affiliation(s)
- Paulius Mielinis
- Thermo Fisher Scientific Baltics UAB, V. A. Graičiūno 8, Vilnius LT-02241, Lithuania
| | - Rasa Sukackaitė
- Thermo Fisher Scientific Baltics UAB, V. A. Graičiūno 8, Vilnius LT-02241, Lithuania.
| | - Aistė Serapinaitė
- Thermo Fisher Scientific Baltics UAB, V. A. Graičiūno 8, Vilnius LT-02241, Lithuania
| | - Faustas Samoilovas
- Thermo Fisher Scientific Baltics UAB, V. A. Graičiūno 8, Vilnius LT-02241, Lithuania
| | - Gediminas Alzbutas
- Thermo Fisher Scientific Baltics UAB, V. A. Graičiūno 8, Vilnius LT-02241, Lithuania
| | - Karolis Matjošaitis
- Thermo Fisher Scientific Baltics UAB, V. A. Graičiūno 8, Vilnius LT-02241, Lithuania
| | - Arvydas Lubys
- Thermo Fisher Scientific Baltics UAB, V. A. Graičiūno 8, Vilnius LT-02241, Lithuania
| |
Collapse
|
123
|
Korry BJ, Lee SYE, Chakrabarti AK, Choi AH, Ganser C, Machan JT, Belenky P. Genotoxic Agents Produce Stressor-Specific Spectra of Spectinomycin Resistance Mutations Based on Mechanism of Action and Selection in Bacillus subtilis. Antimicrob Agents Chemother 2021; 65:e0089121. [PMID: 34339280 PMCID: PMC8448107 DOI: 10.1128/aac.00891-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/23/2021] [Indexed: 11/20/2022] Open
Abstract
Mutagenesis is integral for bacterial evolution and the development of antibiotic resistance. Environmental toxins and stressors are known to elevate the rate of mutagenesis through direct DNA toxicity, known as stress-associated mutagenesis, or via a more general stress-induced process that relies on intrinsic bacterial pathways. Here, we characterize the spectra of mutations induced by an array of different stressors using high-throughput sequencing to profile thousands of spectinomycin-resistant colonies of Bacillus subtilis. We found 69 unique mutations in the rpsE and rpsB genes, and that each stressor leads to a unique and specific spectrum of antibiotic-resistance mutations. While some mutations clearly reflected the DNA damage mechanism of the stress, others were likely the result of a more general stress-induced mechanism. To determine the relative fitness of these mutants under a range of antibiotic selection pressures, we used multistrain competitive fitness experiments and found an additional landscape of fitness and resistance. The data presented here support the idea that the environment in which the selection is applied (mutagenic stressors that are present), as well as changes in local drug concentration, can significantly alter the path to spectinomycin resistance in B. subtilis.
Collapse
Affiliation(s)
- Benjamin J. Korry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Stella Ye Eun Lee
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Amit K. Chakrabarti
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Ashley H. Choi
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Collin Ganser
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Jason T. Machan
- Department of Orthopedics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- Department of Surgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
124
|
Pawlak K, Wnetrzak M, Mackiewicz D, Mackiewicz P, Błażej P. Models of genetic code structure evolution with variable number of coded labels. Biosystems 2021; 210:104528. [PMID: 34492316 DOI: 10.1016/j.biosystems.2021.104528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 10/20/2022]
Abstract
It is assumed that at the early stage of cell evolution its translation machinery was characterized by high noise, i.e. ambiguous assignment of codons to amino acids in the genetic code, which initially encoded only few amino acids. Next, during its evolution new amino acids were added to this code. Taking into account this facts, we investigated theoretical models of genetic code's structure, which evolved from a set of ambiguous codons assignments into a coding system with a low level of uncertainty. We considered three types of translational inaccuracies assuming a different number of fixed codon positions. We applied a modified version of evolutionary algorithm for finding the genetic codes that the most effectively reduced the initial uncertainty in the assignment of codons to encoded labels, i.e. amino acids and a stop translation signal. We examined codes with the number of labels from four to 22. Our results indicated that the quality of genetic code structure is strongly dependent on the number of encoded labels as well as the type of translational mechanism. The more strict assignments of codon to the labels was preferred by the codes encoding more number of labels. The results showed that a smaller degeneracy of codes evolved from a more tolerant coding with the stepwise addition of coded amino acids to the genetic code. The distribution of codon groups in the standard genetic code corresponds well to the translation model assuming two fixed codon positions, whereas the six-codon groups can be relics form previous stages of evolution when the code characterized by a greater uncertainty.
Collapse
Affiliation(s)
- Konrad Pawlak
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14a, Wrocław, Poland
| | - Małgorzata Wnetrzak
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14a, Wrocław, Poland
| | - Dorota Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14a, Wrocław, Poland
| | - Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14a, Wrocław, Poland
| | - Paweł Błażej
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14a, Wrocław, Poland.
| |
Collapse
|
125
|
Waldvogel AM, Pfenninger M. Temperature dependence of spontaneous mutation rates. Genome Res 2021; 31:1582-1589. [PMID: 34301628 PMCID: PMC8415371 DOI: 10.1101/gr.275168.120] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/21/2021] [Indexed: 11/29/2022]
Abstract
Mutation is the source of genetic variation and the fundament of evolution. Temperature has long been suggested to have a direct impact on realized spontaneous mutation rates. If mutation rates vary in response to environmental conditions, such as the variation of the ambient temperature through space and time, they should no longer be described as species-specific constants. By combining mutation accumulation with whole-genome sequencing in a multicellular organism, we provide empirical support to reject the null hypothesis of a constant, temperature-independent mutation rate. Instead, mutation rates depended on temperature in a U-shaped manner with increasing rates toward both temperature extremes. This relation has important implications for mutation-dependent processes in molecular evolution, processes shaping the evolution of mutation rates, and even the evolution of biodiversity as such.
Collapse
Affiliation(s)
- Ann-Marie Waldvogel
- Senckenberg Biodiversity and Climate Research Centre, 60325 Frankfurt am Main, Germany
- Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| | - Markus Pfenninger
- Senckenberg Biodiversity and Climate Research Centre, 60325 Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, 60325 Frankfurt am Main, Germany
- Institute for Organismic and Molecular Evolution, Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
126
|
Abstract
In the age of antibiotic resistance and precise microbiome engineering, CRISPR-Cas antimicrobials promise to have a substantial impact on the way we treat diseases in the future. However, the efficacy of these antimicrobials and their mechanisms of resistance remain to be elucidated. We systematically investigated how a target E. coli strain can escape killing by episomally-encoded CRISPR-Cas9 antimicrobials. Using Cas9 from Streptococcus pyogenes (SpCas9) we studied the killing efficiency and resistance mutation rate towards CRISPR-Cas9 antimicrobials and elucidated the underlying genetic alterations. We find that killing efficiency is not correlated with the number of cutting sites or the type of target. While the number of targets did not significantly affect efficiency of killing, it did reduce the emergence of chromosomal mutations conferring resistance. The most frequent target of resistance mutations was the plasmid-encoded SpCas9 that was inactivated by bacterial genome rearrangements involving translocation of mobile genetic elements such as insertion elements. This resistance mechanism can be overcome by re-introduction of an intact copy of SpCas9. The work presented here provides a guide to design strategies that reduce resistance and improve the activity of CRISPR-Cas antimicrobials.
