101
|
Wu CF, Santos MNM, Cho ST, Chang HH, Tsai YM, Smith DA, Kuo CH, Chang JH, Lai EM. Plant-Pathogenic Agrobacterium tumefaciens Strains Have Diverse Type VI Effector-Immunity Pairs and Vary in In-Planta Competitiveness. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:961-971. [PMID: 30830835 DOI: 10.1094/mpmi-01-19-0021-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The type VI secretion system (T6SS) is used by gram-negative bacteria to translocate effectors that can antagonize other bacterial cells. Models predict the variation in collections of effector and cognate immunity genes determine competitiveness and can affect the dynamics of populations and communities of bacteria. However, the outcomes of competition cannot be entirely explained by compatibility of effector-immunity (EI) pairs. Here, we characterized the diversity of T6SS loci of plant-pathogenic Agrobacterium tumefaciens and showed that factors other than EI pairs can impact interbacterial competition. All examined strains encode T6SS active in secretion and antagonism against Escherichia coli. The spectra of EI pairs as well as compositions of gene neighborhoods are diverse. Almost 30 in-planta competitions were tested between different genotypes of A. tumefaciens. Fifteen competitions between members of different species-level groups resulted in T6SS-dependent suppression in in-planta growth of prey genotypes. In contrast, ten competitions between members within species-level groups resulted in no significant effect on the growth of prey genotypes. One strain was an exceptional case and, despite encoding a functional T6SS and toxic effector protein, could not compromise the growth of the four tested prey genotypes. The data suggest T6SS-associated EI pairs can influence the competitiveness of strains of A. tumefaciens, but genetic features have a significant role on the efficacy of interbacterial antagonism.
Collapse
Affiliation(s)
- Chih-Feng Wu
- 1Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- 2Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, U.S.A
| | - Mary Nia M Santos
- 1Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Shu-Ting Cho
- 1Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hsing-Hua Chang
- 1Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Ming Tsai
- 1Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Delaney A Smith
- 2Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, U.S.A
| | - Chih-Horng Kuo
- 1Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Jeff H Chang
- 2Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, U.S.A
- 3Center for Genome Research and Biocomputing, Oregon State University
| | - Erh-Min Lai
- 1Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
102
|
Abstract
Low-cost, high-throughput nucleic acid sequencing ushered the field of microbial ecology into a new era in which the microbial composition of nearly every conceivable environment on the planet is under examination. However, static "screenshots" derived from sequence-only approaches belie the underlying complexity of the microbe-microbe and microbe-host interactions occurring within these systems. Reductionist experimental models are essential to identify the microbes involved in interactions and to characterize the molecular mechanisms that manifest as complex host and environmental phenomena. Herein, we focus on three models (Bacillus-Streptomyces, Aliivibrio fischeri-Hawaiian bobtail squid, and gnotobiotic mice) at various levels of taxonomic complexity and experimental control used to gain molecular insight into microbe-mediated interactions. We argue that when studying microbial communities, it is crucial to consider the scope of questions that experimental systems are suited to address, especially for researchers beginning new projects. Therefore, we highlight practical applications, limitations, and tradeoffs inherent to each model.
Collapse
Affiliation(s)
- Marc G Chevrette
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jennifer R Bratburd
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Reed M Stubbendieck
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
103
|
Leeks A, Dos Santos M, West SA. Transmission, relatedness, and the evolution of cooperative symbionts. J Evol Biol 2019; 32:1036-1045. [PMID: 31271473 PMCID: PMC6852075 DOI: 10.1111/jeb.13505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/15/2019] [Accepted: 06/24/2019] [Indexed: 11/29/2022]
Abstract
Cooperative interactions between species, termed mutualisms, play a key role in shaping natural ecosystems, economically important agricultural systems, and in influencing human health. Across different mutualisms, there is significant variation in the benefit that hosts receive from their symbionts. Empirical data suggest that transmission mode can help explain this variation: vertical transmission, where symbionts infect their host's offspring, leads to symbionts that provide greater benefits to their hosts than horizontal transmission, where symbionts leave their host and infect other hosts in the population. However, two different theoretical explanations have been given for this pattern: firstly, vertical transmission aligns the fitness interests of hosts and their symbionts; secondly, vertical transmission leads to increased relatedness between symbionts sharing a host, favouring cooperation between symbionts. We used a combination of analytical models and dynamic simulations to tease these factors apart, in order to compare their separate influences and see how they interact. We found that relatedness between symbionts sharing a host, rather than transmission mode per se, was the most important factor driving symbiont cooperation. Transmission mode mattered mainly because it determined relatedness. We also found evolutionary branching throughout much of our simulation, suggesting that a combination of transmission mode and multiplicity of infections could lead to the stable coexistence of different symbiont strategies.
