101
|
Yan SM, Sherman RM, Taylor DJ, Nair DR, Bortvin AN, Schatz MC, McCoy RC. Local adaptation and archaic introgression shape global diversity at human structural variant loci. eLife 2021; 10:e67615. [PMID: 34528508 PMCID: PMC8492059 DOI: 10.7554/elife.67615] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Large genomic insertions and deletions are a potent source of functional variation, but are challenging to resolve with short-read sequencing, limiting knowledge of the role of such structural variants (SVs) in human evolution. Here, we used a graph-based method to genotype long-read-discovered SVs in short-read data from diverse human genomes. We then applied an admixture-aware method to identify 220 SVs exhibiting extreme patterns of frequency differentiation - a signature of local adaptation. The top two variants traced to the immunoglobulin heavy chain locus, tagging a haplotype that swept to near fixation in certain southeast Asian populations, but is rare in other global populations. Further investigation revealed evidence that the haplotype traces to gene flow from Neanderthals, corroborating the role of immune-related genes as prominent targets of adaptive introgression. Our study demonstrates how recent technical advances can help resolve signatures of key evolutionary events that remained obscured within technically challenging regions of the genome.
Collapse
Affiliation(s)
- Stephanie M Yan
- Department of Biology, Johns Hopkins University, BaltimoreBaltimoreUnited States
| | - Rachel M Sherman
- Department of Computer Science, Johns Hopkins UniversityBaltimoreUnited States
| | - Dylan J Taylor
- Department of Biology, Johns Hopkins University, BaltimoreBaltimoreUnited States
| | - Divya R Nair
- Department of Biology, Johns Hopkins University, BaltimoreBaltimoreUnited States
| | - Andrew N Bortvin
- Department of Biology, Johns Hopkins University, BaltimoreBaltimoreUnited States
| | - Michael C Schatz
- Department of Biology, Johns Hopkins University, BaltimoreBaltimoreUnited States
- Department of Computer Science, Johns Hopkins UniversityBaltimoreUnited States
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, BaltimoreBaltimoreUnited States
| |
Collapse
|
102
|
Genomic and Ancestral Variation Underlies the Severity of COVID-19 Clinical Manifestation in Individuals of European Descent. Life (Basel) 2021; 11:life11090921. [PMID: 34575070 PMCID: PMC8470085 DOI: 10.3390/life11090921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
The coronavirus disease (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is characterized by a wide spectrum of clinical phenotypes ranging from asymptomatic to symptomatic with mild or moderate presentation and severe disease. COVID-19 susceptibility, severity and recovery have demonstrated high variability worldwide. Variances in the host genetic architecture may underlie the inter-individual and population-scale differences in COVID-19 presentation. We performed a genome-wide association analysis employing the genotyping data from AncestryDNA for COVID-19 patients of European descent and used asymptomatic subjects as the control group. We identified 621 genetic variants that were significantly distinct between asymptomatic and acutely symptomatic COVID-19 patients (multiple-testing corrected p-value < 0.001). These variants were found to be associated with pathways governing host immunity, such as interferon, interleukin and cytokine signalling, and known COVID-19 comorbidities, such as obesity and cholesterol metabolism. Further, our ancestry analysis revealed that the asymptomatic COVID-19 patients possess discernibly higher proportions of the Ancestral North Eurasian (ANE) and Eastern Hunter-Gatherer (EHG) ancestry, which was introduced to Europe through Bell Beaker culture (Yamnaya related) and lower fractions of Western Hunter-Gatherer (WHG) ancestry, while severely symptomatic patients have higher fractions of WHG and lower ANE/EHG ancestral components, thereby delineating the likely ancestral differences between the two groups.
