101
|
Mutagenic Analysis of Membrane Protein Functional Mechanisms: Bacteriorhodopsin as a Model Example. Methods Cell Biol 2008. [DOI: 10.1016/s0091-679x(07)84016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
102
|
Ascenzi P, Visca P. Scavenging of Reactive Nitrogen Species by Mycobacterial Truncated Hemoglobins. Methods Enzymol 2008; 436:317-37. [DOI: 10.1016/s0076-6879(08)36018-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
103
|
|
104
|
Henzler-Wildman KA, Thai V, Lei M, Ott M, Wolf-Watz M, Fenn T, Pozharski E, Wilson MA, Petsko GA, Karplus M, Hübner CG, Kern D. Intrinsic motions along an enzymatic reaction trajectory. Nature 2007; 450:838-44. [PMID: 18026086 DOI: 10.1038/nature06410] [Citation(s) in RCA: 702] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2007] [Accepted: 10/26/2007] [Indexed: 01/01/2023]
Abstract
The mechanisms by which enzymes achieve extraordinary rate acceleration and specificity have long been of key interest in biochemistry. It is generally recognized that substrate binding coupled to conformational changes of the substrate-enzyme complex aligns the reactive groups in an optimal environment for efficient chemistry. Although chemical mechanisms have been elucidated for many enzymes, the question of how enzymes achieve the catalytically competent state has only recently become approachable by experiment and computation. Here we show crystallographic evidence for conformational substates along the trajectory towards the catalytically competent 'closed' state in the ligand-free form of the enzyme adenylate kinase. Molecular dynamics simulations indicate that these partially closed conformations are sampled in nanoseconds, whereas nuclear magnetic resonance and single-molecule fluorescence resonance energy transfer reveal rare sampling of a fully closed conformation occurring on the microsecond-to-millisecond timescale. Thus, the larger-scale motions in substrate-free adenylate kinase are not random, but preferentially follow the pathways that create the configuration capable of proficient chemistry. Such preferred directionality, encoded in the fold, may contribute to catalysis in many enzymes.
Collapse
Affiliation(s)
- Katherine A Henzler-Wildman
- Department of Biochemistry and Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Thijs L, Vinck E, Bolli A, Trandafir F, Wan X, Hoogewijs D, Coletta M, Fago A, Weber RE, Van Doorslaer S, Ascenzi P, Alam M, Moens L, Dewilde S. Characterization of a globin-coupled oxygen sensor with a gene-regulating function. J Biol Chem 2007; 282:37325-40. [PMID: 17925395 DOI: 10.1074/jbc.m705541200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Globin-coupled sensors (GCSs) are multiple-domain transducers, consisting of a regulatory globin-like heme-binding domain and a linked transducer domain(s). GCSs have been described in both Archaea and bacteria. They are generally assumed to bind O(2) (and perhaps other gaseous ligands) and to transmit a conformational change signal through the transducer domain in response to fluctuating O(2) levels. In this study, the heme-binding domain, AvGReg178, and the full protein, AvGReg of the Azotobacter vinelandii GCS, were cloned, expressed, and purified. After purification, the heme iron of AvGReg178 was found to bind O(2). This form was stable over many hours. In contrast, the predominant presence of a bis-histidine coordinate heme in ferric AvGReg was revealed. Differences in the heme pocket structure were also observed for the deoxygenated ferrous state of these proteins. The spectra showed that the deoxygenated ferrous derivatives of AvGReg178 and AvGReg are characterized by a penta-coordinate and hexa-coordinate heme iron, respectively. O(2) binding isotherms indicate that AvGReg178 and AvGReg show a high affinity for O(2) with P(50) values at 20 degrees C of 0.04 and 0.15 torr, respectively. Kinetics of CO binding indicate that AvGReg178 carbonylation conforms to a monophasic process, comparable with that of myoglobin, whereas AvGReg carbonylation conforms to a three-phasic reaction, as observed for several proteins with bis-histidine heme iron coordination. Besides sensing ligands, in vitro data suggest that AvGReg(178) may have a role in O(2)-mediated NO-detoxification, yielding metAvGReg(178) and nitrate.
Collapse
Affiliation(s)
- Liesbet Thijs
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Samuni U, Roche CJ, Dantsker D, Friedman JM. Conformational dependence of hemoglobin reactivity under high viscosity conditions: the role of solvent slaved dynamics. J Am Chem Soc 2007; 129:12756-64. [PMID: 17910446 DOI: 10.1021/ja072342b] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The concept of protein dynamic states is introduced. This concept is based on (i) protein dynamics being organized hierarchically with respect to solvent slaving and (ii) which tier of dynamics is operative over the time window of a given measurement. The protein dynamic state concept is used to analyze the kinetic phases derived from the recombination of carbon monoxide to sol-gel-encapsulated human adult hemoglobin (HbA) and select recombinant mutants. The temperature-dependent measurements are made under very high viscosity conditions obtained by bathing the samples in an excess of glycerol. The results are consistent with a given tier of solvent slaved dynamics becoming operative at a time delay (with respect to the onset of the measurement) that is primarily solvent- and temperature-dependent. However, the functional consequences of the dynamics are protein- and conformation-specific. The kinetic traces from both equilibrium populations and trapped allosteric intermediates show a consistent progression that exposes the role of both conformation and hydration in the control of reactivity. Iron-zinc symmetric hybrid forms of HbA are used to show the dramatic difference between the kinetic patterns for T state alpha and beta subunits. The overall results support a model for allostery in HbA in which the ligand-binding-induced transition from the deoxy T state to the high -affinity R state proceeds through a progression of T state intermediates.
Collapse
Affiliation(s)
- Uri Samuni
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
107
|
Bredenbeck J, Helbing J, Kolano C, Hamm P. Ultrafast 2D–IR Spectroscopy of Transient Species. Chemphyschem 2007; 8:1747-56. [PMID: 17615613 DOI: 10.1002/cphc.200700148] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Multidimensional spectroscopic experiments offer fascinating insights into molecular structure and dynamics in the field of NMR spectroscopy. With the introduction of ultrafast two-dimensional infrared spectroscopy (2D-IR), multidimensional concepts have entered the optical domain, measuring couplings and correlations between molecular vibrations with femtosecond time resolution. In the transient 2D-IR (T2D-IR) experiments described in this minireview we exploit the high time resolution of 2D-IR to study transient species during fast nonequilibrium processes in real time. Information on molecular structure and dynamics is obtained that is not available from one-dimensional spectroscopy. We discuss examples from chemistry, physics and biophysics.
