101
|
Abstract
The blood-related cancer leukaemias were the first diseases where human cancer stem cells, or leukaemic stem cells (LSC), were isolated. The haematopoietic system is one of the best tissues for investigating cancer stem cells, because the developmental hierarchy of normal blood formation is well defined. Leukaemias can now be viewed as aberrant haematopoietic processes initiated by rare LSC that have maintained or reacquired the capacity for indefinite proliferation through accumulated mutations and/or epigenetic changes. Yet, despite their critical importance, much remains to be learned about the developmental origin of LSC and the mechanisms responsible for their emergence in the course of the disease. This report will review our current knowledge on normal and LSC development and examine the impact of these discoveries may have clinically and in our understanding of the leukaemogenic process.
Collapse
Affiliation(s)
- Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, Cancer Research UK, London Research Institute, London, UK.
| |
Collapse
|
102
|
Shizuru JA, Negrin RS, Weissman IL. Hematopoietic stem and progenitor cells: clinical and preclinical regeneration of the hematolymphoid system. Annu Rev Med 2005; 56:509-38. [PMID: 15660525 DOI: 10.1146/annurev.med.54.101601.152334] [Citation(s) in RCA: 237] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A vast literature exists on the biology of blood formation and regeneration under experimental and clinical conditions. The field of hematopoiesis was recently advanced by the capacity to purify to homogeneity primitive hematopoietic stem and progenitor cells. Isolation of cells at defined maturational stages has enhanced the understanding of the fundamental nature of stem cells, including how cell fate decisions are made, and this understanding is relevant to the development of other normal as well as malignant tissues. This review updates the basic biology of hematopoietic stem cells (HSC) and progenitors, the evolving use of purified HSC as grafts for clinical hematopoietic cell transplantation (HCT) including immune tolerance induction, and the application of HSC biology to other stem cell fields.
Collapse
Affiliation(s)
- Judith A Shizuru
- Division of Blood and Marrow Transplantation, Stanford University Medical Center, California 94305, USA.
| | | | | |
Collapse
|
103
|
Abstract
Elucidation of the biology of stem cells of the lung parenchyma could revolutionise treatment of patients with lung disorders such as cancer, acute respiratory distress syndrome, emphysema, and fibrotic lung disease. How close is this goal? Despite remarkable observations and ensuing advances, more questions than answers have been generated. Progenitors of the alveolar epithelium remain largely mysterious, so the prospect of isolating enough of these cells and delivering them effectively to cure disease remains remote. Similarly, the bone-marrow-derived cell that might most effectively engraft the lung remains unknown. If this mechanism is an important process for lung repair, why will the administration of additional cells be more effective? Finally, there is an issue of control of multipotent cells to avoid the generation of multiple teratomas, longevity of the graft, and possible immunological reactions to gene products inserted to replace a deficiency. The biology is exciting but not yet well enough understood to support therapeutic advances.
Collapse
Affiliation(s)
- Mark J D Griffiths
- Unit of Critical Care, Imperial College London at National Heart and Lung Institute and Royal Brompton Hospital, London, UK
| | | | | |
Collapse
|
104
|
Codrington R, Pannell R, Forster A, Drynan LF, Daser A, Lobato N, Metzler M, Rabbitts TH. The Ews-ERG fusion protein can initiate neoplasia from lineage-committed haematopoietic cells. PLoS Biol 2005; 3:e242. [PMID: 15974803 PMCID: PMC1159166 DOI: 10.1371/journal.pbio.0030242] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Accepted: 05/09/2005] [Indexed: 12/25/2022] Open
Abstract
The EWS-ERG fusion protein is found in human sarcomas with the chromosomal translocation t(21;22)(q22;q12), where the translocation is considered to be an initiating event in sarcoma formation within uncommitted mesenchymal cells, probably long-lived progenitors capable of self renewal. The fusion protein may not therefore have an oncogenic capability beyond these progenitors. To assess whether EWS-ERG can be a tumour initiator in cells other than mesenchymal cells, we have analysed Ews-ERG fusion protein function in a cellular environment not typical of that found in human cancers, namely, committed lymphoid cells. We have used Ews-ERG invertor mice having an inverted ERG cDNA cassette flanked by loxP sites knocked in the Ews intron 8, crossed with mice expressing Cre recombinase under the control of the Rag1 gene to give conditional, lymphoid-specific expression of the fusion protein. Clonal T cell neoplasias arose in these mice. This conditional Ews gene fusion model of tumourigenesis shows that Ews-ERG can cause haematopoietic tumours and the precursor cells are committed cells. Thus, Ews-ERG can function in cells that do not have to be pluripotent progenitors or mesenchymal cells. Using a mouse model, these authors study the potential of a known cancer-related gene to cause tumors in cells committed to different lineages.
