101
|
Chtarto A, Bockstael O, Tshibangu T, Dewitte O, Levivier M, Tenenbaum L. A next step in adeno-associated virus-mediated gene therapy for neurological diseases: regulation and targeting. Br J Clin Pharmacol 2013; 76:217-32. [PMID: 23331189 DOI: 10.1111/bcp.12065] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/07/2012] [Indexed: 02/04/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors mediating long term transgene expression are excellent gene therapy tools for chronic neurological diseases. While rAAV2 was the first serotype tested in the clinics, more efficient vectors derived from the rh10 serotype are currently being evaluated and other serotypes are likely to be tested in the near future. In addition, aside from the currently used stereotaxy-guided intraparenchymal delivery, new techniques for global brain transduction (by intravenous or intra-cerebrospinal injections) are very promising. Various strategies for therapeutic gene delivery to the central nervous system have been explored in human clinical trials in the past decade. Canavan disease, a genetic disease caused by an enzymatic deficiency, was the first to be approved. Three gene transfer paradigms for Parkinson's disease have been explored: converting L-dopa into dopamine through AADC gene delivery in the putamen; synthesizing GABA through GAD gene delivery in the overactive subthalamic nucleus and providing neurotrophic support through neurturin gene delivery in the nigro-striatal pathway. These pioneer clinical trials demonstrated the safety and tolerability of rAAV delivery in the human brain at moderate doses. Therapeutic effects however, were modest, emphasizing the need for higher doses of the therapeutic transgene product which could be achieved using more efficient vectors or expression cassettes. This will require re-addressing pharmacological aspects, with attention to which cases require either localized and cell-type specific expression or efficient brain-wide transgene expression, and when it is necessary to modulate or terminate the administration of transgene product. The ongoing development of targeted and regulated rAAV vectors is described.
Collapse
Affiliation(s)
- Abdelwahed Chtarto
- Laboratory of Experimental Neurosurgery, Free University of Brussels (ULB), Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
102
|
Nielsen TT, Nielsen JE. Antisense gene silencing: therapy for neurodegenerative disorders? Genes (Basel) 2013; 4:457-84. [PMID: 24705213 PMCID: PMC3924827 DOI: 10.3390/genes4030457] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/11/2013] [Accepted: 08/13/2013] [Indexed: 01/17/2023] Open
Abstract
Since the first reports that double-stranded RNAs can efficiently silence gene expression in C. elegans, the technology of RNA interference (RNAi) has been intensively exploited as an experimental tool to study gene function. With the subsequent discovery that RNAi could also be applied to mammalian cells, the technology of RNAi expanded from being a valuable experimental tool to being an applicable method for gene-specific therapeutic regulation, and much effort has been put into further refinement of the technique. This review will focus on how RNAi has developed over the years and how the technique is exploited in a pre-clinical and clinical perspective in relation to neurodegenerative disorders.
Collapse
Affiliation(s)
- Troels T Nielsen
- Danish Dementia Research Centre, Neurogenetics Clinic, Department of Neurology, Section 6702, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100, Copenhagen Ø, Denmark.
| | - Jørgen E Nielsen
- Danish Dementia Research Centre, Neurogenetics Clinic, Department of Neurology, Section 6702, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100, Copenhagen Ø, Denmark
| |
Collapse
|
103
|
Oversized AAV transductifon is mediated via a DNA-PKcs-independent, Rad51C-dependent repair pathway. Mol Ther 2013; 21:2205-16. [PMID: 23939025 DOI: 10.1038/mt.2013.184] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 07/27/2013] [Indexed: 12/25/2022] Open
Abstract
A drawback of gene therapy using adeno-associated virus (AAV) is the DNA packaging restriction of the viral capsid (<4.7 kb). Recent observations demonstrate oversized AAV genome transduction through an unknown mechanism. Herein, AAV production using an oversized reporter (6.2 kb) resulted in chloroform and DNase-resistant particles harboring distinct "fragment" AAV (fAAV) genomes (5.0, 2.4, and 1.6 kb). Fractionation experiments determined that only the larger "fragments" mediated transduction in vitro, and relatively efficient transduction was also demonstrated in the muscle, the eye, and the liver. In contrast with concatemerization-dependent large-gene delivery by split AAV, fAAV transduction is independent of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) in vitro and in vivo while disproportionately reliant on the DNA strand-annealing protein Rad51C. Importantly, fAAV's unique dependence on DNA repair proteins, compared with intact AAV, strongly suggests that the majority of oversized AAV transduction is mediated by fragmented genomes. Although fAAV transduction is less efficient than intact AAV, it is enhanced fourfold in muscle and sevenfold in the retina compared with split AAV transduction. Furthermore, fAAV carrying codon-optimized therapeutic dysferlin cDNA in a 7.5 kb expression cassette restored dysferlin levels in a dystrophic model. Collectively, oversized AAV genome transduction requires unique DNA repair pathways and offers an alternative, more efficient strategy for large-gene therapy.
Collapse
|
104
|
Gerits A, Vanduffel W. Optogenetics in primates: a shining future? Trends Genet 2013; 29:403-11. [DOI: 10.1016/j.tig.2013.03.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/28/2013] [Accepted: 03/26/2013] [Indexed: 11/28/2022]
|
105
|
Berns KI. My life with adeno-associated virus: a long time spent studying a short genome. DNA Cell Biol 2013; 32:342-7. [PMID: 23781880 DOI: 10.1089/dna.2013.2120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
My 45 years of studying the molecular biology of adeno-associated virus are recounted. Additional activities as a mentor, department chair, and medical school administrator are described, as are my activities in the public sphere, which involved national issues related to science policy and medical education.
Collapse
Affiliation(s)
- Kenneth I Berns
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida 32608, USA.
| |
Collapse
|
106
|
Abstract
INTRODUCTION Parkinson's disease (PD) is a common and chronic movement disorder with no therapy yet proven to alter the underlying advancing pathology. Gene delivery of trophic factors, which have shown disease modifying potential in preclinical PD models, are now being evaluated in early clinical trials. AREAS COVERED This review discusses early experiences with glial-derived neurotrophic factor in PD, the initial studies using AAV2-neurturin in PD patients, the lessons learned from these studies and the future directions of this therapy. EXPERT OPINION Gene therapy has emerged as a potential breakthrough in the treatment of PD and early clinical trials using AAV2-neurturin, a trophic factor that has shown the ability to protect dopaminergic degeneration in preclinical PD models, are underway. While trophic protection of dopamine neurons would be a significant breakthrough, PD remains a widespread disorder that involves neurodegeneration across multiple cellular types. We believe that these initial studies with AAV2-neurturin are significant steps toward the realization of gene delivery of trophic factors as a viable therapy, though the ultimate goal must be that of comprehensive neurorestoration.
Collapse
Affiliation(s)
- Patrick Hickey
- Duke University Medical Center, DUMC Box 3333, Durham, NC 27710, USA
| | | |
Collapse
|
107
|
Louis Jeune V, Joergensen JA, Hajjar RJ, Weber T. Pre-existing anti-adeno-associated virus antibodies as a challenge in AAV gene therapy. Hum Gene Ther Methods 2013; 24:59-67. [PMID: 23442094 DOI: 10.1089/hgtb.2012.243] [Citation(s) in RCA: 231] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adeno-associated virus (AAV)-based vectors are promising tools for gene therapeutic applications, in part because AAVs are nonpathogenic viruses, and vectors derived from them can drive long-term transgene expression without integration of the vector DNA into the host genome. AAVs are not strongly immunogenic, but they can, nonetheless, give rise to both a cellular and humoral immune response. As a result, a significant fraction of potential patients for AAV-based gene therapy harbors pre-existing antibodies against AAV. Because even very low levels of antibodies can prevent successful transduction, antecedent anti-AAV antibodies pose a serious obstacle to the universal application of AAV gene therapy. In this review, we discuss the current knowledge of the role of anti-AAV antibodies in AAV-based gene therapy with a particular emphasis on approaches to overcome the hurdle that they pose.
Collapse
Affiliation(s)
- Vedell Louis Jeune
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | | |
Collapse
|
108
|
Yang L, Xiao X. Creation of a cardiotropic adeno-associated virus: the story of viral directed evolution. Virol J 2013; 10:50. [PMID: 23394344 PMCID: PMC3574030 DOI: 10.1186/1743-422x-10-50] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/16/2013] [Indexed: 12/13/2022] Open
Abstract
Adeno-associated virus (AAV) is an important vector system for human gene therapy. Although use of AAV serotypes can result in efficient myocardial gene transfer, improvements in the transduction efficiency and specificity are still required. As a method for artificial modification and selection of gene function, directed evolution has been used for diverse applications in genetic engineering of enzymes and proteins. Since 2000, pioneering work has been performed on directed evolution of viral vectors. We further attempted to evolve the AAV using DNA shuffling and in vivo biopanning in a mouse model. An AAVM41 mutant was characterized, which was found to have improved transduction efficiency and specificity in myocardium, an attribute unknown for any natural AAV serotypes. This review focuses on the development of AAV vector for cardiac gene transfer, the history of directed evolution of viral vectors, and our creation of a cardiotropic AAV, which might have implications for the future design and application of viral vectors.