Collapse
Affiliation(s)
- Jens Bredenbeck
- Physikalisch-Chemisches Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | | | | | | |
Collapse
|
108
|
Enoki Y, Ohga Y, Ishidate H, Morimoto T. Primary structure of myoglobins from 31 species of birds. Comp Biochem Physiol B Biochem Mol Biol 2007; 149:11-21. [PMID: 17997117 DOI: 10.1016/j.cbpb.2007.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2007] [Revised: 07/14/2007] [Accepted: 07/15/2007] [Indexed: 10/23/2022]
Abstract
Primary structure of myoglobins (Mbs) from 31 avian species of 15 orders were reported, although portions of the structures in the 2 species could not be determined. At least 68 of the total 153 amino acid sites were invariant all through the avian, reptilian and human Mbs, and 20 of these sites were "internal", forming the internal hydrophobic cavities in which the heme group remains wrapped. Furthermore, at 27 sites, if replaced, the replacements were mostly conservative, and 13 of the conservative sites were "internal". Thus the all 33 "internal" sites, important for structural and functional stability of the protein, have been well preserved, either invariant or conserved, during evolution from reptiles to birds and mammals. The residue 71 (E14) in 4 penguin species was not deleted as previously reported in emperor penguin Mb but occupied by Gln. The residue 121 (GH3) was deleted in all 3 species studied of Falconiformes. Out of 9 anseriforms, 5 species of different genera showed the identical structure. Secondary structures as viewed by hydropathy profiles were highly similar throughout the reptilian, avian and mammalian Mbs.
Collapse
Affiliation(s)
- Yasunori Enoki
- Second Department of Physiology, Nara Medical University, Kashihara, Nara 634-8521, Japan.
| | | | | | | |
Collapse
|
109
|
Ascenzi P, Bolognesi M, Milani M, Guertin M, Visca P. Mycobacterial truncated hemoglobins: from genes to functions. Gene 2007; 398:42-51. [PMID: 17532149 DOI: 10.1016/j.gene.2007.02.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2006] [Revised: 01/29/2007] [Accepted: 02/13/2007] [Indexed: 10/23/2022]
Abstract
Infections caused by bacteria belonging to genus Mycobacterium are among the most challenging threats for human health. The ability of mycobacteria to persist in vivo in the presence of reactive nitrogen and oxygen species implies the presence in these bacteria of effective detoxification mechanisms. Mycobacterial truncated hemoglobins (trHbs) have recently been implicated in scavenging of reactive nitrogen species. Individual members from each trHb family (N, O, and P) can be present in the same mycobacterial species. The distinct features of the heme active site structure combined with different ligand binding properties and in vivo expression patterns of mycobacterial trHbs suggest that these globins may accomplish diverse functions. Here, recent genomic, structural and biochemical information on mycobacterial trHbs is reviewed, with the aim of providing further insights into the role of these globins in mycobacterial physiology.
Collapse
Affiliation(s)
- Paolo Ascenzi
- National Institute for Infectious Diseases I.R.C.C.S. Lazzaro Spallanzani, Via Portuense 292, I-00149 Roma, Italy.
| | | | | | | | | |
Collapse
|
110
|
Multiple non-collinear TF-map alignments of promoter regions. BMC Bioinformatics 2007; 8:138. [PMID: 17456238 PMCID: PMC1878506 DOI: 10.1186/1471-2105-8-138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 04/24/2007] [Indexed: 12/25/2022] Open
Abstract
Background The analysis of the promoter sequence of genes with similar expression patterns is a basic tool to annotate common regulatory elements. Multiple sequence alignments are on the basis of most comparative approaches. The characterization of regulatory regions from co-expressed genes at the sequence level, however, does not yield satisfactory results in many occasions as promoter regions of genes sharing similar expression programs often do not show nucleotide sequence conservation. Results In a recent approach to circumvent this limitation, we proposed to align the maps of predicted transcription factors (referred as TF-maps) instead of the nucleotide sequence of two related promoters, taking into account the label of the corresponding factor and the position in the primary sequence. We have now extended the basic algorithm to permit multiple promoter comparisons using the progressive alignment paradigm. In addition, non-collinear conservation blocks might now be identified in the resulting alignments. We have optimized the parameters of the algorithm in a small, but well-characterized collection of human-mouse-chicken-zebrafish orthologous gene promoters. Conclusion Results in this dataset indicate that TF-map alignments are able to detect high-level regulatory conservation at the promoter and the 3'UTR gene regions, which cannot be detected by the typical sequence alignments. Three particular examples are introduced here to illustrate the power of the multiple TF-map alignments to characterize conserved regulatory elements in absence of sequence similarity. We consider this kind of approach can be extremely useful in the future to annotate potential transcription factor binding sites on sets of co-regulated genes from high-throughput expression experiments.
Collapse
|
111
|
Marković D, Pröll S, Bubenzer C, Scheer H. Myoglobin with chlorophyllous chromophores: influence on protein stability. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:897-904. [PMID: 17490605 DOI: 10.1016/j.bbabio.2007.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 03/15/2007] [Accepted: 03/19/2007] [Indexed: 11/24/2022]
Abstract
The stabilities of myoglobin, apo-myoglobin, and of two myoglobins with chlorophyllous chromophores (Zn-pheophorbide a and Zn-bacteriopheophorbide a), have been studied by thermal and chemical denaturation. With guanidinium chloride, the stability order is myoglobin>Zn-pheophorbide-myoglobin>Zn-bacteriopheophorbide-myoglobin approximately apo-myoglobin. The thermal behavior is more complex. The transition temperature of thermal unfolding of the apoprotein (62.4 degrees C) is increased by Zn-pheophorbide a (83.9 degrees C) and Zn-bacteriopheophorbide a (82.6 degrees C) to a similar degree as by the native chromophore, heme (83.5 degrees C). The recovery with Zn-pheophorbide (92-98%) is even higher than with heme (74-76%), while with Zn-bacteriopheophorbide (40%) it is as low as with the apoprotein (42%). Recovery also depends on the rates of heating, and in particular the time spent at high temperatures. It is concluded that irreversibility of unfolding is related to loss of the chromophores, which are required for proper re-folding.
Collapse
Affiliation(s)
- Dejan Marković
- Department of Biologie I, Botanik, Menzinger Str. 67, D-80638 München, Germany
| | | | | | | |
Collapse
|
112
|
Arcovito A, Benfatto M, Cianci M, Hasnain SS, Nienhaus K, Nienhaus GU, Savino C, Strange RW, Vallone B, Della Longa S. X-ray structure analysis of a metalloprotein with enhanced active-site resolution using in situ x-ray absorption near edge structure spectroscopy. Proc Natl Acad Sci U S A 2007; 104:6211-6. [PMID: 17404234 PMCID: PMC1851025 DOI: 10.1073/pnas.0608411104] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
X-ray absorption spectroscopy is exquisitely sensitive to the coordination geometry of an absorbing atom and therefore allows bond distances and angles of the surrounding atomic cluster to be measured with atomic resolution. By contrast, the accuracy and resolution of metalloprotein active sites obtainable from x-ray crystallography are often insufficient to analyze the electronic properties of the metals that are essential for their biological functions. Here, we demonstrate that the combination of both methods on the same metalloprotein single crystal yields a structural model of the protein with exceptional active-site resolution. To this end, we have collected an x-ray diffraction data set to 1.4-A resolution and Fe K-edge polarized x-ray absorption near edge structure (XANES) spectra on the same cyanomet sperm whale myoglobin crystal. The XANES spectra were quantitatively analyzed by using a method based on the multiple scattering approach, which yielded Fe-heme structural parameters with +/-(0.02-0.07)-A accuracy on the atomic distances and +/-7 degrees on the Fe-CN angle. These XANES-derived parameters were subsequently used as restraints in the crystal structure refinement. By combining XANES and x-ray diffraction, we have obtained an cyanomet sperm whale myoglobin structural model with a higher precision of the bond lengths and angles at the active site than would have been possible with crystallographic analysis alone.