Collapse
Affiliation(s)
| | - Richard Pannell
- 1MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Alan Forster
- 1MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Lesley F Drynan
- 1MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Angelika Daser
- 1MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Nati Lobato
- 1MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Markus Metzler
- 1MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | |
Collapse
|
105
|
Cejkova P, Zettl A, Baumgärtner AK, Chott A, Ott G, Müller-Hermelink HK, Starostik P. Amplification of NOTCH1 and ABL1 gene loci is a frequent aberration in enteropathy-type T-cell lymphoma. Virchows Arch 2005; 446:416-20. [PMID: 15756589 DOI: 10.1007/s00428-005-1214-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Accepted: 01/12/2005] [Indexed: 12/23/2022]
Abstract
We have shown previously that amplification of chromosomal region 9q34 is the most frequent aberration in enteropathy-type T-cell lymphoma (ETL). To determine the minimum amplified 9q34 region and identify possible candidate gene(s), we performed a detailed microsatellite screening and quantitative real-time PCR (QPCR) on 26 ETL cases. Microsatellite analysis revealed allelic imbalance in both ABL1 and NOTCH1 gene loci (microsatellites D9S290-D9S1847 and D9S158 flanking the former and latter genes, respectively) localized in the band 9q34. The results were confirmed by TaqMan-based QPCR showing amplification of ABL1 and NOTCH1 exons in 50% and 65% of cases, respectively. Amplifications of the NOTCH1 gene were more frequent than of the ABL1 gene; moreover, the analyzed NOTCH1 exon consistently displayed higher levels of amplification than ABL1 coding sequences. From 9q34 known genes, NOTCH1 could thus be the primary target of genomic DNA amplification in ETL.
Collapse
Affiliation(s)
- Pavlina Cejkova
- Department of Pathology and Laboratory Medicine, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY, 14263, USA
| | | | | | | | | | | | | |
Collapse
|
106
|
Gisselsson D, Höglund M. Connecting mitotic instability and chromosome aberrations in cancer—can telomeres bridge the gap? Semin Cancer Biol 2005; 15:13-23. [PMID: 15613284 DOI: 10.1016/j.semcancer.2004.09.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gross mitotic disturbances are often found in malignant tumours, but not until recently have the molecular causes and the genomic consequences of these abnormalities started to become known. One potential source of mitotic instability is chromosomes with dysfunctional telomeres, giving rise to a high rate of chromatin bridges at anaphase. These bridges could lead either to structural chromosome rearrangements through chromatin fragmentation or to whole-chromosome losses through kinetochore-spindle detachment. Statistical meta-analyses have recently revealed that tumours with high rates of anaphase bridging, such as ovarian, head and neck, and pancreatic carcinomas, are characterised by multimodal distributions of genomic imbalances, consistent with a dramatically increased rate of chromosome rearrangements. In contrast, tumours without gross cell division disturbances are characterised by a monotonously decreasing distribution of genomic changes. This distribution follows a power-law, best described by a preferential attachment model in which the tolerance for chromosomal changes increases steadily with tumour growth. Even though many common cancers, such as breast, colorectal, and renal cell carcinomas adhere to this simple power-law dynamics, the underlying molecular mechanisms remain elusive.