Collapse
Affiliation(s)
- Lin Yang
- Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan, Wuhan 430071, Hubei, China.
| | | |
Collapse
|
109
|
Dawn of ocular gene therapy: implications for molecular diagnosis in retinal disease. SCIENCE CHINA-LIFE SCIENCES 2013; 56:125-33. [PMID: 23393028 DOI: 10.1007/s11427-013-4443-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/28/2012] [Indexed: 12/26/2022]
Abstract
Personalized medicine aims to utilize genomic information about patients to tailor treatment. Gene replacement therapy for rare genetic disorders is perhaps the most extreme form of personalized medicine, in that the patients' genome wholly determines their treatment regimen. Gene therapy for retinal disorders is poised to become a clinical reality. The eye is an optimal site for gene therapy due to the relative ease of precise vector delivery, immune system isolation, and availability for monitoring of any potential damage or side effects. Due to these advantages, clinical trials for gene therapy of retinal diseases are currently underway. A necessary precursor to such gene therapies is accurate molecular diagnosis of the mutation(s) underlying disease. In this review, we discuss the application of Next Generation Sequencing (NGS) to obtain such a diagnosis and identify disease causing genes, using retinal disorders as a case study. After reviewing ocular gene therapy, we discuss the application of NGS to the identification of novel Mendelian disease genes. We then compare current, array based mutation detection methods against next NGS-based methods in three retinal diseases: Leber's Congenital Amaurosis, Retinitis Pigmentosa, and Stargardt's disease. We conclude that next-generation sequencing based diagnosis offers several advantages over array based methods, including a higher rate of successful diagnosis and the ability to more deeply and efficiently assay a broad spectrum of mutations. However, the relative difficulty of interpreting sequence results and the development of standardized, reliable bioinformatic tools remain outstanding concerns. In this review, recent advances NGS based molecular diagnoses are discussed, as well as their implications for the development of personalized medicine.
Collapse
|
110
|
Abstract
A respiratory syncytial virus (RSV) vaccine has remained elusive for decades, largely due to the failure of a formalin-inactivated RSV vaccine in the 1960s that resulted in enhanced disease upon RSV exposure in the immunized individuals. Vaccine development has also been hindered by the incomplete immunity conferred by natural infection allowing for re-infection at any time, and the immature immune system and circulating maternal antibodies present in the neonate, the primary target for a vaccine. This chapter will review the use of gene delivery, both nonviral and viral, as a potential vaccine approach for human RSV. Many of these gene-based vaccines vectors elicit protective immune responses in animal models. None of the RSV gene-based platforms have progressed into clinical trials, mostly due to uncertainty regarding the direct translation of animal model results to humans and the hesitancy to invest in costly clinical trials with the potential for unclear and complicated immune responses. The continued development of RSV vaccine gene-based approaches is warranted because of their inherent flexibility with regard to composition and administration. It is likely that multiple candidate vaccines will reach human testing in the next few years.
Collapse
|
111
|
Capsid protein expression and adeno-associated virus like particles assembly in Saccharomyces cerevisiae. Microb Cell Fact 2012; 11:124. [PMID: 22966759 PMCID: PMC3539887 DOI: 10.1186/1475-2859-11-124] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 08/06/2012] [Indexed: 11/25/2022] Open
Abstract
Background The budding yeast Saccharomyces cerevisiae supports replication of many different RNA or DNA viruses (e.g. Tombusviruses or Papillomaviruses) and has provided means for up-scalable, cost- and time-effective production of various virus-like particles (e.g. Human Parvovirus B19 or Rotavirus). We have recently demonstrated that S. cerevisiae can form single stranded DNA AAV2 genomes starting from a circular plasmid. In this work, we have investigated the possibility to assemble AAV capsids in yeast. Results To do this, at least two out of three AAV structural proteins, VP1 and VP3, have to be simultaneously expressed in yeast cells and their intracellular stoichiometry has to resemble the one found in the particles derived from mammalian or insect cells. This was achieved by stable co-transformation of yeast cells with two plasmids, one expressing VP3 from its natural p40 promoter and the other one primarily expressing VP1 from a modified AAV2 Cap gene under the control of the inducible yeast promoter Gal1. Among various induction strategies we tested, the best one to yield the appropriate VP1:VP3 ratio was 4.5 hour induction in the medium containing 0.5% glucose and 5% galactose. Following such induction, AAV virus like particles (VLPs) were isolated from yeast by two step ultracentrifugation procedure. The transmission electron microscopy analysis revealed that their morphology is similar to the empty capsids produced in human cells. Conclusions Taken together, the results show for the first time that yeast can be used to assemble AAV capsid and, therefore, as a genetic system to identify novel cellular factors involved in AAV biology.
Collapse
|
112
|
Urban A, Rossier J. Genetic targeting of specific neuronal cell types in the cerebral cortex. PROGRESS IN BRAIN RESEARCH 2012; 196:163-92. [PMID: 22341326 DOI: 10.1016/b978-0-444-59426-6.00009-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Understanding the structure and function of cortical circuits requires the identification of and control over specific cell types in the cortex. To address these obstacles, recent optogenetic approaches have been developed. The capacity to activate, silence, or monitor specific cell types by combining genetics, virology, and optics will decipher the role of specific groups of neurons within circuits with a spatiotemporal resolution that overcomes standard approaches. In this review, the various strategies for selective genetic targeting of a defined neuronal population are discussed as well as the pros and cons of the use of transgenic animals and recombinant viral vectors for the expression of transgenes in a specific set of neurons.
Collapse
Affiliation(s)
- Alan Urban
- Laboratoire de Neurobiologie et Diversité Cellulaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7637, Ecole Supérieure de Physique et de Chimie Industrielles, Paris, France.
| | | |
Collapse
|
113
|
Recombinant adeno-associated virus: clinical application and development as a gene-therapy vector. Ther Deliv 2012; 3:835-56. [DOI: 10.4155/tde.12.63] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gene therapy is gaining momentum as a method of treating human disease. Initially conceived as a strategy to complement defective genes in monogenic disorders, the scope of gene therapy has expanded to encompass a variety of applications. Likewise, the molecular tools for gene delivery have evolved and diversified to meet these various therapeutic needs. Recombinant adeno-associated virus (rAAV) has made significant strides toward clinical application with an excellent safety profile and successes in several clinical trials. This review covers the basic biology of rAAV as a gene therapy vector as well as its advantages compared with other methods of gene delivery. The status of clinical trials utilizing rAAV is also discussed in detail. In conclusion, methods of engineering the vector to overcome challenges identified from these trials are covered, with emphasis on modification of the viral capsid to increase the tissue/cell-specific targeting and transduction efficiency.
Collapse
|
114
|
Fiandaca MS, Bankiewicz KS, Federoff HJ. Gene therapy for the treatment of Parkinson's disease: the nature of the biologics expands the future indications. Pharmaceuticals (Basel) 2012; 5:553-90. [PMID: 24281662 PMCID: PMC3763661 DOI: 10.3390/ph5060553] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/18/2012] [Accepted: 05/23/2012] [Indexed: 12/20/2022] Open
Abstract
The pharmaceutical industry's development of therapeutic medications for the treatment of Parkinson's disease (PD) endures, as a result of the continuing need for better agents, and the increased clinical demand due to the aging population. Each new drug offers advantages and disadvantages to patients when compared to other medical offerings or surgical options. Deep brain stimulation (DBS) has become a standard surgical remedy for the effective treatment of select patients with PD, for whom most drug regimens have failed or become refractory. Similar to DBS as a surgical option, gene therapy for the treatment of PD is evolving as a future option. In the four different PD gene therapy approaches that have reached clinical trials investigators have documented an excellent safety profile associated with the stereotactic delivery, viral vectors and doses utilized, and transgenes expressed. In this article, we review the clinically relevant gene therapy strategies for the treatment of PD, concentrating on the published preclinical and clinical results, and the likely mechanisms involved. Based on these presentations, we advance an analysis of how the nature of the gene therapy used may eventually expand the scope and utility for the management of PD.