Collapse
|
127
|
López-Cortegano E, Craig RJ, Chebib J, Samuels T, Morgan AD, Kraemer SA, Böndel KB, Ness RW, Colegrave N, Keightley PD. De Novo Mutation Rate Variation and Its Determinants in Chlamydomonas. Mol Biol Evol 2021; 38:3709-3723. [PMID: 33950243 PMCID: PMC8383909 DOI: 10.1093/molbev/msab140] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
De novo mutations are central for evolution, since they provide the raw material for natural selection by regenerating genetic variation. However, studying de novo mutations is challenging and is generally restricted to model species, so we have a limited understanding of the evolution of the mutation rate and spectrum between closely related species. Here, we present a mutation accumulation (MA) experiment to study de novo mutation in the unicellular green alga Chlamydomonas incerta and perform comparative analyses with its closest known relative, Chlamydomonas reinhardtii. Using whole-genome sequencing data, we estimate that the median single nucleotide mutation (SNM) rate in C. incerta is μ = 7.6 × 10-10, and is highly variable between MA lines, ranging from μ = 0.35 × 10-10 to μ = 131.7 × 10-10. The SNM rate is strongly positively correlated with the mutation rate for insertions and deletions between lines (r > 0.97). We infer that the genomic factors associated with variation in the mutation rate are similar to those in C. reinhardtii, allowing for cross-prediction between species. Among these genomic factors, sequence context and complexity are more important than GC content. With the exception of a remarkably high C→T bias, the SNM spectrum differs markedly between the two Chlamydomonas species. Our results suggest that similar genomic and biological characteristics may result in a similar mutation rate in the two species, whereas the SNM spectrum has more freedom to diverge.
Collapse
Affiliation(s)
- Eugenio López-Cortegano
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Rory J Craig
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jobran Chebib
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Toby Samuels
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew D Morgan
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Katharina B Böndel
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| | - Rob W Ness
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Nick Colegrave
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter D Keightley
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
128
|
Wu K, Cheng ZH, Williams E, Turner NT, Ran D, Li H, Zhou X, Guo H, Sung W, Liu DF, Lynch M, Long H. Unexpected Discovery of Hypermutator Phenotype Sounds the Alarm for Quality Control Strains. Genome Biol Evol 2021; 13:evab148. [PMID: 34180992 PMCID: PMC8350357 DOI: 10.1093/gbe/evab148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Microbial strains with high genomic stability are particularly sought after for testing the quality of commercial microbiological products, such as biological media and antibiotics. Yet, using mutation-accumulation experiments and de novo assembled complete genomes based on Nanopore long-read sequencing, we find that the widely used quality-control strain Shewanella putrefaciens ATCC-8071, also a facultative pathogen, is a hypermutator, with a base-pair substitution mutation rate of 2.42 × 10-8 per nucleotide site per cell division, ∼146-fold greater than that of the wild-type strain CGMCC-1.6515. Using complementation experiments, we confirm that mutL dysfunction, which was a recent evolutionary event, is the cause for the high mutation rate of ATCC-8071. Further analyses also give insight into possible relationships between mutation and genome evolution in this important bacterium. This discovery of a well-known strain being a hypermutator necessitates screening the mutation rate of bacterial strains before any quality control or experiments.
Collapse
Affiliation(s)
- Kun Wu
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhou-Hua Cheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Emily Williams
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Nathan T Turner
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, North Carolina, USA
| | - Dapeng Ran
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
| | - Haichao Li
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
| | - Xia Zhou
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
| | - Huilin Guo
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
| | - Way Sung
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, North Carolina, USA
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Michael Lynch
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Hongan Long
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
129
|
Both co-infection and superinfection drive complex Anaplasma marginale strain structure in a natural transmission setting. Infect Immun 2021; 89:e0016621. [PMID: 34338549 DOI: 10.1128/iai.00166-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vector-borne pathogens commonly establish multi-strain infections, also called complex infections. How complex infections are established, either prior to or after the development of an adaptive immune response, termed co-infection or superinfection, respectively, has broad implications for the maintenance of genetic diversity, pathogen phenotype, epidemiology, and disease control strategies. Anaplasma marginale, a genetically diverse, obligate, intracellular tick-borne bacterial pathogen of cattle commonly establishes complex infections, particularly in regions with high transmission rates. Both co-infection and superinfection can be established experimentally, however it is unknown how complex infections develop in a natural transmission setting. To address this question, we introduced naïve animals into a herd in southern Ghana with high infection prevalence and high transmission pressure and tracked strain acquisition of A. marginale through time using multi-locus sequence typing. As expected, genetic diversity among strains was high and 97% of animals in the herd harboured multiple strains. All the introduced, naïve animals became infected, and three to four strains were typically detected in an individual animal prior to seroconversion, while one to two new strains were detected in an individual animal following seroconversion. On average, the number of strains acquired via superinfection was 16% less than those acquired via co-infection. Thus, while complex infections develop via both co-infection and superinfection, co-infection predominates in this setting. These findings have broad implications for the development of control strategies in high transmission settings.
Collapse
|
130
|
Norn C, André I, Theobald DL. A thermodynamic model of protein structure evolution explains empirical amino acid substitution matrices. Protein Sci 2021; 30:2057-2068. [PMID: 34218472 PMCID: PMC8442976 DOI: 10.1002/pro.4155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/30/2022]
Abstract
Proteins evolve under a myriad of biophysical selection pressures that collectively control the patterns of amino acid substitutions. These evolutionary pressures are sufficiently consistent over time and across protein families to produce substitution patterns, summarized in global amino acid substitution matrices such as BLOSUM, JTT, WAG, and LG, which can be used to successfully detect homologs, infer phylogenies, and reconstruct ancestral sequences. Although the factors that govern the variation of amino acid substitution rates have received much attention, the influence of thermodynamic stability constraints remains unresolved. Here we develop a simple model to calculate amino acid substitution matrices from evolutionary dynamics controlled by a fitness function that reports on the thermodynamic effects of amino acid mutations in protein structures. This hybrid biophysical and evolutionary model accounts for nucleotide transition/transversion rate bias, multi‐nucleotide codon changes, the number of codons per amino acid, and thermodynamic protein stability. We find that our theoretical model accurately recapitulates the complex yet universal pattern observed in common global amino acid substitution matrices used in phylogenetics. These results suggest that selection for thermodynamically stable proteins, coupled with nucleotide mutation bias filtered by the structure of the genetic code, is the primary driver behind the global amino acid substitution patterns observed in proteins throughout the tree of life.