Collapse
Affiliation(s)
- David Gisselsson
- Department of Clinical Genetics, University Hospital, SE-221 85 Lund, Sweden.
| | | |
Collapse
|
107
|
Passegué E, Wagner EF, Weissman IL. JunB Deficiency Leads to a Myeloproliferative Disorder Arising from Hematopoietic Stem Cells. Cell 2004; 119:431-43. [PMID: 15507213 DOI: 10.1016/j.cell.2004.10.010] [Citation(s) in RCA: 318] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 08/26/2004] [Accepted: 09/07/2004] [Indexed: 01/13/2023]
Abstract
The AP-1 transcription factor JunB is a transcriptional regulator of myelopoiesis. Inactivation of JunB in postnatal mice results in a myeloproliferative disorder (MPD) resembling early human chronic myelogenous leukemia (CML). Here, we show that JunB regulates the numbers of hematopoietic stem cells (HSC). JunB overexpression decreases the frequency of long-term HSC (LT-HSC), while JunB inactivation specifically expands the numbers of LT-HSC and granulocyte/macrophage progenitors (GMP) resulting in chronic MPD. Further, we demonstrate that junB inactivation must take place in LT-HSC, and not at later stages of myelopoiesis, to induce MPD and that only junB-deficient LT-HSC are capable of transplanting the MPD to recipient mice. These results demonstrate a stem cell-specific role for JunB in normal and leukemic hematopoiesis and provide experimental evidence that leukemic stem cells (LSC) can reside at the LT-HSC stage of development in a mouse model of MPD.
Collapse
Affiliation(s)
- Emmanuelle Passegué
- Institute of Cancer and Stem Cell Biology and Medicine, Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
108
|
Koschmieder S, Göttgens B, Zhang P, Iwasaki-Arai J, Akashi K, Kutok JL, Dayaram T, Geary K, Green AR, Tenen DG, Huettner CS. Inducible chronic phase of myeloid leukemia with expansion of hematopoietic stem cells in a transgenic model of BCR-ABL leukemogenesis. Blood 2004; 105:324-34. [PMID: 15331442 DOI: 10.1182/blood-2003-12-4369] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To develop murine models of leukemogenesis, a series of transgenic mice expressing BCR-ABL in different hematopoietic cell subsets was generated. Here we describe targeted expression of P210 BCR-ABL in stem and progenitor cells of murine bone marrow using the tet-off system. The transactivator protein tTA was placed under the control of the murine stem cell leukemia (SCL) gene 3' enhancer. Induction of BCR-ABL resulted in neutrophilia and leukocytosis, and the mice became moribund within 29 to 122 days. Autopsy of sick mice demonstrated splenomegaly, myeloid bone marrow hyperplasia, and extramedullary myeloid cell infiltration of multiple organs. BCR-ABL mRNA and protein were detectable in the affected organs. Fluorescence-activated cell sorter (FACS) analysis demonstrated a significant increase in mature and immature myeloid cells in bone marrow and spleen, together with increased bilineal B220+/Mac-1+ cells in the bone marrow. tTA mRNA was expressed in FACS-sorted hematopoietic stem cells expanded 26-fold after BCR-ABL induction. Thirty-one percent of the animals demonstrated a biphasic phenotype, consisting of neutrophilia and subsequent B-cell lymphoblastic disease, reminiscent of blast crisis. In summary, this mouse model recapitulates many characteristics of human chronic myeloid leukemia (CML) and may help elucidate basic leukemogenic mechanisms in CML stem cells during disease initiation and progression.
Collapse
MESH Headings
- Animals
- Bone Marrow/metabolism
- Bone Marrow/pathology
- Cell Transformation, Neoplastic/genetics
- Disease Models, Animal
- Disease Progression
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Leukocytosis/metabolism
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mice, Transgenic
- Myeloid Cells/metabolism
- Myeloid Cells/pathology
- Neoplasm Invasiveness
- Neutrophils/metabolism
- Neutrophils/pathology
- Phenotype
- Spleen/metabolism
- Spleen/pathology
- Stem Cell Transplantation
- Survival Rate
- Transcriptional Activation/genetics
Collapse
Affiliation(s)
- Steffen Koschmieder