Collapse
Affiliation(s)
- Massimo S. Fiandaca
- Translational NeuroTherapy Center, Department of Neurological Surgery, University of California San Francisco, 1855 Folsom Street, Mission Center Building, San Francisco, CA 94103, USA; (K.S.B.)
| | - Krystof S. Bankiewicz
- Translational NeuroTherapy Center, Department of Neurological Surgery, University of California San Francisco, 1855 Folsom Street, Mission Center Building, San Francisco, CA 94103, USA; (K.S.B.)
| | - Howard J. Federoff
- Departments of Neurology and Neuroscience, Georgetown University Medical Center, 4000 Reservoir Road, Washington, DC 20007, USA; (H.J.F.)
| |
Collapse
|
115
|
Nonnenmacher M, Weber T. Intracellular transport of recombinant adeno-associated virus vectors. Gene Ther 2012; 19:649-58. [PMID: 22357511 PMCID: PMC4465241 DOI: 10.1038/gt.2012.6] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/11/2012] [Accepted: 01/11/2012] [Indexed: 12/16/2022]
Abstract
Recombinant adeno-associated viral vectors (rAAVs) have been widely used for gene delivery in animal models, and are currently evaluated for human gene therapy after successful clinical trials in the treatment of inherited, degenerative or acquired diseases, such as Leber congenital amaurosis, Parkinson disease or heart failure. However, limitations in vector tropism, such as limited tissue specificity and insufficient transduction efficiencies of particular tissues and cell types, still preclude therapeutic applications in certain tissues. Wild-type adeno-associated viruses (AAVs) are defective viruses that require the presence of a helper virus to complete their life cycle. On the one hand, this unique property makes AAV vectors one of the safest available viral vectors for gene delivery. On the other, it also represents a potential obstacle because rAAV vectors have to overcome several biological barriers in the absence of a helper virus to transduce successfully a cell. Consequently, a better understanding of the cellular roadblocks that limit rAAV gene delivery is crucial and, during the last 15 years, numerous studies resulted in an expanding body of knowledge of the intracellular trafficking pathways of rAAV vectors. This review describes our current understanding of the mechanisms involved in rAAV attachment to target cells, endocytosis, intracellular trafficking, capsid processing, nuclear import and genome release with an emphasis on the most recent discoveries in the field and the emerging strategies used to improve the efficiency of AAV-derived vectors.
Collapse
Affiliation(s)
- M Nonnenmacher
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
116
|
Cao M, Zhu H, Bandyopadhyay S, You H, Hermonat PL. HPV-16 E1, E2 and E6 each complement the Ad5 helper gene set, increasing rAAV2 and wt AAV2 production. Gene Ther 2012; 19:418-24. [PMID: 21850053 PMCID: PMC3220924 DOI: 10.1038/gt.2011.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 06/06/2011] [Accepted: 07/06/2011] [Indexed: 11/09/2022]
Abstract
Adeno-associated virus type 2 (AAV) is a popular vector for human gene therapy, because of its safety record and ability to express genes long term. Yet large-scale recombinant (r) AAV production remains problematic because of low particle yield. The adenovirus (Ad) and herpes (simplex) virus helper genes for AAV have been widely used and studied, but the helper genes of human papillomavirus (HPV) have not. HPV-16 E1, E2 and E6 help wild-type (wt) AAV productive infection in differentiating keratinocytes, however, HEK293 cells are the standard cell line used for generating rAAV. Here we demonstrate that the three HPV genes were unable to stimulate significant rAAV replication in HEK293 cells when used alone. However, when used in conjunction (complementation) with the standard Ad5 helper gene set, E1, E2 and E6 were each capable of significantly boosting rAAV DNA replication and virus particle yield. Moreover, wt AAV DNA replication and virion yield were also significantly boosted by each HPV gene along with wt Ad5 virus co-infection. Mild-to-moderate changes in rep- and cap-encoded protein levels were evident in the presence of the E1, E2 and E6 genes. Higher wt AAV DNA replication was not matched by similar increases in the levels of rep-encoded protein. Moreover, although rep mRNA was upregulated, cap mRNA was upregulated more. Higher virus yields did correlate most consistently with increased Rep52-, VP3- and VP-related 21/31 kDa species. The observed boost in wt and rAAV production by HPV genes was not unexpected, as the Ad and HPV helper gene sets do not seem to recapitulate each other. These results raise the possibility of generating improved helper gene sets derived from both the Ad and HPV helper gene sets.
Collapse
Affiliation(s)
- M Cao
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | |
Collapse
|
117
|
Wu QJ, Gong CY, Luo ST, Zhang DM, Zhang S, Shi HS, Lu L, Yan HX, He SS, Li DD, Yang L, Zhao X, Wei YQ. AAV-mediated human PEDF inhibits tumor growth and metastasis in murine colorectal peritoneal carcinomatosis model. BMC Cancer 2012; 12:129. [PMID: 22462776 PMCID: PMC3338360 DOI: 10.1186/1471-2407-12-129] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 03/30/2012] [Indexed: 02/05/2023] Open
Abstract
Background Angiogenesis plays an important role in tumor growth and metastasis, therefore antiangiogenic therapy was widely investigated as a promising approach for cancer therapy. Recently, pigment epithelium-derived factor (PEDF) has been shown to be the most potent inhibitor of angiogenesis. Adeno-associated virus (AAV) vectors have been intensively studied due to their wide tropisms, nonpathogenicity, and long-term transgene expression in vivo. The objective of this work was to evaluate the ability of AAV-mediated human PEDF (hPEDF) as a potent tumor suppressor and a potential candidate for cancer gene therapy. Methods Recombinant AAV2 encoding hPEDF (rAAV2-hPEDF) was constructed and produced, and then was assigned for in vitro and in vivo experiments. Conditioned medium from cells infected with rAAV2-hPEDF was used for cell proliferation and tube formation tests of human umbilical vein endothelial cells (HUVECs). Subsequently, colorectal peritoneal carcinomatosis (CRPC) mouse model was established and treated with rAAV2-hPEDF. Therapeutic efficacy of rAAV2-hPEDF were investigated, including tumor growth and metastasis, survival time, microvessel density (MVD) and apoptosis index of tumor tissues, and hPEDF levels in serum and ascites. Results rAAV2-hPEDF was successfully constructed, and transmission electron microscope (TEM) showed that rAAV2-hPEDF particles were non-enveloped icosahedral shape with a diameter of approximately 20 nm. rAAV2-hPEDF-infected cells expressed hPEDF protein, and the conditioned medium from infected cells inhibited proliferation and tube-formation of HUVECs in vitro. Furthermore, in CRPC mouse model, rAAV2-hPEDF significantly suppressed tumor growth and metastasis, and prolonged survival time of treated mice. Immunofluorescence studies indicated that rAAV2-hPEDF could inhibit angiogenesis and induce apoptosis in tumor tissues. Besides, hPEDF levels in serum and ascites of rAAV2-hPEDF-treated mice were significant higher than those in rAAV2-null or normal saline (NS) groups. Conclusions Thus, our results suggest that rAAV2-hPEDF may be a potential candidate as an antiangiogenic therapy agent.
Collapse
Affiliation(s)
- Qin Jie Wu
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, and School of Life Sciences, Sichuan University, Chengdu 610041, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Weinberg MS, Samulski RJ, McCown TJ. Adeno-associated virus (AAV) gene therapy for neurological disease. Neuropharmacology 2012; 69:82-8. [PMID: 22465202 DOI: 10.1016/j.neuropharm.2012.03.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/06/2012] [Accepted: 03/08/2012] [Indexed: 12/09/2022]
Abstract
Diseases of the central nervous system (CNS) have provided enormous opportunities for the therapeutic application of viral vector gene transfer. Adeno-associated virus (AAV) has been the vector of choice in recent clinical trials of neurological disease, including Parkinson's and Alzheimer's disease, due to the safety, efficacy, and stability of AAV gene transfer to the CNS. This review highlights the strategies employed for improving direct and peripheral targeting of therapeutic vectors to CNS tissue, and considers the significance of cellular and tissue transduction specificity, transgene regulation, and other variables that influence achievement of successful therapeutic goals. This article is part of the Special Issue entitled 'New Targets and Approaches to the Treatment of Epilepsy'.
Collapse
Affiliation(s)
- Marc S Weinberg
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
119
|
Transduction of E13 murine neural precursor cells by non-immunogenic recombinant adeno-associated viruses induces major changes in neuronal phenotype. Neuroscience 2012; 210:82-98. [PMID: 22406416 DOI: 10.1016/j.neuroscience.2012.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 02/03/2012] [Accepted: 02/06/2012] [Indexed: 11/21/2022]
Abstract
Neural precursor cells (NPCs) provide a cellular model to compare transduction efficiency and toxicity for a series of recombinant adeno-associated viruses (rAAVs). Results led to the choice of rAAV9 as a preferred candidate to transduce NPCs for in vivo transplantation. Importantly, transduction promoted a neuronal phenotype characterized by neurofilament M (NFM) with a concomitant decrease in the embryonic marker, nestin, without significant change in glial fibrillary acidic protein (GFAP). In marked contrast to recent studies for induced pluripotent stem cells (iPSCs), exposure to rAAVs is non-immunogenic and these do not result in genetic abnormalities, thus bolstering the earlier use of NPCs such as those isolated from E13 murine cells for clinical applications. Mechanisms of cellular interactions were explored by treatment with genistein, a pan-specific inhibitor of protein receptor tyrosine kinases (PRTKs) that blocked the transduction and differentiation, thus implying a central role for this pathway for inducing infectivity along with observed phenotypic changes and as a method for drug design. Implantation of transduced NPCs into adult mouse hippocampus survived up to 28 days producing a time line for targeting or migration to dentate gyrus and CA3-1 compatible with future clinical applications. Furthermore, a majority showed commitment to highly differentiated neuronal phenotypes. Lack of toxicity and immune response of rAAVs plus ability for expansion of NPCs in vitro auger well for their isolation and suggest potential therapeutic applications in repair or replacement of diseased neurons in neurodegeneration.