Collapse
Affiliation(s)
- Alessandro Arcovito
- Department of Biochemical Sciences and Consiglio Nazionale delle Ricerche, Institute of Molecular Biology and Pathology, University of Rome La Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | - Maurizio Benfatto
- Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, P.O. Box 13, 00044 Frascati, Italy
| | - Michele Cianci
- Molecular Biophysics Group, Daresbury Laboratory, Central Laboratory of the Research Councils, Warrington WA4 4AD, United Kingdom
| | - S. Samar Hasnain
- Molecular Biophysics Group, Daresbury Laboratory, Central Laboratory of the Research Councils, Warrington WA4 4AD, United Kingdom
| | - Karin Nienhaus
- Institute of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - G. Ulrich Nienhaus
- Institute of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Department of Physics, University of Illinois at Urbana–Champaign, 1110 West Green Street, Urbana, IL 61801; and
- To whom correspondence may be addressed. E-mail: , , or
| | - Carmelinda Savino
- Department of Biochemical Sciences and Consiglio Nazionale delle Ricerche, Institute of Molecular Biology and Pathology, University of Rome La Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | - Richard W. Strange
- Molecular Biophysics Group, Daresbury Laboratory, Central Laboratory of the Research Councils, Warrington WA4 4AD, United Kingdom
- To whom correspondence may be addressed. E-mail: , , or
| | - Beatrice Vallone
- Department of Biochemical Sciences and Consiglio Nazionale delle Ricerche, Institute of Molecular Biology and Pathology, University of Rome La Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | - Stefano Della Longa
- Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, P.O. Box 13, 00044 Frascati, Italy
- Dipartimento di Medicina Sperimentale, Università dell' Aquila, Via Vetoio, 67100 L'Aquila, Italy
- To whom correspondence may be addressed. E-mail: , , or
| |
Collapse
|
113
|
Bredenbeck J, Helbing J, Nienhaus K, Nienhaus GU, Hamm P. Protein ligand migration mapped by nonequilibrium 2D-IR exchange spectroscopy. Proc Natl Acad Sci U S A 2007; 104:14243-8. [PMID: 17261808 PMCID: PMC1964829 DOI: 10.1073/pnas.0607758104] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
2D-IR exchange spectroscopy has been introduced recently to map chemical exchange networks in equilibrium with subpicosecond time resolution. Here, we demonstrate the generalization of 2D-IR exchange spectroscopy to nonequilibrium systems and its application to map light-triggered migration of ligands between different sites in a protein. Within picoseconds after a photodissociating laser pulse, carbon monoxide ligands relocate from their binding site A at the heme prosthetic group of myoglobin to a primary docking site B in the distal heme pocket. Multiple CO stretching bands are observed for the CO ligand in sites A and B, indicating that several distinct conformational substates of the myoglobin:ligand complex coexist in solution. Exchange cross-peaks between the bands associated with substates of heme-bound CO and photodissociated CO in the primary docking site reveal the substate connectivity at physiological temperature.
Collapse
Affiliation(s)
- Jens Bredenbeck
- Physikalisch-Chemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
114
|
Nonequilibrium 2D-IR Exchange Spectroscopy: Ligand Migration in Proteins. ULTRAFAST PHENOMENA XV 2007. [DOI: 10.1007/978-3-540-68781-8_122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
115
|
del Sol A, Araúzo-Bravo MJ, Amoros D, Nussinov R. Modular architecture of protein structures and allosteric communications: potential implications for signaling proteins and regulatory linkages. Genome Biol 2007; 8:R92. [PMID: 17531094 PMCID: PMC1929157 DOI: 10.1186/gb-2007-8-5-r92] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 02/06/2007] [Accepted: 05/25/2007] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Allosteric communications are vital for cellular signaling. Here we explore a relationship between protein architectural organization and shortcuts in signaling pathways. RESULTS We show that protein domains consist of modules interconnected by residues that mediate signaling through the shortest pathways. These mediating residues tend to be located at the inter-modular boundaries, which are more rigid and display a larger number of long-range interactions than intra-modular regions. The inter-modular boundaries contain most of the residues centrally conserved in the protein fold, which may be crucial for information transfer between amino acids. Our approach to modular decomposition relies on a representation of protein structures as residue-interacting networks, and removal of the most central residue contacts, which are assumed to be crucial for allosteric communications. The modular decomposition of 100 multi-domain protein structures indicates that modules constitute the building blocks of domains. The analysis of 13 allosteric proteins revealed that modules characterize experimentally identified functional regions. Based on the study of an additional functionally annotated dataset of 115 proteins, we propose that high-modularity modules include functional sites and are the basic functional units. We provide examples (the Galphas subunit and P450 cytochromes) to illustrate that the modular architecture of active sites is linked to their functional specialization. CONCLUSION Our method decomposes protein structures into modules, allowing the study of signal transmission between functional sites. A modular configuration might be advantageous: it allows signaling proteins to expand their regulatory linkages and may elicit a broader range of control mechanisms either via modular combinations or through modulation of inter-modular linkages.
Collapse
Affiliation(s)
- Antonio del Sol
- Bioinformatics Research Unit, Research and Development Division, Fujirebio Inc., Komiya-cho, Hachioji-shi, Tokyo 192-0031, Japan
| | - Marcos J Araúzo-Bravo
- Bioinformatics Research Unit, Research and Development Division, Fujirebio Inc., Komiya-cho, Hachioji-shi, Tokyo 192-0031, Japan
| | - Dolors Amoros
- Bioinformatics Research Unit, Research and Development Division, Fujirebio Inc., Komiya-cho, Hachioji-shi, Tokyo 192-0031, Japan
| | - Ruth Nussinov
- Basic Research Program, SAIC-Frederick, Inc., Center for Cancer Research, Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
116
|
Kovác L. Life, chemistry and cognition: Conceiving life as knowledge embodied in sentient chemical systems might provide new insights into the nature of cognition. EMBO Rep 2006; 7:562-6. [PMID: 16741498 PMCID: PMC1479596 DOI: 10.1038/sj.embor.7400717] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Ladislav Kovác
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
117
|
Meuwly M. On the Influence of the Local Environment on the CO Stretching Frequencies in Native Myoglobin: Assignment of the B-States in MbCO. Chemphyschem 2006; 7:2061-3. [PMID: 16955519 DOI: 10.1002/cphc.200600304] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Markus Meuwly
- Department of Chemistry, University of Basel Klingelbergstrasse 80, 4056 Basel, Switzerland.
| |
Collapse
|
118
|
Maguid S, Fernández-Alberti S, Parisi G, Echave J. Evolutionary conservation of protein backbone flexibility. J Mol Evol 2006; 63:448-57. [PMID: 17021932 DOI: 10.1007/s00239-005-0209-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 05/25/2006] [Indexed: 10/24/2022]
Abstract
Internal protein dynamics is essential for biological function. During evolution, protein divergence is functionally constrained: properties more relevant for function vary more slowly than less important properties. Thus, if protein dynamics is relevant for function, it should be evolutionary conserved. In contrast with the well-studied evolution of protein structure, the evolutionary divergence of protein dynamics has not been addressed systematically before, apart from a few case studies. X-Ray diffraction analysis gives information not only on protein structure but also on B-factors, which characterize the flexibility that results from protein dynamics. Here we study the evolutionary divergence of protein backbone dynamics by comparing the C(alpha) flexibility (B-factor) profiles for a large dataset of homologous proteins classified into families and superfamilies. We show that C(alpha) flexibility profiles diverge slowly, so that they are conserved at family and superfamily levels, even for pairs of proteins with nonsignificant sequence similarity. We also analyze and discuss the correlations among the divergences of flexibility, sequence, and structure.