Collapse
Affiliation(s)
- Christoffer Norn
- Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Ingemar André
- Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Douglas L Theobald
- Biochemistry Department, Brandeis University, Waltham, Massachusetts, USA
| |
Collapse
|
131
|
Brandis G, Granström S, Leber AT, Bartke K, Garoff L, Cao S, Huseby DL, Hughes D. Mutant RNA polymerase can reduce susceptibility to antibiotics via ppGpp-independent induction of a stringent-like response. J Antimicrob Chemother 2021; 76:606-615. [PMID: 33221850 PMCID: PMC7879142 DOI: 10.1093/jac/dkaa469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Background Mutations in RNA polymerase (RNAP) can reduce susceptibility to ciprofloxacin in Escherichia coli, but the mechanism of transcriptional reprogramming responsible is unknown. Strains carrying ciprofloxacin-resistant (CipR) rpoB mutations have reduced growth fitness and their impact on clinical resistance development is unclear. Objectives To assess the potential for CipRrpoB mutations to contribute to resistance development by estimating the number of distinct alleles. To identify fitness-compensatory mutations that ameliorate the fitness costs of CipRrpoB mutations. To understand how CipRrpoB mutations reprogramme RNAP. Methods E. coli strains carrying five different CipRrpoB alleles were evolved with selection for improved fitness and characterized for acquired mutations, relative fitness and MICCip. The effects of dksA mutations and a ppGpp0 background on growth and susceptibility phenotypes associated with CipRrpoB alleles were determined. Results The number of distinct CipRrpoB mutations was estimated to be >100. Mutations in RNAP genes and in dksA can compensate for the fitness cost of CipRrpoB mutations. Deletion of dksA reduced the MICCip for strains carrying CipRrpoB alleles. A ppGpp0 phenotype had no effect on drug susceptibility. Conclusions CipRrpoB mutations induce an ppGpp-independent stringent-like response. Approximately half of the reduction in ciprofloxacin susceptibility is caused by an increased affinity of RNAP to DksA while the other half is independent of DksA. Stringent-like response activating mutations might be the most diverse class of mutations reducing susceptibility to antibiotics.
Collapse
Affiliation(s)
- Gerrit Brandis
- Department of Medical Biochemistry and Microbiology, Box 582, Biomedical Center, Uppsala University, Sweden
| | - Susanna Granström
- Department of Medical Biochemistry and Microbiology, Box 582, Biomedical Center, Uppsala University, Sweden
| | - Anna T Leber
- Department of Medical Biochemistry and Microbiology, Box 582, Biomedical Center, Uppsala University, Sweden
| | - Katrin Bartke
- Department of Medical Biochemistry and Microbiology, Box 582, Biomedical Center, Uppsala University, Sweden
| | - Linnéa Garoff
- Department of Medical Biochemistry and Microbiology, Box 582, Biomedical Center, Uppsala University, Sweden
| | - Sha Cao
- Department of Medical Biochemistry and Microbiology, Box 582, Biomedical Center, Uppsala University, Sweden
| | - Douglas L Huseby
- Department of Medical Biochemistry and Microbiology, Box 582, Biomedical Center, Uppsala University, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Box 582, Biomedical Center, Uppsala University, Sweden
| |
Collapse
|
132
|
Maeda T, Shibai A, Yokoi N, Tarusawa Y, Kawada M, Kotani H, Furusawa C. Mutational property of newly identified mutagen l-glutamic acid γ-hydrazide in Escherichia coli. Mutat Res 2021; 823:111759. [PMID: 34304126 DOI: 10.1016/j.mrfmmm.2021.111759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/07/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
We previously found that an l-glutamine analog l-glutamic acid γ-hydrazide has high mutagenic activity through the high-throughput laboratory evolution of Escherichia coli. In this study, mutagenicity and mutational property of l-glutamic acid γ-hydrazide were examined by the Ames test and mutation accumulation experiments using E. coli. The Ames test revealed that l-glutamic acid γ-hydrazide showed higher mutagenic activity without metabolic activation than known mutagens 2-aminoanthracene, and cobalt(II) acetate tetrahydrate. This result indicates that l-glutamic acid γ-hydrazide does not require metabolic activation for mutagenic activity in E. coli. Mutation accumulation experiments and whole-genome sequencing analysis revealed the number and spectrum of the accumulated mutations with or without l-glutamic acid γ-hydrazide. In the presence of l-glutamic acid γ-hydrazide, MDS42 strain accumulated 392.3 ± 116.2 point mutations during 30 passages corresponding to 777 generations, while MDS42 strain accumulated 1.5 ± 2.5 point mutations without l-glutamic acid γ-hydrazide during 50 passages corresponding to 1341 generations. The mutational spectrum of l-glutamic acid γ-hydrazide was G/C to A/T transition (82.2 ± 4.3 %) and A/T to G/C transition (17.4 ± 4.3 %). These results indicated that l-glutamic acid γ-hydrazide has a strong mutagenic activity.
Collapse
Affiliation(s)
- Tomoya Maeda
- RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan.
| | - Atsushi Shibai
- RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| | - Naomi Yokoi
- RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| | - Yumeko Tarusawa
- RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| | - Masako Kawada
- RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| | - Hazuki Kotani
- RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| | - Chikara Furusawa
- RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan; Department of Physics, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan; Universal Biology Institute, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
| |
Collapse
|
133
|
Yi X, Khey J, Kazlauskas RJ, Travisano M. Plasmid hypermutation using a targeted artificial DNA replisome. SCIENCE ADVANCES 2021; 7:7/29/eabg8712. [PMID: 34272238 PMCID: PMC8284885 DOI: 10.1126/sciadv.abg8712] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Extensive exploration of a protein's sequence space for improved or new molecular functions requires in vivo evolution with large populations. But disentangling the evolution of a target protein from the rest of the proteome is challenging. Here, we designed a protein complex of a targeted artificial DNA replisome (TADR) that operates in live cells to processively replicate one strand of a plasmid with errors. It enhanced mutation rates of the target plasmid up to 2.3 × 105-fold with only a 78-fold increase in off-target mutagenesis. It was used to evolve itself to increase error rate and increase the efficiency of an efflux pump while simultaneously expanding the substrate repertoire. TADR enables multiple simultaneous substitutions to discover functions inaccessible by accumulating single substitutions, affording potential for solving hard problems in molecular evolution and developing biologic drugs and industrial catalysts.