Collapse
|
120
|
Qiao C, Yuan Z, Li J, Tang R, Li J, Xiao X. Single tyrosine mutation in AAV8 and AAV9 capsids is insufficient to enhance gene delivery to skeletal muscle and heart. Hum Gene Ther Methods 2012; 23:29-37. [PMID: 22428978 PMCID: PMC3651035 DOI: 10.1089/hgtb.2011.229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 01/04/2012] [Indexed: 11/13/2022] Open
Abstract
Site-directed mutations of tyrosine (Y) to phenylalanine (F) on the surface of adeno-associated viral (AAV) capsids have been reported as a simple method to greatly enhance gene transfer in vitro and in vivo. To determine whether the Y-to-F mutation could also enhance AAV8 and AAV9 gene transfer in skeletal muscle and heart to facilitate muscular dystrophy gene therapy, we investigated four capsid mutants of AAV8 (Y447F or Y733F) and AAV9 (Y446F or Y731F). The mutants and their wild-type control AAV8 and AAV9 capsids were used to package reporter genes (luciferase or β-galactosidase) resulting in similar vector yields. To evaluate gene delivery efficiencies, especially in muscle and heart, the vectors were compared side by side in a series of experiments in vivo in two different strains of mice, the outbred ICR and the inbred C57BL/6. Because AAV8 and AAV9 are among the most effective in systemic gene delivery, we first examined the mutant and wild-type vectors in neonatal mice by intraperitoneal injection, or in adult mice by intravenous injection. To our surprise, no statistically significant differences in transgene expression were observed between the mutant and wild-type vectors, regardless of the reporter genes, vector doses, and the ages and strains of mice used. In addition, quantitative analyses of vector DNA copy number in various tissues from mice treated with mutant and wild-type vectors also showed similar results. Finally, direct intramuscular injection of the above-described vectors with the luciferase gene into the hind limb muscles revealed the same levels of gene expression between mutant and wild-type vectors. Our results thus demonstrate that a single mutation of Y447F or Y733F on capsids of AAV8, and of Y446F or Y731F on AAV9, is insufficient to enhance gene delivery to the skeletal muscle and heart.
Collapse
Affiliation(s)
- Chunping Qiao
- Division of Molecular Pharmaceutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
121
|
Galibert L, Merten OW. Latest developments in the large-scale production of adeno-associated virus vectors in insect cells toward the treatment of neuromuscular diseases. J Invertebr Pathol 2011; 107 Suppl:S80-93. [PMID: 21784234 DOI: 10.1016/j.jip.2011.05.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 02/09/2011] [Indexed: 12/20/2022]
Abstract
Adeno-associated viral (AAV) vectors are gene vectors of choice for the development of gene therapy treatments for many rare diseases affecting various tissues including retina, central nervous system, liver, and muscle. The AAV based gene therapy approach became conceivable only after the development of easily scalable production systems including the Sf9 cell/baculovirus expression system. Since the establishment of the production of AAV in the Sf9/baculovirus system by the group of Rob Kotin, this new production system has largely been developed for optimizing the large scale production of different serotypes of AAV for preclinical and clinical purposes. Today this manufacturing system allows for the production of purified vector genome (vg) quantities of up to 2 × 10(15) for AAV1 using a 50L reactor and the scale up to larger reactor volumes is paralleled by a corresponding increase in the vector yield. This review presents the principles and achievements of the Sf9/baculovirus system for the production of AAV in comparison to other expression systems based on mammalian cells. In addition, new developments and improvements, which have not yet been implemented at a large scale, and perspectives for further optimization of this production system will be discussed. All of these achievements as well as further process intensifications are urgently needed for the production of clinical doses for the treatment of neuromuscular diseases for which estimated doses of up to 10(14)vg/kg body mass are required.
Collapse
Affiliation(s)
- Lionel Galibert
- Généthon, Laboratory for Applied Vectorology and Innovation, 1 rue de l'Internationale, BP60, F-91002 Evry Cedex 2, France
| | | |
Collapse
|
122
|
Arnett ALH, Garikipati D, Wang Z, Tapscott S, Chamberlain JS. Immune Responses to rAAV6: The Influence of Canine Parvovirus Vaccination and Neonatal Administration of Viral Vector. Front Microbiol 2011; 2:220. [PMID: 22065964 PMCID: PMC3207220 DOI: 10.3389/fmicb.2011.00220] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 10/16/2011] [Indexed: 11/13/2022] Open
Abstract
Recombinant adeno-associated viral (rAAV) vectors promote long-term gene transfer in many animal species. Significant effort has focused on the evaluation of rAAV delivery and the immune response in both murine and canine models of neuromuscular disease. However, canines provided for research purposes are routinely vaccinated against canine parvovirus (CPV). rAAV and CPV possess significant homology and are both parvoviruses. Thus, any immune response generated to CPV vaccination has the potential to cross-react with rAAV vectors. In this study, we investigated the immune response to rAAV6 delivery in a cohort of CPV-vaccinated canines and evaluated multiple vaccination regimens in a mouse model of CPV-vaccination. We show that CPV-vaccination stimulates production of neutralizing antibodies with minimal cross-reactivity to rAAV6. In addition, no significant differences were observed in the magnitude of the rAAV6-directed immune response between CPV-vaccinated animals and controls. Moreover, CPV-vaccination did not inhibit rAAV6-mediated transduction. We also evaluated the immune response to early rAAV6-vaccination in neonatal mice. The influence of maternal hormones and cytokines leads to a relatively permissive state in the neonate. We hypothesized that immaturity of the immune system would permit induction of tolerance to rAAV6 when delivered during the neonatal period. Mice were vaccinated with rAAV6 at 1 or 5 days of age, and subsequently challenged with rAAV6 exposure during adulthood via two sequential IM injections, 1 month apart. All vaccinated animals generated a significant neutralizing antibody response to rAAV6-vaccination that was enhanced following IM injection in adulthood. Taken together, these data demonstrate that the immune response raised against rAAV6 is distinct from that which is elicited by the standard parvoviral vaccines and is sufficient to prevent stable tolerization in neonatal mice.
Collapse
Affiliation(s)
- Andrea L. H. Arnett
- Medical Scientist Training Program, University of Washington School of MedicineSeattle, WA, USA
- Department of Neurology, University of Washington School of MedicineSeattle, WA, USA
| | - Dilip Garikipati
- Department of Neurology, University of Washington School of MedicineSeattle, WA, USA
| | - Zejing Wang
- Human Biology Division, Fred Hutchinson Cancer Research CenterSeattle, WA, USA
| | - Stephen Tapscott
- Human Biology Division, Fred Hutchinson Cancer Research CenterSeattle, WA, USA
| | - Jeffrey S. Chamberlain
- Department of Neurology, University of Washington School of MedicineSeattle, WA, USA
- Department of Medicine, University of Washington School of MedicineSeattle, WA, USA
- Department of Biochemistry, University of Washington School of MedicineSeattle, WA, USA
| |
Collapse
|
123
|
Vandenberghe LH, Auricchio A. Novel adeno-associated viral vectors for retinal gene therapy. Gene Ther 2011; 19:162-8. [PMID: 21993172 DOI: 10.1038/gt.2011.151] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vectors derived from adeno-associated virus (AAV) are currently the most promising vehicles for therapeutic gene delivery to the retina. Recently, subretinal administration of AAV2 has been demonstrated to be safe and effective in patients with a rare form of inherited childhood blindness, suggesting that AAV-mediated retinal gene therapy may be successfully extended to other blinding conditions. This is further supported by the great versatility of AAV as a vector platform as there are a large number of AAV variants and many of these have unique transduction characteristics useful for targeting different cell types in the retina including glia, epithelium and many types of neurons. Naturally occurring, rationally designed or in vitro evolved AAV vectors are currently being utilized to transduce several different cell types in the retina and to treat a variety of animal models of retinal disease. The continuous and creative development of AAV vectors provides opportunities to overcome existing challenges in retinal gene therapy such as efficient transfer of genes exceeding AAV's cargo capacity, or the targeting of specific cells within the retina or transduction of photoreceptors following routinely used intravitreal injections. Such developments should ultimately advance the treatment of a wide range of blinding retinal conditions.
Collapse
Affiliation(s)
- L H Vandenberghe
- Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA.
| | | |
Collapse
|
124
|
Kapranov P, Chen L, Dederich D, Dong B, He J, Steinmann KE, Moore AR, Thompson JF, Milos PM, Xiao W. Native molecular state of adeno-associated viral vectors revealed by single-molecule sequencing. Hum Gene Ther 2011; 23:46-55. [PMID: 21875357 DOI: 10.1089/hum.2011.160] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The single-stranded genome of adeno-associated viral (AAV) vectors is one of the key factors leading to slow-rising but long-term transgene expression kinetics. Previous molecular studies have established what is now considered a textbook molecular model of AAV genomes with two copies of inverted tandem repeats at either end. In this study, we profiled hundreds of thousands of individual molecules of AAV vector DNA directly isolated from capsids, using single-molecule sequencing (SMS), which avoids any intermediary steps such as plasmid cloning. The sequence profile at 3' ends of both the regular and oversized vector did show the presence of an inverted terminal repeat (ITR), which provided direct confirmation that AAV vector packaging initiates from its 3' end. Furthermore, the vector 5'-terminus profile showed inconsistent termination for oversized vectors. Such incomplete vectors would not be expected to undergo canonical synthesis of the second strand of their genomic DNA and thus could function only via annealing of complementary strands of DNA. Furthermore, low levels of contaminating plasmid DNA were also detected. SMS may become a valuable tool during the development phase of vectors that are candidates for clinical use and for facilitating/accelerating studies on vector biology.
