101
|
Rustighi A, Zannini A, Tiberi L, Sommaggio R, Piazza S, Sorrentino G, Nuzzo S, Tuscano A, Eterno V, Benvenuti F, Santarpia L, Aifantis I, Rosato A, Bicciato S, Zambelli A, Del Sal G. Prolyl-isomerase Pin1 controls normal and cancer stem cells of the breast. EMBO Mol Med 2013; 6:99-119. [PMID: 24357640 PMCID: PMC3936488 DOI: 10.1002/emmm.201302909] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Mammary epithelial stem cells are fundamental to maintain tissue integrity. Cancer stem cells (CSCs) are implicated in both treatment resistance and disease relapse, and the molecular bases of their malignant properties are still poorly understood. Here we show that both normal stem cells and CSCs of the breast are controlled by the prolyl-isomerase Pin1. Mechanistically, following interaction with Pin1, Notch1 and Notch4, key regulators of cell fate, escape from proteasomal degradation by their major ubiquitin-ligase Fbxw7α. Functionally, we show that Fbxw7α acts as an essential negative regulator of breast CSCs' expansion by restraining Notch activity, but the establishment of a Notch/Pin1 active circuitry opposes this effect, thus promoting breast CSCs self-renewal, tumor growth and metastasis in vivo. In human breast cancers, despite Fbxw7α expression, high levels of Pin1 sustain Notch signaling, which correlates with poor prognosis. Suppression of Pin1 holds promise in reverting aggressive phenotypes, through CSC exhaustion as well as recovered drug sensitivity carrying relevant implications for therapy of breast cancers.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- F-Box Proteins/genetics
- F-Box Proteins/metabolism
- F-Box-WD Repeat-Containing Protein 7
- Female
- Humans
- Mammary Glands, Human/cytology
- Mice
- Mice, Knockout
- Mice, SCID
- NIMA-Interacting Peptidylprolyl Isomerase
- Neoplastic Stem Cells/cytology
- Neoplastic Stem Cells/metabolism
- Peptidylprolyl Isomerase/antagonists & inhibitors
- Peptidylprolyl Isomerase/genetics
- Peptidylprolyl Isomerase/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Receptor, Notch4
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Signal Transduction
- Stem Cells/cytology
- Stem Cells/metabolism
- Transplantation, Heterologous
- Triple Negative Breast Neoplasms/metabolism
- Triple Negative Breast Neoplasms/pathology
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
Collapse
Affiliation(s)
- Alessandra Rustighi
- Laboratorio Nazionale CIB (LNCIB), Area Science ParkTrieste, Italy
- Dipartimento di Scienze della Vita, Università degli Studi di TriesteTrieste, Italy
| | - Alessandro Zannini
- Laboratorio Nazionale CIB (LNCIB), Area Science ParkTrieste, Italy
- Dipartimento di Scienze della Vita, Università degli Studi di TriesteTrieste, Italy
| | - Luca Tiberi
- Laboratorio Nazionale CIB (LNCIB), Area Science ParkTrieste, Italy
- Dipartimento di Scienze della Vita, Università degli Studi di TriesteTrieste, Italy
| | - Roberta Sommaggio
- Dipartimento di Scienze Oncologiche e Chirurgiche, Università degli Studi di Padova e Istituto Oncologico Veneto IRCCSPadova, Italy
| | - Silvano Piazza
- Laboratorio Nazionale CIB (LNCIB), Area Science ParkTrieste, Italy
| | - Giovanni Sorrentino
- Laboratorio Nazionale CIB (LNCIB), Area Science ParkTrieste, Italy
- Dipartimento di Scienze della Vita, Università degli Studi di TriesteTrieste, Italy
| | - Simona Nuzzo
- Center for Genome Research, Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio EmiliaModena, Italy
| | | | - Vincenzo Eterno
- Oncology Department IRCCS Fondazione Salvatore MaugeriPavia, Italy
| | - Federica Benvenuti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science ParkTrieste, Italy
| | - Libero Santarpia
- Translational Research Unit, Istituto Toscano TumoriPrato, Italy
| | - Iannis Aifantis
- Howard Hughes Medical Institute and Department of Pathology, NYU School of MedicineNew York, NY, USA
| | - Antonio Rosato
- Dipartimento di Scienze Oncologiche e Chirurgiche, Università degli Studi di Padova e Istituto Oncologico Veneto IRCCSPadova, Italy
| | - Silvio Bicciato
- Center for Genome Research, Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio EmiliaModena, Italy
| | - Alberto Zambelli
- Oncology Department IRCCS Fondazione Salvatore MaugeriPavia, Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB (LNCIB), Area Science ParkTrieste, Italy
- Dipartimento di Scienze della Vita, Università degli Studi di TriesteTrieste, Italy
- Corresponding author: Tel: +39 040 3756801; Fax +39 040 398990; E-mail:
| |
Collapse
|
102
|
Liu J, Xu CY, Cai SZ, Zhou Y, Li J, Jiang R, Wang YP. Senescence Effects of Angelica sinensis Polysaccharides on Human Acute Myelogenous Leukemia Stem and Progenitor Cells. Asian Pac J Cancer Prev 2013; 14:6549-56. [DOI: 10.7314/apjcp.2013.14.11.6549] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
103
|
Comprehensive identification of mutational cancer driver genes across 12 tumor types. Sci Rep 2013; 3:2650. [PMID: 24084849 PMCID: PMC3788361 DOI: 10.1038/srep02650] [Citation(s) in RCA: 373] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/23/2013] [Indexed: 12/17/2022] Open
Abstract
With the ability to fully sequence tumor genomes/exomes, the quest for cancer driver genes can now be undertaken in an unbiased manner. However, obtaining a complete catalog of cancer genes is difficult due to the heterogeneous molecular nature of the disease and the limitations of available computational methods. Here we show that the combination of complementary methods allows identifying a comprehensive and reliable list of cancer driver genes. We provide a list of 291 high-confidence cancer driver genes acting on 3,205 tumors from 12 different cancer types. Among those genes, some have not been previously identified as cancer drivers and 16 have clear preference to sustain mutations in one specific tumor type. The novel driver candidates complement our current picture of the emergence of these diseases. In summary, the catalog of driver genes and the methodology presented here open new avenues to better understand the mechanisms of tumorigenesis.