Collapse
|
103
|
ALTIOK D, SAVCI EZ, ÖZKARA B, ALKAN K, NAMDAR DS, TUNÇER G, KILINÇ BR, SUİÇMEZ E, ÇETİN G, ÜNAL S, DÖNMÜŞ B, KARAGÜLLEOĞLU ZY, UNCUOĞLU DB, TEKELİ C, MENDİ HA, BENGİ VU, CENGİZ SEVAL G, KILIÇ P, GÜNEŞ ALTUNTAŞ E, DEMİR-DORA D. Host variations in SARS-CoV-2 infection. Turk J Biol 2021; 45:404-424. [PMID: 34803443 PMCID: PMC8573834 DOI: 10.3906/biy-2104-67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the zoonotic pathogen that causes the "Coronavirus Disease of 2019 (COVID-19)", and COVID-19 itself is yet to be thoroughly understood. Both the disease as well as the mechanisms by which the host interacts with the SARS-CoV-2 have not been fully enlightened. The epidemiological factors -e.g. age, sex, race-, the polymorphisms of the host proteins, the blood types and individual differences have all been in discussions about affecting the progression and the course of COVID-19 both individually and collectively, as their effects are mostly interwoven. We focused mainly on the effect of polymorphic variants of the host proteins that have been shown to take part in and/or affect the pathogenesis of COVID-19. Additionally, how the procedures of diagnosing and treating COVID-19 are affected by these variants and what possible changes can be implemented are the other questions, which are sought to be answered.
Collapse
Affiliation(s)
- Doruk ALTIOK
- Faculty of Dentistry, Başkent University, AnkaraTurkey
| | | | - Büşra ÖZKARA
- Faculty of Dentistry, Başkent University, AnkaraTurkey
| | - Kamil ALKAN
- Faculty of Dentistry, Başkent University, AnkaraTurkey
| | | | - Gizem TUNÇER
- Faculty of Dentistry, Başkent University, AnkaraTurkey
| | | | - Evren SUİÇMEZ
- Faculty of Dentistry, Başkent University, AnkaraTurkey
| | - Güneysu ÇETİN
- Faculty of Dentistry, Başkent University, AnkaraTurkey
| | - Sinan ÜNAL
- Faculty of Dentistry, Başkent University, AnkaraTurkey
| | - Beyza DÖNMÜŞ
- Faculty of Dentistry, Başkent University, AnkaraTurkey
| | | | | | - Cansu TEKELİ
- Faculty of Dentistry, Başkent University, AnkaraTurkey
| | | | | | | | - Pelin KILIÇ
- Faculty of Dentistry, Başkent University, AnkaraTurkey
| | | | | |
Collapse
|
104
|
Irving-Pease EK, Muktupavela R, Dannemann M, Racimo F. Quantitative Human Paleogenetics: What can Ancient DNA Tell us About Complex Trait Evolution? Front Genet 2021; 12:703541. [PMID: 34422004 PMCID: PMC8371751 DOI: 10.3389/fgene.2021.703541] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Genetic association data from national biobanks and large-scale association studies have provided new prospects for understanding the genetic evolution of complex traits and diseases in humans. In turn, genomes from ancient human archaeological remains are now easier than ever to obtain, and provide a direct window into changes in frequencies of trait-associated alleles in the past. This has generated a new wave of studies aiming to analyse the genetic component of traits in historic and prehistoric times using ancient DNA, and to determine whether any such traits were subject to natural selection. In humans, however, issues about the portability and robustness of complex trait inference across different populations are particularly concerning when predictions are extended to individuals that died thousands of years ago, and for which little, if any, phenotypic validation is possible. In this review, we discuss the advantages of incorporating ancient genomes into studies of trait-associated variants, the need for models that can better accommodate ancient genomes into quantitative genetic frameworks, and the existing limits to inferences about complex trait evolution, particularly with respect to past populations.
Collapse
Affiliation(s)
- Evan K. Irving-Pease
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Rasa Muktupavela
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michael Dannemann
- Center for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Fernando Racimo
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
105
|
Perspective of the Relationship between the Susceptibility to Initial SARS-CoV-2 Infectivity and Optimal Nasal Conditioning of Inhaled Air. Int J Mol Sci 2021; 22:ijms22157919. [PMID: 34360686 PMCID: PMC8348706 DOI: 10.3390/ijms22157919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/20/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as with the influenza virus, has been shown to spread more rapidly during winter. Severe coronavirus disease 2019 (COVID-19), which can follow SARS-CoV-2 infection, disproportionately affects older persons and males as well as people living in temperate zone countries with a tropical ancestry. Recent evidence on the importance of adequately warming and humidifying (conditioning) inhaled air in the nasal cavity for reducing SARS-CoV-2 infectivity in the upper respiratory tract (URT) is discussed, with particular reference to: (i) the relevance of air-borne SARS-CoV-2 transmission, (ii) the nasal epithelium as the initial site of SARS-CoV-2 infection, (iii) the roles of type 1 and 3 interferons for preventing viral infection of URT epithelial cells, (iv) weaker innate immune responses to respiratory viral infections in URT epithelial cells at suboptimal temperature and humidity, and (v) early innate immune responses in the URT for limiting and eliminating SARS-CoV-2 infections. The available data are consistent with optimal nasal air conditioning reducing SARS-CoV-2 infectivity of the URT and, as a consequence, severe COVID-19. Further studies on SARS-CoV-2 infection rates and viral loads in the nasal cavity and nasopharynx in relation to inhaled air temperature, humidity, age, gender, and genetic background are needed in this context. Face masks used for reducing air-borne virus transmission can also promote better nasal air conditioning in cold weather. Masks can, thereby, minimise SARS-CoV-2 infectivity and are particularly relevant for protecting more vulnerable persons from severe COVID-19.