Collapse
|
125
|
Rescue of avian adeno-associated virus from a recombinant plasmid containing deletions in the viral inverted terminal repeats. Arch Virol 2011; 157:129-34. [PMID: 21947568 DOI: 10.1007/s00705-011-1121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Accepted: 09/14/2011] [Indexed: 10/17/2022]
Abstract
We have previously reported the complete genome sequence of avian adeno-associated virus (AAAV) strain YZ-1, isolated from healthy chickens in China. In this study, we describe the successful rescue of infectious virions from a recombinant plasmid containing the genome of YZ-1 with deletions in the viral inverted terminal repeats (ITRs). The complete genome of YZ-1 was cloned into a bacterial plasmid by a modified "A-T" cloning method. Six recombinant plasmids were selected for further experiments. Sequence analysis indicated that the six clones shared identical internal sequences except for the various deletions within ITRs at either end of the cloned genome. The recombinant plasmid pYZ525, harboring a YZ-1 genome with a 96-nt deletion at the 5' end, was used to transfect CEL or HEK293 cells in the presence of the CELO virus or a helper plasmid, and rescued virions were obtained by both of the methods despite the presence of the deletions. Here, for the first time, we provide evidence that a certain number of nt deletions in the ITRs are not lethal for the rescue of viable AAAV from recombinant plasmids. This study provides insight into the unique biology of AAAV and the mechanism of viral replication.
Collapse
|
126
|
Cervelli T, Backovic A, Galli A. Formation of AAV single stranded DNA genome from a circular plasmid in Saccharomyces cerevisiae. PLoS One 2011; 6:e23474. [PMID: 21853137 PMCID: PMC3154452 DOI: 10.1371/journal.pone.0023474] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 07/19/2011] [Indexed: 11/20/2022] Open
Abstract
Adeno-associated virus (AAV)-based vectors are promising tools for targeted transfer in gene therapy studies. Many efforts have been accomplished to improve production and purification methods. We thought to develop a simple eukaryotic system allowing AAV replication which could provide an excellent opportunity for studying AAV biology and, more importantly, for AAV vector production. It has been shown that yeast Saccharomyces cerevisiae is able to replicate and form the capsid of many viruses. We investigated the ability of the yeast Saccharomyces cerevisiae to carry out the replication of a recombinant AAV (rAAV). When a plasmid containing a rAAV genome in which the cap gene was replaced with the S. cerevisiae URA3 gene, was co-transformed in yeast with a plasmid expressing Rep68, a significant number of URA3+ clones were scored (more than 30-fold over controls). Molecular analysis of low molecular weight DNA by Southern blotting revealed that single stranded DNA is formed and that the plasmid is entirely replicated. The ssDNA contains the ITRs, URA3 gene and also vector sequences suggesting the presence of two distinct molecules. Its formation was dependent on Rep68 expression and ITR. These data indicate that DNA is not obtained by the canonical AAV replication pathway.
Collapse
Affiliation(s)
- Tiziana Cervelli
- Laboratorio di Terapia Genica e Molecolare, Istituto di Fisiologia Clinica, CNR, Pisa, Italy
| | - Ana Backovic
- Laboratorio di Biologia Molecolare, Scuola Normale Superiore, Pisa, Italy
| | - Alvaro Galli
- Laboratorio di Terapia Genica e Molecolare, Istituto di Fisiologia Clinica, CNR, Pisa, Italy
- * E-mail:
| |
Collapse
|
127
|
Abstract
INTRODUCTION Glycogen storage disease (GSD) type Ia and Ib are disorders of impaired glucose homeostasis affecting the liver and kidney. GSD-Ib also affects neutrophils. Current dietary therapies cannot prevent long-term complications. In animal studies, recombinant adeno-associated virus (rAAV) vector-mediated gene therapy can correct or minimize multiple aspects of the disorders, offering hope for human gene therapy. AREAS COVERED A summary of recent progress in rAAV-mediated gene therapy for GSD-I; strategies to improve rAAV-mediated gene delivery, transduction efficiency and immune avoidance; and vector refinements that improve expression. EXPERT OPINION rAAV-mediated gene delivery to the liver can restore glucose homeostasis in preclinical models of GSD-I, but some long-term complications of the liver and kidney remain. Gene therapy for GSD-Ib is less advanced than for GSD-Ia and only transient correction of myeloid dysfunction has been achieved. A question remains as to whether a single rAAV vector can meet the expression efficiency and tropism required to treat all aspects of GSD-I, or if a multi-pronged approach is needed. An understanding of the strengths and weaknesses of rAAV vectors in the context of strategies to achieve efficient transduction of the liver, kidney and hematopoietic stem cells is required for treating GSD-I.
Collapse
Affiliation(s)
- Janice Y Chou
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Section on Cellular Differentiation, Program on Developmental Endocrinology and Genetics, Bethesda, MD 20892 1830, USA.
| | | |
Collapse
|
128
|
Vandenberghe LH, Bell P, Maguire AM, Cearley CN, Xiao R, Calcedo R, Wang L, Castle MJ, Maguire AC, Grant R, Wolfe JH, Wilson JM, Bennett J. Dosage thresholds for AAV2 and AAV8 photoreceptor gene therapy in monkey. Sci Transl Med 2011; 3:88ra54. [PMID: 21697530 PMCID: PMC5027886 DOI: 10.1126/scitranslmed.3002103] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Gene therapy is emerging as a therapeutic modality for treating disorders of the retina. Photoreceptor cells are the primary cell type affected in many inherited diseases of retinal degeneration. Successfully treating these diseases with gene therapy requires the identification of efficient and safe targeting vectors that can transduce photoreceptor cells. One serotype of adeno-associated virus, AAV2, has been used successfully in clinical trials to treat a form of congenital blindness that requires transduction of the supporting cells of the retina in the retinal pigment epithelium (RPE). Here, we determined the dose required to achieve targeting of AAV2 and AAV8 vectors to photoreceptors in nonhuman primates. Transgene expression in animals injected subretinally with various doses of AAV2 or AAV8 vectors carrying a green fluorescent protein transgene was correlated with surgical, clinical, and immunological observations. Both AAV2 and AAV8 demonstrated efficient transduction of RPE, but AAV8 was markedly better at targeting photoreceptor cells. These preclinical results provide guidance for optimal vector and dose selection in future human gene therapy trials to treat retinal diseases caused by loss of photoreceptors.
Collapse
Affiliation(s)
- Luk H. Vandenberghe
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter Bell
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Albert M. Maguire
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Cassia N. Cearley
- W. F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine and Department of Pediatrics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Stokes Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ru Xiao
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roberto Calcedo
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lili Wang
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J. Castle
- W. F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine and Department of Pediatrics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Stokes Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alexandra C. Maguire
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rebecca Grant
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John H. Wolfe
- W. F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine and Department of Pediatrics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Stokes Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - James M. Wilson
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean Bennett
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104 USA
| |
Collapse
|
129
|
Rapti K, Chaanine AH, Hajjar RJ. Targeted gene therapy for the treatment of heart failure. Can J Cardiol 2011; 27:265-83. [PMID: 21601767 PMCID: PMC5902317 DOI: 10.1016/j.cjca.2011.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 02/10/2011] [Accepted: 02/11/2011] [Indexed: 12/18/2022] Open
Abstract
Chronic heart failure is one of the leading causes of morbidity and mortality in Western countries and is a major financial burden to the health care system. Pharmacologic treatment and implanting devices are the predominant therapeutic approaches. They improve survival and have offered significant improvement in patient quality of life, but they fall short of producing an authentic remedy. Cardiac gene therapy, the introduction of genetic material to the heart, offers great promise in filling this void. In-depth knowledge of the underlying mechanisms of heart failure is, obviously, a prerequisite to achieve this aim. Extensive research in the past decades, supported by numerous methodological breakthroughs, such as transgenic animal model development, has led to a better understanding of the cardiovascular diseases and, inadvertently, to the identification of several candidate genes. Of the genes that can be targeted for gene transfer, calcium cycling proteins are prominent, as abnormalities in calcium handling are key determinants of heart failure. A major impediment, however, has been the development of a safe, yet efficient, delivery system. Nonviral vectors have been used extensively in clinical trials, but they fail to produce significant gene expression. Viral vectors, especially adenoviral, on the other hand, can produce high levels of expression, at the expense of safety. Adeno-associated viral vectors have emerged in recent years as promising myocardial gene delivery vehicles. They can sustain gene expression at a therapeutic level and maintain it over extended periods of time, even for years, and, most important, without a safety risk.
