101
|
Yang JH, Lin LK, Zhang S. Effects of DACT1 methylation status on invasion and metastasis of nasopharyngeal carcinoma. Biol Res 2019; 52:31. [PMID: 31182157 PMCID: PMC6558828 DOI: 10.1186/s40659-019-0238-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 05/20/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The purpose of the present study was to investigate the role of the methylation status of the DACT1 gene on the invasion and metastasis of nasopharyngeal carcinoma cells. METHODS The levels of methylation and expression of the DACT1 gene in nasopharyngeal carcinoma tissues and CNE2 cells were determined by methylation-specific PCR and RT-PCR, respectively. CNE2 cells were treated with 5-aza-2-deoxycytidine, and the variation in the methylation status of the DACT1 gene was detected, as well as the influence of methylation on invasiveness of nasopharyngeal carcinoma cells. RESULTS The DACT1 gene was hyper-methylated in 44 of 62 cases of nasopharyngeal carcinoma. The DACT1 gene was hyper-methylated in 32 of 38 cases of nasopharyngeal carcinoma with lymph node metastasis, and the DACT1 gene was hyper-methylated in 7 of 24 cases of nasopharyngeal carcinoma without lymph node metastasis. The DACT1 mRNA level was weakly expressed or not expressed in all nasopharyngeal carcinoma tissues with hyper-methylated DACT1 genes; however, the DACT1 mRNA level was highly expressed in nasopharyngeal carcinoma tissues with low expression of the methylated DACT1 gene. The DACT1 gene was hyper-methylated and not expressed in CNE2 cells that did not have 5-aza-2-deoxycytidine treatment. After 5-aza-2-deoxycytidine treatment, the DACT1 gene was demethylated and the expression of DACT1 was restored. Moreover, the invasion ability was inhibited in CNE2 cells treated with 5-aza-2-deoxycytidine. CONCLUSION The expression of DACT1 was related to the methylation status. High expression of DACT1 may inhibit the invasion and metastasis of nasopharyngeal carcinoma cells.
Collapse
Affiliation(s)
- Ju-Hong Yang
- Central Laboratory, University of Chinese Academy Sciences-Shenzhen Hospital, Song Bai Road 4253#, Shenzhen, 518106 Guang Dong People’s Republic of China
| | - Lie-Kun Lin
- Central Laboratory, University of Chinese Academy Sciences-Shenzhen Hospital, Song Bai Road 4253#, Shenzhen, 518106 Guang Dong People’s Republic of China
| | - Song Zhang
- Department of Otolaryngology, University of Chinese Academy Sciences-Shenzhen Hospital, Song Bai Road 4253#, Shenzhen, 518106 Guang Dong People’s Republic of China
| |
Collapse
|
102
|
Chang YW, Singh KP. Arsenic-Induced Neoplastic Transformation Involves Epithelial-Mesenchymal Transition and Activation of the β-Catenin/c-Myc Pathway in Human Kidney Epithelial Cells. Chem Res Toxicol 2019; 32:1299-1309. [PMID: 31120745 DOI: 10.1021/acs.chemrestox.9b00089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Arsenic contamination is a serious environmental and public health issue worldwide including the United States. Accumulating evidence suggests that kidney is one of the target organs for arsenic-induced carcinogenesis. However, the mechanism of arsenic-induced renal carcinogenesis is not well understood. Therefore, the objective of this study was to evaluate the carcinogenicity of chronic exposure to an environmentally relevant concentration of arsenic on kidney epithelial cells and identify the molecular mechanism underlying this process. HK-2 kidney epithelial cells were treated with arsenic for acute, long-term, and chronic durations, and cellular responses to arsenic exposure at these time points were evaluated by the changes in growth, morphology, and expression of genes. The results revealed a significant growth increase after long-term and chronic exposure to arsenic in HK-2 cells. The morphological changes of EMT and stem cell sphere formation were also observed in long-term arsenic exposed cells. The anchorage-independent growth assay for colony formation and cell maintenance in cancer stem cell medium further confirmed neoplastic transformation and the induced cancer stem cell properties of arsenic-exposed cells. Additionally, the expression of marker genes confirmed the increased growth, EMT, and stemness during arsenic-induced carcinogenesis. Moreover, the increase expression of β-catenin and c-Myc further suggested the role of these signaling molecules during carcinogenesis in HK-2 cells. In summary, results of this study suggest that chronic exposure to arsenic even at a relatively lower concentration can induce neoplastic transformation through acquisitions of EMT, stemness, and MET phenotypes, which might be related to the β-catenin/c-Myc signaling pathway.
