101
|
Jones KD, Stewart SG. Recent Advances in Steroid Synthesis: A Tribute to Sir Derek Barton. Aust J Chem 2018. [DOI: 10.1071/ch18256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The synthesis of steroids and gaining an ultimate understanding of their reactivity was one of Sir Derek Barton’s most notable research areas. This highlight will focus on the construction of the steroid ring system from 2016 to 2018, and will include pathways that eventually led to natural product synthesis. For example, efficient syntheses of ent-pregnanolone sulfate and oestradiol methyl ether will be explained along with the total synthesis of cannogenol-3-O-α-l-rhamnoside.
Collapse
|
102
|
Schneider NFZ, Persich L, Rocha SC, Ramos ACP, Cortes VF, Silva IT, Munkert J, Pádua RM, Kreis W, Taranto AG, Barbosa LA, Braga FC, Simões CM. Cytotoxic and cytostatic effects of digitoxigenin monodigitoxoside (DGX) in human lung cancer cells and its link to Na,K-ATPase. Biomed Pharmacother 2018; 97:684-696. [DOI: 10.1016/j.biopha.2017.10.128] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/11/2017] [Accepted: 10/23/2017] [Indexed: 01/31/2023] Open
|
103
|
Bhattarai B, Nagorny P. Enantioselective Total Synthesis of Cannogenol-3-O-α-l-rhamnoside via Sequential Cu(II)-Catalyzed Michael Addition/Intramolecular Aldol Cyclization Reactions. Org Lett 2017; 20:154-157. [PMID: 29244520 DOI: 10.1021/acs.orglett.7b03513] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A concise and scalable enantioselective total synthesis of the natural cardenolides cannogenol and cannogenol-3-O-α-l-rhamnoside has been achieved in 18 linear steps. The synthesis features a Cu(II)-catalyzed enantioselective and diastereoselective Michael reaction/tandem aldol cyclization and a one-pot reduction/transposition, which resulted in a rapid (6 linear steps) assembly of a functionalized intermediate containing C19 oxygenation that could be elaborated to cardenolide cannogenol. In addition, a strategy for achieving regio- and stereoselective glycosylation at the C3 position of synthetic cannogenol was developed and applied to the preparation of cannogenol-3-O-α-l-rhamnoside.
Collapse
Affiliation(s)
- Bijay Bhattarai
- Chemistry Department, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Pavel Nagorny
- Chemistry Department, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
104
|
Pessôa MTC, Alves SLG, Taranto AG, Villar JAFP, Blanco G, Barbosa LA. Selectivity analyses of γ-benzylidene digoxin derivatives to different Na,K-ATPase α isoforms: a molecular docking approach. J Enzyme Inhib Med Chem 2017; 33:85-97. [PMID: 29115894 PMCID: PMC6009882 DOI: 10.1080/14756366.2017.1380637] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Digoxin and other cardiotonic steroids (CTS) exert their effect by inhibiting Na,K-ATPase (NKA) activity. CTS bind to the various NKA isoforms that are expressed in different cell types, which gives CTS their narrow therapeutic index. We have synthesised a series of digoxin derivatives (γ-Benzylidene digoxin derivatives) with substitutions in the lactone ring (including non-oxygen and ether groups), to obtain CTS with better NKA isoform specificity. Some of these derivatives show some NKA isoform selective effects, with BD-3, BD-8, and BD-13 increasing NKA α2 activity, BD-5 inhibiting NKA α1 and NKA α3, BD-10 reducing NKA α1, but stimulating NKA α2 and α3; and BD-14, BD-15, and BD-16 enhancing NKA α3 activity. A molecular-docking approach favoured NKA isoform specific interactions for the compounds that supported their observed activity. These results show that BD compounds are a new type of CTS with the capacity to target NKA activity in an isoform-specific manner.
Collapse
Affiliation(s)
- Marco T C Pessôa
- a Laboratório de Bioquímica Celular , Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú , Divinópolis , Brazil
| | - Silmara L G Alves
- b Laboratório de Síntese Orgânica e Nanoestruturas , Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú , Divinópolis , Brazil
| | - Alex G Taranto
- c Laboratório de Modelagem Molecular , Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú , Divinópolis , Brazil
| | - José A F P Villar
- b Laboratório de Síntese Orgânica e Nanoestruturas , Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú , Divinópolis , Brazil
| | - Gustavo Blanco
- d Department of Molecular and Integrative Physiology , Kansas University Medical Center , Kansas City , KS , USA
| | - Leandro A Barbosa
- a Laboratório de Bioquímica Celular , Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú , Divinópolis , Brazil
| |
Collapse
|
105
|
Development and Characterization of a Human and Mouse Intestinal Epithelial Cell Monolayer Platform. Stem Cell Reports 2017; 9:1976-1990. [PMID: 29153987 PMCID: PMC5785676 DOI: 10.1016/j.stemcr.2017.10.013] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 12/13/2022] Open
Abstract
We describe the development and characterization of a mouse and human epithelial cell monolayer platform of the small and large intestines, with a broad range of potential applications including the discovery and development of minimally systemic drug candidates. Culture conditions for each intestinal segment were optimized by correlating monolayer global gene expression with the corresponding tissue segment. The monolayers polarized, formed tight junctions, and contained a diversity of intestinal epithelial cell lineages. Ion transport phenotypes of monolayers from the proximal and distal colon and small intestine matched the known and unique physiology of these intestinal segments. The cultures secreted serotonin, GLP-1, and FGF19 and upregulated the epithelial sodium channel in response to known biologically active agents, suggesting intact secretory and absorptive functions. A screen of over 2,000 pharmacologically active compounds for inhibition of potassium ion transport in the mouse distal colon cultures led to the identification of a tool compound. Epithelial cell monolayer growth conditions developed for all intestinal segments Monolayer gene expression is consistent with tissue from each intestinal segment Ion transport, secretory, and absorptive functions match intestinal physiology Compound screen identified inhibitor of mouse distal colon potassium transport
Collapse
|
106
|
Blaustein MP. The pump, the exchanger, and the holy spirit: origins and 40-year evolution of ideas about the ouabain-Na + pump endocrine system. Am J Physiol Cell Physiol 2017; 314:C3-C26. [PMID: 28971835 DOI: 10.1152/ajpcell.00196.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Two prescient 1953 publications set the stage for the elucidation of a novel endocrine system: Schatzmann's report that cardiotonic steroids (CTSs) are all Na+ pump inhibitors, and Szent-Gyorgi's suggestion that there is an endogenous "missing screw" in heart failure that CTSs like digoxin may replace. In 1977 I postulated that an endogenous Na+ pump inhibitor acts as a natriuretic hormone and simultaneously elevates blood pressure (BP) in salt-dependent hypertension. This hypothesis was based on the idea that excess renal salt retention promoted the secretion of a CTS-like hormone that inhibits renal Na+ pumps and salt reabsorption. The hormone also inhibits arterial Na+ pumps, elevates myocyte Na+ and promotes Na/Ca exchanger-mediated Ca2+ gain. This enhances vasoconstriction and arterial tone-the hallmark of hypertension. Here I describe how those ideas led to the discovery that the CTS-like hormone is endogenous ouabain (EO), a key factor in the pathogenesis of hypertension and heart failure. Seminal observations that underlie the still-emerging picture of the EO-Na+ pump endocrine system in the physiology and pathophysiology of multiple organ systems are summarized. Milestones include: 1) cloning the Na+ pump isoforms and physiological studies of mutated pumps in mice; 2) discovery that Na+ pumps are also EO-triggered signaling molecules; 3) demonstration that ouabain, but not digoxin, is hypertensinogenic; 4) elucidation of EO's roles in kidney development and cardiovascular and renal physiology and pathophysiology; 5) discovery of "brain ouabain", a component of a novel hypothalamic neuromodulatory pathway; and 6) finding that EO and its brain receptors modulate behavior and learning.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Departments of Physiology and Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| |
Collapse
|
107
|
Blaustein MP. How does pressure overload cause cardiac hypertrophy and dysfunction? High-ouabain affinity cardiac Na + pumps are crucial. Am J Physiol Heart Circ Physiol 2017; 313:H919-H930. [PMID: 28733446 PMCID: PMC5792198 DOI: 10.1152/ajpheart.00131.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/17/2022]
Abstract
Left ventricular hypertrophy is frequently observed in hypertensive patients and is believed to be due to the pressure overload and cardiomyocyte stretch. Three recent reports on mice with genetically engineered Na+ pumps, however, have demonstrated that cardiac ouabain-sensitive α2-Na+ pumps play a key role in the pathogenesis of transaortic constriction-induced hypertrophy. Hypertrophy was delayed/attenuated in mice with mutant, ouabain-resistant α2-Na+ pumps and in mice with cardiac-selective knockout or transgenic overexpression of α2-Na+ pumps. The latter, seemingly paradoxical, findings can be explained by comparing the numbers of available (ouabain-free) high-affinity (α2) ouabain-binding sites in wild-type, knockout, and transgenic hearts. Conversely, hypertrophy was accelerated in α2-ouabain-resistant (R) mice in which the normally ouabain-resistant α1-Na+ pumps were mutated to an ouabain-sensitive (S) form (α1S/Sα2R/R or "SWAP" vs. wild-type or α1R/R α2S/S mice). Furthermore, transaortic constriction-induced hypertrophy in SWAP mice was prevented/reversed by immunoneutralizing circulating endogenous ouabain (EO). These findings show that EO and its receptor, ouabain-sensitive α2, are critical factors in pressure overload-induced cardiac hypertrophy. This complements reports linking elevated plasma EO to hypertension, cardiac hypertrophy, and failure in humans and elucidates the underappreciated role of the EO-Na+ pump pathway in cardiovascular disease.