Collapse
Affiliation(s)
- Sandra Maguid
- Centro de Estudios e Investigaciones, Universidad Nacional de Quilmes, Saenz Peña 180, 1876, Bernal, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
119
|
Adams KL, Tsoi S, Yan J, Durbin SM, Ramdas AK, Cramer WA, Sturhahn W, Alp EE, Schulz C. Fe vibrational spectroscopy of myoglobin and cytochrome f. J Phys Chem B 2006; 110:530-6. [PMID: 16471565 DOI: 10.1021/jp053440r] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Fe vibrational density of states (VDOS) has been determined for the heme proteins deoxymyoglobin, metmyoglobin, and cytochrome f in the oxidized and reduced states, using nuclear resonance vibrational spectroscopy (NRVS). For cytochrome f in particular, the NRVS spectrum is compared with multiwavelength resonance Raman spectra to identify those Raman modes with significant Fe displacement. Modes not seen by Raman due to optical selection rules appear in the NRVS spectrum. The mean Fe force constant extracted from the VDOS illustrates how Fe dynamics varies among these four monoheme proteins, and is correlated with oxidation and spin state trends seen in model heme compounds. The protein's contribution to Fe motion is dominant at low frequencies, where coupling to the backbone tightly constrains Fe displacements in cytochrome f, in contrast to enhanced heme flexibility in myoglobin.
Collapse
Affiliation(s)
- Kristl L Adams
- Department of Physics, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Fernandez-Alberti S, Bacelo DE, Binning RC, Echave J, Chergui M, Lopez-Garriga J. Sulfide-binding hemoglobins: Effects of mutations on active-site flexibility. Biophys J 2006; 91:1698-709. [PMID: 16782787 PMCID: PMC1544295 DOI: 10.1529/biophysj.106.081646] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dynamics of Hemoglobin I (HbI) from the clam Lucina pectinata, from wild-type sperm whale (SW) myoglobin, and from the L29F/H64Q/V68F triple mutant of SW, both unligated and bound to hydrogen sulfide (H2S), have been studied in molecular dynamics simulations. Features that account for differences in H2S affinity among the three have been examined. Our results verify the existence of an unusual heme rocking motion in unligated HbI that can promote the entrance of large ligands such as H2S. The FQF-mutant partially reproduces the amplitude and relative orientation of the motion of HbI's heme group. Therefore, besides introducing favorable electrostatic interactions with H2S, the three mutations in the distal pocket change the dynamic properties of the heme group. The active-site residues Gln-64(E7), Phe-43(CD1), and His-93(F8) are also shown to be more flexible in unligated HbI than in FQF-mutant and SW. Further contributions to H2S affinity come from differences in hydrogen bonding between the heme propionate groups and nearby amino acid residues.
Collapse
|
121
|
Cohen J, Arkhipov A, Braun R, Schulten K. Imaging the migration pathways for O2, CO, NO, and Xe inside myoglobin. Biophys J 2006; 91:1844-57. [PMID: 16751246 PMCID: PMC1544290 DOI: 10.1529/biophysj.106.085746] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myoglobin (Mb) is perhaps the most studied protein, experimentally and theoretically. Despite the wealth of known details regarding the gas migration processes inside Mb, there exists no fully conclusive picture of these pathways. We address this deficiency by presenting a complete map of all the gas migration pathways inside Mb for small gas ligands (O2, NO, CO, and Xe). To accomplish this, we introduce a computational approach for studying gas migration, which we call implicit ligand sampling. Rather than simulating actual gas migration events, we infer the location of gas migration pathways based on a free-energy perturbation approach applied to simulations of Mb's dynamical fluctuations at equilibrium in the absence of ligand. The method provides complete three-dimensional maps of the potential of mean force of gas ligand placement anywhere inside a protein-solvent system. From such free-energy maps we identify each gas docking site, the pathways between these sites, to the heme and to the external solution. Our maps match previously known features of these pathways in Mb, but also point to the existence of additional exits from the protein matrix in regions that are not easily probed by experiment. We also compare the pathway maps of Mb for different gas ligands and for different animal species.
Collapse
Affiliation(s)
- Jordi Cohen
- Department of Physics and Beckman Institute, University of Illinois, Urbana, Illinois, USA
| | | | | | | |
Collapse
|
122
|
|
123
|
del Sol A, Fujihashi H, Amoros D, Nussinov R. Residues crucial for maintaining short paths in network communication mediate signaling in proteins. Mol Syst Biol 2006; 2:2006.0019. [PMID: 16738564 PMCID: PMC1681495 DOI: 10.1038/msb4100063] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Accepted: 03/15/2006] [Indexed: 12/04/2022] Open
Abstract
Here, we represent protein structures as residue interacting networks, which are assumed to involve a permanent flow of information between amino acids. By removal of nodes from the protein network, we identify fold centrally conserved residues, which are crucial for sustaining the shortest pathways and thus play key roles in long-range interactions. Analysis of seven protein families (myoglobins, G-protein-coupled receptors, the trypsin class of serine proteases, hemoglobins, oligosaccharide phosphorylases, nuclear receptor ligand-binding domains and retroviral proteases) confirms that experimentally many of these residues are important for allosteric communication. The agreement between the centrally conserved residues, which are key in preserving short path lengths, and residues experimentally suggested to mediate signaling further illustrates that topology plays an important role in network communication. Protein folds have evolved under constraints imposed by function. To maintain function, protein structures need to be robust to mutational events. On the other hand, robustness is accompanied by an extreme sensitivity at some crucial sites. Thus, here we propose that centrally conserved residues, whose removal increases the characteristic path length in protein networks, may relate to the system fragility.