Collapse
|
106
|
Park A, Harris LK. Gene Expression Meta-Analysis Reveals Interferon-Induced Genes Associated With SARS Infection in Lungs. Front Immunol 2021; 12:694355. [PMID: 34367154 PMCID: PMC8342995 DOI: 10.3389/fimmu.2021.694355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/05/2021] [Indexed: 01/01/2023] Open
Abstract
Background Severe Acute Respiratory Syndrome (SARS) corona virus (CoV) infections are a serious public health threat because of their pandemic-causing potential. This work is the first to analyze mRNA expression data from SARS infections through meta-analysis of gene signatures, possibly identifying therapeutic targets associated with major SARS infections. Methods This work defines 37 gene signatures representing SARS-CoV, Middle East Respiratory Syndrome (MERS)-CoV, and SARS-CoV2 infections in human lung cultures and/or mouse lung cultures or samples and compares them through Gene Set Enrichment Analysis (GSEA). To do this, positive and negative infectious clone SARS (icSARS) gene panels are defined from GSEA-identified leading-edge genes between two icSARS-CoV derived signatures, both from human cultures. GSEA then is used to assess enrichment and identify leading-edge icSARS panel genes between icSARS gene panels and 27 other SARS-CoV gene signatures. The meta-analysis is expanded to include five MERS-CoV and three SARS-CoV2 gene signatures. Genes associated with SARS infection are predicted by examining the intersecting membership of GSEA-identified leading-edges across gene signatures. Results Significant enrichment (GSEA p<0.001) is observed between two icSARS-CoV derived signatures, and those leading-edge genes defined the positive (233 genes) and negative (114 genes) icSARS panels. Non-random significant enrichment (null distribution p<0.001) is observed between icSARS panels and all verification icSARSvsmock signatures derived from human cultures, from which 51 over- and 22 under-expressed genes are shared across leading-edges with 10 over-expressed genes already associated with icSARS infection. For the icSARSvsmock mouse signature, significant, non-random significant enrichment held for only the positive icSARS panel, from which nine genes are shared with icSARS infection in human cultures. Considering other SARS strains, significant, non-random enrichment (p<0.05) is observed across signatures derived from other SARS strains for the positive icSARS panel. Five positive icSARS panel genes, CXCL10, OAS3, OASL, IFIT3, and XAF1, are found across mice and human signatures regardless of SARS strains. Conclusion The GSEA-based meta-analysis approach used here identifies genes with and without reported associations with SARS-CoV infections, highlighting this approach’s predictability and usefulness in identifying genes that have potential as therapeutic targets to preclude or overcome SARS infections.