Collapse
Affiliation(s)
- Mordecai P. Blaustein
- Departments of Physiology and Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
108
|
Dalla S, Baum M, Dobler S. Substitutions in the cardenolide binding site and interaction of subunits affect kinetics besides cardenolide sensitivity of insect Na,K-ATPase. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 89:43-50. [PMID: 28866054 DOI: 10.1016/j.ibmb.2017.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/20/2017] [Accepted: 08/29/2017] [Indexed: 06/07/2023]
Abstract
Substitutions within the cardenolide target site of several insects' Na,K-ATPase α-subunits may confer resistance against toxic cardenolides. However, to which extent these substitutions alter the Na,K-ATPase's kinetic properties and how they interact with different β-subunits is not clear. The cardenolide-adapted milkweed bug Oncopeltus fasciatus possesses three paralogs of the α-subunit (A, B, and C) that differ in number and identity of resistance-conferring substitutions. We introduced these substitutions into the α-subunit of Drosophila melanogaster and combined them with the β-subunits Nrv2.2 and Nrv3. The substitutions Q111T-N122H-F786N-T797A (A-copy mimic) and Q111T-N122H-F786N (B-copy mimic) mediated high insensitivity to ouabain, yet they drastically lowered ATPase activity. Remarkably, the identity of the β-subunit was decisive and all α-subunits were less active when combined with Nrv3 than when combined with Nrv2.2. Both the substitutions and the co-expressed β-subunit strongly affected the enyzme's affinity for Na+ and K+. Na+ affinity was considerably higher for all enzymes expressed with nrv3 while expression with nrv2.2 mostly increased K+ affinity. Our results provide the first evidence that resistance against cardenolides comes at the cost of significantly altered kinetic properties of the Na,K-ATPase. The β-subunit can strongly modulate these properties but cannot fully compensate for the effect of the substitutions.
Collapse
Affiliation(s)
- Safaa Dalla
- Institute of Zoology, Universität Hamburg, Martin-Luther-King Pl. 3, 20146 Hamburg, Germany
| | - Michael Baum
- Institute of Zoology, Universität Hamburg, Martin-Luther-King Pl. 3, 20146 Hamburg, Germany
| | - Susanne Dobler
- Institute of Zoology, Universität Hamburg, Martin-Luther-King Pl. 3, 20146 Hamburg, Germany.
| |
Collapse
|
109
|
Farias DL, Lucena MN, Garçon DP, Mantelatto FL, McNamara JC, Leone FA. A Kinetic Characterization of the Gill (Na +, K +)-ATPase from the Semi-terrestrial Mangrove Crab Cardisoma guanhumi Latreille, 1825 (Decapoda, Brachyura). J Membr Biol 2017; 250:517-534. [PMID: 28840273 DOI: 10.1007/s00232-017-9978-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 08/09/2017] [Indexed: 11/25/2022]
Abstract
We provide a kinetic characterization of (Na+, K+)-ATPase activity in a posterior gill microsomal fraction from the semi-terrestrial mangrove crab Cardisoma guanhumi. Sucrose density gradient centrifugation reveals two distinct membrane fractions showing considerable (Na+, K+)-ATPase activity, but also containing other microsomal ATPases. The (Na+, K+)-ATPase, notably immuno-localized to the apical region of the epithelial pillar cells, and throughout the pillar cell bodies, has an M r of around 110 kDa and hydrolyzes ATP with V M = 146.8 ± 6.3 nmol Pi min-1 mg protein-1 and K M = 0.05 ± 0.003 mmol L-1 obeying Michaelis-Menten kinetics. While stimulation by Na+ (V M = 139.4 ± 6.9 nmol Pi min-1 mg protein-1, K M = 4.50 ± 0.22 mmol L-1) also follows Michaelis-Menten kinetics, modulation of (Na+, K+)-ATPase activity by MgATP (V M = 136.8 ± 6.5 nmol Pi min-1 mg protein-1, K 0.5 = 0.27 ± 0.04 mmol L-1), K+ (V M = 140.2 ± 7.0 nmol Pi min-1 mg protein-1, K 0.5 = 0.17 ± 0.008 mmol L-1), and NH4+ (V M = 149.1 ± 7.4 nmol Pi min-1 mg protein-1, K 0.5 = 0.60 ± 0.03 mmol L-1) shows cooperative kinetics. Ouabain (K I = 52.0 ± 2.6 µmol L-1) and orthovanadate (K I = 1.0 ± 0.05 µmol L-1) inhibit total ATPase activity by around 75%. At low Mg2+ concentrations, ATP is an allosteric modulator of the enzyme. This is the first study to provide a kinetic characterization of the gill (Na+, K+)-ATPase in C. guanhumi, and will be useful in better comprehending the biochemical underpinnings of osmoregulatory ability in a semi-terrestrial mangrove crab.
Collapse
Affiliation(s)
- Daniel L Farias
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, Ribeirão Prêto, SP, 14040-901, Brazil
| | - Malson N Lucena
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, Ribeirão Prêto, SP, 14040-901, Brazil
| | - Daniela P Garçon
- DPG, Campus Universitário de Iturama, Universidade Federal do Triângulo Mineiro, Iturama, Minas Gerais, 38280-000, Brazil
| | - Fernando L Mantelatto
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Prêto, SP, 14040-901, Brazil
| | - John C McNamara
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Prêto, SP, 14040-901, Brazil
- Centro de Biologia Marinha, São Sebastião, SP, 11000-600, Brazil
| | - Francisco A Leone
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, Ribeirão Prêto, SP, 14040-901, Brazil.
| |
Collapse
|
110
|
RH421 binds into the ATP-binding site on the Na +/K +-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2113-2122. [PMID: 28774819 DOI: 10.1016/j.bbamem.2017.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/28/2017] [Accepted: 07/30/2017] [Indexed: 11/22/2022]
Abstract
The Na+/K+-ATPase plays a key role in ion transport across the plasma membrane of all animal cells. The voltage-sensitive styrylpyrimidium dye RH421 has been used in several laboratories for monitoring of Na+/K+-ATPase kinetics. It is known, that RH421 can interact with the enzyme and it can influence its activity at micromolar concentrations, but structural details of this interaction are only poorly understood. Experiments with isolated large cytoplasmic loop (C45) of Na+/K+-ATPase revealed that RH421 can interact with this part of the protein with dissociation constant 1μM. The Trp-to-RH421 FRET performed on six single-tryptophan mutants revealed that RH421 binds directly into the ATP-binding site. This conclusion was further supported by results from molecular docking, site-directed mutagenesis and by competitive experiments using ATP. Experiments with C45/DPPC mixture revealed that RH421 can bind to both C45 and lipids, but only the former interaction was influenced by the presence of ATP.
Collapse
|
111
|
Petschenka G, Wagschal V, von Tschirnhaus M, Donath A, Dobler S. Convergently Evolved Toxic Secondary Metabolites in Plants Drive the Parallel Molecular Evolution of Insect Resistance. Am Nat 2017; 190:S29-S43. [DOI: 10.1086/691711] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
112
|
Gable M, Ellis L, Fedorova OV, Bagrov AY, Askari A. Comparison of Digitalis Sensitivities of Na +/K +-ATPases from Human and Pig Kidneys. ACS OMEGA 2017; 2:3610-3615. [PMID: 28782051 PMCID: PMC5537699 DOI: 10.1021/acsomega.7b00591] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/06/2017] [Indexed: 05/16/2023]
Abstract
Digitalis drugs are selective inhibitors of the plasma membrane Na+/K+-ATPase. There are many studies on molecular mechanisms of digitalis interaction with purified pig kidney enzyme, with the tacit assumption that it is a good model of human kidney enzyme. However, previous studies on crude or recombinant human kidney enzymes are limited, and have not resulted in consistent findings on their digitalis sensitivities. Hence, we prepared comparably purified enzymes from human and pig kidneys and determined inhibitory constants of digoxin, ouabain, ouabagenin, bufalin, and marinobufagenin (MBG) on enzyme activity under optimal turnover conditions. We found that each compound had the same potency against the two enzymes, indicating that (i) the pig enzyme is an appropriate model of the human enzyme, and (ii) prior discrepant findings on human kidney enzymes were either due to structural differences between the natural and recombinant enzymes or because potencies were determined using binding constants of digitalis for enzymes under nonphysiological conditions. In conjunction with previous findings, our newly determined inhibitory constants of digitalis compounds for human kidney enzymes indicate that (i) of the compounds that have long been advocated to be endogenous hormones, only bufalin and MBG may act as such at kidney tubules, and (ii) beneficial effects of digoxin, the only digitalis with extensive clinical use, does not involve its inhibitory effect on renal tubular Na+/K+-ATPase.
Collapse
Affiliation(s)
- Marjorie
E. Gable
- Department
Biochemistry & Cancer Biology, College of Medicine & Life
Sciences, University of Toledo, 3000 Arlington Avenue, MS 1010, Toledo, Ohio 43614, United States
| | - Linda Ellis
- Department
Biochemistry & Cancer Biology, College of Medicine & Life
Sciences, University of Toledo, 3000 Arlington Avenue, MS 1010, Toledo, Ohio 43614, United States
| | - Olga V. Fedorova
- Laboratory
of Cardiovascular Science, National Institute of Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Alexei Y. Bagrov
- Laboratory
of Cardiovascular Science, National Institute of Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
- Sechenov
Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia
| | - Amir Askari
- Department
Biochemistry & Cancer Biology, College of Medicine & Life
Sciences, University of Toledo, 3000 Arlington Avenue, MS 1010, Toledo, Ohio 43614, United States
- E-mail: . Phone: 419-383-3982
| |
Collapse
|
113
|
Abe K, Shimokawa J, Naito M, Munson K, Vagin O, Sachs G, Suzuki H, Tani K, Fujiyoshi Y. The cryo-EM structure of gastric H +,K +-ATPase with bound BYK99, a high-affinity member of K +-competitive, imidazo[1,2-a]pyridine inhibitors. Sci Rep 2017; 7:6632. [PMID: 28747707 PMCID: PMC5529566 DOI: 10.1038/s41598-017-06698-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/21/2017] [Indexed: 12/13/2022] Open
Abstract
The gastric proton pump H+,K+-ATPase acidifies the gastric lumen, and thus its inhibitors, including the imidazo[1,2-a]pyridine class of K+-competitive acid blockers (P-CABs), have potential application as acid-suppressing drugs. We determined the electron crystallographic structure of H+,K+-ATPase at 6.5 Å resolution in the E2P state with bound BYK99, a potent P-CAB with a restricted ring structure. The BYK99 bound structure has an almost identical profile to that of a previously determined structure with bound SCH28080, the original P-CAB prototype, but is significantly different from the previously reported P-CAB-free form, illustrating a common conformational change is required for P-CAB binding. The shared conformational changes include a distinct movement of transmembrane helix 2 (M2), from its position in the previously reported P-CAB-free form, to a location proximal to the P-CAB binding site in the present BYK99-bound structure. Site-specific mutagenesis within M2 revealed that D137 and N138, which face the P-CAB binding site in our model, significantly affect the inhibition constant (Ki) of P-CABs. We also found that A335 is likely to be near the bridging nitrogen at the restricted ring structure of the BYK99 inhibitor. These provide clues to elucidate the binding site parameters and mechanism of P-CAB inhibition of gastric acid secretion.