Collapse
|
104
|
Lee CL, Blum JM, Kirsch DG. Role of p53 in regulating tissue response to radiation by mechanisms independent of apoptosis. Transl Cancer Res 2013; 2:412-421. [PMID: 24466508 PMCID: PMC3898670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Radiation exposure leads to diverse outcomes in vivo across different tissues and even within the same cell lineage. The diversity of radiation response in vivo is at least partially attributable to the status of the tumor suppressor p53, a master regulator of cellular response to stress, and activation of its transcriptional targets. In certain cells, such as hematopoietic progenitors and transit amplifying cells in the gastrointestinal epithelium, activation of p53 by radiation triggers the intrinsic pathway of apoptosis. However, in many other cells, activation of p53 by radiation does not result in apoptosis, which underscores the importance of understanding the role of p53 in regulating radiation response through alternative mechanisms. In this review, we summarize recent studies using genetically engineered mice to dissect the role of p53 in 1) cells where its activation is dissociated from the intrinsic pathway of apoptosis, such as hematopoietic stem cells and vascular endothelial cells and 2) tissues where activation of the intrinsic pathway of apoptosis does not promote the acute radiation syndrome, such as the gastrointestinal epithelium. We highlight findings showing that the apoptosis-independent response of p53 to radiation in vivo can contribute to death or survival in a cell-type dependent manner, which underscores the complexity by which p53 regulates the cellular and tissue response to radiation.
Collapse
Affiliation(s)
- Chang-Lung Lee
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Jordan M. Blum
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - David G. Kirsch
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
105
|
Le Bouteiller M, Souilhol C, Beck-Cormier S, Stedman A, Burlen-Defranoux O, Vandormael-Pournin S, Bernex F, Cumano A, Cohen-Tannoudji M. Notchless-dependent ribosome synthesis is required for the maintenance of adult hematopoietic stem cells. ACTA ACUST UNITED AC 2013; 210:2351-69. [PMID: 24062412 PMCID: PMC3804936 DOI: 10.1084/jem.20122019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Conditional deletion of Notchless leads to rapid deletion and exhaustion of HSCs and early progenitor cells, whereas committed progenitor cells survive as a result of differences in ribosomal biogenesis. Blood cell production relies on the coordinated activities of hematopoietic stem cells (HSCs) and multipotent and lineage-restricted progenitors. Here, we identify Notchless (Nle) as a critical factor for HSC maintenance under both homeostatic and cytopenic conditions. Nle deficiency leads to a rapid and drastic exhaustion of HSCs and immature progenitors and failure to maintain quiescence in HSCs. In contrast, Nle is dispensable for cycling-restricted progenitors and differentiated cells. In yeast, Nle/Rsa4 is essential for ribosome biogenesis, and we show that its role in pre-60S subunit maturation has been conserved in the mouse. Despite its implication in this basal cellular process, Nle deletion affects ribosome biogenesis only in HSCs and immature progenitors. Ribosome biogenesis defects are accompanied by p53 activation, which causes their rapid exhaustion. Collectively, our findings establish an essential role for Nle in HSC and immature progenitor functions and uncover previously unsuspected differences in ribosome biogenesis that distinguish stem cells from restricted progenitor populations.