Collapse
Affiliation(s)
- Antonio del Sol
- Bioinformatics Research Unit, Research and Development Division, Fujirebio Inc., Hachioji-shi, Tokyo, Japan.
| | | | | | | |
Collapse
|
124
|
Bourgeois D, Vallone B, Arcovito A, Sciara G, Schotte F, Anfinrud PA, Brunori M. Extended subnanosecond structural dynamics of myoglobin revealed by Laue crystallography. Proc Natl Acad Sci U S A 2006; 103:4924-9. [PMID: 16547137 PMCID: PMC1458771 DOI: 10.1073/pnas.0508880103] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Indexed: 11/18/2022] Open
Abstract
Work carried out over the last 30 years unveiled the role of structural dynamics in controlling protein function. Cavity networks modulate structural dynamics trajectories and are functionally relevant; in globins they have been assigned a role in ligand migration and docking. These findings raised renewed interest for time-resolved structural investigations of myoglobin (Mb), a simple heme protein displaying a photosensitive iron-ligand bond. Photodissociation of MbCO generates a nonequilibrium population of protein structures relaxing over a time range extending from picoseconds to milliseconds. This process triggers ligand migration to matrix cavities with clear-cut effects on the rate and yield of geminate rebinding. Here, we report subnanosecond time-resolved Laue diffraction data on the triple mutant YQR-Mb [Leu-29(B10)Tyr, His-64(E7)Gln, Thr-67(E10)Arg] that depict the sequence of structural events associated with heme and protein relaxation from 100 ps to 316 ns and above. The photodissociated ligand rapidly (<0.1 ns) populates the Xe-binding cavity distal to the heme. Moreover, the heme relaxation toward the deoxy configuration is heterogeneous, with a slower phase ( approximately ns) evident in these experiments. Damping of the heme response appears to result from a strain exerted by the E-helix via the CD-turn; Phe-43(CD1), in close contact with heme, opposes tilt until the strain is relieved. A comparison with crystallographic data on wild-type Mb and mutants Leu(29)Phe or Leu(29)Trp suggests that the internal structure controls the rate and amplitude of the relaxation events. A correlation between structural dynamics as unveiled by Laue crystallography and functional properties of Mb is presented.
Collapse
Affiliation(s)
- Dominique Bourgeois
- *Institut de Biologie Structurale, Unité Mixte de Recherche 5075, Centre National de la Recherche Scientifique/Commissariat à l’Energie Atomique/Université Joseph Fourier, 41 Rue Jules Horowitz, 38027 Grenoble Cedex 1, France
- European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, B.P. 220, 38043 Grenoble Cedex, France
| | - Beatrice Vallone
- Dipartimento di Scienze Biochimiche and Istituto Pasteur-Fondazione Cenci Bolognetti, Università di Roma “La Sapienza,” Piazzale A. Moro 5, 00185 Rome, Italy; and
| | - Alessandro Arcovito
- Dipartimento di Scienze Biochimiche and Istituto Pasteur-Fondazione Cenci Bolognetti, Università di Roma “La Sapienza,” Piazzale A. Moro 5, 00185 Rome, Italy; and
| | - Giuliano Sciara
- Dipartimento di Scienze Biochimiche and Istituto Pasteur-Fondazione Cenci Bolognetti, Università di Roma “La Sapienza,” Piazzale A. Moro 5, 00185 Rome, Italy; and
| | - Friedrich Schotte
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520
| | - Philip A. Anfinrud
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520
| | - Maurizio Brunori
- Dipartimento di Scienze Biochimiche and Istituto Pasteur-Fondazione Cenci Bolognetti, Università di Roma “La Sapienza,” Piazzale A. Moro 5, 00185 Rome, Italy; and
| |
Collapse
|
125
|
Gardner PR, Gardner AM, Brashear WT, Suzuki T, Hvitved AN, Setchell KDR, Olson JS. Hemoglobins dioxygenate nitric oxide with high fidelity. J Inorg Biochem 2006; 100:542-50. [PMID: 16439024 DOI: 10.1016/j.jinorgbio.2005.12.012] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Accepted: 11/26/2005] [Indexed: 11/28/2022]
Abstract
Distantly related members of the hemoglobin (Hb) superfamily including red blood cell Hb, muscle myoglobin (Mb) and the microbial flavohemoglobin (flavoHb) dioxygenate nitric oxide (.NO). The reaction serves important roles in .NO metabolism and detoxification throughout the aerobic biosphere. Analysis of the stoichiometric product nitrate shows greater than 99% double O-atom incorporation from Hb(18)O(2), Mb(18)O(2) and flavoHb(18)O(2) demonstrating a conserved high fidelity .NO dioxygenation mechanism. Whereas, reactions of .NO with the structurally unrelated Turbo cornutus MbO(2) or free superoxide radical (-O.(2)) yield sub-stoichiometric nitrate showing low fidelity O-atom incorporation. These and other results support a .NO dioxygenation mechanism involving (1) rapid reaction of .NO with a Fe(III-)O.(2) intermediate to form Fe(III-)OONO and (2) rapid isomerization of the Fe(III-)OONO intermediate to form nitrate. A sub-microsecond isomerization event is hypothesized in which the O-O bond homolyzes to form a protein caged [Fe(IV)O .NO(2)] intermediate and ferryl oxygen attacks .NO(2) to form nitrate. Hb functions as a .NO dioxygenase by controlling O(2) binding and electrochemistry, guiding .NO diffusion and reaction, and shielding highly reactive intermediates from solvent water and biomolecules.
Collapse
Affiliation(s)
- Paul R Gardner
- Division of Critical Care Medicine, Children's Hospital Medical Center, 3333 Burnet Ave, MLC7006, Cincinnati, OH 45229, USA.
| | | | | | | | | | | | | |
Collapse
|
126
|
Laberge M, Kovesi I, Yonetani T, Fidy J. Normal mode analysis of the horseradish peroxidase collective motions: Correlation with spectroscopically observed heme distortions. Biopolymers 2006; 82:425-9. [PMID: 16453307 DOI: 10.1002/bip.20463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Horseradish peroxidase C is a class III peroxidase whose structure is stabilized by the presence of two endogenous calcium atoms. Calcium removal has been shown to decrease the enzymatic activity of the enzyme and significantly affect the spectroscopically detectable properties of the heme, such as the spin state of the iron, heme normal modes, and distortions from planarity. In this work, we report on normal mode analysis (NMA) performed on models subjected to 2 ns of molecular dynamics simulations to describe the effect of calcium removal on protein collective motions and to investigate the correlation between active site (heme) and protein matrix fluctuations. We show that in the native peroxidase model, heme fluctuations are correlated to matrix fluctuations while they are not in the calcium-depleted model.
Collapse
Affiliation(s)
- Monique Laberge
- Department of Biophysics and Radiation Biology, Semmelweis University and Biophysics Research Group, MTA-TKI, Puskin u. 9, Budapest 1088, Hungary.
| | | | | | | |
Collapse
|
127
|
Kirilina EP, Prisner TF, Bennati M, Endeward B, Dzuba SA, Fuchs MR, Möbius K, Schnegg A. Molecular dynamics of nitroxides in glasses as studied by multi-frequency EPR. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2005; 43 Spec no.:S119-29. [PMID: 16235207 DOI: 10.1002/mrc.1677] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Pulsed multi-frequency EPR was used to investigate orientational molecular motion of the nitroxide spin probe (Fremy's salt) in glycerol glass near the glass transition temperature. By measuring echo-detected EPR spectra at different pulse separation times at resonance frequencies of 3, 9.5, 95 and 180 GHz, we were able to discriminate between different relaxation mechanisms and characterize the timescale of molecular reorientations (10(-7)-10(-10) s). We found that near the glass transition temperature, the orientation-dependent transverse relaxation is dominated by fast reorientational fluctuations, which may be overlapped with fast modulations of the canonical g-matrix values. The data was interpreted using a new simulation program for the orientation-dependent transverse relaxation rate 1/T2 of nitroxides based on different models for the molecular motion. The validity of the different models was assessed by comparing least-square fits of the simulated relaxation behaviour to the experimental data.