Collapse
Affiliation(s)
- Xiao Yi
- BioTechnology Institute, University of Minnesota, Minneapolis, MN, USA.
| | - Joleen Khey
- Department of Plant and Microbial Biology, University of Minnesota, Minneapolis, MN, USA
| | - Romas J Kazlauskas
- BioTechnology Institute, University of Minnesota, Minneapolis, MN, USA.
- Department of Biochemistry Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Michael Travisano
- BioTechnology Institute, University of Minnesota, Minneapolis, MN, USA.
- Department of Ecology Evolution and Behavior, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
134
|
The rate and molecular spectrum of mutation are selectively maintained in yeast. Nat Commun 2021; 12:4044. [PMID: 34193872 PMCID: PMC8245649 DOI: 10.1038/s41467-021-24364-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/10/2021] [Indexed: 12/25/2022] Open
Abstract
What determines the rate (μ) and molecular spectrum of mutation is a fundamental question. The prevailing hypothesis asserts that natural selection against deleterious mutations has pushed μ to the minimum achievable in the presence of genetic drift, or the drift barrier. Here we show that, contrasting this hypothesis, μ substantially exceeds the drift barrier in diverse organisms. Random mutation accumulation (MA) in yeast frequently reduces μ, and deleting the newly discovered mutator gene PSP2 nearly halves μ. These results, along with a comparison between the MA and natural yeast strains, demonstrate that μ is maintained above the drift barrier by stabilizing selection. Similar comparisons show that the mutation spectrum such as the universal AT mutational bias is not intrinsic but has been selectively preserved. These findings blur the separation of mutation from selection as distinct evolutionary forces but open the door to alleviating mutagenesis in various organisms by genome editing. How natural selection shapes the rate and molecular spectrum of mutations is debated. Yeast mutation accumulation experiments identify a gene promoting mutagenesis and show stabilizing selection maintaining the mutation rate above the drift barrier. Selection also preserves the mutation spectrum.
Collapse
|
135
|
Kędziora A, Speruda M, Wernecki M, Dudek B, Kapczynska K, Krzyżewska E, Rybka J, Bugla-Płoskońska G. How Bacteria Change after Exposure to Silver Nanoformulations: Analysis of the Genome and Outer Membrane Proteome. Pathogens 2021; 10:pathogens10070817. [PMID: 34209937 PMCID: PMC8308822 DOI: 10.3390/pathogens10070817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE the main purpose of this work was to compare the genetic and phenotypic changes of E. coli treated with silver nanoformulations (E. coli BW25113 wt, E. coli BW25113 AgR, E. coli J53, E. coli ATCC 11229 wt, E. coli ATCC 11229 var. S2 and E. coli ATCC 11229 var. S7). Silver, as the metal with promising antibacterial properties, is currently widely used in medicine and the biomedical industry, in both ionic and nanoparticles forms. Silver nanoformulations are usually considered as one type of antibacterial agent, but their physical and chemical properties determine the way of interactions with the bacterial cell, the mode of action, and the bacterial cell response to silver. METHODS the changes in the bacterial genome, resulting from the treatment of bacteria with various silver nanoformulations, were verified by analyzing of genes (selected with mutfunc) and their conservative and non-conservative mutations selected with BLOSUM62. The phenotype was verified using an outer membrane proteome analysis (OMP isolation, 2-DE electrophoresis, and MS protein identification). RESULTS the variety of genetic and phenotypic changes in E. coli strains depends on the type of silver used for bacteria treatment. The most changes were identified in E. coli ATCC 11229 treated with silver nanoformulation signed as S2 (E. coli ATCC 11229 var. S2). We pinpointed 39 genes encoding proteins located in the outer membrane, 40 genes of their regulators, and 22 genes related to other outer membrane structures, such as flagellum, fimbria, lipopolysaccharide (LPS), or exopolysaccharide in this strain. Optical density of OmpC protein in E. coli electropherograms decreased after exposure to silver nanoformulation S7 (noticed in E. coli ATCC 11229 var. S7), and increased after treatment with the other silver nanoformulations (SNF) marked as S2 (noticed in E. coli ATCC 11229 var. S2). Increase of FliC protein optical density was identified in turn after Ag+ treatment (noticed in E.coli AgR). CONCLUSION the results show that silver nanoformulations (SNF) exerts a selective pressure on bacteria causing both conservative and non-conservative mutations. The proteomic approach revealed that the levels of some proteins have changed after treatment with appropriate SNF.
Collapse
Affiliation(s)
- Anna Kędziora
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, 51-148 Wroclaw, Poland; (M.S.); (M.W.); (B.D.)
- Correspondence: (A.K.); (G.B.-P.); Tel.: +487-1375-6323 (A.K.)
| | - Mateusz Speruda
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, 51-148 Wroclaw, Poland; (M.S.); (M.W.); (B.D.)
| | - Maciej Wernecki
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, 51-148 Wroclaw, Poland; (M.S.); (M.W.); (B.D.)
| | - Bartłomiej Dudek
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, 51-148 Wroclaw, Poland; (M.S.); (M.W.); (B.D.)
| | - Katarzyna Kapczynska
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (K.K.); (E.K.); (J.R.)
| | - Eva Krzyżewska
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (K.K.); (E.K.); (J.R.)
| | - Jacek Rybka
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (K.K.); (E.K.); (J.R.)
| | - Gabriela Bugla-Płoskońska
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, 51-148 Wroclaw, Poland; (M.S.); (M.W.); (B.D.)
- Correspondence: (A.K.); (G.B.-P.); Tel.: +487-1375-6323 (A.K.)
| |
Collapse
|
136
|
Gutiérrez R, Ram Y, Berman J, Carstens Marques de Sousa K, Nachum-Biala Y, Britzi M, Elad D, Glaser G, Covo S, Harrus S. Adaptive resistance mutations at supra-inhibitory concentrations independent of SOS mutagenesis. Mol Biol Evol 2021; 38:4095-4115. [PMID: 34175952 PMCID: PMC8476149 DOI: 10.1093/molbev/msab196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Emergence of resistant bacteria during antimicrobial treatment is one of the most critical and universal health threats. It is known that several stress-induced mutagenesis and heteroresistance mechanisms can enhance microbial adaptation to antibiotics. Here, we demonstrate that the pathogen Bartonella can undergo stress-induced mutagenesis despite the fact it lacks error-prone polymerases, the rpoS gene and functional UV-induced mutagenesis. We demonstrate that Bartonella acquire de novo single mutations during rifampicin exposure at suprainhibitory concentrations at a much higher rate than expected from spontaneous fluctuations. This is while exhibiting a minimal heteroresistance capacity. The emerged resistant mutants acquired a single rpoB mutation, whereas no other mutations were found in their whole genome. Interestingly, the emergence of resistance in Bartonella occurred only during gradual exposure to the antibiotic, indicating that Bartonella sense and react to the changing environment. Using a mathematical model, we demonstrated that, to reproduce the experimental results, mutation rates should be transiently increased over 1,000-folds, and a larger population size or greater heteroresistance capacity is required. RNA expression analysis suggests that the increased mutation rate is due to downregulation of key DNA repair genes (mutS, mutY, and recA), associated with DNA breaks caused by massive prophage inductions. These results provide new evidence of the hazard of antibiotic overuse in medicine and agriculture.