Collapse
Affiliation(s)
- Asher Leeks
- Department of Zoology, University of Oxford, Oxford, UK
| | - Miguel Dos Santos
- Department of Social Psychology and Social Neuroscience, University of Bern, Bern, UK
| | - Stuart A West
- Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
104
|
Species-specific mechanisms of cytotoxicity toward immune cells determine the successful outcome of Vibrio infections. Proc Natl Acad Sci U S A 2019; 116:14238-14247. [PMID: 31221761 DOI: 10.1073/pnas.1905747116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Vibrio species cause infectious diseases in humans and animals, but they can also live as commensals within their host tissues. How Vibrio subverts the host defenses to mount a successful infection remains poorly understood, and this knowledge is critical for predicting and managing disease. Here, we have investigated the cellular and molecular mechanisms underpinning infection and colonization of 2 virulent Vibrio species in an ecologically relevant host model, oyster, to study interactions with marine Vibrio species. All Vibrio strains were recognized by the immune system, but only nonvirulent strains were controlled. We showed that virulent strains were cytotoxic to hemocytes, oyster immune cells. By analyzing host and bacterial transcriptional responses to infection, together with Vibrio gene knock-outs, we discovered that Vibrio crassostreae and Vibrio tasmaniensis use distinct mechanisms to cause hemocyte lysis. Whereas V. crassostreae cytotoxicity is dependent on a direct contact with hemocytes and requires an ancestral gene encoding a protein of unknown function, r5.7, V. tasmaniensis cytotoxicity is dependent on phagocytosis and requires intracellular secretion of T6SS effectors. We conclude that proliferation of commensal vibrios is controlled by the host immune system, preventing systemic infections in oysters, whereas the successful infection of virulent strains relies on Vibrio species-specific molecular determinants that converge to compromise host immune cell function, allowing evasion of the host immune system.
Collapse
|
105
|
Established Cotton Stainer Gut Bacterial Mutualists Evade Regulation by Host Antimicrobial Peptides. Appl Environ Microbiol 2019; 85:AEM.00738-19. [PMID: 31028027 DOI: 10.1128/aem.00738-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/22/2019] [Indexed: 01/03/2023] Open
Abstract
Symbioses with microorganisms are ubiquitous in nature and confer important ecological traits to animal hosts but also require control mechanisms to ensure homeostasis of the symbiotic interactions. In addition to protecting hosts against pathogens, animal immune systems recognize, respond to, and regulate mutualists. The gut bacterial symbionts of the cotton stainer bug, Dysdercus fasciatus, elicit an immune response characterized by the upregulation of c-type lysozyme and the antimicrobial peptide pyrrhocoricin in bugs with their native gut microbiota compared to that in dysbiotic insects. In this study, we investigated the impact of the elicited antimicrobial immune response on the established cotton stainer gut bacterial symbiont populations. To this end, we used RNA interference (RNAi) to knock down immunity-related genes hypothesized to regulate the symbionts, and we subsequently measured the effect of this silencing on host fitness and on the abundance of the major gut bacterial symbionts. Despite successful downregulation of target genes by both ingestion and injection of double-stranded RNA (dsRNA), the silencing of immunity-related genes had no effect on either host fitness or the qualitative and quantitative composition of established gut bacterial symbionts, indicating that the host immune responses are not actively involved in the regulation of the nutritional and defensive gut bacterial mutualists. These results suggest that close associations of bacterial symbionts with their hosts can result in the evolution of mechanisms ensuring that symbionts remain insensitive to host immunological responses, which may be important for the evolutionary stability of animal-microbe symbiotic associations.IMPORTANCE Animal immune systems are central for the protection of hosts against enemies by preventing or eliminating successful infections. However, in the presence of beneficial bacterial mutualists, the immune system must strike a balance of not killing the beneficial symbionts while at the same time preventing enemy attacks. Here, using the cotton stainer bug, we reveal that its long-term associated bacterial symbionts are insensitive to the host's immune effectors, suggesting adaptation to the host's defenses, thereby strengthening the stability of the symbiotic relationship. The ability of the symbionts to elicit host immune responses but remain insensitive themselves may be a mechanism by which the symbionts prime hosts to fight future pathogenic infections.