Collapse
Affiliation(s)
- Yu-Wei Chang
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH) , Texas Tech University , Lubbock , Texas , United States
| | - Kamaleshwar P Singh
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH) , Texas Tech University , Lubbock , Texas , United States
| |
Collapse
|
103
|
Ignesti M, Andrenacci D, Fischer B, Cavaliere V, Gargiulo G. Comparative Expression Profiling of Wild Type Drosophila Malpighian Tubules and von Hippel-Lindau Haploinsufficient Mutant. Front Physiol 2019; 10:619. [PMID: 31191337 PMCID: PMC6547062 DOI: 10.3389/fphys.2019.00619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/02/2019] [Indexed: 01/11/2023] Open
Affiliation(s)
- Marilena Ignesti
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Davide Andrenacci
- CNR Istituto di Genetica Molecolare, Unità di Bologna, Bologna, Italy.,IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Bettina Fischer
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom.,Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Valeria Cavaliere
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Giuseppe Gargiulo
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| |
Collapse
|
104
|
Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 2019; 569:503-508. [PMID: 31068700 DOI: 10.1038/s41586-019-1186-3] [Citation(s) in RCA: 1951] [Impact Index Per Article: 325.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 04/09/2019] [Indexed: 12/21/2022]
Abstract
Large panels of comprehensively characterized human cancer models, including the Cancer Cell Line Encyclopedia (CCLE), have provided a rigorous framework with which to study genetic variants, candidate targets, and small-molecule and biological therapeutics and to identify new marker-driven cancer dependencies. To improve our understanding of the molecular features that contribute to cancer phenotypes, including drug responses, here we have expanded the characterizations of cancer cell lines to include genetic, RNA splicing, DNA methylation, histone H3 modification, microRNA expression and reverse-phase protein array data for 1,072 cell lines from individuals of various lineages and ethnicities. Integration of these data with functional characterizations such as drug-sensitivity, short hairpin RNA knockdown and CRISPR-Cas9 knockout data reveals potential targets for cancer drugs and associated biomarkers. Together, this dataset and an accompanying public data portal provide a resource for the acceleration of cancer research using model cancer cell lines.
Collapse
|
105
|
DNA Methylation Clocks in Aging: Categories, Causes, and Consequences. Mol Cell 2019; 71:882-895. [PMID: 30241605 DOI: 10.1016/j.molcel.2018.08.008] [Citation(s) in RCA: 344] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/03/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
Age-associated changes to the mammalian DNA methylome are well documented and thought to promote diseases of aging, such as cancer. Recent studies have identified collections of individual methylation sites whose aggregate methylation status measures chronological age, referred to as the DNA methylation clock. DNA methylation may also have value as a biomarker of healthy versus unhealthy aging and disease risk; in other words, a biological clock. Here we consider the relationship between the chronological and biological clocks, their underlying mechanisms, potential consequences, and their utility as biomarkers and as targets for intervention to promote healthy aging and longevity.