Collapse
Affiliation(s)
- Amber Park
- Harris Interdisciplinary Research, Davenport University, Grand Rapids, MI, United States
| | - Laura K Harris
- Harris Interdisciplinary Research, Davenport University, Grand Rapids, MI, United States.,Institute for Cyber-Enabled Research, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
107
|
Banday AR, Stanifer ML, Florez-Vargas O, Onabajo OO, Zahoor MA, Papenberg BW, Ring TJ, Lee CH, Andreakos E, Arons E, Barsh G, Biesecker LG, Boyle DL, Burnett-Hartman A, Carrington M, Chang E, Choe PG, Chrisholm RL, Dalgard C, Edberg J, Erdmann N, Feigelson HS, Firestein GS, Gehring AJ, Ho M, Holland S, Hutchinson AA, Im H, Ison MG, Kim HB, Kreitman RJ, Korf BR, Mirabello L, Pacheco JA, Peluso MJ, Rader DJ, Redden DT, Ritchie MD, Rosenbloom B, Sant Anna HP, Savage S, Siouti E, Triantafyllia V, Vargas JM, Verma A, Vij V, Wesemann DR, Yeager M, Yu X, Zhang Y, Boulant S, Chanock SJ, Feld JJ, Prokunina-Olsson L. Genetic regulation of OAS1 nonsense-mediated decay underlies association with risk of severe COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.07.09.21260221. [PMID: 34282422 PMCID: PMC8288155 DOI: 10.1101/2021.07.09.21260221] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genomic regions have been associated with COVID-19 susceptibility and outcomes, including the chr12q24.13 locus encoding antiviral proteins OAS1-3. Here, we report genetic, functional, and clinical insights into genetic associations within this locus. In Europeans, the risk of hospitalized vs. non-hospitalized COVID-19 was associated with a single 19Kb-haplotype comprised of 76 OAS1 variants included in a 95% credible set within a large genomic fragment introgressed from Neandertals. The risk haplotype was also associated with impaired spontaneous but not treatment-induced SARS-CoV-2 clearance in a clinical trial with pegIFN-λ1. We demonstrate that two exonic variants, rs10774671 and rs1131454, affect splicing and nonsense-mediated decay of OAS1 . We suggest that genetically-regulated loss of OAS1 expression contributes to impaired spontaneous clearance of SARS-CoV-2 and elevated risk of hospitalization for COVID-19. Our results provide the rationale for further clinical studies using interferons to compensate for impaired spontaneous SARS-CoV-2 clearance, particularly in carriers of the OAS1 risk haplotypes.
Collapse
Affiliation(s)
- A Rouf Banday
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Megan L Stanifer
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Oscar Florez-Vargas
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Olusegun O Onabajo
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Muhammad A Zahoor
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Brenen W Papenberg
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Timothy J Ring
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Chia-Han Lee
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Evgeny Arons
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Greg Barsh
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Leslie G Biesecker
- Center for Precision Health Research, National Human Genome Research Institute, Bethesda, MD, USA
| | - David L Boyle
- Altman Clinical & Translational Research Institute, University of California San Diego Health Sciences, San Diego, CA, USA
| | | | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Euijin Chang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Rex L Chrisholm
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Clifton Dalgard
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jeff Edberg
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nathan Erdmann
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Gary S Firestein
- Altman Clinical & Translational Research Institute, University of California San Diego Health Sciences, San Diego, CA, USA
| | - Adam J Gehring
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Michelle Ho
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Steven Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Amy A Hutchinson
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Hogune Im
- Genome Opinion Inc, Seoul, Republic of Korea
| | - Michael G Ison
- Divisions of Infectious Diseases and Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hong Bin Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Robert J Kreitman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Bruce R Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lisa Mirabello
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jennifer A Pacheco
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michael J Peluso
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, CA, USA
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David T Redden
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marylyn D Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brooke Rosenbloom
- Center for Precision Health Research, National Human Genome Research Institute, Bethesda, MD, USA
| | - Hanaisa P Sant Anna
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Sharon Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Eleni Siouti
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Vasiliki Triantafyllia
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens
| | - Joselin M Vargas
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Anurag Verma
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vibha Vij
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Duane R Wesemann
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Xu Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Steeve Boulant
- Division of Cellular Polarity and Viral Infection, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jordan J Feld