Collapse
Affiliation(s)
- Ricardo Gutiérrez
- The Koret School of Veterinary Medicine, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel.,The Center for Research in Tropical Diseases, Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | - Yoav Ram
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel.,School of Computer Science, Interdisciplinary Center Herzliya, Herzliya, Israel
| | - Judith Berman
- Shmunis School of Biomedicine and Cancer, Faculty of Life Sciences, Tel Aviv University, Tel Aviv University, Ramat Aviv, Israel
| | | | - Yaarit Nachum-Biala
- The Koret School of Veterinary Medicine, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Malka Britzi
- The National Residue Control Laboratory, The Kimron Veterinary Institute, Bet Dagan, Israel
| | - Daniel Elad
- Department of Clinical Bacteriology and Mycology, The Kimron Veterinary Institute, Bet Dagan, Israel
| | - Gad Glaser
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shay Covo
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shimon Harrus
- The Koret School of Veterinary Medicine, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
137
|
Dutta A, Dutreux F, Schacherer J. Loss of heterozygosity results in rapid but variable genome homogenization across yeast genetic backgrounds. eLife 2021; 10:70339. [PMID: 34159898 PMCID: PMC8245132 DOI: 10.7554/elife.70339] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
The dynamics and diversity of the appearance of genetic variants play an essential role in the evolution of the genome and the shaping of biodiversity. Recent population-wide genome sequencing surveys have highlighted the importance of loss of heterozygosity (LOH) events and have shown that they are a neglected part of the genetic diversity landscape. To assess the extent, variability, and spectrum, we explored the accumulation of LOH events in 169 heterozygous diploid Saccharomyces cerevisiae mutation accumulation lines across nine genetic backgrounds. In total, we detected a large set of 22,828 LOH events across distinct genetic backgrounds with a heterozygous level ranging from 0.1% to 1%. LOH events are very frequent with a rate consistently much higher than the mutation rate, showing their importance for genome evolution. We observed that the interstitial LOH (I-LOH) events, resulting in internal short LOH tracts, were much frequent (n = 19,660) than the terminal LOH (T-LOH) events, that is, tracts extending to the end of the chromosome (n = 3168). However, the spectrum, the rate, and the fraction of the genome under LOH vary across genetic backgrounds. Interestingly, we observed that the more the ancestors were heterozygous, the more they accumulated T-LOH events. In addition, frequent short I-LOH tracts are a signature of the lines derived from hybrids with low spore fertility. Finally, we found lines showing almost complete homozygotization during vegetative progression. Overall, our results highlight that the variable dynamics of the LOH accumulation across distinct genetic backgrounds might lead to rapid differential genome evolution during vegetative growth.
Collapse
Affiliation(s)
- Abhishek Dutta
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Fabien Dutreux
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
138
|
Maddamsetti R, Grant NA. Divergent Evolution of Mutation Rates and Biases in the Long-Term Evolution Experiment with Escherichia coli. Genome Biol Evol 2021; 12:1591-1603. [PMID: 32853353 PMCID: PMC7523724 DOI: 10.1093/gbe/evaa178] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2020] [Indexed: 12/20/2022] Open
Abstract
All organisms encode enzymes that replicate, maintain, pack, recombine, and repair their genetic material. For this reason, mutation rates and biases also evolve by mutation, variation, and natural selection. By examining metagenomic time series of the Lenski long-term evolution experiment (LTEE) with Escherichia coli (Good BH, McDonald MJ, Barrick JE, Lenski RE, Desai MM. 2017. The dynamics of molecular evolution over 60,000 generations. Nature 551(7678):45–50.), we find that local mutation rate variation has evolved during the LTEE. Each LTEE population has evolved idiosyncratic differences in their rates of point mutations, indels, and mobile element insertions, due to the fixation of various hypermutator and antimutator alleles. One LTEE population, called Ara+3, shows a strong, symmetric wave pattern in its density of point mutations, radiating from the origin of replication. This pattern is largely missing from the other LTEE populations, most of which evolved missense, indel, or structural mutations in topA, fis, and dusB—loci that all affect DNA topology. The distribution of mutations in those genes over time suggests epistasis and historical contingency in the evolution of DNA topology, which may have in turn affected local mutation rates. Overall, the replicate populations of the LTEE have largely diverged in their mutation rates and biases, even though they have adapted to identical abiotic conditions.
Collapse
Affiliation(s)
| | - Nkrumah A Grant
- BEACON Center for the Study of Evolution in Action, Michigan State University.,Department of Microbiology and Molecular Genetics, Michigan State University.,Program in Ecology, Evolutionary Biology and Behavior, Michigan State University
| |
Collapse
|
139
|
Elez M. Mismatch Repair: From Preserving Genome Stability to Enabling Mutation Studies in Real-Time Single Cells. Cells 2021; 10:cells10061535. [PMID: 34207040 PMCID: PMC8235422 DOI: 10.3390/cells10061535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/18/2022] Open
Abstract
Mismatch Repair (MMR) is an important and conserved keeper of the maintenance of genetic information. Miroslav Radman's contributions to the field of MMR are multiple and tremendous. One of the most notable was to provide, along with Bob Wagner and Matthew Meselson, the first direct evidence for the existence of the methyl-directed MMR. The purpose of this review is to outline several aspects and biological implications of MMR that his work has helped unveil, including the role of MMR during replication and recombination editing, and the current understanding of its mechanism. The review also summarizes recent discoveries related to the visualization of MMR components and discusses how it has helped shape our understanding of the coupling of mismatch recognition to replication. Finally, the author explains how visualization of MMR components has paved the way to the study of spontaneous mutations in living cells in real time.