Collapse
Affiliation(s)
- Kleopatra Rapti
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, New York, USA
| | | | | |
Collapse
|
130
|
Qiao C, Zhang W, Yuan Z, Shin JH, Li J, Jayandharan GR, Zhong L, Srivastava A, Xiao X, Duan D. Adeno-associated virus serotype 6 capsid tyrosine-to-phenylalanine mutations improve gene transfer to skeletal muscle. Hum Gene Ther 2011; 21:1343-8. [PMID: 20497037 DOI: 10.1089/hum.2010.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adeno-associated viral (AAV) vectors are the most efficient in vivo gene transfer tools for gene therapy applications. Efforts have been made to translate encouraging results in small animal models to human patients. However, the need for large quantities of vector for clinical application remains a great challenge. Developing novel AAV vectors with enhanced infectivity may reduce the high vector dose requirement for many applications such as gene therapy for muscular dystrophy. Selective mutation of AAV capsid surface-exposed tyrosine (Y) is a novel strategy to improve transduction efficiency. AAV6 has been considered one of the most robust muscle gene delivery vehicles. Here, we hypothesize that AAV6 transduction efficiency can be further enhanced by mutating surface Y to phenylalanine (F). We found that mutants AAV6-Y445F and AAV6-Y731F, especially the former, achieved more efficient gene transfer than the original AAV6 after intramuscular administration to mice. Expression of both firefly luciferase and alkaline phosphatase reporter genes increased up to 8-fold and DNA copy numbers in muscle increased up to 6-fold. Our results suggest that tyrosine-mutant AAV6 vectors may represent powerful tools for testing muscle gene therapy in animal models and potentially in humans.
Collapse
Affiliation(s)
- Chunping Qiao
- Division of Molecular Pharmaceutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Abstract
Adeno-associated virus (AAV) vectors have evolved over the past decade as a particularly useful gene -vector for in vivo applications. In contrast to oncoretro- and lentiviral vectors, this vector stays essentially episomal after gene transfer, making it safer because of the absence of insertional mutagenesis. AAV's non-pathogenicity is a further advantage. For decades, this vector could only be produced at a small scale for research purposes and, eventually, used at very small doses for clinical studies, because only transfection methods were available, which have limited scalability. However, since the development of scalable production methods, this bottleneck is resolved and, from a technical point of view, large quantities of AAV vectors can be produced, opening the possibility of using AAV vectors for whole body treatments in gene therapy trials. This chapter presents the basic principles of small- and large-scale production procedures as well as detailed procedure of small-scale production, purification, and analytical protocols for AAV vectors. In Chapter 10, the reader will find a large-scale production method based on the use of the insect cell/baculovirus system.
Collapse
|
132
|
Abstract
The success of any gene transfer procedure, either through in vivo inoculation of the genetic material or after gene transfer into the patient’s cells ex vivo, strictly depends upon the efficiency of nucleic acid internalization by the target cells. As a matter of fact, making gene transfer more efficient continues to represent the most relevant challenge to the clinical success of gene therapy.
Collapse
Affiliation(s)
- Mauro Giacca
- grid.425196.d0000000417594810International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| |
Collapse
|
133
|
Carty N, Lee D, Dickey C, Ceballos-Diaz C, Jansen-West K, Golde TE, Gordon MN, Morgan D, Nash K. Convection-enhanced delivery and systemic mannitol increase gene product distribution of AAV vectors 5, 8, and 9 and increase gene product in the adult mouse brain. J Neurosci Methods 2010; 194:144-53. [PMID: 20951738 DOI: 10.1016/j.jneumeth.2010.10.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 08/31/2010] [Accepted: 10/08/2010] [Indexed: 12/19/2022]
Abstract
The use of recombinant adeno-associated viral (rAAV) vectors as a means of gene delivery to the central nervous system has emerged as a potentially viable method for the treatment of several types of degenerative brain diseases. However, a limitation of typical intracranial injections into the adult brain parenchyma is the relatively restricted distribution of the delivered gene to large brain regions such as the cortex, presumably due to confined dispersion of the injected particles. Optimizing the administration techniques to maximize gene distribution and gene expression is an important step in developing gene therapy studies. Here, we have found additive increases in distribution when 3 methods to increase brain distribution of rAAV were combined. The convection enhanced delivery (CED) method with the step-design cannula was used to deliver rAAV vector serotypes 5, 8 and 9 encoding GFP into the hippocampus of the mouse brain. While the CED method improved distribution of all 3 serotypes, the combination of rAAV9 and CED was particularly effective. Systemic mannitol administration, which reduces intracranial pressure, also further expanded distribution of GFP expression, in particular, increased expression on the contralateral hippocampi. These data suggest that combining advanced injection techniques with newer rAAV serotypes greatly improves viral vector distribution, which could have significant benefits for implementation of gene therapy strategies.
Collapse
Affiliation(s)
- Nikisha Carty
- Byrd Alzheimer's Institute and Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL 33613, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Molecular characterization and phylogenetic analysis of an avian adeno-associated virus originating from a chicken in China. Arch Virol 2010; 156:71-7. [PMID: 20890715 DOI: 10.1007/s00705-010-0822-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 09/21/2010] [Indexed: 10/19/2022]
Abstract
The use of adeno-associated viruses (AAVs) as vectors for gene delivery is well established; however, genomic information about avian adeno-associated virus (AAAV) and its use are still limited. In this study, an AAAV strain, YZ-1, was isolated from healthy chickens in China, and the complete genome was sequenced. The genomic DNA of YZ-1 is 4,684 nucleotides long, including two ORFs encoding the nonstructural proteins (Rep) and the structural proteins (Cap), and an inverted terminal repeat (ITR) forming a typical T-shaped palindromic structure at each end. YZ-1 was 95.0 and 92.2% identical to the other two reported AAAV strains, DA-1 and VR-865, respectively, at the nucleotide sequence level. In comparison to VR-865, frameshift mutations or deletions in the N-terminal region of the Rep78 protein or VP2 protein were observed in YZ-1 and DA-1. Phylogenetic analysis revealed that YZ-1, DA-1 and VR-865 could be classified into the avian group of the AAV family. This group and other AAVs of mammalian origin displayed almost equal divergence from pathogenic waterfowl parvoviruses, revealing that AAAV has no direct evolutionary relationship to them. This study therefore provides new genomic information about AAAV.
Collapse
|
135
|
Hirsch ML, Green L, Porteus MH, Samulski RJ. Self-complementary AAV mediates gene targeting and enhances endonuclease delivery for double-strand break repair. Gene Ther 2010; 17:1175-80. [PMID: 20463753 PMCID: PMC3152950 DOI: 10.1038/gt.2010.65] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 02/23/2010] [Accepted: 02/23/2010] [Indexed: 11/08/2022]
Abstract
Adeno-associated virus (AAV) mediates gene targeting in humans by providing exogenous DNA for allelic replacement through homologous recombination. In comparison to other methods of DNA delivery or alternative DNA substrates, AAV gene targeting is reported to be very efficient, perhaps due to its single-stranded DNA genome, the inverted terminal repeats (ITRs), and/or the consequence of induced cellular signals on infection or uncoating. These viral attributes were investigated in the presence and absence of an I-Sce endonuclease-induced double-strand break (DSB) within a chromosomal defective reporter in human embryonic kidney cells. Gene correction was evaluated using self-complementary (sc) AAV, which forms a duplexed DNA molecule and results in earlier and robust transgene expression compared with conventional single-strand (ss) AAV genomes. An scAAV repair substrate was modestly enhanced for reporter correction showing no dependency on ssAAV genomes for this process. The AAV ITR sequences were also investigated in a plasmid repair context. No correction was noted in the absence of a DSB, however, a modest inhibitory effect correlated with the increasing presence of ITR sequences. Similarly, signaling cascades stimulated upon recombinant AAV transduction had no effect on plasmid-mediated DSB repair. Noteworthy, was the 20-fold additional enhancement in reporter correction using scAAV vectors, over ss versions, to deliver both the repair substrate and the endonuclease. In this case, homologous recombination repaired the defective reporter in 4% of cells without any selection. This report provides novel insights regarding the recombination substrates used by AAV vectors in promoting homologous recombination and points to the initial steps in vector optimization that could facilitate their use in gene correction of genetic disorders.