Collapse
|
106
|
Park SM, Park SH, Ryu KJ, Kim IK, Han H, Kim HJ, Kim SH, Hong KS, Kim H, Kim M, Cho BI, Heo JD, Kim NH, Hwang EM, Park JY, Yook JI, Cho HJ, Hwangbo C, Kim KD, Song H, Yoo J. Downregulation of CHIP promotes ovarian cancer metastasis by inducing Snail-mediated epithelial-mesenchymal transition. Mol Oncol 2019; 13:1280-1295. [PMID: 30927556 PMCID: PMC6487736 DOI: 10.1002/1878-0261.12485] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 03/03/2019] [Accepted: 03/29/2019] [Indexed: 01/19/2023] Open
Abstract
The epithelial–mesenchymal transition (EMT) plays a pivotal role in the conversion of early‐stage tumors into invasive malignancies. The transcription factor Snail, an extremely unstable protein whose subcellular levels are regulated by many E3 ubiquitin ligases, promotes EMT as well as associated pathological characteristics including migration, invasion, and metastasis. Through yeast two‐hybrid screening, we identified the carboxyl terminus of Hsc70‐interacting protein (CHIP) as a novel Snail ubiquitin ligase that interacts with Snail to induce ubiquitin‐mediated proteasomal degradation. Inhibition of CHIP expression increases Snail protein levels, induces EMT, and enhances in vitro migration and invasion as well as in vivo metastasis of ovarian cancer cells. In turn, Snail depletion abrogates all phenomena induced by CHIP depletion. Finally, Snail and CHIP expression is inversely correlated in ovarian tumor tissues. These findings establish the CHIP–Snail axis as a post‐translational mechanism of EMT and cancer metastasis regulation.
Collapse
Affiliation(s)
- Sun-Mi Park
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Seung-Ho Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Ki-Jun Ryu
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - In-Kyu Kim
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Hyeontak Han
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Hyo-Jin Kim
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Seon-Hee Kim
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Keun-Seok Hong
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Hyemin Kim
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Minju Kim
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Bok Im Cho
- Gyeongnam Department of Environmental Toxicology and Chemistry, Toxicology Screening Center, Korea Institute of Toxicology, Jinju, Korea
| | - Jeong Doo Heo
- Gyeongnam Department of Environmental Toxicology and Chemistry, Toxicology Screening Center, Korea Institute of Toxicology, Jinju, Korea
| | - Na Hyun Kim
- Gyeongnam Department of Environmental Toxicology and Chemistry, Toxicology Screening Center, Korea Institute of Toxicology, Jinju, Korea
| | - Eun Mi Hwang
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Korea
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, Korea
| | - Jong In Yook
- Department of Oral Pathology, Oral Cancer Research Institute, College of Dentistry, Yonsei University, Seoul, Korea
| | - Hee Jun Cho
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Cheol Hwangbo
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea.,Division of Life Science, Gyeongsang National University, Jinju, Korea
| | - Kwang Dong Kim
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea.,Division of Life Science, Gyeongsang National University, Jinju, Korea
| | - Hoseok Song
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Korea
| | - Jiyun Yoo
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea.,Division of Life Science, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
107
|
Batavia AA, Schraml P, Moch H. Clear cell renal cell carcinoma with wild-type von Hippel-Lindau gene: a non-existent or new tumour entity? Histopathology 2019; 74:60-67. [PMID: 30565303 DOI: 10.1111/his.13749] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/30/2018] [Indexed: 01/01/2023]
Abstract
The current World Health Organisation (WHO) classification of renal tumours is based on characteristic histological features or specific molecular alterations. von Hippel-Lindau (VHL) alteration is the hallmark of clear cell renal cell carcinoma (RCC). After identification of the MiT translocation family of tumours, clear cell papillary renal cancer and others, the group of ccRCC with wild-type VHL is small. TCEB1 mutation combined with chromosome 8q loss is an emerging tumour entity with wild-type VHL. Inactivation of TCEB1 increases HIF stabilisation via the same mechanism as VHL inactivation. Importantly, recent molecular analyses suggest the existence of another 'VHL wild-type' evolutionary subtype of clear cell RCC in addition to TCEB1 mutated RCC and clear cell papillary renal cancer. These tumours are characterised by an aggressive behaviour, high tumour cell proliferation rate, elevated chromosomal instability and frequent presence of sarcomatoid differentiation. Future clinicopathological studies will have to provide data to determine whether TCEB1 tumours and clear cell RCC with wild-type VHL are separate tumour entities or represent variants of a clear cell RCC tumour family.