- Department of Hematology/Oncology, Harvard Institutes of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Jamieson CHM, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL, Gotlib J, Li K, Manz MG, Keating A, Sawyers CL, Weissman IL. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004; 351:657-67. [PMID: 15306667 DOI: 10.1056/nejmoa040258] [Citation(s) in RCA: 1054] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The progression of chronic myelogenous leukemia (CML) to blast crisis is supported by self-renewing leukemic stem cells. In normal mouse hematopoietic stem cells, the process of self-renewal involves the beta-catenin-signaling pathway. We investigated whether leukemic stem cells in CML also use the beta-catenin pathway for self-renewal. METHODS We used fluorescence-activated cell sorting to isolate hematopoietic stem cells, common myeloid progenitors, granulocyte-macrophage progenitors, and megakaryocyte-erythroid progenitors from marrow during several phases of CML and from normal marrow. BCR-ABL, beta-catenin, and LEF-1 transcripts were compared by means of a quantitative reverse-transcriptase-polymerase-chain-reaction assay in normal and CML hematopoietic stem cells and granulocyte-macrophage progenitors. Confocal fluorescence microscopy and a lymphoid enhancer factor/T-cell factor reporter assay were used to detect nuclear beta-catenin in these cells. In vitro replating assays were used to identify self-renewing cells as candidate leukemic stem cells, and the dependence of self-renewal on beta-catenin activation was tested by lentiviral transduction of hematopoietic progenitors with axin, an inhibitor of the beta-catenin pathway. RESULTS The granulocyte-macrophage progenitor pool from patients with CML in blast crisis and imatinib-resistant CML was expanded, expressed BCR-ABL, and had elevated levels of nuclear beta-catenin as compared with the levels in progenitors from normal marrow. Unlike normal granulocyte-macrophage progenitors, CML granulocyte-macrophage progenitors formed self-renewing, replatable myeloid colonies, and in vitro self-renewal capacity was reduced by enforced expression of axin. CONCLUSIONS Activation of beta-catenin in CML granulocyte-macrophage progenitors appears to enhance the self-renewal activity and leukemic potential of these cells.
Collapse
MESH Headings
- Adult
- Aged
- Antineoplastic Agents/therapeutic use
- Benzamides
- Blast Crisis/physiopathology
- Colony-Forming Units Assay
- Cytoskeletal Proteins/metabolism
- DNA-Binding Proteins/metabolism
- Drug Resistance, Neoplasm
- Female
- Fusion Proteins, bcr-abl/metabolism
- Granulocytes/cytology
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/physiology
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/physiopathology
- Lymphoid Enhancer-Binding Factor 1
- Macrophages/cytology
- Male
- Microscopy, Confocal
- Middle Aged
- Piperazines/therapeutic use
- Pyrimidines/therapeutic use
- RNA, Neoplasm
- Reverse Transcriptase Polymerase Chain Reaction
- Trans-Activators/metabolism
- Transcription Factors/metabolism
- beta Catenin
Collapse
Affiliation(s)
- Catriona H M Jamieson
- Division of Hematology, Stanford University School of Medicine, Stanford, Calif 94305-5323, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Abstract
The twenty-first century is beginning with a sharp turn in the field of cancer therapy. Molecular targeted therapies against specific oncogenic events are now possible. The BCR-ABL story represents a notable example of how research from the fields of cytogenetics, retroviral oncology, protein phosphorylation, and small molecule chemical inhibitors can lead to the development of a successful molecular targeted therapy. Imatinib mesylate (Gleevec, STI571, or CP57148B) is a direct inhibitor of ABL (ABL1), ARG (ABL2), KIT, and PDGFR tyrosine kinases. This drug has had a major impact on the treatment of chronic myelogenous leukemia (CML) as well as other blood neoplasias and solid tumors with etiologies based on activation of these tyrosine kinases. Analysis of CML patients resistant to BCR-ABL suppression by Imatinib mesylate coupled with the crystallographic structure of ABL complexed to this inhibitor have shown how structural mutations in ABL can circumvent an otherwise potent anticancer drug. The successes and limitations of Imatinib mesylate hold general lessons for the development of alternative molecular targeted therapies in oncology.
Collapse
Affiliation(s)
- Stephane Wong
- Molecular Biology Interdepartmental PhD Program/UCLA, Los Angeles, California 90095-1662, USA.