Collapse
Affiliation(s)
- Kazuhiro Abe
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, 464-8601, Japan. .,Cellular and Structural Physiology Institute, Nagoya University, Nagoya, 464-8601, Japan. .,Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Chiyoda, Tokyo, 100-0004, Japan.
| | - Jun Shimokawa
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Mao Naito
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, 464-8601, Japan.,Cellular and Structural Physiology Institute, Nagoya University, Nagoya, 464-8601, Japan
| | | | | | | | - Hiroshi Suzuki
- Laboratory of Molecular Electron Microscopy, Rockefeller University, New York, 10065, USA
| | - Kazutoshi Tani
- Cellular and Structural Physiology Institute, Nagoya University, Nagoya, 464-8601, Japan
| | - Yoshinori Fujiyoshi
- Cellular and Structural Physiology Institute, Nagoya University, Nagoya, 464-8601, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Chiyoda, Tokyo, 100-0004, Japan.,CeSPIA Inc., 2-1-1, Otemachi, Chiyoda, Tokyo, 100-0004, Japan
| |
Collapse
|
114
|
Svrckova M, Zatloukalova M, Dvorakova P, Coufalova D, Novak D, Hernychova L, Vacek J. Na +/K +-ATPase interaction with methylglyoxal as reactive metabolic side product. Free Radic Biol Med 2017; 108:146-154. [PMID: 28342847 DOI: 10.1016/j.freeradbiomed.2017.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/02/2017] [Accepted: 03/21/2017] [Indexed: 12/26/2022]
Abstract
Proteins are subject to oxidative modification and the formation of adducts with a broad spectrum of reactive species via enzymatic and non-enzymatic mechanisms. Here we report that in vitro non-enzymatic methylglyoxal (MGO) binding causes the inhibition and formation of MGO advanced glycation end-products (MAGEs) in Na+/K+-ATPase (NKA). Concretely, MGO adducts with NKA amino acid residues (mainly Arg) and Nε-(carboxymethyl)lysine (CML) formation were found. MGO is not only an inhibitor for solubilized NKA (IC50=91±16μM), but also for reconstituted NKA in the lipid bilayer environment, which was clearly demonstrated using a DPPC/DPPE liposome model in the presence or absence of the NKA-selective inhibitor ouabain. High-resolution mass spectrometric analysis of a tryptic digest of NKA isolated from pig (Sus scrofa) kidney indicates that the intracellular α-subunit is naturally (post-translationally) modified by MGO in vivo. In contrast to this, the β-subunit could only be modified by MGO artificially, and the transmembrane part of the protein did not undergo MGO binding under the experimental setup used. As with bovine serum albumin, serving as the water-soluble model, we also demonstrated a high binding capacity of MGO to water-poorly soluble NKA using a multi-spectral methodology based on electroanalytical, immunochemical and fluorimetric tools. In addition, a partial suppression of the MGO-mediated inhibitory effect could be observed in the presence of aminoguanidine (pimagedine), a glycation suppressor and MGO-scavenger. All the results here were obtained with the X-ray structure of NKA in the E1 conformation (3WGV) and could be used in the further interpretation of the functionality of this key enzyme in the presence of highly-reactive metabolic side-products, glycation agents and generally under oxidative stress conditions.
Collapse
Affiliation(s)
- Marika Svrckova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic.
| | - Martina Zatloukalova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Petra Dvorakova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Dominika Coufalova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - David Novak
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Lenka Hernychova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic.
| |
Collapse
|
115
|
Abstract
Cellular potassium import systems play a fundamental role in osmoregulation, pH homeostasis and membrane potential in all domains of life. In bacteria, the kdp operon encodes a four subunit potassium pump that maintains intracellular homeostasis as well as cell shape and turgor under conditions where potassium is limiting1. This membrane complex, called KdpFABC, has one channel-like subunit (KdpA) belonging to the Superfamily of Potassium Transporters and another pump-like subunit (KdpB) belonging to the Superfamily of P-type ATPases. Although there is considerable structural and functional information about members from both superfamilies, the mechanism by which uphill potassium transport through KdpA is coupled with ATP hydrolysis by KdpB remains poorly understood. Here we report the 2.9 Å X-ray structure of the complete Escherichia coli KdpFABC complex with a potassium ion within the selectivity filter of KdpA as well as a water molecule at a canonical cation site in the transmembrane domain of KdpB. The structure also reveals two structural elements that appear to mediate the coupling between these two subunits. Specifically, a protein-embedded tunnel runs between these potassium and water sites and a helix controlling the cytoplasmic gate of KdpA is linked to the phosphorylation domain of KdpB. Based on these observations, we propose an unprecedented mechanism that repurposes protein channel architecture for active transport across biomembranes.
Collapse
Affiliation(s)
- Ching-Shin Huang
- Molecular Biophysics Graduate Program, New York University School of Medicine, Skirball Institute, 540 First Avenue, New York, New York 10016, USA
| | - Bjørn Panyella Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark.,Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, DK-8000 Aarhus C, Denmark
| | - David L Stokes
- Department of Cell Biology, New York University School of Medicine, Skirball Institute, 540 First Avenue, New York, New York 10016, USA
| |
Collapse
|
116
|
Cui X, Xie Z. Protein Interaction and Na/K-ATPase-Mediated Signal Transduction. Molecules 2017; 22:molecules22060990. [PMID: 28613263 PMCID: PMC6152704 DOI: 10.3390/molecules22060990] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 02/05/2023] Open
Abstract
The Na/K-ATPase (NKA), or Na pump, is a member of the P-type ATPase superfamily. In addition to pumping ions across cell membrane, it is engaged in assembly of multiple protein complexes in the plasma membrane. This assembly allows NKA to perform many non-pumping functions including signal transduction that are important for animal physiology and disease progression. This article will focus on the role of protein interaction in NKA-mediated signal transduction, and its potential utility as target for developing new therapeutics.
Collapse
Affiliation(s)
- Xiaoyu Cui
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA.
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA.
| |
Collapse
|
117
|
Abstract
Besides its essential role in the activation of HIV-1 gene expression, the viral Tat protein has the unusual property of trafficking in and out of cells. In contrast to Tat internalization, the mechanism involved in extracellular Tat release has so far remained elusive. Here we show that Tat secretion occurs through a Golgi-independent pathway requiring binding of Tat with three short, non-consecutive intracytoplasmic loops at the C-terminus of the cellular Na+,K+-ATPase pump alpha subunit. Ouabain, a pump inhibitor, blocked this interaction and prevented Tat secretion; virions produced in the presence of this drug were less infectious, consistent the capacity of virion-associated Tat to increase HIV-1 infectivity. Treatment of CD4+ T-cells with short peptides corresponding to the Tat-binding regions of the pump alpha subunit impaired extracellular Tat release and blocked HIV-1 replication. Thus, non canonical, extracellular Tat secretion is essential for viral infectivity.
Collapse
|
118
|
Razavi AM, Delemotte L, Berlin JR, Carnevale V, Voelz VA. Molecular simulations and free-energy calculations suggest conformation-dependent anion binding to a cytoplasmic site as a mechanism for Na +/K +-ATPase ion selectivity. J Biol Chem 2017; 292:12412-12423. [PMID: 28588025 DOI: 10.1074/jbc.m117.779090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/05/2017] [Indexed: 12/14/2022] Open
Abstract
Na+/K+-ATPase transports Na+ and K+ ions across the cell membrane via an ion-binding site becoming alternatively accessible to the intra- and extracellular milieu by conformational transitions that confer marked changes in ion-binding stoichiometry and selectivity. To probe the mechanism of these changes, we used molecular simulation and free-energy perturbation approaches to identify probable protonation states of Na+- and K+-coordinating residues in E1P and E2P conformations of Na+/K+-ATPase. Analysis of these simulations revealed a molecular mechanism responsible for the change in protonation state: the conformation-dependent binding of an anion (a chloride ion in our simulations) to a previously unrecognized cytoplasmic site in the loop between transmembrane helices 8 and 9, which influences the electrostatic potential of the crucial Na+-coordinating residue Asp926 This mechanistic model is consistent with experimental observations and provides a molecular-level picture of how E1P to E2P enzyme conformational transitions are coupled to changes in ion-binding stoichiometry and selectivity.
Collapse
Affiliation(s)
- Asghar M Razavi
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122
| | - Lucie Delemotte
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122; Science for Life Laboratory, Department of Theoretical Physics, KTH Royal Institute of Technology, Stockholm 11428, Sweden
| | - Joshua R Berlin
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Vincenzo Carnevale
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122; Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122.
| | - Vincent A Voelz
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122; Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122.
| |
Collapse
|
119
|
Qing X, Guo Y, Shan X, Ding Y, Gao Q, Li Y, Wang C. An efficient synthesis of 3β,14β-dihydroxy-5α-androst-15-en-17-one. JOURNAL OF CHEMICAL RESEARCH 2017. [DOI: 10.3184/174751917x14944355549168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An efficient four-step method has been developed for the synthesis of 3 β,14 β-dihydroxy-5 α-androst-15-en-17-one from a common androstane derivative. The X-ray crystal structures of the alkenes, the epoxide and the 14-hydroxy compound have been determined.