Collapse
Affiliation(s)
- Aashil A Batavia
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Peter Schraml
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
108
|
Watson KS, Hulbert A, Henderson V, Chukwudozie IB, Aponte-Soto L, Lerner L, Martinez E, Kim S, Winn RA. Lung Cancer Screening and Epigenetics in African Americans: The Role of the Socioecological Framework. Front Oncol 2019; 9:87. [PMID: 30915271 PMCID: PMC6423082 DOI: 10.3389/fonc.2019.00087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 01/30/2019] [Indexed: 11/13/2022] Open
Abstract
Lung cancer is the leading cause of cancer morbidity and mortality in the U.S. and racial/ethnic minorities carry the greatest burden of lung cancer disparities with African Americans (AAs) impacted disproportionately. Inequities in lung cancer health disparities are often associated with multiple bio-behavioral and socio-cultural factors among racial/ethnic minorities. Epigenetic research has advanced the understanding of the intersectionality between biological and socio-cultural factors in lung cancer disparities among AAs. However, gaps exist in the engagement of diverse populations in epigenetic lung cancer research, which poses a challenge in ensuring the generalizability and implementation of epigenetic research in populations that carry an unequal cancer burden. Grounding epigenetic lung cancer research within a socio-ecological framework may prove promising in implementing a multi-level approach to community engagement, screening, navigation, and research participation among AAs. The University of Illinois Cancer Center (UI Cancer Center) is employing an evidence–based (EB) model of community/patient engagement utilizing the socio-ecological model (SEM) to develop a culturally sensitive epigenetic lung cancer research program that addresses multiple factors that impact lung cancer outcomes in AAs. By implementing epigenetic research within a group of Federally Qualified Health Centers (FQHCs) guided by the SEM, the UI Cancer Center is proposing a new pathway in mitigating lung cancer disparities in underserved communities. At the individual level, the framework examines tobacco use among patients at FQHCs (the organizational level) and also tailors epigenetic research to explore innovative biomarkers in high risk populations. Interpersonal interventions use Patient Navigators to support navigation to EB tobacco cessation resources and lung cancer screening. Community level support within the SEM is developed by ongoing partnerships with local and national partners such as the American Lung Association (ALA) and the American Cancer Society (ACS). Lastly, at the policy level, the UI Cancer Center acknowledges the role of policy implications in lung cancer screening and advocates for policies and screening recommendations that examine the current guidelines from the United States Preventive Services Task Force (USPTF).
Collapse
Affiliation(s)
| | - Alicia Hulbert
- Cancer Center, University of Illinois at Chicago, Chicago, IL, United States.,Department of Surgery, University of Illinois at Chicago, Chicago, IL, United States
| | - Vida Henderson
- Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| | | | - Lisa Aponte-Soto
- Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Lane Lerner
- Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Erica Martinez
- Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Sage Kim
- Division of Health Policy and Administration, School of Public Health, University of Illinois at Chicago, Chicago, IL, United States
| | - Robert A Winn
- Cancer Center, University of Illinois at Chicago, Chicago, IL, United States.,Department of Surgery, University of Illinois at Chicago, Chicago, IL, United States.,Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
109
|
Human Genetic Adaptation to High Altitude: Evidence from the Andes. Genes (Basel) 2019; 10:genes10020150. [PMID: 30781443 PMCID: PMC6410003 DOI: 10.3390/genes10020150] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/29/2019] [Accepted: 02/11/2019] [Indexed: 12/31/2022] Open
Abstract
Whether Andean populations are genetically adapted to high altitudes has long been of interest. Initial studies focused on physiological changes in the O₂ transport system that occur with acclimatization in newcomers and their comparison with those of long-resident Andeans. These as well as more recent studies indicate that Andeans have somewhat larger lung volumes, narrower alveolar to arterial O₂ gradients, slightly less hypoxic pulmonary vasoconstrictor response, greater uterine artery blood flow during pregnancy, and increased cardiac O2 utilization, which overall suggests greater efficiency of O₂ transfer and utilization. More recent single nucleotide polymorphism and whole-genome sequencing studies indicate that multiple gene regions have undergone recent positive selection in Andeans. These include genes involved in the regulation of vascular control, metabolic hemostasis, and erythropoiesis. However, fundamental questions remain regarding the functional links between these adaptive genomic signals and the unique physiological attributes of highland Andeans. Well-designed physiological and genome association studies are needed to address such questions. It will be especially important to incorporate the role of epigenetic processes (i.e.; non-sequence-based features of the genome) that are vital for transcriptional responses to hypoxia and are potentially heritable across generations. In short, further exploration of the interaction among genetic, epigenetic, and environmental factors in shaping patterns of adaptation to high altitude promises to improve the understanding of the mechanisms underlying human adaptive potential and clarify its implications for human health.