Collapse
Affiliation(s)
- Evgeniya P Kirilina
- Institute of Chemical Kinetics and Combustion, Institutskaya 3, Novosibirsk, 630090, Russia
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Nutt DR, Karplus M, Meuwly M. Potential Energy Surface and Molecular Dynamics of MbNO: Existence of an Unsuspected FeON Minimum. J Phys Chem B 2005; 109:21118-25. [PMID: 16853735 DOI: 10.1021/jp0523975] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ligands such as CO, O(2), or NO are involved in the biological function of myoglobin. Here we investigate the energetics and dynamics of NO interacting with the Fe(II) heme group in native myoglobin using ab initio and molecular dynamics simulations. At the global minimum of the ab initio potential energy surface (PES), the binding energy of 23.4 kcal/mol and the Fe-NO structure compare well with the experimental results. Interestingly, the PES is found to exhibit two minima: There exists a metastable, linear Fe-O-N minimum in addition to the known, bent Fe-N-O global minimum conformation. Moreover, the T-shaped configuration is found to be a saddle point, in contrast to the corresponding minimum for NO interacting with Fe(III). To use the ab initio results for finite temperature molecular dynamics simulations, an analytical function was fitted to represent the Fe-NO interaction. The simulations show that the secondary minimum is dynamically stable up to 250 K and has a lifetime of several hundred picoseconds at 300 K. The difference in the topology of the heme-NO PES from that assumed previously (one deep, single Fe-NO minimum) suggests that it is important to use the full PES for a quantitative understanding of this system. Why the metastable state has not been observed in the many spectroscopic studies of myoglobin interacting with NO is discussed, and possible approaches to finding it are outlined.
Collapse
Affiliation(s)
- David R Nutt
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | | | | |
Collapse
|
129
|
Socolich M, Lockless SW, Russ WP, Lee H, Gardner KH, Ranganathan R. Evolutionary information for specifying a protein fold. Nature 2005; 437:512-8. [PMID: 16177782 DOI: 10.1038/nature03991] [Citation(s) in RCA: 303] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Accepted: 06/30/2005] [Indexed: 11/08/2022]
Abstract
Classical studies show that for many proteins, the information required for specifying the tertiary structure is contained in the amino acid sequence. Here, we attempt to define the sequence rules for specifying a protein fold by computationally creating artificial protein sequences using only statistical information encoded in a multiple sequence alignment and no tertiary structure information. Experimental testing of libraries of artificial WW domain sequences shows that a simple statistical energy function capturing coevolution between amino acid residues is necessary and sufficient to specify sequences that fold into native structures. The artificial proteins show thermodynamic stabilities similar to natural WW domains, and structure determination of one artificial protein shows excellent agreement with the WW fold at atomic resolution. The relative simplicity of the information used for creating sequences suggests a marked reduction to the potential complexity of the protein-folding problem.
Collapse
Affiliation(s)
- Michael Socolich
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9050, USA
| | | | | | | | | | | |
Collapse
|
130
|
Bossa C, Amadei A, Daidone I, Anselmi M, Vallone B, Brunori M, Di Nola A. Molecular dynamics simulation of sperm whale myoglobin: effects of mutations and trapped CO on the structure and dynamics of cavities. Biophys J 2005; 89:465-74. [PMID: 15849248 PMCID: PMC1366547 DOI: 10.1529/biophysj.104.055020] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Accepted: 04/07/2005] [Indexed: 11/18/2022] Open
Abstract
The results of extended (80-ns) molecular dynamics simulations of wild-type and YQR triple mutant of sperm whale deoxy myoglobin in water are reported and compared with the results of the simulation of the intermediate(s) obtained by photodissociation of CO in the wild-type protein. The opening/closure of pathways between preexistent cavities is different in the three systems. For the photodissociated state, we previously reported a clear-cut correlation between the opening probability and the presence of the photolyzed CO in the proximity of the passage; here we show that in wild-type deoxy myoglobin, opening is almost random. In wild-type deoxy myoglobin, the passage between the distal pocket and the solvent is strictly correlated to the presence/absence of a water molecule that simultaneously interacts with the distal histidine side chain and the heme iron; conversely, in the photodissociated myoglobin, the connection with the bulk solvent is always open when CO is in the vicinity of the A pyrrole ring. In YQR deoxy myoglobin, the mutated Gln(E7)64 is stably H-bonded with the mutated Tyr(B10)29. The essential dynamics analysis unveils a different behavior for the three systems. The motion amplitude is progressively restricted in going from wild-type to YQR deoxy myoglobin and to wild-type myoglobin photoproduct. In all cases, the principal motions involve mainly the same regions, but their directions are different. Analysis of the dynamics of the preexisting cavities indicates large fluctuations and frequent connections with the solvent, in agreement with the earlier hypothesis that some of the ligand may escape from the protein through these pathways.
Collapse
Affiliation(s)
- Cecilia Bossa
- Dipartimento di Chimica, University of Rome La Sapienza, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
131
|
Ascenzi P, Bocedi A, Bolli A, Fasano M, Notari S, Polticelli F. Allosteric modulation of monomeric proteins*. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 33:169-176. [PMID: 21638571 DOI: 10.1002/bmb.2005.494033032470] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Multimeric proteins (e.g. hemoglobin) are considered to be the prototypes of allosteric enzymes, whereas monomeric proteins (e.g. myoglobin) usually are assumed to be nonallosteric. However, the modulation of the functional properties of monomeric proteins by heterotropic allosteric effectors casts doubts on this assumption. Here, the allosteric properties of sperm whale myoglobin, human serum albumin, and human α-thrombin, generally considered as molecular models of monomeric proteins, are summarized.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Dipartimento di Biologia and Laboratorio Interdipartimentale di Microscopia Elettronica, Università "Roma Tre," Viale Guglielmo Marconi 446, I-00146 Roma, Italy; Istituto Nazionale per le Malattie Infettive I.R.C.C.S. "Lazzaro Spallanzani," Via Portuense 292, I-00149 Roma, Italy.
| | | | | | | | | | | |
Collapse
|
132
|
Verma CS, Fischer S. Protein stability and ligand binding: new paradigms from in-silico experiments. Biophys Chem 2005; 115:295-302. [PMID: 15752621 DOI: 10.1016/j.bpc.2004.12.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 11/26/2004] [Accepted: 12/10/2004] [Indexed: 10/26/2022]
Abstract
Computer simulations are used to investigate two features of proteins: ligand binding and ligand entry/exit. Both reveal surprising new insights into the physics of such complex systems and suggest at possible interpretations that depart from the usual paradigms. A ligand binding study using normal mode analysis suggests that, contrary to the perceived notion that ligand binding induces a tightening of the protein (as would be evidenced by a blue shift in its vibrational spectrum), there seem to be cases where ligand binding causes an increase in the entropy through a red-shift in the vibrational spectrum of the protein; this occurs in the part of the spectrum that is associated with large-scale low-frequency delocalized motions of proteins. Moreover, this increase seems to be dependent on the ability of the ligand to form hydrogen bonds within the polar cavity of the protein. This suggests an additional driving force for stabilizing complex formation. In parallel, pathways of ligand access to cavities in two proteins are mapped and it is found that, in agreement with recent interpretations of experimental data emerging from NMR studies, these pathways are characterized by a ruggedness of the energy landscape, which leads to a picture that has a physically more appealing basis than the traditional two-state paradigm normally invoked for ligand binding.