Collapse
Affiliation(s)
- Marina Elez
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France;
- Laboratoire Jean Perrin (LJP), Institut de Biologie Paris-Seine (IBPS), CNRS, Sorbonne Université, F-75005 Paris, France
| |
Collapse
|
140
|
Steiner UK. Senescence in Bacteria and Its Underlying Mechanisms. Front Cell Dev Biol 2021; 9:668915. [PMID: 34222238 PMCID: PMC8249858 DOI: 10.3389/fcell.2021.668915] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022] Open
Abstract
Bacteria have been thought to flee senescence by dividing into two identical daughter cells, but this notion of immortality has changed over the last two decades. Asymmetry between the resulting daughter cells after binary fission is revealed in physiological function, cell growth, and survival probabilities and is expected from theoretical understanding. Since the discovery of senescence in morphologically identical but physiologically asymmetric dividing bacteria, the mechanisms of bacteria aging have been explored across levels of biological organization. Quantitative investigations are heavily biased toward Escherichia coli and on the role of inclusion bodies—clusters of misfolded proteins. Despite intensive efforts to date, it is not evident if and how inclusion bodies, a phenotype linked to the loss of proteostasis and one of the consequences of a chain of reactions triggered by reactive oxygen species, contribute to senescence in bacteria. Recent findings in bacteria question that inclusion bodies are only deleterious, illustrated by fitness advantages of cells holding inclusion bodies under varying environmental conditions. The contributions of other hallmarks of aging, identified for metazoans, remain elusive. For instance, genomic instability appears to be age independent, epigenetic alterations might be little age specific, and other hallmarks do not play a major role in bacteria systems. What is surprising is that, on the one hand, classical senescence patterns, such as an early exponential increase in mortality followed by late age mortality plateaus, are found, but, on the other hand, identifying mechanisms that link to these patterns is challenging. Senescence patterns are sensitive to environmental conditions and to genetic background, even within species, which suggests diverse evolutionary selective forces on senescence that go beyond generalized expectations of classical evolutionary theories of aging. Given the molecular tool kits available in bacteria, the high control of experimental conditions, the high-throughput data collection using microfluidic systems, and the ease of life cell imaging of fluorescently marked transcription, translation, and proteomic dynamics, in combination with the simple demographics of growth, division, and mortality of bacteria, make the challenges surprising. The diversity of mechanisms and patterns revealed and their environmental dependencies not only present challenges but also open exciting opportunities for the discovery and deeper understanding of aging and its mechanisms, maybe beyond bacteria and aging.
Collapse
Affiliation(s)
- Ulrich Karl Steiner
- Evolutionary Demography Group, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
141
|
Dawson D, Rasmussen D, Peng X, Lanzas C. Inferring environmental transmission using phylodynamics: a case-study using simulated evolution of an enteric pathogen. J R Soc Interface 2021; 18:20210041. [PMID: 34102084 DOI: 10.1098/rsif.2021.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Indirect (environmental) and direct (host-host) transmission pathways cannot easily be distinguished when they co-occur in epidemics, particularly when they occur on similar time scales. Phylodynamic reconstruction is a potential approach to this problem that combines epidemiological information (temporal, spatial information) with pathogen whole-genome sequencing data to infer transmission trees of epidemics. However, factors such as differences in mutation and transmission rates between host and non-host environments may obscure phylogenetic inference from these methods. In this study, we used a network-based transmission model that explicitly models pathogen evolution to simulate epidemics with both direct and indirect transmission. Epidemics were simulated according to factorial combinations of direct/indirect transmission proportions, host mutation rates and conditions of environmental pathogen growth. Transmission trees were then reconstructed using the phylodynamic approach SCOTTI (structured coalescent transmission tree inference) and evaluated. We found that although insufficient diversity sets a lower bound on when accurate phylodynamic inferences can be made, transmission routes and assumed pathogen lifestyle affected pathogen population structure and subsequently influenced both reconstruction success and the likelihood of direct versus indirect pathways being reconstructed. We conclude that prior knowledge of the likely ecology and population structure of pathogens in host and non-host environments is critical to fully using phylodynamic techniques.
Collapse
Affiliation(s)
- Daniel Dawson
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - David Rasmussen
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA.,Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Xinxia Peng
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA.,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Cristina Lanzas
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
142
|
Auboeuf D. The Physics-Biology continuum challenges darwinism: Evolution is directed by the homeostasis-dependent bidirectional relation between genome and phenotype. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 167:121-139. [PMID: 34097984 DOI: 10.1016/j.pbiomolbio.2021.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/19/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
The physics-biology continuum relies on the fact that life emerged from prebiotic molecules. Here, I argue that life emerged from the coupling between nucleic acid and protein synthesis during which proteins (or proto-phenotypes) maintained the physicochemical parameter equilibria (or proto-homeostasis) in the proximity of their encoding nucleic acids (or proto-genomes). This protected the proto-genome physicochemical integrity (i.e., atomic composition) from environmental physicochemical constraints, and therefore increased the probability of reproducing the proto-genome without variation. From there, genomes evolved depending on the biological activities they generated in response to environmental fluctuations. Thus, a genome maintaining homeostasis (i.e., internal physicochemical parameter equilibria), despite and in response to environmental fluctuations, maintains its physicochemical integrity and has therefore a higher probability to be reproduced without variation. Consequently, descendants have a higher probability to share the same phenotype than their parents. Otherwise, the genome is modified during replication as a consequence of the imbalance of the internal physicochemical parameters it generates, until new mutation-deriving biological activities maintain homeostasis in offspring. In summary, evolution depends on feedforward and feedback loops between genome and phenotype, as the internal physicochemical conditions that a genome generates ─ through its derived phenotype in response to environmental fluctuations ─ in turn either guarantee its stability or direct its variation. Evolution may not be explained by the Darwinism-derived, unidirectional principle (random mutations-phenotypes-natural selection) but rather by the bidirectional relationship between genome and phenotype, in which the phenotype in interaction with the environment directs the evolution of the genome it derives from.
Collapse
Affiliation(s)
- Didier Auboeuf
- ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 Allée D'Italie, Site Jacques Monod, F-69007, Lyon, France.
| |
Collapse
|
143
|
Experimental evolution of extremophile resistance to ionizing radiation. Trends Genet 2021; 37:830-845. [PMID: 34088512 DOI: 10.1016/j.tig.2021.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
A growing number of known species possess a remarkable characteristic - extreme resistance to the effects of ionizing radiation (IR). This review examines our current understanding of how organisms can adapt to and survive exposure to IR, one of the most toxic stressors known. The study of natural extremophiles such as Deinococcus radiodurans has revealed much. However, the evolution of Deinococcus was not driven by IR. Another approach, pioneered by Evelyn Witkin in 1946, is to utilize experimental evolution. Contributions to the IR-resistance phenotype affect multiple aspects of cell physiology, including DNA repair, removal of reactive oxygen species, the structure and packaging of DNA and the cell itself, and repair of iron-sulfur centers. Based on progress to date, we overview the diversity of mechanisms that can contribute to biological IR resistance arising as a result of either natural or experimental evolution.