Collapse
Affiliation(s)
- ML Hirsch
- UNC Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - L Green
- UNC Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - MH Porteus
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - RJ Samulski
- UNC Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
136
|
Pauwels K, Breyer D, De Schrijver A, Goossens M, Herman P. Contributions from scientific research to the risk assessment of GMOs. Lessons learned from a symposium held in Brussels, Belgium, 21-22 October 2010. ENVIRONMENTAL BIOSAFETY RESEARCH 2010; 9:113-121. [PMID: 21851803 DOI: 10.1051/ebr/2011108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 06/27/2011] [Indexed: 05/31/2023]
Affiliation(s)
- Katia Pauwels
- Scientific Institute of Public Health, Biosafety and Biotechnology Unit, Rue J. Wytsmanstraat 14, B-1050 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
137
|
Li Y, Ge X, Hon CC, Zhang H, Zhou P, Zhang Y, Wu Y, Wang LF, Shi Z. Prevalence and genetic diversity of adeno-associated viruses in bats from China. J Gen Virol 2010; 91:2601-9. [PMID: 20573859 DOI: 10.1099/vir.0.020032-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bats are increasingly being recognized as important natural reservoirs of different viruses. Adeno-associated viruses (AAVs) are widely distributed in primates and their distribution in bats is unknown. In this study, a total of 370 faecal swab samples from 19 bat species were collected from various provinces of China and examined for the presence of AAVs. The mean prevalence rate was 22.4% (83 positives out of 370 samples), ranging from 10 to 38.9% among different bat species. The genome sequence spanning the entire rep-cap ORFs was determined from one chosen AAV-positive sample (designated BtAAV-YNM). Phylogenetic analysis of the entire rep-cap ORF coding sequences suggested that BtAAV-YNM is relatively distant to known primate AAVs, but phylogenetically closer to porcine AAV strain Po3. Further analysis of the partial cap ORF sequences of bat AAV samples (n=49) revealed a remarkably large genetic diversity, with an average pairwise nucleotide identity of only 84.3%. Co-presence of multiple distinctive genotypes of bat AAV within an individual sample was also observed. These results demonstrated that diverse AAVs might be widely distributed in bat populations.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Tang Y, Cummins J, Huard J, Wang B. AAV-directed muscular dystrophy gene therapy. Expert Opin Biol Ther 2010; 10:395-408. [PMID: 20132060 DOI: 10.1517/14712591003604690] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
IMPORTANCE OF THE FIELD Muscle-directed gene therapy for genetic muscle diseases can be performed by the recombinant adeno-associated viral (rAAV) vector delivery system to achieve long-term therapeutic gene transfer in all affected muscles. AREAS COVERED IN THIS REVIEW Recent progress in rAAV-vector-mediated muscle-directed gene transfer and associated techniques for the treatment of muscular dystrophies (MD). The review covers literature from the past 2 - 3 years. WHAT THE READER WILL GAIN rAAV-directed muscular dystrophy gene therapy can be achieved by mini-dystrophin replacement and exon-skipping strategies. The additional strategies of enhancing muscle regeneration and reducing inflammation in the muscle micro-environment should be useful to optimize therapeutic efficacy. This review compares the merits and shortcomings of different administration methods, promoters and experimental animals that will guide the choice of the appropriate strategy for clinical trials. TAKE HOME MESSAGE Restoration of muscle histopathology and function has been performed using rAAV systemic gene delivery. In addition, the combination of gene replacement and adjuvant therapies in the future may be beneficial with regard to improving muscle regeneration and decreasing myofiber necrosis. The challenges faced by large animal model studies and in human trials arise from gene transfer efficiency and immune response, which may be overcome by optimizing the rAAV vectors utilized and the administration methods.
Collapse
Affiliation(s)
- Ying Tang
- University of Pittsburgh, Department of Orthopaedic Surgery, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
139
|
Bandyopadhyay S, Cao M, Liu Y, Hermonat PL. HPV E1 up-regulates replication-related biochemistries of AAV Rep78. Virology 2010; 402:94-101. [PMID: 20378143 DOI: 10.1016/j.virol.2010.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 02/09/2010] [Accepted: 03/01/2010] [Indexed: 11/26/2022]
Abstract
Human papillomavirus type 16 (HPV) E1 protein provides helper function for the adeno-associated virus type 2 (AAV) life cycle. E1 is the replication protein of HPV, analogous to AAV Rep78, but without the endonuclease/covalent attachment activity of Rep78. Previously we have shown that E1 and Rep78 interact in vitro. Here we investigated E1's effects on Rep78 interaction with AAV's inverted terminal repeat (ITR) DNA in vitro, using purified Rep78 and E1 proteins from bacteria. E1 enhanced Rep78-ITR binding, ATPase activity, Rep78-ITR-covalent linkage and Rep78-ITR-endonuclease activity (central to AAV replication). These enhancements occurred in a dose-dependent manner whenever assayed. However, overall Rep78-plus-E1 helicase activity was lower than Rep78's helicase activity. These data suggest that E1's broad-based helper function for the AAV life cycle (AAV DNA, mRNA, and protein levels are up-regulated by E1) is likely through its ability to enhance Rep78's critical replication-required biochemistries on ITR DNA.
Collapse
Affiliation(s)
- Sarmistha Bandyopadhyay
- Department of Internal Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
140
|
Development of viral vectors for use in cardiovascular gene therapy. Viruses 2010; 2:334-371. [PMID: 21994642 PMCID: PMC3185614 DOI: 10.3390/v2020334] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 01/15/2010] [Accepted: 01/26/2010] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular disease represents the most common cause of mortality in the developed world but, despite two decades of promising pre-clinical research and numerous clinical trials, cardiovascular gene transfer has so far failed to demonstrate convincing benefits in the clinical setting. In this review we discuss the various targets which may be suitable for cardiovascular gene therapy and the viral vectors which have to date shown the most potential for clinical use. We conclude with a summary of the current state of clinical cardiovascular gene therapy and the key trials which are ongoing.
Collapse
|
141
|
Sheng-Fowler L, Lewis AM, Peden K. Quantitative determination of the infectivity of the proviral DNA of a retrovirus in vitro: Evaluation of methods for DNA inactivation. Biologicals 2009; 37:259-69. [DOI: 10.1016/j.biologicals.2009.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 03/16/2009] [Accepted: 04/03/2009] [Indexed: 10/20/2022] Open
|
142
|
Scheller E, Krebsbach P. Gene therapy: design and prospects for craniofacial regeneration. J Dent Res 2009; 88:585-96. [PMID: 19641145 PMCID: PMC2907101 DOI: 10.1177/0022034509337480] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 11/22/2008] [Accepted: 11/26/2008] [Indexed: 12/31/2022] Open
Abstract
Gene therapy is defined as the treatment of disease by transfer of genetic material into cells. This review will explore methods available for gene transfer as well as current and potential applications for craniofacial regeneration, with emphasis on future development and design. Though non-viral gene delivery methods are limited by low gene transfer efficiency, they benefit from relative safety, low immunogenicity, ease of manufacture, and lack of DNA insert size limitation. In contrast, viral vectors are nature's gene delivery machines that can be optimized to allow for tissue-specific targeting, site-specific chromosomal integration, and efficient long-term infection of dividing and non-dividing cells. In contrast to traditional replacement gene therapy, craniofacial regeneration seeks to use genetic vectors as supplemental building blocks for tissue growth and repair. Synergistic combination of viral gene therapy with craniofacial tissue engineering will significantly enhance our ability to repair and replace tissues in vivo.
Collapse
Affiliation(s)
- E.L. Scheller
- Department. of Biologic and Materials Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109-1078, USA
| | - P.H. Krebsbach
- Department. of Biologic and Materials Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109-1078, USA
| |
Collapse
|
143
|
Hadaczek P, Forsayeth J, Mirek H, Munson K, Bringas J, Pivirotto P, McBride JL, Davidson BL, Bankiewicz KS. Transduction of nonhuman primate brain with adeno-associated virus serotype 1: vector trafficking and immune response. Hum Gene Ther 2009; 20:225-37. [PMID: 19292604 DOI: 10.1089/hum.2008.151] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We used convection-enhanced delivery (CED) to characterize gene delivery mediated by adeno-associated virus type 1 (AAV1) by tracking expression of hrGFP (humanized green fluorescent protein from Renilla reniformis) into the striatum, basal forebrain, and corona radiata of monkey brain. Four cynomolgus monkeys received single infusions into corona radiata, putamen, and caudate. The other group (n = 4) received infusions into basal forebrain. Thirty days after infusion animals were killed and their brains were processed for immunohistochemical evaluation. Volumetric analysis of GFP-positive brain areas was performed. AAV1-hrGFP infusions resulted in approximately 550, 700, and 73 mm(3) coverage after infusion into corona radiata, striatum, and basal forebrain, respectively. Aside from targeted regions, other brain structures also showed GFP signal (internal and external globus pallidus, subthalamic nucleus), supporting the idea that AAV1 is actively trafficked to regions distal from the infusion site. In addition to neuronal transduction, a significant nonneuronal cell population was transduced by AAV1 vector; for example, oligodendrocytes in corona radiata and astrocytes in the striatum. We observed a strong humoral and cell-mediated response against AAV1-hrGFP in transduced monkeys irrespective of the anatomic location of the infusion, as evidenced by induction of circulating anti-AAV1 and anti-hrGFP antibodies, as well as infiltration of CD4(+) lymphocytes and upregulation of MHC-II in regions infused with vector. We conclude that transduction of antigen-presenting cells within the CNS is a likely cause of this response and that caution is warranted when foreign transgenes are used as reporters in gene therapy studies with vectors with broader tropism than AAV2.