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Ludmila Prokunina-Olsson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
108
|
Zhang Q, Wadgaonkar P, Xu L, Thakur C, Fu Y, Bi Z, Qiu Y, Almutairy B, Zhang W, Stemmer P, Chen F. Environmentally-induced mdig contributes to the severity of COVID-19 through fostering expression of SARS-CoV-2 receptor NRPs and glycan metabolism. Am J Cancer Res 2021; 11:7970-7983. [PMID: 34335974 PMCID: PMC8315075 DOI: 10.7150/thno.62138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
The novel β-coronavirus, SARS-CoV-2, the causative agent of coronavirus disease 2019 (COVID-19), has infected more than 177 million people and resulted in 3.84 million death worldwide. Recent epidemiological studies suggested that some environmental factors, such as air pollution, might be the important contributors to the mortality of COVID-19. However, how environmental exposure enhances the severity of COVID-19 remains to be fully understood. In the present report, we provided evidence showing that mdig, a previously reported environmentally-induced oncogene that antagonizes repressive trimethylation of histone proteins, is an important regulator for SARS-CoV-2 receptors neuropilin-1 (NRP1) and NRP2, cathepsins, glycan metabolism and inflammation, key determinants for viral infection and cytokine storm of the patients. Depletion of mdig in bronchial epithelial cells by CRISPR-Cas-9 gene editing resulted in a decreased expression of NRP1, NRP2, cathepsins, and genes involved in protein glycosylation and inflammation, largely due to a substantial enrichment of lysine 9 and/or lysine 27 trimethylation of histone H3 (H3K9me3/H3K27me3) on these genes as determined by ChIP-seq. Meanwhile, we also validated that environmental factor arsenic is able to induce mdig, NRP1 and NRP2, and genetic disruption of mdig lowered expression of NRP1 and NRP2. Furthermore, mdig may coordinate with the Neanderthal variants linked to an elevated mortality of COVID-19. These data, thus, suggest that mdig is a key mediator for the severity of COVID-19 in response to environmental exposure and targeting mdig may be the one of the effective strategies in ameliorating the symptom and reducing the mortality of COVID-19.
Collapse
|
109
|
Wu L, Zhu J, Liu D, Sun Y, Wu C. An integrative multiomics analysis identifies putative causal genes for COVID-19 severity. Genet Med 2021; 23:2076-2086. [PMID: 34183789 PMCID: PMC8237048 DOI: 10.1038/s41436-021-01243-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022] Open
Abstract
Purpose It is critical to identify putative causal targets for SARS coronavirus 2, which may guide drug repurposing options to reduce the public health burden of COVID-19. Methods We applied complementary methods and multiphased design to pinpoint the most likely causal genes for COVID-19 severity. First, we applied cross-methylome omnibus (CMO) test and leveraged data from the COVID-19 Host Genetics Initiative (HGI) comparing 9,986 hospitalized COVID-19 patients and 1,877,672 population controls. Second, we evaluated associations using the complementary S-PrediXcan method and leveraging blood and lung tissue gene expression prediction models. Third, we assessed associations of the identified genes with another COVID-19 phenotype, comparing very severe respiratory confirmed COVID versus population controls. Finally, we applied a fine-mapping method, fine-mapping of gene sets (FOGS), to prioritize putative causal genes. Results Through analyses of the COVID-19 HGI using complementary CMO and S-PrediXcan methods along with fine-mapping, XCR1, CCR2, SACM1L, OAS3, NSF, WNT3, NAPSA, and IFNAR2 are identified as putative causal genes for COVID-19 severity. Conclusion We identified eight genes at five genomic loci as putative causal genes for COVID-19 severity.
Collapse
Affiliation(s)
- Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA.
| | - Jingjing Zhu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Duo Liu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA.,Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanfa Sun
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA.,College of Life Science, Longyan University, Longyan, Fujian, P. R. China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, Fujian, P.R. China.,Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Fujian Province University, Longyan, Fujian, P.R. China
| | - Chong Wu
- Department of Statistics, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
110
|
Smith R, Moots RJ, Murad M, Wallace GR. A Darwinian View of Behçet's Disease. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2021; 2:91-99. [PMID: 36465976 PMCID: PMC9524781 DOI: 10.2478/rir-2021-0013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/30/2021] [Indexed: 04/25/2023]
Abstract
Behçet's disease (BD) is a multisystem inflammatory disorder of unknown etiology, characterized by oral and genital ulceration, with other complications including eye, skin, joint, and central nervous system (CNS) lesions. Diagnosis is based on clinical findings, which may differ between patients. There is a strong genetic basis for BD; however, only a few genes have been associated with the disease across the geographical spread of BD. In this article, we discuss the history and combination of genes involved in this complex disease in relation to the geographical range and present our view that the disease has developed from a Darwinian perspective, with different gene polymorphisms that affect the same biological pathway. Moreover, these mutations individually are protective mechanisms against the disease relevant to each region, which affected both archaic and modern humans.