Collapse
|
144
|
Unexpectedly high mutation rate of a deep-sea hyperthermophilic anaerobic archaeon. THE ISME JOURNAL 2021; 15:1862-1869. [PMID: 33452477 PMCID: PMC8163891 DOI: 10.1038/s41396-020-00888-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/29/2023]
Abstract
Deep-sea hydrothermal vents resemble the early Earth, and thus the dominant Thermococcaceae inhabitants, which occupy an evolutionarily basal position of the archaeal tree and take an obligate anaerobic hyperthermophilic free-living lifestyle, are likely excellent models to study the evolution of early life. Here, we determined that unbiased mutation rate of a representative species, Thermococcus eurythermalis, exceeded that of all known free-living prokaryotes by 1-2 orders of magnitude, and thus rejected the long-standing hypothesis that low mutation rates were selectively favored in hyperthermophiles. We further sequenced multiple and diverse isolates of this species and calculated that T. eurythermalis has a lower effective population size than other free-living prokaryotes by 1-2 orders of magnitude. These data collectively indicate that the high mutation rate of this species is not selectively favored but instead driven by random genetic drift. The availability of these unusual data also helps explore mechanisms underlying microbial genome size evolution. We showed that genome size is negatively correlated with mutation rate and positively correlated with effective population size across 30 bacterial and archaeal lineages, suggesting that increased mutation rate and random genetic drift are likely two important mechanisms driving microbial genome reduction. Future determinations of the unbiased mutation rate of more representative lineages with highly reduced genomes such as Prochlorococcus and Pelagibacterales that dominate marine microbial communities are essential to test these hypotheses.
Collapse
|
145
|
Control of Genome Stability by EndoMS/NucS-Mediated Non-Canonical Mismatch Repair. Cells 2021; 10:cells10061314. [PMID: 34070467 PMCID: PMC8228993 DOI: 10.3390/cells10061314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/17/2022] Open
Abstract
The DNA repair endonuclease EndoMS/NucS is highly conserved in Archaea and Actinobacteria. This enzyme is able to recognize and cleave dsDNA carrying a mismatched base pair, and its activity is enhanced by the interaction with the sliding clamp of the replisome. Today, EndoMS/NucS has been established as the key protein of a non-canonical mismatch repair (MMR) pathway, acting specifically in the repair of transitions and being essential for maintaining genome stability. Despite having some particularities, such as its lower activity on transversions and the inability to correct indels, EndoMS/NucS meets the main hallmarks of a MMR. Its absence leads to a hypermutator phenotype, a transition-biased mutational spectrum and an increase in homeologous recombination. Interestingly, polymorphic EndoMS/NucS variants with a possible effect in mutation rate have been detected in clinical isolates of the relevant actinobacterial pathogen Mycobacterium tuberculosis. Considering that MMR defects are often associated with the emergence of resistant bacteria, the existence of EndoMS/NucS-defective mutators could have an important role in the acquisition of antibiotic resistance in M. tuberculosis. Therefore, a further understanding of the EndoMS/NucS-mediated non-canonical MMR pathway may reveal new strategies to predict and fight drug resistance. This review is focused on the recent progress in NucS, with special emphasis on its effect on genome stability and evolvability in Actinobacteria.
Collapse
|
146
|
Lu Z, Cui J, Wang L, Teng N, Zhang S, Lam HM, Zhu Y, Xiao S, Ke W, Lin J, Xu C, Jin B. Genome-wide DNA mutations in Arabidopsis plants after multigenerational exposure to high temperatures. Genome Biol 2021; 22:160. [PMID: 34034794 PMCID: PMC8145854 DOI: 10.1186/s13059-021-02381-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/13/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Elevated temperatures can cause physiological, biochemical, and molecular responses in plants that can greatly affect their growth and development. Mutations are the most fundamental force driving biological evolution. However, how long-term elevations in temperature influence the accumulation of mutations in plants remains unknown. RESULTS Multigenerational exposure of Arabidopsis MA (mutation accumulation) lines and MA populations to extreme heat and moderate warming results in significantly increased mutation rates in single-nucleotide variants (SNVs) and small indels. We observe distinctive mutational spectra under extreme and moderately elevated temperatures, with significant increases in transition and transversion frequencies. Mutation occurs more frequently in intergenic regions, coding regions, and transposable elements in plants grown under elevated temperatures. At elevated temperatures, more mutations accumulate in genes associated with defense responses, DNA repair, and signaling. Notably, the distribution patterns of mutations among all progeny differ between MA populations and MA lines, suggesting that stronger selection effects occurred in populations. Methylation is observed more frequently at mutation sites, indicating its contribution to the mutation process at elevated temperatures. Mutations occurring within the same genome under elevated temperatures are significantly biased toward low gene density regions, special trinucleotides, tandem repeats, and adjacent simple repeats. Additionally, mutations found in all progeny overlap significantly with genetic variations reported in 1001 Genomes, suggesting non-uniform distribution of de novo mutations through the genome. CONCLUSION Collectively, our results suggest that elevated temperatures can accelerate the accumulation, and alter the molecular profiles, of DNA mutations in plants, thus providing significant insight into how environmental temperatures fuel plant evolution.
Collapse
Affiliation(s)
- Zhaogeng Lu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, China
| | - Jiawen Cui
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Li Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Nianjun Teng
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Shoudong Zhang
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region China
| | - Hon-Ming Lam
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region China
| | - Yingfang Zhu
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, China
| | - Siwei Xiao
- Wuhan Frasergen Bioinformatics Co, Wuhan, China
| | - Wensi Ke
- Wuhan Frasergen Bioinformatics Co, Wuhan, China
| | - Jinxing Lin
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Chenwu Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, China
| | - Biao Jin
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
147
|
Duan B, Ding P, Navarre WW, Liu J, Xia B. Xenogeneic Silencing and Bacterial Genome Evolution: Mechanisms for DNA Recognition Imply Multifaceted Roles of Xenogeneic Silencers. Mol Biol Evol 2021; 38:4135-4148. [PMID: 34003286 PMCID: PMC8476142 DOI: 10.1093/molbev/msab136] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/08/2021] [Indexed: 12/14/2022] Open
Abstract
Horizontal gene transfer (HGT) is a major driving force for bacterial evolution. To avoid the deleterious effects due to the unregulated expression of newly acquired foreign genes, bacteria have evolved specific proteins named xenogeneic silencers to recognize foreign DNA sequences and suppress their transcription. As there is considerable diversity in genomic base compositions among bacteria, how xenogeneic silencers distinguish self- from nonself DNA in different bacteria remains poorly understood. This review summarizes the progress in studying the DNA binding preferences and the underlying molecular mechanisms of known xenogeneic silencer families, represented by H-NS of Escherichia coli, Lsr2 of Mycobacterium, MvaT of Pseudomonas, and Rok of Bacillus. Comparative analyses of the published data indicate that the differences in DNA recognition mechanisms enable these xenogeneic silencers to have clear characteristics in DNA sequence preferences, which are further correlated with different host genomic features. These correlations provide insights into the mechanisms of how these xenogeneic silencers selectively target foreign DNA in different genomic backgrounds. Furthermore, it is revealed that the genomic AT contents of bacterial species with the same xenogeneic silencer family proteins are distributed in a limited range and are generally lower than those species without any known xenogeneic silencers in the same phylum/class/genus, indicating that xenogeneic silencers have multifaceted roles on bacterial genome evolution. In addition to regulating horizontal gene transfer, xenogeneic silencers also act as a selective force against the GC to AT mutational bias found in bacterial genomes and help the host genomic AT contents maintained at relatively low levels.