Collapse
Affiliation(s)
- Marie Le Bouteiller
- Institut Pasteur, Unité de Génétique Fonctionnelle de la Souris, Département de Biologie du Développement et Cellules Souches, F-75015 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Riva L, Ronchini C, Bodini M, Lo-Coco F, Lavorgna S, Ottone T, Martinelli G, Iacobucci I, Tarella C, Cignetti A, Volorio S, Bernard L, Russo A, Melloni GEM, Luzi L, Alcalay M, Dellino GI, Pelicci PG. Acute promyelocytic leukemias share cooperative mutations with other myeloid-leukemia subgroups. Blood Cancer J 2013; 3:e147. [PMID: 24036946 PMCID: PMC3789210 DOI: 10.1038/bcj.2013.46] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- L Riva
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia, at the IFOM-IEO Campus, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Chillemi G, Davidovich P, D'Abramo M, Mametnabiev T, Garabadzhiu AV, Desideri A, Melino G. Molecular dynamics of the full-length p53 monomer. Cell Cycle 2013; 12:3098-108. [PMID: 23974096 DOI: 10.4161/cc.26162] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The p53 protein is frequently mutated in a very large proportion of human tumors, where it seems to acquire gain-of-function activity that facilitates tumor onset and progression. A possible mechanism is the ability of mutant p53 proteins to physically interact with other proteins, including members of the same family, namely p63 and p73, inactivating their function. Assuming that this interaction might occurs at the level of the monomer, to investigate the molecular basis for this interaction, here, we sample the structural flexibility of the wild-type p53 monomeric protein. The results show a strong stability up to 850 ns in the DNA binding domain, with major flexibility in the N-terminal transactivations domains (TAD1 and TAD2) as well as in the C-terminal region (tetramerization domain). Several stable hydrogen bonds have been detected between N-terminal or C-terminal and DNA binding domain, and also between N-terminal and C-terminal. Essential dynamics analysis highlights strongly correlated movements involving TAD1 and the proline-rich region in the N-terminal domain, the tetramerization region in the C-terminal domain; Lys120 in the DNA binding region. The herein presented model is a starting point for further investigation of the whole protein tetramer as well as of its mutants.
Collapse
|
108
|
Abstract
The role of the promyelocytic leukemia (PML) protein has been widely tested in many different contexts, as attested by the hundreds of papers present in the literature. In most of these studies, PML is regarded as a tumor suppressor, a notion on the whole accepted by the scientific community. In this review, we examine how the concept of tumor-suppressor gene has evolved until now and then systematically assess whether this assumption for PML is supported by unambiguous experimental evidence.
Collapse
Affiliation(s)
- Massimiliano Mazza
- Department of Experimental Oncology, European Institute of Oncology , Milan , Italy
| | | |
Collapse
|
109
|
Jiang BY, Zhang XC, Su J, Meng W, Yang XN, Yang JJ, Zhou Q, Chen ZY, Chen ZH, Xie Z, Chen SL, Wu YL. BCL11A overexpression predicts survival and relapse in non-small cell lung cancer and is modulated by microRNA-30a and gene amplification. Mol Cancer 2013; 12:61. [PMID: 23758992 PMCID: PMC3695801 DOI: 10.1186/1476-4598-12-61] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/04/2013] [Indexed: 01/02/2023] Open
Abstract
Background Aberrant activation of the proto-oncogene B-cell lymphoma/leukemia 11A (BCL11A) has been implicated in the pathogenesis of leukemia and lymphoma. However, the clinical significance of BCL11A in non-small cell lung cancer (NSCLC) remains unknown. Results We examined BCL11A expression at the protein and mRNA levels in a cohort (n = 114) of NSCLC patients and assessed the relationship between BCL11A expression and clinicopathological parameters. Data from array-based Comparative Genomic Hybridization (aCGH) and microRNA transfection experiments were integrated to explore the potential mechanisms of abnormal BCL11A activation in NSCLC. Compared to adjacent non-cancerous lung tissues, BCL11A expression levels were specifically upregulated in NSCLC tissues at both the mRNA (t = 9.81, P < 0.001) and protein levels. BCL11A protein levels were higher in patients with squamous histology (χ2 = 15.81, P = 0.001), smokers (χ2 = 8.92, P = 0.004), patients with no lymph node involvement (χ2 = 5.14, P = 0.029), and patients with early stage disease (χ2 = 3.91, P = 0.048). A multivariate analysis demonstrated that in early stage NSCLC (IA–IIB), BCL11A was not only an independent prognostic factor for disease-free survival (hazards ratio [HR] 0.24, 95% confidence interval [CI] 0.12-0.50, P < 0.001), but also for overall survival (HR = 0.23, 95% CI 0.09-0.61, P = 0.003). The average BCL11A expression level was much higher in SCC samples with amplifications than in those without amplifications (t = 3.30, P = 0.023). Assessing functionality via an in vitro luciferase reporter system and western blotting, we found that the BCL11A protein was a target of miR-30a. Conclusions Our results demonstrated that proto-oncogene BCL11A activation induced by miR-30a and gene amplification may be a potential diagnostic and prognostic biomarker for effective management of this disease.
Collapse
Affiliation(s)
- Ben-yuan Jiang
- Guangdong Lung Cancer Institute, 106 Zhongshan Er Rd, Guangzhou, 510080, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|