Collapse
Affiliation(s)
- Xushun Qing
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P.R. China
| | - Yayun Guo
- Shandong Academy of Grape, 1–27 Shanda South Road, Licheng District, Jinan 250100, P.R. China
| | - Xiaojie Shan
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P.R. China
| | - Yue Ding
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P.R. China
| | - Qi Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P.R. China
| | - Yang Li
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P.R. China
| | - Cunde Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P.R. China
| |
Collapse
|
120
|
A quantitative shRNA screen identifies ATP1A1 as a gene that regulates cytotoxicity by aurilide B. Sci Rep 2017; 7:2002. [PMID: 28515454 PMCID: PMC5435677 DOI: 10.1038/s41598-017-02016-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/05/2017] [Indexed: 12/24/2022] Open
Abstract
Genome-wide RNA interference (RNAi) with pooled and barcoded short-hairpin RNA (shRNA) libraries provides a powerful tool for identifying cellular components that are relevant to the modes/mechanisms of action (MoA) of bioactive compounds. shRNAs that affect cellular sensitivity to a given compound can be identified by deep sequencing of shRNA-specific barcodes. We used multiplex barcode sequencing technology by adding sample-specific index tags to PCR primers during sequence library preparation, enabling parallel analysis of multiple samples. An shRNA library screen with this system revealed that downregulation of ATP1A1, an α-subunit of Na+/K+ ATPase, conferred significant sensitivity to aurilide B, a natural marine product that induces mitochondria-mediated apoptosis. Combined treatment with ouabain which inhibits Na+/K+ ATPase by targeting α-subunits potentiated sensitivity to aurilide B, suggesting that ATP1A1 regulates mitochondria-mediated apoptosis. Our results indicate that multiplex sequencing facilitates the use of pooled shRNA library screening for the identification of combination drug therapy targets.
Collapse
|
121
|
Godinho AN, Costa GT, Oliveira NO, Cardi BA, Uchoa DEA, Silveira ER, Quintas LEM, Noël FG, Fonteles MC, Carvalho KM, Santos CF, Lessa LMA, do Nascimento NRF. Effects of cardiotonic steroids on isolated perfused kidney and NHE3 activity in renal proximal tubules. Biochim Biophys Acta Gen Subj 2017; 1861:1943-1950. [PMID: 28506883 DOI: 10.1016/j.bbagen.2017.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/07/2017] [Accepted: 05/11/2017] [Indexed: 12/11/2022]
Abstract
Cardiotonic steroids (CS) are known as modulators of sodium and water homeostasis. These compounds contribute to the excretion of sodium under overload conditions due to its natriuretic property related to the inhibition of the renal Na+/K+-ATPase (NKA) pump α1 isoform. NHE3, the main route for Na+ reabsorption in the proximal tubule, depends on the Na+ gradient generated by the NKA pump. In the present study we aimed to investigate the effects of marinobufagin (MBG) and telocinobufagin (TBG) on the renal function of isolated perfused rat kidney and on the inhibition of NKA activity. Furthermore, we investigated the mechanisms for the cardiotonic steroid-mediated natriuretic effect, by evaluating and comparing the effects of bufalin (BUF), ouabain (OUA), MBG and TBG on NHE3 activity in the renal proximal tubule in vivo. TBG significantly increased GFR, UF, natriuresis and kaliuresis in isolated perfused rat kidney, and inhibits the activity of NKA at a much higher rate than MBG. By stationary microperfusion technique, the perfusion with BUF, OUA, TBG or MBG promoted an inhibitory effect on NHE3 activity, whereas BUF was the most effective agent, and demonstrated a dose-dependent response, with maximal inhibition at 50nM. Furthermore, our data showed the role of NKA-Src kinase pathway in the inhibition of NHE3 by CS. Finally, a downstream step, MEK1/2-ERK1/2 was also investigated, and, similar to Src inhibition, the MEK1/2 inhibitor (U0126) suppressed the BUF effect. Our findings indicate the involvement of NKA-SRc-Kinase-Ras-Raf-ERK1/2 pathway in the downregulation of NHE3 by cardiotonic steroids in the renal proximal tubule, promoting a reduction of proximal sodium reabsorption and natriuresis.
Collapse
Affiliation(s)
- Alana N Godinho
- Biomedical Sciences Superior Institute, State University of Ceará, Fortaleza, Brazil
| | - Graciana T Costa
- Biomedical Sciences Superior Institute, State University of Ceará, Fortaleza, Brazil
| | - Nádia O Oliveira
- Biomedical Sciences Superior Institute, State University of Ceará, Fortaleza, Brazil
| | - Bruno A Cardi
- Biomedical Sciences Superior Institute, State University of Ceará, Fortaleza, Brazil
| | | | | | - Luis Eduardo M Quintas
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - François G Noël
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Manassés C Fonteles
- Biomedical Sciences Superior Institute, State University of Ceará, Fortaleza, Brazil
| | | | - Cláudia F Santos
- Biomedical Sciences Superior Institute, State University of Ceará, Fortaleza, Brazil
| | - Lucília M A Lessa
- Biomedical Sciences Superior Institute, State University of Ceará, Fortaleza, Brazil
| | | |
Collapse
|
122
|
Na⁺ i,K⁺ i-Dependent and -Independent Signaling Triggered by Cardiotonic Steroids: Facts and Artifacts. Molecules 2017; 22:molecules22040635. [PMID: 28420099 PMCID: PMC6153942 DOI: 10.3390/molecules22040635] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/31/2017] [Accepted: 04/11/2017] [Indexed: 11/17/2022] Open
Abstract
Na⁺,K⁺-ATPase is the only known receptor of cardiotonic steroids (CTS) whose interaction with catalytic α-subunits leads to inhibition of this enzyme. As predicted, CTS affect numerous cellular functions related to the maintenance of the transmembrane gradient of monovalent cations, such as electrical membrane potential, cell volume, transepithelial movement of salt and osmotically-obliged water, symport of Na⁺ with inorganic phosphate, glucose, amino acids, nucleotides, etc. During the last two decades, it was shown that side-by-side with these canonical Na⁺i/K⁺i-dependent cellular responses, long-term exposure to CTS affects transcription, translation, tight junction, cell adhesion and exhibits tissue-specific impact on cell survival and death. It was also shown that CTS trigger diverse signaling cascades via conformational transitions of the Na⁺,K⁺-ATPase α-subunit that, in turn, results in the activation of membrane-associated non-receptor tyrosine kinase Src, phosphatidylinositol 3-kinase and the inositol 1,4,5-triphosphate receptor. These findings allowed researchers to propose that endogenous CTS might be considered as a novel class of steroid hormones. We focus our review on the analysis of the relative impact Na⁺i,K⁺i-mediated and -independent pathways in cellular responses evoked by CTS.
Collapse
|
123
|
Tejral G, Sopko B, Necas A, Schoner W, Amler E. Computer modelling reveals new conformers of the ATP binding loop of Na +/K +-ATPase involved in the transphosphorylation process of the sodium pump. PeerJ 2017; 5:e3087. [PMID: 28316890 PMCID: PMC5354106 DOI: 10.7717/peerj.3087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/14/2017] [Indexed: 01/02/2023] Open
Abstract
Hydrolysis of ATP by Na+/K+-ATPase, a P-Type ATPase, catalyzing active Na+ and K+ transport through cellular membranes leads transiently to a phosphorylation of its catalytical α-subunit. Surprisingly, three-dimensional molecular structure analysis of P-type ATPases reveals that binding of ATP to the N-domain connected by a hinge to the P-domain is much too far away from the Asp369 to allow the transfer of ATP’s terminal phosphate to its aspartyl-phosphorylation site. In order to get information for how the transfer of the γ-phosphate group of ATP to the Asp369 is achieved, analogous molecular modeling of the M4–M5 loop of ATPase was performed using the crystal data of Na+/K+-ATPase of different species. Analogous molecular modeling of the cytoplasmic loop between Thr338 and Ile760 of the α2-subunit of Na+/K+-ATPase and the analysis of distances between the ATP binding site and phosphorylation site revealed the existence of two ATP binding sites in the open conformation; the first one close to Phe475 in the N-domain, the other one close to Asp369 in the P-domain. However, binding of Mg2+•ATP to any of these sites in the “open conformation” may not lead to phosphorylation of Asp369. Additional conformations of the cytoplasmic loop were found wobbling between “open conformation” <==> “semi-open conformation <==> “closed conformation” in the absence of 2Mg2+•ATP. The cytoplasmic loop’s conformational change to the “semi-open conformation”—characterized by a hydrogen bond between Arg543 and Asp611—triggers by binding of 2Mg2+•ATP to a single ATP site and conversion to the “closed conformation” the phosphorylation of Asp369 in the P-domain, and hence the start of Na+/K+-activated ATP hydrolysis.
Collapse
Affiliation(s)
- Gracian Tejral
- Department of Biophysics, 2nd Faculty of Medicine, Charles University Prague, Prague, Czech Republic; Laboratory of Tissue Engineering, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Bruno Sopko
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University Prague , Prague , Czech Republic
| | - Alois Necas
- Small Animal Clinic, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Science , Brno , Czech Republic
| | - Wilhelm Schoner
- Institute of Biochemistry and Endocrinology, University of Giessen , Giessen , Germany
| | - Evzen Amler
- Department of Biophysics, 2nd Faculty of Medicine, Charles University Prague, Prague, Czech Republic; Laboratory of Tissue Engineering, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
124
|
|
125
|
Lakunina VA, Burnysheva KM, Mitkevich VA, Makarov AA, Petrushanko IY. Changes in the receptor function of Na,K-ATPase during hypoxia and ischemia. Mol Biol 2017. [DOI: 10.1134/s0026893317010101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
126
|
Abstract
Since the beginning of investigations of the Na,K-ATPase, it has been well-known that Mg2+ is an essential cofactor for activation of enzymatic ATP hydrolysis without being transported through the cell membrane. Moreover, experimental evidence has been collected through the years that shows that Mg2+ ions have a regulatory effect on ion transport by interacting with the cytoplasmic side of the ion pump. Our experiments allowed us to reveal the underlying mechanism. Mg2+ is able to bind to a site outside the membrane domain of the protein's α subunit, close to the entrance of the access channel to the ion-binding sites, thus modifying the local concentration of the ions in the electrolyte, of which Na+, K+, and H+ are of physiological interest. The decrease in the concentration of these cations can be explained by electrostatic interaction and estimated by the Debye-Hückel theory. This effect provokes the observed apparent reduction of the binding affinity of the binding sites of the Na,K-ATPase in the presence of various Mg2+ concentrations. The presence of the bound Mg2+, however, does not affect the reaction kinetics of the transport function of the ion pump. Therefore, stopped-flow experiments could be performed to gain the first insight into the Na+ binding kinetics on the cytoplasmic side by Mg2+ concentration jump experiments.