Collapse
|
106
|
Abstract
The symbiosis between Euprymna scolopes squid and its bioluminescent bacterial symbiont, Vibrio fischeri, is a valuable model system to study a natural, coevolved host-microbe association. Over the past 30 years, researchers have developed and optimized many experimental methods to study both partners in isolation and during symbiosis. The symbiosis between Euprymna scolopes squid and its bioluminescent bacterial symbiont, Vibrio fischeri, is a valuable model system to study a natural, coevolved host-microbe association. Over the past 30 years, researchers have developed and optimized many experimental methods to study both partners in isolation and during symbiosis. These powerful tools, along with a strong foundational knowledge about the system, position the Vibrio-squid symbiosis at the forefront of host-microbe interactions because this system is uniquely suited to investigation of symbiosis from both host and bacterial perspectives. Moreover, the ability to isolate and characterize different strains of V. fischeri has revealed exciting new insights about how different genotypes evolve to compete for a host niche, including deploying interbacterial weapons early during host colonization. This Perspective explores how interbacterial warfare influences the diversity and spatial structure of the symbiotic population, as well as the possible effects that intraspecific competition might have on the host.
Collapse
|
107
|
Draft Genome Sequences of Type VI Secretion System-Encoding Vibrio fischeri Strains FQ-A001 and ES401. Microbiol Resour Announc 2019; 8:8/20/e00385-19. [PMID: 31097508 PMCID: PMC6522793 DOI: 10.1128/mra.00385-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type VI secretion system (T6SS) facilitates lethal competition between bacteria through direct contact. Comparative genomics has facilitated the study of these systems in Vibrio fischeri, which colonizes the squid host Euprymna scolopes Here, we report the draft genome sequences of two lethal V. fischeri strains that encode the T6SS, FQ-A001 and ES401.
Collapse
|
108
|
Coulthurst S. The Type VI secretion system: a versatile bacterial weapon. Microbiology (Reading) 2019; 165:503-515. [DOI: 10.1099/mic.0.000789] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Sarah Coulthurst
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
109
|
Abstract
The Type VI secretion system (T6SS) is a protein nanomachine that is widespread in Gram-negative bacteria and is used to translocate effector proteins directly into neighbouring cells. It represents a versatile bacterial weapon that can deliver effectors into distinct classes of target cells, playing key roles in inter-bacterial competition and bacterial interactions with eukaryotic cells. This versatility is underpinned by the ability of the T6SS to deliver a vast array of effector proteins, with many distinct activities and modes of interaction with the secretion machinery. Recent work has highlighted the importance and diversity of interactions mediated by T6SSs within polymicrobial communities, and offers new molecular insights into effector delivery and action in target cells.
Collapse
Affiliation(s)
- Sarah Coulthurst
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
110
|
Patz S, Becker Y, Richert-Pöggeler KR, Berger B, Ruppel S, Huson DH, Becker M. Phage tail-like particles are versatile bacterial nanomachines - A mini-review. J Adv Res 2019; 19:75-84. [PMID: 31341672 PMCID: PMC6629978 DOI: 10.1016/j.jare.2019.04.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/06/2019] [Accepted: 04/14/2019] [Indexed: 11/27/2022] Open
Abstract
Suggestion to simplify and unify the nomenclature of phage tail-like particles. Discovery of kosakonicin, a new bacteriocin and tailocin. Microscopy of kosakonicin from Kosakonia radicincitans DSM 16656. Discovery of multiple tail fiber genes in the kosakonicin gene cluster. Discovery of large genetic diversity in the kosakonicin tail fiber locus among ten Kosakonia strains.