Collapse
Affiliation(s)
- Rhodri Smith
- Department of Rheumatology, Aintree Hospital, Liverpool, UK
| | | | - Mariam Murad
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Graham R. Wallace
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- E-mail:
| |
Collapse
|
111
|
Folgerø PO, Johansson C, Stokkedal LH. The Superior Visual Perception Hypothesis: Neuroaesthetics of Cave Art. Behav Sci (Basel) 2021; 11:81. [PMID: 34073168 PMCID: PMC8226463 DOI: 10.3390/bs11060081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022] Open
Abstract
Cave Art in the Upper Paleolithic presents a boost of creativity and visual thinking. What can explain these savant-like paintings? The normal brain function in modern man rarely supports the creation of highly detailed paintings, particularly the convincing representation of animal movement, without extensive training and access to modern technology. Differences in neuro-signaling and brain anatomy between modern and archaic Homo sapiens could also cause differences in perception. The brain of archaic Homo sapiens could perceive raw detailed information without using pre-established top-down concepts, as opposed to the common understanding of the normal modern non-savant brain driven by top-down control. Some ancient genes preserved in modern humans may be expressed in rare disorders. Researchers have compared Cave Art with art made by people with autism spectrum disorder. We propose that archaic primary consciousness, as opposed to modern secondary consciousness, included a savant-like perception with a superior richness of details compared to modern man. Modern people with high frequencies of Neanderthal genes, have notable anatomical features such as increased skull width in the occipital and parietal visual areas. We hypothesize that the anatomical differences are functional and may allow a different path to visual perception.
Collapse
Affiliation(s)
- Per Olav Folgerø
- Department of Linguistic, Literary and Aesthetic Studies, University of Bergen, 5007 Bergen, Norway;
| | - Christer Johansson
- Department of Linguistic, Literary and Aesthetic Studies, University of Bergen, 5007 Bergen, Norway;
| | | |
Collapse
|
112
|
Wu M, Zhang Y, Grosser M, Tipper S, Venter D, Lin H, Lu J. Profiling COVID-19 Genetic Research: A Data-Driven Study Utilizing Intelligent Bibliometrics. Front Res Metr Anal 2021; 6:683212. [PMID: 34109284 PMCID: PMC8184093 DOI: 10.3389/frma.2021.683212] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
The COVID-19 pandemic constitutes an ongoing worldwide threat to human society and has caused massive impacts on global public health, the economy and the political landscape. The key to gaining control of the disease lies in understanding the genetics of SARS-CoV-2 and the disease spectrum that follows infection. This study leverages traditional and intelligent bibliometric methods to conduct a multi-dimensional analysis on 5,632 COVID-19 genetic research papers, revealing that 1) the key players include research institutions from the United States, China, Britain and Canada; 2) research topics predominantly focus on virus infection mechanisms, virus testing, gene expression related to the immune reactions and patient clinical manifestation; 3) studies originated from the comparison of SARS-CoV-2 to previous human coronaviruses, following which research directions diverge into the analysis of virus molecular structure and genetics, the human immune response, vaccine development and gene expression related to immune responses; and 4) genes that are frequently highlighted include ACE2, IL6, TMPRSS2, and TNF. Emerging genes to the COVID-19 consist of FURIN, CXCL10, OAS1, OAS2, OAS3, and ISG15. This study demonstrates that our suite of novel bibliometric tools could help biomedical researchers follow this rapidly growing field and provide substantial evidence for policymakers’ decision-making on science policy and public health administration.