Collapse
|
110
|
Transglutaminase 2: The Maestro of the Oncogenic Mediators in Renal Cell Carcinoma. Med Sci (Basel) 2019; 7:medsci7020024. [PMID: 30736384 PMCID: PMC6409915 DOI: 10.3390/medsci7020024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 12/13/2022] Open
Abstract
Transglutaminase 2 (TG2) is a multifunctional crosslinking enzyme that displays transamidation, protein disulfide isomerase, protein kinase, as well as GTPase and ATPase activities. TG2 can also act as an adhesion molecule involved in the syndecan and integrin receptor signaling. In recent years, TG2 was implicated in cancer progression, survival, invasion, migration, and stemness of many cancer types, including renal cell carcinoma (RCC). Von Hippel-Lindau mutations leading to the subsequent activation of Hypoxia Inducible Factor (HIF)-1-mediated signaling pathways, survival signaling via the PI3K/Akt pathway resulting in Epithelial Mesenchymal Transition (EMT) metastasis and angiogenesis are the main factors in RCC progression. A number of studies have shown that TG2 was important in HIF-1- and PI3K-mediated signaling, VHL and p53 stabilization, glycolytic metabolism and migratory phenotype in RCC. This review focuses on the role of TG2 in the regulation of molecular pathways nurturing not only the development and propagation of RCC, but also drug-resistance and metastatic potential.
Collapse
|
111
|
Kulkarni RA, Briney CA, Crooks DR, Bergholtz SE, Mushti C, Lockett SJ, Lane AN, Fan TWM, Swenson RE, Linehan WM, Meier JL. Photoinducible Oncometabolite Detection. Chembiochem 2019; 20:360-365. [PMID: 30358041 PMCID: PMC8141106 DOI: 10.1002/cbic.201800651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Indexed: 12/14/2022]
Abstract
Dysregulated metabolism can fuel cancer by altering the production of bioenergetic building blocks and directly stimulating oncogenic gene-expression programs. However, relatively few optical methods for the direct study of metabolites in cells exist. To address this need and facilitate new approaches to cancer treatment and diagnosis, herein we report an optimized chemical approach to detect the oncometabolite fumarate. Our strategy employs diaryl tetrazoles as cell-permeable photoinducible precursors to nitrileimines. Uncaging these species in cells and cell extracts enables them to undergo 1,3-dipolar cycloadditions with endogenous dipolarophile metabolites such as fumarate to form pyrazoline cycloadducts that can be readily detected by their intrinsic fluorescence. The ability to photolytically uncage diaryl tetrazoles provides greatly improved sensitivity relative to previous methods, and enables the facile detection of dysregulated fumarate metabolism through biochemical activity assays, intracellular imaging, and flow cytometry. Our studies showcase an intersection of bioorthogonal chemistry and metabolite reactivity that can be applied for biological profiling, imaging, and diagnostics.