Type VI secretion systems and tailocins, two bacterial phage tail-like particles, have been reported to foster interbacterial competition. Both nanostructures enable their producer to kill other bacteria competing for the same ecological niche. Previously, type VI secretion systems and particularly R-type tailocins were considered highly specific, attacking a rather small range of competitors. Their specificity is conferred by cell surface receptors of the target bacterium and receptor-binding proteins on tailocin tail fibers and tail fiber-like appendages of T6SS. Since many R-type tailocin gene clusters contain only one tail fiber gene it was appropriate to expect small R-type tailocin target ranges. However, recently up to three tail fiber genes and broader target ranges have been reported for one plant-associated Pseudomonas strain. Here, we show that having three tail fiber genes per R-type tailocin gene cluster is a common feature of several strains of Gram-negative (often plant-associated) bacteria of the genus Kosakonia. Knowledge about the specificity of type VI secretion systems binding to target bacteria is even lower than in R-type tailocins. Although the mode of operation implicated specific binding, it was only published recently that type VI secretion systems develop tail fiber-like appendages. Here again Kosakonia, exhibiting up to three different type VI secretion systems, may provide valuable insights into the antagonistic potential of plant-associated bacteria. Current understanding of the diversity and potential of phage tail-like particles is fragmentary due to various synonyms and misleading terminology. Consistency in technical terms is a precondition for concerted and purposeful research, which precedes a comprehensive understanding of the specific interaction between bacteria producing phage tail-like particles and their targets. This knowledge is fundamental for selecting and applying tailored, and possibly engineered, producer bacteria for antagonizing plant pathogenic microorganisms.
Collapse
Affiliation(s)
- Sascha Patz
- Algorithms in Bioinformatics, Center for Bioinformatics, University of Tübingen, 72074 Tübingen, Germany
| | - Yvonne Becker
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institute - Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
| | - Katja R Richert-Pöggeler
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institute - Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
| | - Beatrice Berger
- Institute for National and International Plant Health, Julius Kühn-Institute - Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
| | - Silke Ruppel
- Leibniz Institute of Vegetable and Ornamental Crops, 14979 Grossbeeren, Germany
| | - Daniel H Huson
- Algorithms in Bioinformatics, Center for Bioinformatics, University of Tübingen, 72074 Tübingen, Germany
| | - Matthias Becker
- Institute for National and International Plant Health, Julius Kühn-Institute - Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany.,Leibniz Institute of Vegetable and Ornamental Crops, 14979 Grossbeeren, Germany
| |
Collapse
|
111
|
Metzger LC, Matthey N, Stoudmann C, Collas EJ, Blokesch M. Ecological implications of gene regulation by TfoX and TfoY among diverse Vibrio species. Environ Microbiol 2019; 21:2231-2247. [PMID: 30761714 PMCID: PMC6618264 DOI: 10.1111/1462-2920.14562] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/16/2019] [Accepted: 02/10/2019] [Indexed: 01/26/2023]
Abstract
Bacteria of the genus Vibrio are common members of aquatic environments where they compete with other prokaryotes and defend themselves against grazing predators. A macromolecular protein complex called the type VI secretion system (T6SS) is used for both purposes. Previous research showed that the sole T6SS of the human pathogen V. cholerae is induced by extracellular (chitin) or intracellular (low c‐di‐GMP levels) cues and that these cues lead to distinctive signalling pathways for which the proteins TfoX and TfoY serve as master regulators. In this study, we tested whether the TfoX‐ and TfoY‐mediated regulation of T6SS, concomitantly with natural competence or motility, was conserved in non‐cholera Vibrio species, and if so, how these regulators affected the production of individual T6SSs in double‐armed vibrios. We show that, alongside representative competence genes, TfoX regulates at least one T6SS in all tested Vibrio species. TfoY, on the other hand, fostered motility in all vibrios but had a more versatile T6SS response in that it did not foster T6SS‐mediated killing in all tested vibrios. Collectively, our data provide evidence that the TfoX‐ and TfoY‐mediated signalling pathways are mostly conserved in diverse Vibrio species and important for signal‐specific T6SS induction.