Collapse
Affiliation(s)
- Mengjia Wu
- Australian Artificial Intelligence Institute, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
| | - Yi Zhang
- Australian Artificial Intelligence Institute, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
| | | | | | | | - Hua Lin
- 23Strands, Pyrmont, NSW, Australia
| | - Jie Lu
- Australian Artificial Intelligence Institute, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
113
|
Yair S, Lee KM, Coop G. The timing of human adaptation from Neanderthal introgression. Genetics 2021; 218:iyab052. [PMID: 33787889 PMCID: PMC8128397 DOI: 10.1093/genetics/iyab052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/26/2021] [Indexed: 12/26/2022] Open
Abstract
Admixture has the potential to facilitate adaptation by providing alleles that are immediately adaptive in a new environment or by simply increasing the long-term reservoir of genetic diversity for future adaptation. A growing number of cases of adaptive introgression are being identified in species across the tree of life, however the timing of selection, and therefore the importance of the different evolutionary roles of admixture, is typically unknown. Here, we investigate the spatio-temporal history of selection favoring Neanderthal-introgressed alleles in modern human populations. Using both ancient and present-day samples of modern humans, we integrate the known demographic history of populations, namely population divergence and migration, with tests for selection. We model how a sweep placed along different branches of an admixture graph acts to modify the variance and covariance in neutral allele frequencies among populations at linked loci. Using a method based on this model of allele frequencies, we study previously identified cases of adaptive Neanderthal introgression. From these, we identify cases in which Neanderthal-introgressed alleles were quickly beneficial and other cases in which they persisted at low frequency for some time. For some of the alleles that persisted at low frequency, we show that selection likely independently favored them later on in geographically separated populations. Our work highlights how admixture with ancient hominins has contributed to modern human adaptation and contextualizes observed levels of Neanderthal ancestry in present-day and ancient samples.
Collapse
Affiliation(s)
- Sivan Yair
- Center for Population Biology, University of California, Davis, Davis, CA 95616, USA
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - Kristin M Lee
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Graham Coop
- Center for Population Biology, University of California, Davis, Davis, CA 95616, USA
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
114
|
New insights into human immunity from ancient genomics. Curr Opin Immunol 2021; 72:116-125. [PMID: 33992907 PMCID: PMC8452260 DOI: 10.1016/j.coi.2021.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/20/2022]
Abstract
Population genetic studies have clearly indicated that immunity and host defense are among the functions most frequently subject to natural selection, and increased our understanding of the biological relevance of the corresponding genes and their contribution to variable immune traits and diseases. Herein, we will focus on some recently studied forms of human adaptation to infectious agents, including hybridization with now-extinct hominins, such as Neanderthals and Denisovans, and admixture between modern human populations. These studies, which are partly enabled by the technological advances in the sequencing of DNA from ancient remains, provide new insight into the sources of immune response variation in contemporary humans, such as the recently reported link between Neanderthal heritage and susceptibility to severe COVID-19 disease. Furthermore, ancient DNA analyses, in both humans and pathogens, allow to measure the action of natural selection on immune genes across time and to reconstruct the impact of past epidemics on the evolution of human immunity.
Collapse
|
115
|
Novelli G, Biancolella M, Mehrian-Shai R, Colona VL, Brito AF, Grubaugh ND, Vasiliou V, Luzzatto L, Reichardt JKV. COVID-19 one year into the pandemic: from genetics and genomics to therapy, vaccination, and policy. Hum Genomics 2021; 15:27. [PMID: 33966626 PMCID: PMC8107019 DOI: 10.1186/s40246-021-00326-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022] Open
Abstract
COVID-19 has engulfed the world and it will accompany us all for some time to come. Here, we review the current state at the milestone of 1 year into the pandemic, as declared by the WHO (World Health Organization). We review several aspects of the on-going pandemic, focusing first on two major topics: viral variants and the human genetic susceptibility to disease severity. We then consider recent and exciting new developments in therapeutics, such as monoclonal antibodies, and in prevention strategies, such as vaccines. We also briefly discuss how advances in basic science and in biotechnology, under the threat of a worldwide emergency, have accelerated to an unprecedented degree of the transition from the laboratory to clinical applications. While every day we acquire more and more tools to deal with the on-going pandemic, we are aware that the path will be arduous and it will require all of us being community-minded. In this respect, we lament past delays in timely full investigations, and we call for bypassing local politics in the interest of humankind on all continents.
Collapse
Affiliation(s)
- Giuseppe Novelli
- Department of Biomedicine and Prevention, "Tor Vergata" University of Rome, 00133, Rome, Italy.
- IRCCS Neuromed, Pozzilli, IS, Italy.