Collapse
Affiliation(s)
- Hans-Jürgen Apell
- Department of Biology, University of Konstanz , 78464 Konstanz, Germany
| | - Tanja Hitzler
- Department of Biology, University of Konstanz , 78464 Konstanz, Germany
| | - Grischa Schreiber
- Department of Biology, University of Konstanz , 78464 Konstanz, Germany
| |
Collapse
|
127
|
Schneider NFZ, Silva IT, Persich L, de Carvalho A, Rocha SC, Marostica L, Ramos ACP, Taranto AG, Pádua RM, Kreis W, Barbosa LA, Braga FC, Simões CMO. Cytotoxic effects of the cardenolide convallatoxin and its Na,K-ATPase regulation. Mol Cell Biochem 2017; 428:23-39. [DOI: 10.1007/s11010-016-2914-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/21/2016] [Indexed: 01/08/2023]
|
128
|
Screening, verification, and analysis of biomarkers for drug-induced cardiac toxicity in vitro based on RTCA coupled with PCR Array technology. Toxicol Lett 2017; 268:17-25. [PMID: 28099878 DOI: 10.1016/j.toxlet.2017.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 12/23/2022]
Abstract
Cardiotoxicity is one of the most serious side effects of new drugs. Early detection of the drug induced cardiotoxicity based on the biomarkers provides an important preventative strategy for detecting potential cardiotoxicity of candidate drugs. In this study, we aim to identify the predictive genomics biomarkers for drug-induced cardiac toxicity based on the RTCA coupled with PCR Array technology in primary cells. Three prototypical cardiotoxic compounds (doxorubicin, isoproterenol, ouabain) with different mechanisms were firstly real-time monitored to diagnose the cytotoxicity by using the RTCA, while the functional alterations of cardiomyocytes were also monitored by analyzing the beating frequency of cardiomyocytes. Then cardiac specific toxicity gene expression changes were studied by using the technology of PCR Array, which can detect the changes of 84 cardiac functions related genes. Rps6kb1 was identified to be the common cardiac biomarkers by using multivariate statistical and integration analyses. The biomarker was further verified by selecting other drugs with or without cardiotoxicity, and the results showed that the gene exhibited specific changes in cardiac toxicity. Moreover, IPA was applied to combine relevant pathways of Rps6kb1, and identify the main types of cardiac toxicity. These results would further enrich the evaluating strategy of drug-induced cardiotoxicity in vitro, and Rps6kb1 could be used as the specific biomarker of cardiotoxcity during safety assessment of the novel drug candidates.
Collapse
|
129
|
Hui C, Pu F, Xu J. Metal-Catalyzed Asymmetric Michael Addition in Natural Product Synthesis. Chemistry 2016; 23:4023-4036. [DOI: 10.1002/chem.201604110] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Chunngai Hui
- Department of Chemistry; South University of Science and Technology of China; No. 1088 Xueyuan Ave., Nanshan District Shenzhen, Guangdong 518055 P. R. China
| | - Fan Pu
- Department of Chemistry; South University of Science and Technology of China; No. 1088 Xueyuan Ave., Nanshan District Shenzhen, Guangdong 518055 P. R. China
| | - Jing Xu
- Department of Chemistry; South University of Science and Technology of China; No. 1088 Xueyuan Ave., Nanshan District Shenzhen, Guangdong 518055 P. R. China
| |
Collapse
|
130
|
Díaz M, Dópido R, Gómez T, Rodríguez C. Membrane Lipid Microenvironment Modulates Thermodynamic Properties of the Na +-K +-ATPase in Branchial and Intestinal Epithelia in Euryhaline Fish In vivo. Front Physiol 2016; 7:589. [PMID: 28018232 PMCID: PMC5156835 DOI: 10.3389/fphys.2016.00589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/14/2016] [Indexed: 11/16/2022] Open
Abstract
We have analyzed the effects of different native membrane lipid composition on the thermodynamic properties of the Na+-K+-ATPase in different epithelia from the gilthead seabream Sparus aurata. Thermodynamic parameters of activation for the Na+-K+-ATPase, as well as contents of lipid classes and fatty acids from polar lipids were determined for gill epithelia and enterocytes isolated from pyloric caeca, anterior intestine and posterior intestine. Arrhenius analyses of control animals revealed differences in thermal discontinuity values (Td) and activation energies determined at both sides of Td between intestinal and gill epithelia. Eyring plots disclosed important differences in enthalpy of activation (ΔH‡) and entropy of activation (ΔS‡) between enterocytes and branchial cells. Induction of n-3 LCPUFA deficiency dramatically altered membrane lipid composition in enterocytes, being the most dramatic changes the increase in 18:1n-9 (oleic acid) and the reduction of n-3 LCPUFA (mainly DHA, docosahexaenoic acid). Strikingly, branchial cells were much more resistant to diet-induced lipid alterations than enterocytes, indicating the existence of potent lipostatic mechanisms preserving membrane lipid matrix in gill epithelia. Paralleling lipid alterations, values of Ea1, ΔH‡ and ΔS‡ for the Na+-K+-ATPase were all increased, while Td values vanished, in LCPUFA deficient enterocytes. In turn, Differences in thermodynamic parameters were highly correlated with specific changes in fatty acids, but not with individual lipid classes including cholesterol in vivo. Thus, Td was positively related to 18:1n-9 and negatively to DHA. Td, Ea1 and ΔH‡ were exponentially related to DHA/18:1n-9 ratio. The exponential nature of these relationships highlights the strong impact of subtle changes in the contents of oleic acid and DHA in setting the thermodynamic properties of epithelial Na+-K+-ATPase in vivo. The effects are consistent with physical effects on the lipid membrane surrounding the enzyme as well as with direct interactions with the Na+-K+-ATPase.
Collapse
Affiliation(s)
- Mario Díaz
- Laboratorio de Fisiología Animal, Sección Biología, Departamento de Biología Animal, Facultad de Ciencias, Edafología y Geología, Universidad de La Laguna Tenerife, Spain
| | - Rosa Dópido
- Laboratorio de Fisiología Animal, Sección Biología, Departamento de Biología Animal, Facultad de Ciencias, Edafología y Geología, Universidad de La Laguna Tenerife, Spain
| | - Tomás Gómez
- Laboratorio de Fisiología Animal, Sección Biología, Departamento de Biología Animal, Facultad de Ciencias, Edafología y Geología, Universidad de La Laguna Tenerife, Spain
| | - Covadonga Rodríguez
- Laboratorio de Fisiología Animal, Sección Biología, Departamento de Biología Animal, Facultad de Ciencias, Edafología y Geología, Universidad de La Laguna Tenerife, Spain
| |
Collapse
|
131
|
Abstract
Na+/K+-ATPase (NKA) is an essential cation pump protein responsible for the maintenance of the sodium and potassium gradients across the plasma membrane. Recently published high-resolution structures revealed amino acids forming the cation binding sites (CBS) in the transmembrane domain and variable position of the domains in the cytoplasmic headpiece. Here we report molecular dynamic simulations of the human NKA α1β1 isoform embedded into DOPC bilayer. We have analyzed the NKA conformational changes in the presence of Na+- or K+-cations in the CBS, for various combinations of the cytoplasmic ligands, and the two major enzyme conformations in the 100 ns runs (more than 2.5 μs of simulations in total). We identified two novel cytoplasmic pathways along the pairs of transmembrane helices TM3/TM7 or TM6/TM9 that allow hydration of the CBS or transport of cations from/to the bulk. These findings can provide a structural explanation for previous mutagenesis studies, where mutation of residues that are distal from the CBS resulted in the alteration of the enzyme affinity to the transported cations or change in the enzyme activity.
Collapse
Affiliation(s)
- Petra Čechová
- Department of Biophysics, Centre of the Region Hana for Biotechnological and Agricultural Research, Faculty of Science, Palacký University , Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Karel Berka
- Department of Physical Chemistry, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University , 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Martin Kubala
- Department of Biophysics, Centre of the Region Hana for Biotechnological and Agricultural Research, Faculty of Science, Palacký University , Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| |
Collapse
|
132
|
Convallatoxin-Induced Reduction of Methionine Import Effectively Inhibits Human Cytomegalovirus Infection and Replication. J Virol 2016; 90:10715-10727. [PMID: 27654292 DOI: 10.1128/jvi.01050-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/13/2016] [Indexed: 12/11/2022] Open
Abstract
Cytomegalovirus (CMV) is a ubiquitous human pathogen that increases the morbidity and mortality of immunocompromised individuals. The current FDA-approved treatments for CMV infection are intended to be virus specific, yet they have significant adverse side effects, including nephrotoxicity and hematological toxicity. Thus, there is a medical need for safer and more effective CMV therapeutics. Using a high-content screen, we identified the cardiac glycoside convallatoxin as an effective compound that inhibits CMV infection. Using a panel of cardiac glycoside variants, we assessed the structural elements critical for anti-CMV activity by both experimental and in silico methods. Analysis of the antiviral effects, toxicities, and pharmacodynamics of different variants of cardiac glycosides identified the mechanism of inhibition as reduction of methionine import, leading to decreased immediate-early gene translation without significant toxicity. Also, convallatoxin was found to dramatically reduce the proliferation of clinical CMV strains, implying that its mechanism of action is an effective strategy to block CMV dissemination. Our study has uncovered the mechanism and structural elements of convallatoxin, which are important for effectively inhibiting CMV infection by targeting the expression of immediate-early genes. IMPORTANCE Cytomegalovirus is a highly prevalent virus capable of causing severe disease in certain populations. The current FDA-approved therapeutics all target the same stage of the viral life cycle and induce toxicity and viral resistance. We identified convallatoxin, a novel cell-targeting antiviral that inhibits CMV infection by decreasing the synthesis of viral proteins. At doses low enough for cells to tolerate, convallatoxin was able to inhibit primary isolates of CMV, including those resistant to the anti-CMV drug ganciclovir. In addition to identifying convallatoxin as a novel antiviral, limiting mRNA translation has a dramatic impact on CMV infection and proliferation.