Collapse
Affiliation(s)
- Lisa C Metzger
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Noémie Matthey
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Candice Stoudmann
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Esther J Collas
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
112
|
Coyne MJ, Comstock LE. Type VI Secretion Systems and the Gut Microbiota. Microbiol Spectr 2019; 7:10.1128/microbiolspec.PSIB-0009-2018. [PMID: 30825301 PMCID: PMC6404974 DOI: 10.1128/microbiolspec.psib-0009-2018] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Indexed: 12/14/2022] Open
Abstract
The human colonic microbiota is a dense ecosystem comprised of numerous microbes, including bacteria, phage, fungi, archaea, and protozoa, that compete for nutrients and space. Studies are beginning to reveal the antagonistic mechanisms that gut bacteria use to compete with other members of this ecosystem. In the healthy human colon, the majority of the Gram-negative bacteria are of the order Bacteroidales. Proteobacteria, such as Escherichia coli, are numerically fewer but confer important properties to the host, such as colonization resistance. Several enteric pathogens use type VI secretion systems (T6SSs) to antagonize symbiotic gut E. coli, facilitating colonization and disease progression. T6SS loci are also widely distributed in human gut Bacteroidales, which includes three predominant genera: Bacteroides, Parabacteroides, and Prevotella. There are three distinct genetic architectures of T6SS loci among the gut Bacteroidales, termed GA1, GA2, and GA3. GA1 and GA2 T6SS loci are contained on integrative and conjugative elements and are the first T6SS loci shown to be readily transferred in the human gut between numerous species and families of Bacteroidales. In contrast, the GA3 T6SSs are present exclusively in Bacteroides fragilis. There are divergent regions in all three T6SS GAs that contain genes encoding effector and immunity proteins, many of which function by unknown mechanisms. To date, only the GA3 T6SSs have been shown to antagonize bacteria, and they target nearly all gut Bacteroidales species analyzed. This review delves more deeply into properties of the T6SSs of these human gut bacteria and the ecological outcomes of their synthesis in vivo.
Collapse
Affiliation(s)
- Michael J Coyne
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Laurie E Comstock
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
113
|
|
114
|
Ting SY, Bosch DE, Mangiameli SM, Radey MC, Huang S, Park YJ, Kelly KA, Filip SK, Goo YA, Eng JK, Allaire M, Veesler D, Wiggins PA, Peterson SB, Mougous JD. Bifunctional Immunity Proteins Protect Bacteria against FtsZ-Targeting ADP-Ribosylating Toxins. Cell 2018; 175:1380-1392.e14. [PMID: 30343895 PMCID: PMC6239978 DOI: 10.1016/j.cell.2018.09.037] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/13/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022]
Abstract
ADP-ribosylation of proteins can profoundly impact their function and serves as an effective mechanism by which bacterial toxins impair eukaryotic cell processes. Here, we report the discovery that bacteria also employ ADP-ribosylating toxins against each other during interspecies competition. We demonstrate that one such toxin from Serratia proteamaculans interrupts the division of competing cells by modifying the essential bacterial tubulin-like protein, FtsZ, adjacent to its protomer interface, blocking its capacity to polymerize. The structure of the toxin in complex with its immunity determinant revealed two distinct modes of inhibition: active site occlusion and enzymatic removal of ADP-ribose modifications. We show that each is sufficient to support toxin immunity; however, the latter additionally provides unprecedented broad protection against non-cognate ADP-ribosylating effectors. Our findings reveal how an interbacterial arms race has produced a unique solution for safeguarding the integrity of bacterial cell division machinery against inactivating post-translational modifications.