Collapse
Affiliation(s)
| | - Chloe A. Briney
- Chemical Biology Laboratory, National Cancer Institute, NIH, Frederick MD, 21702, USA
| | - Daniel R. Crooks
- Urologic Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, 20817, USA
| | - Sarah E. Bergholtz
- Chemical Biology Laboratory, National Cancer Institute, NIH, Frederick MD, 21702, USA
| | - Chandrasekhar Mushti
- Imaging Probe Development Center, National Heart Lung and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Stephen J. Lockett
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Andrew N. Lane
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Teresa W-M. Fan
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Rolf E. Swenson
- Imaging Probe Development Center, National Heart Lung and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - W. Marston Linehan
- Urologic Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, 20817, USA
| | - Jordan L. Meier
- Chemical Biology Laboratory, National Cancer Institute, NIH, Frederick MD, 21702, USA
| |
Collapse
|
112
|
Intestinal Epithelial Organoids as Tools to Study Epigenetics in Gut Health and Disease. Stem Cells Int 2019; 2019:7242415. [PMID: 30809264 PMCID: PMC6369455 DOI: 10.1155/2019/7242415] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/15/2019] [Indexed: 11/30/2022] Open
Abstract
The intestinal epithelium forms the inner layer of the human intestine and serves a wide range of diverse functions. Its constant exposure to a vast amount of complex microbiota highlights the critical interface that this single-cell layer forms between the host and our environment. Importantly, the well-documented contribution of environmental factors towards the functional development of the human intestinal epithelium directly implies epigenetic mechanisms in orchestrating this complex interplay. The development of intestinal epithelial organoid culture systems that can be generated from human tissue provides researchers with unpresented opportunities to study functional aspects of human intestinal epithelial pathophysiology. In this brief review, we summarise existing evidence for the role of epigenetics in regulating intestinal epithelial cell function and highlight the great potential for human gut organoids as translational research tools to investigate these mechanisms in vitro.
Collapse
|
113
|
Abstract
Several challenges present themselves when discussing current approaches to the prevention or treatment of pancreatic cancer. Up to 45% of the risk of pancreatic cancer is attributed to unknown causes, making effective prevention programs difficult to design. The most common type of pancreatic cancer, pancreatic ductal adenocarcinoma (PDAC), is generally diagnosed at a late stage, leading to a poor prognosis and 5-year survival estimate. PDAC tumors are heterogeneous, leading to many identified cell subtypes within one patient’s primary tumor. This explains why there is a high frequency of tumors that are resistant to standard treatments, leading to high relapse rates. This review will discuss how epigenetic technologies and epigenome-wide association studies have been used to address some of these challenges and the future promises these approaches hold.
Collapse
Affiliation(s)
- Rahul R Singh
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, USA; (R.R.S.); (K.M.R.)
| | - Katie M Reindl
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, USA; (R.R.S.); (K.M.R.)
| | - Rick J Jansen
- Department of Public Health, North Dakota State University, Fargo, ND 58102, USA
- Biostatistics Core Facility, North Dakota State University, Fargo, ND 58102, USA
- Center for Immunization Research and Education, North Dakota State University, Fargo, ND 58102, USA
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, ND 58102, USA
| |
Collapse
|
114
|
Banerjee A, Mahata B, Dhir A, Mandal TK, Biswas K. Elevated histone H3 acetylation and loss of the Sp1-HDAC1 complex de-repress the GM2-synthase gene in renal cell carcinoma. J Biol Chem 2019; 294:1005-1018. [PMID: 30463940 PMCID: PMC6341395 DOI: 10.1074/jbc.ra118.004485] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/16/2018] [Indexed: 11/06/2022] Open
Abstract
GM2-synthase produces sialic acid-containing glycosphingolipids called gangliosides, and its mRNA overexpression and the gangliosides it generates are linked to tumor progression, migration, and suppression of tumor-specific host immune responses. However, the mechanism underlying GM2-synthase de-repression in renal cell carcinoma (RCC) is poorly understood. Here, we demonstrate that higher GM2-synthase mRNA expression levels in various cancer cells and in human RCC tumors correlate with higher histone acetylation levels (H3K9, H3K14, or both) at region +38/+187 relative to the transcription start site (TSS) of the GM2-synthase gene than in normal kidney epithelial (NKE) cells or healthy adjacent tissues. An increase in GM2-synthase mRNA expression in cells treated with a histone deacetylase (HDAC) inhibitor was accompanied by increased histone acetylation levels at this promoter region. DNA methylation around the TSS was absent in both RCC cell lines and NKE cells. Of note, both the transcription factor Sp1 and corepressor HDAC1 associated with the +38/+187 region when the GM2-synthase gene was repressed in NKE and tumor-adjacent tissues, indicating plausible site-specific repressive roles of HDAC1 and Sp1 in GM2-synthase mRNA expression. Site-directed mutagenesis of the Sp1-binding site within the +38/+187 region relieved repressed luciferase activity of this region by limiting HDAC1 recruitment. Moreover, Sp1 or HDAC1 knock down increased GM2-synthase transcription, and butyrate-mediated activation of GM2-synthase mRNA expression in SK-RC-45 cells was accompanied by Sp1 and HDAC1 loss from the +38/+187 region. Taken together, we have identified an epigenetic mechanism for the de-repression of the GM2-synthase gene in RCC.