Collapse
Affiliation(s)
- Bo Duan
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, and School of Life Sciences, Peking University, Beijing, 100871, China
| | - Pengfei Ding
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, and School of Life Sciences, Peking University, Beijing, 100871, China
| | - William Wiley Navarre
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Jun Liu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Bin Xia
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, and School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
148
|
Effect of mismatch repair on the mutational footprint of the bacterial SOS mutator activity. DNA Repair (Amst) 2021; 103:103130. [PMID: 33991871 DOI: 10.1016/j.dnarep.2021.103130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 11/20/2022]
Abstract
The bacterial SOS response to DNA damage induces an error-prone repair program that is mutagenic. In Escherichia coli, SOS-induced mutations are caused by the translesion synthesis (TLS) activity of two error-prone polymerases (EPPs), Pol IV and Pol V. The mutational footprint of the EPPs is confounded by both DNA damage and repair, as mutations are targeted to DNA lesions via TLS and corrected by the mismatch repair (MMR) system. To remove these factors and assess untargeted EPP mutations genome-wide, we constructed spontaneous SOS mutator strains deficient in MMR, then analyzed their mutational footprints by mutation accumulation and whole genome sequencing. Our analysis reveals new features of untargeted SOS-mutagenesis, showing how MMR alters its spectrum, sequence specificity, and strand-bias. Our data support a model where the EPPs prefer to act on the lagging strand of the replication fork, producing base pair mismatches that are differentially repaired by MMR depending on the type of mismatch.
Collapse
|
149
|
Adaptive differentiation and rapid evolution of a soil bacterium along a climate gradient. Proc Natl Acad Sci U S A 2021; 118:2101254118. [PMID: 33906949 PMCID: PMC8106337 DOI: 10.1073/pnas.2101254118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Increasing evidence suggests that evolutionary processes frequently shape ecological patterns; however, most microbiome studies thus far have focused on only the ecological responses of these communities. By using parallel field experiments and focusing in on a model soil bacterium, we showed that bacterial “species” are differentially adapted to local climates, leading to changes in their composition. Furthermore, we detected strain-level evolution, providing direct evidence that both ecological and evolutionary processes operate on annual timescales. The consideration of eco-evolutionary dynamics may therefore be important to understand the response of soil microbiomes to future environmental change. Microbial community responses to environmental change are largely associated with ecological processes; however, the potential for microbes to rapidly evolve and adapt remains relatively unexplored in natural environments. To assess how ecological and evolutionary processes simultaneously alter the genetic diversity of a microbiome, we conducted two concurrent experiments in the leaf litter layer of soil over 18 mo across a climate gradient in Southern California. In the first experiment, we reciprocally transplanted microbial communities from five sites to test whether ecological shifts in ecotypes of the abundant bacterium, Curtobacterium, corresponded to past adaptive differentiation. In the transplanted communities, ecotypes converged toward that of the native communities growing on a common litter substrate. Moreover, these shifts were correlated with community-weighted mean trait values of the Curtobacterium ecotypes, indicating that some of the trait variation among ecotypes could be explained by local adaptation to climate conditions. In the second experiment, we transplanted an isogenic Curtobacterium strain and tracked genomic mutations associated with the sites across the same climate gradient. Using a combination of genomic and metagenomic approaches, we identified a variety of nonrandom, parallel mutations associated with transplantation, including mutations in genes related to nutrient acquisition, stress response, and exopolysaccharide production. Together, the field experiments demonstrate how both demographic shifts of previously adapted ecotypes and contemporary evolution can alter the diversity of a soil microbiome on the same timescale.
Collapse
|
150
|
Perfect Match Genomic Landscape strategy: Refinement and customization of reference genomes. Proc Natl Acad Sci U S A 2021; 118:2025192118. [PMID: 33737447 PMCID: PMC8040819 DOI: 10.1073/pnas.2025192118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The accuracy of the nucleotide sequence of genomes is of utmost importance. The Perfect Match Genomic Landscape (PMGL) is a precise, sensitive, and nonstatistical strategy to detect genome variation. We used this strategy to refine reference genomes from microorganisms belonging to the three domains of life. Our studies show as well that the PMGL can be useful to detect variants in pathogen agents during a pandemic, and to isolate mutations generated during any desired stage of experimental evolution studies. We propose that the PMGL strategy could be the final step in the refinement of any haploid genome, independently of the methodology and algorithms used for its assembly. When addressing a genomic question, having a reliable and adequate reference genome is of utmost importance. This drives the necessity to refine and customize reference genomes (RGs). Our laboratory has recently developed a strategy, the Perfect Match Genomic Landscape (PMGL), to detect variation between genomes [K. Palacios-Flores et al.. Genetics 208, 1631–1641 (2018)]. The PMGL is precise and sensitive and, in contrast to most currently used algorithms, is nonstatistical in nature. Here we demonstrate the power of PMGL to refine and customize RGs. As a proof-of-concept, we refined different versions of the Saccharomyces cerevisiae RG. We applied the automatic PMGL pipeline to refine the genomes of microorganisms belonging to the three domains of life: the archaea Methanococcus maripaludis and Pyrococcus furiosus; the bacteria Escherichia coli, Staphylococcus aureus, and Bacillus subtilis; and the eukarya Schizosaccharomyces pombe, Aspergillus oryzae, and several strains of Saccharomyces paradoxus. We analyzed the reference genome of the virus SARS-CoV-2 and previously published viral genomes from patients’ samples with COVID-19. We performed a mutation-accumulation experiment in E. coli and show that the PMGL strategy can detect specific mutations generated at any desired step of the whole procedure. We propose that PMGL can be used as a final step for the refinement and customization of any haploid genome, independently of the strategies and algorithms used in its assembly.
Collapse
|