Collapse
Affiliation(s)
- See-Yeun Ting
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Dustin E Bosch
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | - Matthew C Radey
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Shuo Huang
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Katherine A Kelly
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | - Young Ah Goo
- Proteomics Center of Excellence, Northwestern University, Chicago, IL 60611, USA
| | - Jimmy K Eng
- Proteomics Resource, University of Washington, Seattle, WA 98195, USA
| | - Marc Allaire
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - David Veesler
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Paul A Wiggins
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Physics, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - S Brook Peterson
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Joseph D Mougous
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
115
|
Dar Y, Salomon D, Bosis E. The Antibacterial and Anti-Eukaryotic Type VI Secretion System MIX-Effector Repertoire in Vibrionaceae. Mar Drugs 2018; 16:md16110433. [PMID: 30400344 PMCID: PMC6267618 DOI: 10.3390/md16110433] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 12/12/2022] Open
Abstract
Vibrionaceae is a widespread family of aquatic bacteria that includes emerging pathogens and symbionts. Many Vibrionaceae harbor a type VI secretion system (T6SS), which is a secretion apparatus used to deliver toxins, termed effectors, into neighboring cells. T6SSs mediate both antibacterial and anti-eukaryotic activities. Notably, antibacterial effectors are encoded together with a gene that encodes a cognate immunity protein so as to antagonize the toxicity of the effector. The MIX (Marker for type sIX effectors) domain has been previously defined as a marker of T6SS effectors carrying polymorphic C-terminal toxins. Here, we set out to identify the Vibrionaceae MIX-effector repertoire and to analyze the various toxin domains they carry. We used a computational approach to search for the MIX-effectors in the Vibrionaceae genomes, and grouped them into clusters based on the C-terminal toxin domains. We classified MIX-effectors as either antibacterial or anti-eukaryotic, based on the presence or absence of adjacent putative immunity genes, respectively. Antibacterial MIX-effectors carrying pore-forming, phospholipase, nuclease, peptidoglycan hydrolase, and protease activities were found. Furthermore, we uncovered novel virulence MIX-effectors. These are encoded by “professional MIXologist” strains that employ a cocktail of antibacterial and anti-eukaryotic MIX-effectors. Our findings suggest that certain Vibrionaceae adapted their antibacterial T6SS to mediate interactions with eukaryotic hosts or predators.
Collapse
Affiliation(s)
- Yasmin Dar
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Dor Salomon
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Eran Bosis
- Department of Biotechnology Engineering, ORT Braude College of Engineering, Karmiel 2161002, Israel.
| |
Collapse
|
116
|
Achieving a multi-strain symbiosis: strain behavior and infection dynamics. ISME JOURNAL 2018; 13:698-706. [PMID: 30353039 DOI: 10.1038/s41396-018-0305-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/16/2018] [Accepted: 10/09/2018] [Indexed: 01/30/2023]
Abstract
Strain diversity, while now recognized as a key driver underlying partner dynamics in symbioses, is usually difficult to experimentally manipulate and image in hosts with complex microbiota. To address this problem, we have used the luminous marine bacterium Vibrio fischeri, which establishes a symbiosis within the crypts of the nascent light organ of the squid Euprymna scolopes. Competition assays in newly hatched juvenile squid have shown that symbiotic V. fischeri are either niche-sharing "S strains", which share the light organ when co-inoculated with other S strains, or niche-dominant "D strains", which are typically found alone in the light organ after a co-colonization. To understand this D strain advantage, we determined the minimum time that different V. fischeri strains needed to initiate colonization and used confocal microscopy to localize the symbionts along their infection track. Further, we determined whether symbiont-induced host morphogenic events also occurred earlier during a D strain colonization. We conclude that D strains colonized more quickly than S strains. Nevertheless, light-organ populations in field-caught adult squid often contain both D and S strains. We determined experimentally that this symbiont population heterogeneity might be achieved in nature by a serial encounter of different strains in the environment.
Collapse
|
117
|
Bacterial type VI secretion system facilitates niche domination. Proc Natl Acad Sci U S A 2018; 115:8855-8857. [PMID: 30143581 DOI: 10.1073/pnas.1812776115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|