| | | |
Collapse
|
111
|
Dai Y, Rahmani M, Corey SJ, Dent P, Grant S. A Bcr/Abl-independent, Lyn-dependent Form of Imatinib Mesylate (STI-571) Resistance Is Associated with Altered Expression of Bcl-2. J Biol Chem 2004; 279:34227-39. [PMID: 15175350 DOI: 10.1074/jbc.m402290200] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The relationship between the Src kinase Lyn and Bcl-2 expression was examined in chronic myelogenous leukemia cells (K562 and LAMA84) displaying a Bcr/Abl-independent form of imatinib mesylate resistance. K562-R and LAMA-R cells that were markedly resistant to induction of mitochondrial dysfunction (e.g. loss of mitochondrial membrane potential, Bax translocation, cytochrome c, and apoptosis-inducing factor release) and apoptosis by imatinib mesylate exhibited a pronounced reduction in expression of Bcr/Abl, Bcl-x(L), and STAT5 but a striking increase in levels of activated Lyn. Whereas basal expression of Bcl-2 protein was very low in parental cells, imatinib-resistant cells displayed a marked increase in Bcl-2 mRNA and/or protein levels. Treatment of LAMA-R cells with the Src kinase inhibitor PP2 significantly reduced Lyn activation as well as Bcl-2 mRNA and protein levels. Transient or stable transfection of LAMA84 or K562 cells with a constitutively active Lyn (Y508F), but not with a kinase-dead mutant (K275D), significantly increased Bcl-2 protein expression and protected cells from lethality of imatinib mesylate. Ectopic expression of Bcl-2 protected K562 and LAMA84 cells from imatinib mesylate- and PP2-mediated lethality. Conversely, interference with Bcl-2 function by co-administration of the small molecule Bcl-2 inhibitor HA14-1 or down-regulation of Bcl-2 expression by small interfering RNA or antisense strategies significantly increased mitochondrial dysfunction and apoptosis induced by imatinib mesylate and the topoisomerase inhibitor VP-16 in LAMA-R cells. In marked contrast, these interventions had little effect in parental LAMA84 cells that display low basal levels of Bcl-2. Together, these findings indicate that activation of Lyn in leukemia cells displaying a Bcr/Abl-independent form of imatinib mesylate resistance plays a functional role in Bcl-2 up-regulation and provide a theoretical basis for the development of therapeutic strategies targeting Bcl-2 in such a setting.
Collapse
Affiliation(s)
- Yun Dai
- Department of Medicine, Virginia Commonwealth University/Medical College of Virginia, Richmond, VA 23298, USA
| | | | | | | | | |
Collapse
|
112
|
Al-Hajj M, Becker MW, Wicha M, Weissman I, Clarke MF. Therapeutic implications of cancer stem cells. Curr Opin Genet Dev 2004; 14:43-7. [PMID: 15108804 DOI: 10.1016/j.gde.2003.11.007] [Citation(s) in RCA: 433] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Most cancers comprise a heterogenous population of cells with marked differences in their proliferative potential as well as the ability to reconstitute the tumor upon transplantation. Cancer stem cells are a minor population of tumor cells that possess the stem cell property of self-renewal. In addition, dysregulation of stem cell self-renewal is a likely requirement for the development of cancer. This new model for cancer will have significant ramifications for the way we study and treat cancer. In addition, through targeting the cancer stem cell and its dysregulated self-renewal, our therapies for treating cancer are likely to improve.
Collapse
Affiliation(s)
- Muhammad Al-Hajj
- Department of Internal Medicine and Comprehensive Cancer Center, University of Michigan Medical School, 4310 CCGC, 1500 East Medical Center Drive, Ann Arbor, MI 48109-0936, USA
| | | | | | | | | |
Collapse
|
113
|
Passegué E, Jamieson CHM, Ailles LE, Weissman IL. Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci U S A 2003; 100 Suppl 1:11842-9. [PMID: 14504387 PMCID: PMC304096 DOI: 10.1073/pnas.2034201100] [Citation(s) in RCA: 435] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leukemia can be viewed as a newly formed, abnormal hematopoietic tissue initiated by a few leukemic stem cells (LSCs) that undergo an aberrant and poorly regulated process of organogenesis analogous to that of normal hematopoietic stem cells. A hallmark of all cancers is the capacity for unlimited self-renewal, which is also a defining characteristic of normal stem cells. Given this shared attribute, it has been proposed that leukemias may be initiated by transforming events that take place in hematopoietic stem cells. Alternatively, leukemias may also arise from more committed progenitors caused by mutations and/or selective expression of genes that enhance their otherwise limited self-renewal capabilities. Identifying the LSCs for each type of leukemia is a current challenge and a critical step in understanding their respective biologies and may provide key insights into more effective treatments. Moreover, LSC identification and purification will provide a powerful diagnostic, prognostic, and therapeutic tool in the clinic.
Collapse
Affiliation(s)
- Emmanuelle Passegué
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|