Collapse
Affiliation(s)
- Chandra S Verma
- Bioinformatics Institute, Matrix, Singapore-138671, Singapore.
| | | |
Collapse
|
133
|
Liu Z, Xu Y, Tang P. Molecular dynamics simulations of C2F6 effects on gramicidin A: implications of the mechanisms of general anesthesia. Biophys J 2005; 88:3784-91. [PMID: 15764669 PMCID: PMC1305613 DOI: 10.1529/biophysj.104.055566] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It was recently postulated that the effects of general anesthetics on protein global dynamics might underlie a unitary molecular mechanism of general anesthesia. To verify that the specific dynamics effects caused by general anesthetics were not shared by nonanesthetic molecules, two parallel 8-ns all-atom molecular dynamics simulations were performed on a gramicidin A (gA) channel in a fully hydrated dimyristoylphosphatidylcholine membrane in the presence and absence of hexafluoroethane (HFE), which structurally resembles the potent anesthetic molecule halothane but produces no anesthesia. Similar to halothane, HFE had no measurable effects on the gA channel structure. In contrast to halothane, HFE produced no significant changes in the gA channel dynamics. The difference between halothane and HFE on channel dynamics can be attributed to their distinctly different distributions within the lipid bilayer and consequently to the different interactions of the anesthetic and the nonanesthetic molecules with the channel-anchoring tryptophan residues. The study further supports the notion that anesthetic-induced changes in protein global dynamics may play an important role in mediating anesthetic actions on proteins.
Collapse
Affiliation(s)
- Zhanwu Liu
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA
| | | | | |
Collapse
|
134
|
Abstract
Single-molecule studies allow the study of subtle activity differences due to local folding in proteins, but are time consuming and difficult because only a few molecules are observed in one experiment. We developed an assay where we can simultaneously measure the activity of hundreds of individual molecules. The assay utilizes a synthetic chymotrypsin substrate that is nonfluorescent before cleavage by chymotrypsin, but is intensely fluorescent afterward. We encapsulated the enzyme and substrate in micron-sized droplets of water surrounded by silicone oil where each microdroplet contains <1 enzyme on average. A microscope and charge-coupled device camera are used to measure the fluorescence intensity of the same individual droplet over time. Based on these measurements, we conclude that enzymatic reactions could occur within this emulsion system, the statistical average activity of individual chymotrypsin molecules is similar to that measured in bulk, and the activity of individual chymotrypsin is heterogeneous.
Collapse
Affiliation(s)
- Alan I Lee
- Department of Biomedical Engineering, Henry Samueli School of Engineering, University of California, Irvine, 92697, USA
| | | |
Collapse
|
135
|
Maguid S, Fernandez-Alberti S, Ferrelli L, Echave J. Exploring the common dynamics of homologous proteins. Application to the globin family. Biophys J 2005; 89:3-13. [PMID: 15749782 PMCID: PMC1366528 DOI: 10.1529/biophysj.104.053041] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present a procedure to explore the global dynamics shared between members of the same protein family. The method allows the comparison of patterns of vibrational motion obtained by Gaussian network model analysis. After the identification of collective coordinates that were conserved during evolution, we quantify the common dynamics within a family. Representative vectors that describe these dynamics are defined using a singular value decomposition approach. As a test case, the globin heme-binding family is considered. The two lowest normal modes are shown to be conserved within this family. Our results encourage the development of models for protein evolution that take into account the conservation of dynamical features.
Collapse
Affiliation(s)
- Sandra Maguid
- Universidad Nacional de Quilmes, B1876BXD Bernal, Argentina
| | | | | | | |
Collapse
|
136
|
Wang Y, Baskin JS, Xia T, Zewail AH. Human myoglobin recognition of oxygen: dynamics of the energy landscape. Proc Natl Acad Sci U S A 2004; 101:18000-5. [PMID: 15601759 PMCID: PMC539810 DOI: 10.1073/pnas.0408379102] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Femtosecond to nanosecond dynamics of O(2) rebinding to human WT myoglobin and its mutants, V68F and I107F, have been studied by using transient absorption. The results are compared with NO rebinding. Even though the immediate environment around the heme binding site is changed by the mutations, the picosecond geminate rebinding of oxygen is at most minimally affected. On the other hand, the V68F (E11) mutation causes drastic differences in rebinding on the nanosecond time scale, whereas the effect of the I107F (G8) mutation remains relatively small within our 10-ns time window. Unlike traditional homogeneous kinetics and molecular dynamics collisional simulations, we propose a "bifurcation model" for populations of directed and undirected dynamics on the ultrafast time scale, reflecting the distribution of initial protein conformations. The major mutation effect occurs on the time scale on which global protein conformational change is possible, consistent with transitions between the conformations of directed and undirected population playing a role in the O(2) binding. We discuss the relevance of these findings to the bimolecular function of the protein.
Collapse
Affiliation(s)
- Yuhong Wang
- Laboratory for Molecular Sciences, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
137
|
Fasano M, Bocedi A, Mattu M, Coletta M, Ascenzi P. Nitrosylation of rabbit ferrous heme-hemopexin. J Biol Inorg Chem 2004; 9:800-6. [PMID: 15378409 DOI: 10.1007/s00775-004-0598-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Accepted: 05/13/2004] [Indexed: 10/26/2022]
Abstract
Hemopexin (HPX) serves as a trap for toxic plasma heme, ensuring its complete clearance by transportation to the liver. Moreover, HPX-heme has been postulated to play a key role in the homeostasis of nitric oxide (NO). Here, the thermodynamics for NO binding to rabbit ferrous HPX-heme as well as the EPR and optical absorption spectroscopic properties of rabbit ferrous nitrosylated HPX-heme (HPX-heme-NO) are reported. The value of the dissociation equilibrium constant for NO binding to rabbit ferrous HPX-heme (i.e., H) is (1.4+/-0.2)x10(-7) M, at pH 7.0 and 10.0 degrees C; the value of H is unaffected by sodium chloride. At pH 7.0, rabbit ferrous HPX-heme-NO is a six-coordinate heme-iron species, characterized by an X-band EPR spectrum with an axial geometry and by epsilon=146 mM(-1) cm(-1) at 419 nm. At pH 4.0, rabbit ferrous HPX-heme-NO is a five-coordinate heme-iron species, characterized by an X-band EPR spectrum with three-line splitting centered at 334 mT and by epsilon=74 mM(-1) cm(-1) at 387 nm. The p K(a) value of the reversible pH-induced six- to five-coordinate spectroscopic transition is 4.8+/-0.1 in the absence of sodium chloride and 4.3+/-0.1 in the presence of 1.5x10(-1) M sodium chloride. This result is in agreement with the effect of sodium chloride on rabbit HPX-heme stability. The present data have been analyzed in parallel with those of a related heme model compound and heme-protein systems.