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV, 89557, USA.
| | | | - Ruty Mehrian-Shai
- Pediatric Hemato-Oncology, Sheba Medical Center, Tel Hashomer, Israel
| | - Vito Luigi Colona
- Department of Biomedicine and Prevention, "Tor Vergata" University of Rome, 00133, Rome, Italy
| | - Anderson F Brito
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Lucio Luzzatto
- Haematology, Muhimbili University of Health and Allied Sciences, Dar-es Salaam, Tanzania
| | - Juergen K V Reichardt
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Queensland, 4878, Australia
| |
Collapse
|
116
|
Abstract
COVID-19 is characterized by a wide range of clinical manifestations, from asymptomatic to extremely severe. At the onset of the pandemic, it became clear that old age and chronic illness were the major risk factors. However, they do not fully explain the variety of symptoms and complications of the SARS-COV-2 coronavirus infection. The research on genetic risk factors for COVID-19 is still at its early stages. A number of mutations and polymorphisms have been identified that affect the structure and stability of proteins factors of susceptibility to SARS-COV-2 infection, as well as a predisposition to the development of respiratory failure and the need for intensive care. Most of the identified genetic factors are related to the function of the immune system. On the other hand, the genetic polymorphism of the virus itself affects the COVID-19 spread and severity of its course . The genome of the virus accumulates mutations and evolves towards increasing contagiousness, replicative ability and evasion from the host's immune system. Genetic determinants of the COVID-19 infection are potential therapeutic targets. Studying them will provide information for the development of drugs and vaccines to combat the pandemic.
Collapse
|
117
|
Huffman J, Butler-Laporte G, Khan A, Drivas TG, Peloso GM, Nakanishi T, Verma A, Kiryluk K, Richards JB, Zeberg H. Alternative splicing of OAS1 alters the risk for severe COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.03.20.21254005. [PMID: 33791713 PMCID: PMC8010745 DOI: 10.1101/2021.03.20.21254005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A locus containing OAS1/2/3 has been identified as a risk locus for severe COVID-19 among Europeans ancestry individuals, with a protective haplotype of ∼75 kilobases derived from Neanderthals. Here, we show that among several potentially causal variants at this locus, a splice variant of OAS1 occurs in people of African ancestry independently of the Neanderthal haplotype and confers protection against COVID-19 of a magnitude similar to that seen in individuals without African ancestry.
Collapse
Affiliation(s)
- Jennifer Huffman
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Bostoon, MA, USA, 02130
| | - Guillaume Butler-Laporte
- Departments of Medicine, Human Genetics, Epidemiology, Biostatistics and Occupational Health, McGill University, Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
| | - Atlas Khan
- Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY
| | - Theodore G. Drivas
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia
| | - Gina M. Peloso
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Bostoon, MA, USA, 02130
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118
| | - Tomoko Nakanishi
- Institute for Molecular Medicine Finland, Univerisity of Helsinki, Helsinki, Finland
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Kyoto-McGill International Collaborative School in Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Research Fellow, Japan Society for the Promotion of Science, Tokyo, Japan
| | - Anurag Verma
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY
- Institute for Genomic Medicine, Columbia University, New York, NY
| | - J. Brent Richards
- Departments of Medicine, Human Genetics, Epidemiology, Biostatistics and Occupational Health, McGill University, Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
- Department of Twin Research, King’s College London, London, UK
| | - Hugo Zeberg
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany
- Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
| |
Collapse
|
118
|
A Neanderthal OAS1 isoform protects individuals of European ancestry against COVID-19 susceptibility and severity. Nat Med 2021; 27:659-667. [PMID: 33633408 DOI: 10.1038/s41591-021-01281-1] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/05/2021] [Indexed: 12/15/2022]
Abstract
To identify circulating proteins influencing Coronavirus Disease 2019 (COVID-19) susceptibility and severity, we undertook a two-sample Mendelian randomization (MR) study, rapidly scanning hundreds of circulating proteins while reducing bias due to reverse causation and confounding. In up to 14,134 cases and 1.2 million controls, we found that an s.d. increase in OAS1 levels was associated with reduced COVID-19 death or ventilation (odds ratio (OR) = 0.54, P = 7 × 10-8), hospitalization (OR = 0.61, P = 8 × 10-8) and susceptibility (OR = 0.78, P = 8 × 10-6). Measuring OAS1 levels in 504 individuals, we found that higher plasma OAS1 levels in a non-infectious state were associated with reduced COVID-19 susceptibility and severity. Further analyses suggested that a Neanderthal isoform of OAS1 in individuals of European ancestry affords this protection. Thus, evidence from MR and a case-control study support a protective role for OAS1 in COVID-19 adverse outcomes. Available pharmacological agents that increase OAS1 levels could be prioritized for drug development.
Collapse
|