Collapse
Affiliation(s)
- Piotr Hadaczek
- Laboratory of Molecular Therapeutics, Department of Neurosurgery, University of California-San Francisco, San Francisco, CA 94103, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Cytotoxic-T-lymphocyte-mediated elimination of target cells transduced with engineered adeno-associated virus type 2 vector in vivo. J Virol 2009; 83:6817-24. [PMID: 19369348 DOI: 10.1128/jvi.00278-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A recent clinical trial in patients with hemophilia B has suggested that adeno-associated virus (AAV) capsid-specific cytotoxic T lymphocytes (CTLs) eliminated AAV-transduced hepatocytes and resulted in therapeutic failure. AAV capsids elicit a CTL response in animal models; however, these capsid-specific CTLs fail to kill AAV-transduced target cells in mice. To better model the human clinical trial data in mice, we introduced an immunodominant epitope derived from ovalbumin (OVA; SIINFEKL) into the AAV capsid and tested CTL-mediated killing of AAV2-transduced target tissues in vivo. Initially, in vitro experiments demonstrated both classical class I and cross-presentation of the OVA antigen, following endogenous expression or AAV2-OVA vector transduction, respectively. Furthermore, an OVA-specific CTL response was elicited after muscular or systemic injection of the AAV2-OVA vector. Finally, CTL reactivity was enhanced in mice with established SIINFEKL-specific immunity after AAV2-OVA/alpha1 anti-trypsin (AAT) administration. Most importantly, these OVA-specific CTLs decreased AAT expression in mice treated with AAV2-OVA/AAT vector that followed a time course mimicking uncoating kinetics of AAV2 transduction in OVA-immunized mice. These results demonstrate that AAV capsid-derived antigens elicit CD8(+) CTL reactivity, and these CTLs eliminated AAV-transduced target cells in mice. Notably, this model system can be exploited to study the kinetics of capsid presentation from different serotypes of AAV and permit the design of novel strategies to block CTL-mediated killing of AAV-transduced cells.
Collapse
|
145
|
Hewitt FC, Li C, Gray SJ, Cockrell S, Washburn M, Samulski RJ. Reducing the risk of adeno-associated virus (AAV) vector mobilization with AAV type 5 vectors. J Virol 2009; 83:3919-29. [PMID: 19211760 PMCID: PMC2663261 DOI: 10.1128/jvi.02466-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 02/01/2009] [Indexed: 12/23/2022] Open
Abstract
Current adeno-associated virus (AAV) gene therapy vectors package a transgene flanked by the terminal repeats (TRs) of AAV type 2 (AAV2). Although these vectors are replication deficient, wild-type (wt) AAV2 prevalent in the human population could lead to replication and packaging of a type 2 TR (TR2)-flanked transgene in trans during superinfection by a helper virus, leading to "mobilization" of the vector genome from treated cells. More importantly, it appears likely that the majority of currently characterized AAV serotypes as well as the majority of new novel isolates are capable of rescuing and replicating AAV2 vector templates. To investigate this possibility, we flanked a green fluorescent protein transgene with type 2 and, the most divergent AAV serotype, type 5 TRs (TR2 or TR5). Consistent with AAV clades, AAV5 specifically replicated TR5 vectors, while AAV2 and AAV6 replicated TR2-flanked vectors. To exploit this specificity, we created a TR5 vector production system for Cap1 to Cap5. Next, we showed that persisting recombinant AAV genomes flanked by TR2s or TR5s were mobilized in vitro after addition of the cognate AAV Rep (as well as Rep6 for TR2) and adenoviral helper. Finally, we showed that a cell line containing a stably integrated wt AAV2 genome resulted in mobilization of a TR2-flanked vector but not a TR5-flanked vector upon adenoviral superinfection. Based on these data and the relative prevalence of wt AAV serotypes in the population, we propose that TR5 vectors have a significantly lower risk of mobilization and should be considered for clinical use.
Collapse
Affiliation(s)
- F Curtis Hewitt
- Gene Therapy Center, University of North Carolina at Chapel Hill, 7119 Thurston Bowles, CB 7352, Chapel Hill, NC 27599-7352, USA
| | | | | | | | | | | |
Collapse
|
146
|
Sheng-Fowler L, Lewis AM, Peden K. Issues associated with residual cell-substrate DNA in viral vaccines. Biologicals 2009; 37:190-5. [PMID: 19285882 DOI: 10.1016/j.biologicals.2009.02.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 02/02/2009] [Indexed: 11/29/2022] Open
Abstract
The presence of some residual cellular DNA derived from the production-cell substrate in viral vaccines is inevitable. Whether this DNA represents a safety concern, particularly if the cell substrate is derived from a tumor or is tumorigenic, is unknown. DNA has two biological activities that need to be considered. First, DNA can be oncogenic; second, DNA can be infectious. As part of our studies to assess the risk of residual cell-substrate DNA in viral vaccines, we have established assays that can quantify the biological activities of DNA. From data obtained using these assays, we have estimated the risk of an oncogenic or an infectious event from DNA. Because these estimates were derived from the most sensitive assays identified so far, they likely represent worst-case estimates. In addition, methods that inactivate the biological activities of DNA can be assessed and estimations of risk reduction by these treatments can be made. In this paper, we discuss our approaches to address potential safety issues associated with residual cellular DNA from neoplastic cell substrates in viral vaccines, summarize the development of assays to quantify the oncogenic and infectivity activities of DNA, and discuss methods to reduce the biological activities of DNA.
Collapse
Affiliation(s)
- Li Sheng-Fowler
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drugs Administration, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
147
|
Targeting Homer genes using adeno-associated viral vector: lessons learned from behavioural and neurochemical studies. Behav Pharmacol 2008; 19:485-500. [PMID: 18690104 DOI: 10.1097/fbp.0b013e32830c369f] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Over a decade of in-vitro data support a critical role for members of the Homer family of postsynaptic scaffolding proteins in regulating the functional architecture of glutamate synapses. Earlier studies of Homer knockout mice indicated a necessary role for Homer gene products in normal mesocorticolimbic glutamate transmission and behaviours associated therewith. The advent of adeno-associated viral vectors carrying cDNA for, or short hairpin RNA against, specific Homer isoforms enabled the site-directed targeting of Homers to neurons in the brain. This approach has allowed our groups to address developmental issues associated with conventional knockout mice, to confirm active roles for distinct Homer isoforms in regulating glutamate transmission in vivo, as well as in mediating a variety of behavioural processes. This review summarizes the existing data derived from our studies using adeno-associated viral vector-mediated neuronal targeting of Homer in rodents, implicating this family of proteins in drug and alcohol addiction, learning/memory and emotional processing.
Collapse
|
148
|
Hadaczek P, Forsayeth J, Mirek H, Munson K, Bringas J, Pivirotto P, McBride J, Davidson B, Bankiewicz K. Transduction of non-human primate brain with adeno-associated virus serotype 1: vector trafficking and immune response. Hum Gene Ther 2008. [DOI: 10.1089/hgt.2008.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
149
|
Abstract
A number of preclinical studies have shown the adeno-associated virus (AAV) to be an efficient vehicle for gene therapy. Clinical studies successfully demonstrated its potential for in vivo gene transfer. The complexity of host-vector interactions when progressing from small to large animal models, and eventually to humans, has impeded translation of AAV technology to the clinic. One approach to address this complexity has been to explore the biological characteristics of variations in AAV capsid structure. Initial strategies characterized the naturally occurring capsid variants from mammalian species. The structural and functional knowledge gathered on these natural AAV variants as vectors has led to the first series of second-generation vectors that aim at specifically improving certain properties by rational design of the capsid. A third exciting approach uses directed evolution to isolate vectors that are able to overcome selective pressures applied in the laboratory and thereby steer the capsid to evolve toward improved functionality.
Collapse
|
150
|
Fiandaca MS, Varenika V, Eberling J, McKnight T, Bringas J, Pivirotto P, Beyer J, Hadaczek P, Bowers W, Park J, Federoff H, Forsayeth J, Bankiewicz KS. Real-time MR imaging of adeno-associated viral vector delivery to the primate brain. Neuroimage 2008; 47 Suppl 2:T27-35. [PMID: 19095069 DOI: 10.1016/j.neuroimage.2008.11.012] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 10/08/2008] [Accepted: 11/12/2008] [Indexed: 01/11/2023] Open
Abstract
We are developing a method for real-time magnetic resonance imaging (MRI) visualization of convection-enhanced delivery (CED) of adeno-associated viral vectors (AAV) to the primate brain. By including gadolinium-loaded liposomes (GDL) with AAV, we can track the convective movement of viral particles by continuous monitoring of distribution of surrogate GDL. In order to validate this approach, we infused two AAV (AAV1-GFP and AAV2-hAADC) into three different regions of non-human primate brain (corona radiata, putamen, and thalamus). The procedure was tolerated well by all three animals in the study. The distribution of GFP determined by immunohistochemistry in both brain regions correlated closely with distribution of GDL determined by MRI. Co-distribution was weaker with AAV2-hAADC, although in vivo PET scanning with FMT for AADC activity correlated well with immunohistochemistry of AADC. Although this is a relatively small study, it appears that AAV1 correlates better with MRI-monitored delivery than does AAV2. It seems likely that the difference in distribution may be due to differences in tissue specificity of the two serotypes.
Collapse
Affiliation(s)
- Massimo S Fiandaca
- Department of Neurological Surgery, University of California San Francisco, 1855 Folsom Street, Room 226, San Francisco, CA 94103, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|