Collapse
Affiliation(s)
- Mauro Fasano
- Department of Structural and Functional Biology, University of Insubria, Via Alberto da Giussano 12, 21052 Busto Arsizio (VA), Italy
| | | | | | | | | |
Collapse
|
138
|
Ascenzi P, Bocedi A, de Sanctis D, Pesce A, Bolognesi M, Marden MC, Dewilde S, Moens L, Hankeln T, Burmester T. Neuroglobin and cytoglobin: Two new entries in the hemoglobin superfamily*. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 32:305-313. [PMID: 21706744 DOI: 10.1002/bmb.2004.494032050386] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Neuroglobin (Ngb) and cytoglobin (Cygb) are two newly discovered intracellular members of the vertebrate hemoglobin (Hb) family. Ngb, predominantly expressed in nerve cells, is of ancient evolutionary origin and is homologous to nerve-globins of invertebrates. Cygb, present in many different tissues, shares common ancestry with myoglobin (Mb) and can be traced to early vertebrate evolution. Ngb and Cygb display the classical three-on-three α-helical globin fold and are endowed with a hexa-coordinate heme Fe atom, in both their ferrous and ferric forms, having the heme distal HisE7 residue as the endogenous sixth ligand. Reversible intramolecular hexa- to penta-coordination of the heme Fe atom modulates Ngb and Cygb ligand-binding properties. In Ngb and Cygb, ligand migration to/from the heme distal site may be assisted by protein/matrix tunnel cavity systems. The physiological roles of Ngb and Cygb are poorly understood. Ngb may protect neuronal cells from hypoxic-ischemic insults, may act as oxidative stress-responsive sensor protein, and may sustain NO/O(2) scavenging and/or reactive oxygen species (ROS) detoxification. Cygb, located in the cytoplasm of fibroblasts, chondroblasts, osteoblasts, and hepatic stellate cells, has been hypothesized to be involved in collagen synthesis. In neurons, Cygb, located in both cytoplasm and nucleus, may provide O(2) for enzymatic reactions, and may be involved in a ROS (NO)-signaling pathway(s). Here, we review current knowledge on Ngb and Cygb in terms of their structure, function, and evolutionary links to the well-known human HbA and Mb.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Department of Biology and the Interdepartmental Laboratory for Electron Microscopy, University "Roma Tre," I-00146 Roma, Italy; National Institute for Infectious Diseases IRCSS "Lazzaro Spallanzani," I-00149 Roma, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Brunori M, Bourgeois D, Vallone B. The structural dynamics of myoglobin. J Struct Biol 2004; 147:223-34. [PMID: 15450292 DOI: 10.1016/j.jsb.2004.04.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 03/15/2004] [Indexed: 10/26/2022]
Abstract
Conformational fluctuations in proteins were initially invoked to explain the observation that diffusion of small ligands through the matrix is a global phenomenon. Small globular proteins contain internal cavities that play a role not only in matrix dynamics but also in controlling function, tracing a pathway for the diffusion of the ligand to and from the active site. This is the main point addressed in this Review, which presents pertinent information obtained on myoglobin (Mb). Mb, a simple globular heme protein which binds reversibly oxygen and other ligands. The bond between the heme Fe(II) and gaseous ligands can be photodissociated by a laser pulse, generating a non-equilibrium population of protein structures that relaxes on a picosecond to millisecond time range. This process is associated with migration of the ligand to internal cavities of the protein, which are known to bind xenon. Some of the results obtained by laser photolysis, molecular dynamics simulations, and X-ray diffraction of intermediate states of wild-type and mutant myoglobins are summarized. The extended relaxation of the globin moiety directly observed by Laue crystallography reflects re-equilibration among conformational substates known to play an essential role in controlling protein function.
Collapse
Affiliation(s)
- M Brunori
- Departimento di Scienze Biochimiche and Istituto Pasteur-Fondazione Cenci Bolognetti, Università di Roma "La Sapienza," Rome, Italy.
| | | | | |
Collapse
|
140
|
Ehrenberg A. Protein dynamics and reactions of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1655:231-4. [PMID: 15100036 DOI: 10.1016/j.bbabio.2003.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2003] [Accepted: 09/18/2003] [Indexed: 11/22/2022]
Abstract
The kinetics of charge recombination by electron transfer from Q(A)(*-) to P680(*+) on the reducing branch of PSII is likely to be strongly dependent on protein dynamics, in analogy with the kinetics of the corresponding reaction in the reaction center of purple bacteria [Biophys. J. 74 (1998) 2567]. On the oxidizing branch of PSII, the kinetics of electron hole transfer from P680(*+) to Y(Z) is known to be multiexponential. This transfer is in the Babcock model of the reactions of the water-oxidizing complex coupled with proton transfer from Y(Z). The proton is via switching hydrogen bonds in the protein transferred to the thylakoid lumen. The demand for successive proton transfers requires rearrangement of the hydrogen bonds, which in turn requires a flexible protein making fluctuating excursions among all its conformations. In the equilibrated protein, only a fractional part of the molecules is in a conformation that is able to support the proton transfer from Y(Z). The kinetics of the rearrangement to this active conformation will be multiexponential and dependent on the distribution among all conformations, which is likely to be sensitive to various influences, in particular from changes in the protein coordination to the (Mn)(4) cluster between the different S states.
Collapse
Affiliation(s)
- Anders Ehrenberg
- Arrhenius Laboratory, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
141
|
Roncone R, Monzani E, Nicolis S, Casella L. Engineering and Prosthetic‐Group Modification of Myoglobin: Peroxidase Activity, Chemical Stability and Unfolding Properties. Eur J Inorg Chem 2004. [DOI: 10.1002/ejic.200400126] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Raffaella Roncone
- Dipartimento di Chimica Generale, Via Taramelli 12, 27100 Pavia, Italy, Fax: (internat.) +39‐0382‐528544
| | - Enrico Monzani
- Dipartimento di Chimica Generale, Via Taramelli 12, 27100 Pavia, Italy, Fax: (internat.) +39‐0382‐528544
| | - Stefania Nicolis
- Dipartimento di Chimica Generale, Via Taramelli 12, 27100 Pavia, Italy, Fax: (internat.) +39‐0382‐528544
| | - Luigi Casella
- Dipartimento di Chimica Generale, Via Taramelli 12, 27100 Pavia, Italy, Fax: (internat.) +39‐0382‐528544
| |
Collapse
|
142
|
Abstract
The analysis of correlated sequence variation in evolutionarily related proteins is beginning to provide useful information regarding allosteric coupling between different functional sites. Such an analysis has been carried out for the nuclear hormone receptors, and the conclusions tested by making mutations that switch the allosteric response to ligands of RXR heterodimers.
Collapse
Affiliation(s)
- John Kuriyan
- Howard Hughes Medical Institute, Departments of Molecular and Cell Biology and of Chemistry, University of California, Berkeley, CA 94707, USA
| |
Collapse
|