Collapse
|
133
|
|
134
|
Holm R, Toustrup-Jensen MS, Einholm AP, Schack VR, Andersen JP, Vilsen B. Neurological disease mutations of α3 Na +,K +-ATPase: Structural and functional perspectives and rescue of compromised function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1807-1828. [PMID: 27577505 DOI: 10.1016/j.bbabio.2016.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/19/2016] [Accepted: 08/25/2016] [Indexed: 11/26/2022]
Abstract
Na+,K+-ATPase creates transmembrane ion gradients crucial to the function of the central nervous system. The α-subunit of Na+,K+-ATPase exists as four isoforms (α1-α4). Several neurological phenotypes derive from α3 mutations. The effects of some of these mutations on Na+,K+-ATPase function have been studied in vitro. Here we discuss the α3 disease mutations as well as information derived from studies of corresponding mutations of α1 in the light of the high-resolution crystal structures of the Na+,K+-ATPase. A high proportion of the α3 disease mutations occur in the transmembrane sector and nearby regions essential to Na+ and K+ binding. In several cases the compromised function can be traced to disturbance of the Na+ specific binding site III. Recently, a secondary mutation was found to rescue the defective Na+ binding caused by a disease mutation. A perspective is that it may be possible to develop an efficient pharmaceutical mimicking the rescuing effect.
Collapse
Affiliation(s)
- Rikke Holm
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | | | - Anja P Einholm
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Vivien R Schack
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Jens P Andersen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Bente Vilsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
135
|
Tverskoi AM, Sidorenko SV, Klimanova EA, Akimova OA, Smolyaninova LV, Lopina OD, Orlov SN. Effects of ouabain on proliferation of human endothelial cells correlate with Na+,K+-ATPase activity and intracellular ratio of Na+ and K+. BIOCHEMISTRY (MOSCOW) 2016; 81:876-83. [DOI: 10.1134/s0006297916080083] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
136
|
Rui H, Artigas P, Roux B. The selectivity of the Na(+)/K(+)-pump is controlled by binding site protonation and self-correcting occlusion. eLife 2016; 5. [PMID: 27490484 PMCID: PMC5026471 DOI: 10.7554/elife.16616] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 08/03/2016] [Indexed: 01/20/2023] Open
Abstract
The Na+/K+-pump maintains the physiological K+ and Na+ electrochemical gradients across the cell membrane. It operates via an 'alternating-access' mechanism, making iterative transitions between inward-facing (E1) and outward-facing (E2) conformations. Although the general features of the transport cycle are known, the detailed physicochemical factors governing the binding site selectivity remain mysterious. Free energy molecular dynamics simulations show that the ion binding sites switch their binding specificity in E1 and E2. This is accompanied by small structural arrangements and changes in protonation states of the coordinating residues. Additional computations on structural models of the intermediate states along the conformational transition pathway reveal that the free energy barrier toward the occlusion step is considerably increased when the wrong type of ion is loaded into the binding pocket, prohibiting the pump cycle from proceeding forward. This self-correcting mechanism strengthens the overall transport selectivity and protects the stoichiometry of the pump cycle. DOI:http://dx.doi.org/10.7554/eLife.16616.001 A protein called the sodium-potassium pump resides in the membrane that surrounds living cells. The role of this protein is to 'pump' sodium and potassium ions across the membrane to help restore their concentration inside and outside of the cell. About 25% of the body's energy is used to keep the pump going, rising to nearly 70% in the brain. Problems that affect the pump have been linked to several disorders, including heart, kidney and metabolic diseases, as well as severe neurological conditions. The sodium-potassium pump must be able to effectively pick out the correct ions to transport from a mixture of many different types of ions. However, it was not clear how the pump succeeds in doing this efficiently. Rui et al. have now used a computational method called molecular dynamics simulations to model how the sodium-potassium pump transports the desired ions across the cell membrane. The pump works via a so-called 'alternating-access' mechanism, repeatedly transitioning between inward-facing and outward-facing conformations. In each cycle, it binds three sodium ions from the cell’s interior and exports them to the outside. Then, the pump binds to two potassium ions from outside the cell and imports them inside. Although the bound sodium and potassium ions interact with similar binding sites in the pump, the pump sometimes preferentially binds sodium, and sometimes potassium. The study performed by Rui et al. shows that this preference is driven by how protons (hydrogen ions) bind to the amino acids that make up the binding site. The simulations also suggest that the pump uses a ‘self-correcting’ mechanism to prevent the pump from transporting the wrong types of ions. When incorrect ions are present at the binding sites, the pump cycle pauses temporarily until the ions detach from the pump. Only when the correct ions are bound will the pump cycle continue again. In the future, Rui et al. hope to use long time-scale molecular dynamics simulations to show the conformational transition in action. In addition, the 'self-correcting' mechanism will be directly tested by letting the wrong and correct ions compete for the binding sites to see whether the pump will transport only the correct ions. DOI:http://dx.doi.org/10.7554/eLife.16616.002
Collapse
Affiliation(s)
- Huan Rui
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - Pablo Artigas
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, United States
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| |
Collapse
|
137
|
Kapoor S, Waldmann H, Ziegler S. Novel approaches to map small molecule–target interactions. Bioorg Med Chem 2016; 24:3232-45. [DOI: 10.1016/j.bmc.2016.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 10/24/2022]
|
138
|
Blaustein MP, Chen L, Hamlyn JM, Leenen FHH, Lingrel JB, Wier WG, Zhang J. Pivotal role of α2 Na + pumps and their high affinity ouabain binding site in cardiovascular health and disease. J Physiol 2016; 594:6079-6103. [PMID: 27350568 DOI: 10.1113/jp272419] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/18/2016] [Indexed: 12/13/2022] Open
Abstract
Reduced smooth muscle (SM)-specific α2 Na+ pump expression elevates basal blood pressure (BP) and increases BP sensitivity to angiotensin II (Ang II) and dietary NaCl, whilst SM-α2 overexpression lowers basal BP and decreases Ang II/salt sensitivity. Prolonged ouabain infusion induces hypertension in rodents, and ouabain-resistant mutation of the α2 ouabain binding site (α2R/R mice) confers resistance to several forms of hypertension. Pressure overload-induced heart hypertrophy and failure are attenuated in cardio-specific α2 knockout, cardio-specific α2 overexpression and α2R/R mice. We propose a unifying hypothesis that reconciles these apparently disparate findings: brain mechanisms, activated by Ang II and high NaCl, regulate sympathetic drive and a novel neurohumoral pathway mediated by both brain and circulating endogenous ouabain (EO). Circulating EO modulates ouabain-sensitive α2 Na+ pump activity and Ca2+ transporter expression and, via Na+ /Ca2+ exchange, Ca2+ homeostasis. This regulates sensitivity to sympathetic activity, Ca2+ signalling and arterial and cardiac contraction.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Ling Chen
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - John M Hamlyn
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Frans H H Leenen
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, ON, Canada, K1Y 4W7
| | - Jerry B Lingrel
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0524, USA
| | - W Gil Wier
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jin Zhang
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
139
|
Proteasome Inhibition Contributed to the Cytotoxicity of Arenobufagin after Its Binding with Na, K-ATPase in Human Cervical Carcinoma HeLa Cells. PLoS One 2016; 11:e0159034. [PMID: 27428326 PMCID: PMC4948917 DOI: 10.1371/journal.pone.0159034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 06/27/2016] [Indexed: 11/25/2022] Open
Abstract
Although the possibility of developing cardiac steroids/cardiac glycosides as novel cancer therapeutic agents has been recognized, the mechanism of their anticancer activity is still not clear enough. Toad venom extract containing bufadienolides, which belong to cardiac steroids, has actually long been used as traditional Chinese medicine in clinic for cancer therapy in China. The cytotoxicity of arenobufagin, a bufadienolide isolated from toad venom, on human cervical carcinoma HeLa cells was checked. And, the protein expression profile of control HeLa cells and HeLa cells treated with arenobufagin for 48 h was analyzed using two-dimensional electrophoresis, respectively. Differently expressed proteins in HeLa cells treated with arenobufagin were identified and the pathways related to these proteins were mapped from KEGG database. Computational molecular docking was performed to verify the binding of arenobufagin and Na, K-ATPase. The effects of arenobufagin on Na, K-ATPase activity and proteasome activity of HeLa cells were checked. The protein-protein interaction network between Na, K-ATPase and proteasome was constructed and the expression of possible intermediate proteins ataxin-1 and translationally-controlled tumor protein in HeLa cells treated with arenobufagin was then checked. Arenobufagin induced apoptosis and G2/M cell cycle arrest in HeLa cells. The cytotoxic effect of arenobufagin was associated with 25 differently expressed proteins including proteasome-related proteins, calcium ion binding-related proteins, oxidative stress-related proteins, metabolism-related enzymes and others. The results of computational molecular docking revealed that arenobufagin was bound in the cavity formed by the transmembrane alpha subunits of Na, K-ATPase, which blocked the pathway of extracellular Na+/K+ cation exchange and inhibited the function of ion exchange. Arenobufagin inhibited the activity of Na, K-ATPase and proteasome, decreased the expression of Na, K-ATPase α1 and α3 subunits and increased the expression of WEE1 in HeLa cells. Antibodies against Na, K-ATPase α1 and α3 subunits alone or combinated with arenobufagin also inhibited the activity of proteasome. Furthermore, the expression of the possible intermediate proteins ataxin-1 and translationally-controlled tumor protein was increased in HeLa cells treated with arenobufagin by flow cytometry analysis, respectively. These results indicated that arenobufagin might directly bind with Na, K-ATPase α1 and α3 subunits and the inhibitive effect of arenobufagin on proteasomal activity of HeLa cells might be related to its binding with Na, K-ATPase.
Collapse
|
140
|
Tang HJ, Ruan LJ, Tian HY, Liang GP, Ye WC, Hughes E, Esmann M, Fedosova NU, Chung TY, Tzen JTC, Jiang RW, Middleton DA. Novel stereoselective bufadienolides reveal new insights into the requirements for Na(+), K(+)-ATPase inhibition by cardiotonic steroids. Sci Rep 2016; 6:29155. [PMID: 27377465 PMCID: PMC4932606 DOI: 10.1038/srep29155] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/15/2016] [Indexed: 11/09/2022] Open
Abstract
Cardiotonic steroids (CTS) are clinically important drugs for the treatment of heart failure owing to their potent inhibition of cardiac Na(+), K(+)-ATPase (NKA). Bufadienolides constitute one of the two major classes of CTS, but little is known about how they interact with NKA. We report a remarkable stereoselectivity of NKA inhibition by native 3β-hydroxy bufalin over the 3α-isomer, yet replacing the 3β-hydroxy group with larger polar groups in the same configuration enhances inhibitory potency. Binding of the two (13)C-labelled glycosyl diastereomers to NKA were studied by solid-state NMR (SSNMR), which revealed interactions of the glucose group of the 3β- derivative with the inhibitory site, but much weaker interactions of the 3α- derivative with the enzyme. Molecular docking simulations suggest that the polar 3β-groups are closer to the hydrophilic amino acid residues in the entrance of the ligand-binding pocket than those with α-configuration. These first insights into the stereoselective inhibition of NKA by bufadienolides highlight the important role of the hydrophilic moieties at C3 for binding, and may explain why only 3β-hydroxylated bufadienolides are present as a toxic chemical defence in toad venom.
Collapse
Affiliation(s)
- Hong-Jin Tang
- College of Pharmacy, Jinan University, Guangzhou city, Guangdong province 510632, P. R. China
| | - Li-Jun Ruan
- College of Pharmacy, Jinan University, Guangzhou city, Guangdong province 510632, P. R. China
| | - Hai-Yan Tian
- College of Pharmacy, Jinan University, Guangzhou city, Guangdong province 510632, P. R. China
| | - Guang-Ping Liang
- College of Pharmacy, Jinan University, Guangzhou city, Guangdong province 510632, P. R. China
| | - Wen-Cai Ye
- College of Pharmacy, Jinan University, Guangzhou city, Guangdong province 510632, P. R. China
| | - Eleri Hughes
- Department of Chemistry, University of Lancaster, Lancaster LA1 4YB, UK
| | - Mikael Esmann
- Department of Biomedicine, Aarhus University DK-8000, Aarhus, Denmark
| | | | - Tse-Yu Chung
- Graduate Institute of Biotechnology, National Chung-Hsing University Taichung 40227, Taiwan, China
| | - Jason T C Tzen
- Graduate Institute of Biotechnology, National Chung-Hsing University Taichung 40227, Taiwan, China
| | - Ren-Wang Jiang
- College of Pharmacy, Jinan University, Guangzhou city, Guangdong province 510632, P. R. China
| | - David A Middleton
- Department of Chemistry, University of Lancaster, Lancaster LA1 4YB, UK
| |
Collapse
|
141
|
Holm TH, Lykke-Hartmann K. Insights into the Pathology of the α3 Na(+)/K(+)-ATPase Ion Pump in Neurological Disorders; Lessons from Animal Models. Front Physiol 2016; 7:209. [PMID: 27378932 PMCID: PMC4906016 DOI: 10.3389/fphys.2016.00209] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 05/22/2016] [Indexed: 01/08/2023] Open
Abstract
The transmembrane Na(+)-/K(+) ATPase is located at the plasma membrane of all mammalian cells. The Na(+)-/K(+) ATPase utilizes energy from ATP hydrolysis to extrude three Na(+) cations and import two K(+) cations into the cell. The minimum constellation for an active Na(+)-/K(+) ATPase is one alpha (α) and one beta (β) subunit. Mammals express four α isoforms (α1-4), encoded by the ATP1A1-4 genes, respectively. The α1 isoform is ubiquitously expressed in the adult central nervous system (CNS) whereas α2 primarily is expressed in astrocytes and α3 in neurons. Na(+) and K(+) are the principal ions involved in action potential propagation during neuronal depolarization. The α1 and α3 Na(+)-/K(+) ATPases are therefore prime candidates for restoring neuronal membrane potential after depolarization and for maintaining neuronal excitability. The α3 isoform has approximately four-fold lower Na(+) affinity compared to α1 and is specifically required for rapid restoration of large transient increases in [Na(+)]i. Conditions associated with α3 deficiency are therefore likely aggravated by suprathreshold neuronal activity. The α3 isoform been suggested to support re-uptake of neurotransmitters. These processes are required for normal brain activity, and in fact autosomal dominant de novo mutations in ATP1A3 encoding the α3 isoform has been found to cause the three neurological diseases Rapid Onset Dystonia Parkinsonism (RDP), Alternating Hemiplegia of Childhood (AHC), and Cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss (CAPOS). All three diseases cause acute onset of neurological symptoms, but the predominant neurological manifestations differ with particularly early onset of hemiplegic/dystonic episodes and mental decline in AHC, ataxic encephalopathy and impairment of vision and hearing in CAPOS syndrome and late onset of dystonia/parkinsonism in RDP. Several mouse models have been generated to study the in vivo consequences of Atp1a3 modulation. The different mice show varying degrees of hyperactivity, gait problems, and learning disability as well as stress-induced seizures. With the advent of several Atp1a3-gene or chemically modified animal models that closely phenocopy many aspects of the human disorders, we will be able to reach a much better understanding of the etiology of RDP, AHC, and CAPOS syndrome.
Collapse
Affiliation(s)
- Thomas H. Holm
- Department of Biomedicine, Aarhus UniversityAarhus, Denmark
- Department of Molecular Biology and Genetics, Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus UniversityAarhus, Denmark
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus UniversityAarhus, Denmark
- Department of Molecular Biology and Genetics, Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus UniversityAarhus, Denmark
- Aarhus Institute of Advanced Studies, Aarhus UniversityAarhus, Denmark
| |
Collapse
|
142
|
Kaplan W, Khatri HR, Nagorny P. Concise Enantioselective Total Synthesis of Cardiotonic Steroids 19-Hydroxysarmentogenin and Trewianin Aglycone. J Am Chem Soc 2016; 138:7194-8. [PMID: 27232585 PMCID: PMC5015484 DOI: 10.1021/jacs.6b04029] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The expedient and scalable approach to cardiotonic steroids carrying oxygenation at the C11- and C19-positions has been developed and applied to the total asymmetric synthesis of steroids 19-hydroxysarmentogenin and trewianin aglycone as well as to the assembly of the panogenin core. This new approach features enantioselective organocatalytic oxidation of an aldehyde, diastereoselective Cu(OTf)2-catalyzed Michael reaction/tandem aldol cyclizations, and one-pot reduction/transposition reactions allowing a rapid (7 linear steps) assembly of a functionalized cardenolide skeleton. The ability to quickly set this steroidal core with preinstalled functional handles and diversity elements eliminates the need for difficult downstream functionalizations and substantially improves the accessibility to the entire class of cardenolides and their derivatives for biological evaluation.
Collapse
Affiliation(s)
- Will Kaplan
- Chemistry Department, University of Michigan, Ann Arbor, MI 48109
| | - Hem Raj Khatri
- Chemistry Department, University of Michigan, Ann Arbor, MI 48109
| | - Pavel Nagorny
- Chemistry Department, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
143
|
Matchkov VV, Krivoi II. Specialized Functional Diversity and Interactions of the Na,K-ATPase. Front Physiol 2016; 7:179. [PMID: 27252653 PMCID: PMC4879863 DOI: 10.3389/fphys.2016.00179] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/04/2016] [Indexed: 12/22/2022] Open
Abstract
Na,K-ATPase is a protein ubiquitously expressed in the plasma membrane of all animal cells and vitally essential for their functions. A specialized functional diversity of the Na,K-ATPase isozymes is provided by molecular heterogeneity, distinct subcellular localizations, and functional interactions with molecular environment. Studies over the last decades clearly demonstrated complex and isoform-specific reciprocal functional interactions between the Na,K-ATPase and neighboring proteins and lipids. These interactions are enabled by a spatially restricted ion homeostasis, direct protein-protein/lipid interactions, and protein kinase signaling pathways. In addition to its "classical" function in ion translocation, the Na,K-ATPase is now considered as one of the most important signaling molecules in neuronal, epithelial, skeletal, cardiac and vascular tissues. Accordingly, the Na,K-ATPase forms specialized sub-cellular multimolecular microdomains which act as receptors to circulating endogenous cardiotonic steroids (CTS) triggering a number of signaling pathways. Changes in these endogenous cardiotonic steroid levels and initiated signaling responses have significant adaptive values for tissues and whole organisms under numerous physiological and pathophysiological conditions. This review discusses recent progress in the studies of functional interactions between the Na,K-ATPase and molecular microenvironment, the Na,K-ATPase-dependent signaling pathways and their significance for diversity of cell function.
Collapse
Affiliation(s)
| | - Igor I Krivoi
- Department of General Physiology, St. Petersburg State University St. Petersburg, Russia
| |
Collapse
|
144
|
Basal Glutathionylation of Na,K-ATPase α-Subunit Depends on Redox Status of Cells during the Enzyme Biosynthesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9092328. [PMID: 27239254 PMCID: PMC4863110 DOI: 10.1155/2016/9092328] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/06/2016] [Accepted: 03/28/2016] [Indexed: 11/17/2022]
Abstract
Many viruses induce oxidative stress and cause S-glutathionylation of Cys residues of the host and viral proteins. Changes in cell functioning during viral infection may be associated with glutathionylation of a number of key proteins including Na,K-ATPase which creates a gradient of sodium and potassium ions. It was found that Na,K-ATPase α-subunit has a basal glutathionylation which is not abrogated by reducing agent. We have shown that acute hypoxia leads to increase of total glutathionylation level of Na,K-ATPase α-subunit; however, basal glutathionylation of α-subunit increases under prolonged hypoxia only. The role of basal glutathionylation in Na,K-ATPase function remains unclear. Understanding significance of basal glutathionylation is complicated by the fact that there are no X-ray structures of Na,K-ATPase with the identified glutathione molecules. We have analyzed all X-ray structures of the Na,K-ATPase α-subunit from pig kidney and found that there are a number of isolated cavities with unresolved electron density close to the relevant cysteine residues. Analysis of the structures showed that this unresolved density in the structure can be occupied by glutathione associated with cysteine residues. Here, we discuss the role of basal glutathionylation of Na,K-ATPase α-subunit and provide evidence supporting the view that this modification is cotranslational.
Collapse
|
145
|
Yan Y, Shapiro JI. The physiological and clinical importance of sodium potassium ATPase in cardiovascular diseases. Curr Opin Pharmacol 2016; 27:43-9. [PMID: 26891193 PMCID: PMC5161351 DOI: 10.1016/j.coph.2016.01.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/14/2016] [Accepted: 01/29/2016] [Indexed: 12/14/2022]
Abstract
The Na/K-ATPase has been extensively studied, but it is only recently that its role as a scaffolding and signaling protein has been identified. It has been identified that cardiotonic steroids (CTS) such as digitalis mediate signal transduction through the Na/K-ATPase in a process found to result in the generation of reactive oxygen species (ROS). As these ROS also appear capable of initiating this signal cascade, a feed forward amplification process has been postulated and subsequently implicated in some disease pathways including uremic cardiomyopathy.
Collapse
Affiliation(s)
- Yanling Yan
- Joan C. Edwards School of Medicine, Marshall University, Department of Medicine, USA
| | - Joseph I Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Department of Medicine, USA.
| |
Collapse
|
146
|
Gregersen JL, Mattle D, Fedosova NU, Nissen P, Reinhard L. Isolation, crystallization and crystal structure determination of bovine kidney Na(+),K(+)-ATPase. Acta Crystallogr F Struct Biol Commun 2016; 72:282-7. [PMID: 27050261 PMCID: PMC4822984 DOI: 10.1107/s2053230x1600279x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/16/2016] [Indexed: 01/23/2023] Open
Abstract
Na(+),K(+)-ATPase is responsible for the transport of Na(+) and K(+) across the plasma membrane in animal cells, thereby sustaining vital electrochemical gradients that energize channels and secondary transporters. The crystal structure of Na(+),K(+)-ATPase has previously been elucidated using the enzyme from native sources such as porcine kidney and shark rectal gland. Here, the isolation, crystallization and first structure determination of bovine kidney Na(+),K(+)-ATPase in a high-affinity E2-BeF3(-)-ouabain complex with bound magnesium are described. Crystals belonging to the orthorhombic space group C2221 with one molecule in the asymmetric unit exhibited anisotropic diffraction to a resolution of 3.7 Å with full completeness to a resolution of 4.2 Å. The structure was determined by molecular replacement, revealing unbiased electron-density features for bound BeF3(-), ouabain and Mg(2+) ions.
Collapse
Affiliation(s)
- Jonas Lindholt Gregersen
- Centre for Membrane Pumps in Cells and Disease – PUMPkin, Danish National Research Foundation, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus, Denmark
| | - Daniel Mattle
- Centre for Membrane Pumps in Cells and Disease – PUMPkin, Danish National Research Foundation, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus, Denmark
| | - Natalya U. Fedosova
- Centre for Membrane Pumps in Cells and Disease – PUMPkin, Danish National Research Foundation, Denmark
- Department of Biomedicine, Aarhus University, Ole Worms Alle 6, DK-8000 Aarhus, Denmark
| | - Poul Nissen
- Centre for Membrane Pumps in Cells and Disease – PUMPkin, Danish National Research Foundation, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Denmark
| | - Linda Reinhard
- Centre for Membrane Pumps in Cells and Disease – PUMPkin, Danish National Research Foundation, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus, Denmark
| |
Collapse
|
147
|
Pegueroles C, Ferrés-Coy A, Martí-Solano M, Aquadro CF, Pascual M, Mestres F. Inversions and adaptation to the plant toxin ouabain shape DNA sequence variation within and between chromosomal inversions of Drosophila subobscura. Sci Rep 2016; 6:23754. [PMID: 27029337 PMCID: PMC4815013 DOI: 10.1038/srep23754] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/14/2016] [Indexed: 12/14/2022] Open
Abstract
Adaptation is defined as an evolutionary process allowing organisms to succeed in certain habitats or conditions. Chromosomal inversions have the potential to be key in the adaptation processes, since they can contribute to the maintenance of favoured combinations of adaptive alleles through reduced recombination between individuals carrying different inversions. We have analysed six genes (Pif1A, Abi, Sqd, Yrt, Atpα and Fmr1), located inside and outside three inversions of the O chromosome in European populations of Drosophila subobscura. Genetic differentiation was significant between inversions despite extensive recombination inside inverted regions, irrespective of gene distance to the inversion breakpoints. Surprisingly, the highest level of genetic differentiation between arrangements was found for the Atpα gene, which is located outside the O1 and O7 inversions. Two derived unrelated arrangements (O3+4+1 and O3+4+7) are nearly fixed for several amino acid substitutions at the Atpα gene that have been described to confer resistance in other species to the cardenolide ouabain, a plant toxin capable of blocking ATPases. Similarities in the Atpα variants, conferring ouabain resistance in both arrangements, may be the result of convergent substitution and be favoured in response to selective pressures presumably related to the presence of plants containing ouabain in the geographic locations where both inversions are present.
Collapse
Affiliation(s)
- Cinta Pegueroles
- Departament de Genètica and IRBio, Facultat de Biologia, Universitat de Barcelona, Barcelona 08028, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Albert Ferrés-Coy
- Department of Neurochemistry and Neuropharmacology, IIBB-CSIC, Barcelona, Spain
| | - Maria Martí-Solano
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, IMIM (Hospital del Mar Medical Research Institute), Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Charles F Aquadro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Marta Pascual
- Departament de Genètica and IRBio, Facultat de Biologia, Universitat de Barcelona, Barcelona 08028, Spain
| | - Francesc Mestres
- Departament de Genètica and IRBio, Facultat de Biologia, Universitat de Barcelona, Barcelona 08028, Spain
| |
Collapse
|
148
|
Lange Y, Steck TL. Active membrane cholesterol as a physiological effector. Chem Phys Lipids 2016; 199:74-93. [PMID: 26874289 DOI: 10.1016/j.chemphyslip.2016.02.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 02/05/2023]
Abstract
Sterols associate preferentially with plasma membrane sphingolipids and saturated phospholipids to form stoichiometric complexes. Cholesterol in molar excess of the capacity of these polar bilayer lipids has a high accessibility and fugacity; we call this fraction active cholesterol. This review first considers how active cholesterol serves as an upstream regulator of cellular sterol homeostasis. The mechanism appears to utilize the redistribution of active cholesterol down its diffusional gradient to the endoplasmic reticulum and mitochondria, where it binds multiple effectors and directs their feedback activity. We have also reviewed a broad literature in search of a role for active cholesterol (as opposed to bulk cholesterol or lipid domains such as rafts) in the activity of diverse membrane proteins. Several systems provide such evidence, implicating, in particular, caveolin-1, various kinds of ABC-type cholesterol transporters, solute transporters, receptors and ion channels. We suggest that this larger role for active cholesterol warrants close attention and can be tested easily.
Collapse
Affiliation(s)
- Yvonne Lange
- Department of Pathology, Rush University Medical Center, 1653 W. Congress Parkway, Chicago, IL 60612, USA.
| | - Theodore L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
149
|
Abstract
The vital gradients of Na+ and K+ across the plasma membrane of animal cells are maintained by the Na,K-ATPase, an αβ enzyme complex, whose α subunit carries out the ion transport and ATP hydrolysis. The specific roles of the β subunit isoforms are less clear, though β2 is essential for motor physiology in mammals. Here, we show that compared to β1 and β3, β2 stabilizes the Na+-occluded E1P state relative to the outward-open E2P state, and that the effect is mediated by its transmembrane domain. Molecular dynamics simulations further demonstrate that the tilt angle of the β transmembrane helix correlates with its functional effect, suggesting that the relative orientation of β modulates ion binding at the α subunit. β2 is primarily expressed in granule neurons and glomeruli in the cerebellum, and we propose that its unique functional characteristics are important to respond appropriately to the cerebellar Na+ and K+ gradients.
Collapse
|
150
|
Durlacher CT, Chow K, Chen XW, He ZX, Zhang X, Yang T, Zhou SF. Targeting Na⁺/K⁺ -translocating adenosine triphosphatase in cancer treatment. Clin Exp Pharmacol Physiol 2016; 42:427-43. [PMID: 25739707 DOI: 10.1111/1440-1681.12385] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/09/2015] [Accepted: 02/21/2015] [Indexed: 12/24/2022]
Abstract
The Na(+) /K(+) -translocating adenosine triphosphatase (ATPase) transports sodium and potassium across the plasma membrane and represents a potential target in cancer chemotherapy. Na(+) /K(+) -ATPase belongs to the P-type ATPase family (also known as E1-E2 ATPase), which is involved in transporting certain ions, metals, and lipids across the plasma membrane of mammalian cells. In humans, the Na(+) /K(+) -ATPase is a binary complex of an α-subunit that has four isoforms (α1 -α4 ) and a β-subunit that has three isoforms (β1 -β3 ). This review aims to update our knowledge on the role of Na(+) /K(+) -ATPase in cancer development and metastasis, as well as on how Na(+) /K(+) -ATPase inhibitors kill tumour cells. The Na(+) /K(+) -ATPase has been found to be associated with cancer initiation, growth, development, and metastasis. Cardiac glycosides have exhibited anticancer effects in cell-based and mouse studies via inhibition of the Na(+) /K(+) -ATPase and other mechanisms. Na(+) /K(+) -ATPase inhibitors may kill cancer cells via induction of apoptosis and autophagy, radical oxygen species production, and cell cycle arrest. They also modulate multiple signalling pathways that regulate cancer cell survival and death, which contributes to their antiproliferative activities in cancer cells. The clinical evidence supporting the use of Na(+) /K(+) -ATPase inhibitors as anticancer drugs is weak. Several phase I and phase II clinical trials with digoxin, Anvirzel, and huachansu (an intravenous formulated extract of the venom of the wild toad), either alone or more often in combination with other anticancer agents, have shown acceptable safety profiles but limited efficacy in cancer patients. Well-designed randomized clinical trials with reasonable sample sizes are certainly warranted to confirm the efficacy and safety of cardiac glycosides for the treatment of cancer.
Collapse
Affiliation(s)
- Cameron T Durlacher
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | | | | | | | | | | | | |
Collapse
|