Collapse
Affiliation(s)
- Avisek Banerjee
- From the Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal 700 054 India and
| | - Barun Mahata
- From the Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal 700 054 India and
| | - Arjun Dhir
- From the Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal 700 054 India and
| | - Tapan Kumar Mandal
- Department of Urology, Nil Ratan Sircar Medical College and Hospital, Kolkata, West Bengal 700 014 India
| | - Kaushik Biswas
- From the Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal 700 054 India and
| |
Collapse
|
115
|
Bihr S, Ohashi R, Moore AL, Rüschoff JH, Beisel C, Hermanns T, Mischo A, Corrò C, Beyer J, Beerenwinkel N, Moch H, Schraml P. Expression and Mutation Patterns of PBRM1, BAP1 and SETD2 Mirror Specific Evolutionary Subtypes in Clear Cell Renal Cell Carcinoma. Neoplasia 2019; 21:247-256. [PMID: 30660076 PMCID: PMC6355619 DOI: 10.1016/j.neo.2018.12.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/14/2018] [Accepted: 12/22/2018] [Indexed: 12/16/2022] Open
Abstract
Bi-allelic inactivation of the VHL gene on chromosome 3p is the characteristic feature in most clear cell renal cell carcinomas (ccRCC). Frequent gene alterations were also identified in SETD2, BAP1 and PBRM1, all of which are situated on chromosome 3p and encode histone/chromatin regulators. The relationship between gene mutation, loss of protein expression and the correlations with clinicopathological parameters is important for the understanding of renal cancer progression. We analyzed PBRM1 and BAP1 protein expression as well as the tri-methylation state of H3K36 as a surrogate marker for SETD2 activity in more than 700 RCC samples. In ccRCC loss of nuclear PBRM1 (68%), BAP1 (40%) and H3K36me3 (47%) expression was significantly correlated with each other, advanced tumor stage, poor tumor differentiation (P < .0001 each), and necrosis (P < .005) Targeted next generation sequencing of 83 ccRCC samples demonstrated a significant association of genetic mutations in PBRM1, BAP1, and SETD2 with absence of PBRM1, BAP1, and HEK36me3 protein expression (P < .05, each). By assigning the protein expression patterns to evolutionary subtypes, we revealed similar clinical phenotypes as suggested by TRACERx Renal. Given their important contribution to tumor suppression, we conclude that combined functional inactivation of PBRM1, BAP1, SETD2 and pVHL is critical for ccRCC progression.
Collapse
Affiliation(s)
- Svenja Bihr
- Department of Oncology, University Hospital Zurich and University Zurich, Zurich, Switzerland
| | - Riuko Ohashi
- Histopathology Core Facility, Niigata University Faculty of Medicine, Niigata, Japan
| | - Ariane L Moore
- Department of Biosystems Science and Engineering, ETH, Zurich, Basel, Switzerland
| | - Jan H Rüschoff
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University Zurich, Zurich, Switzerland
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH, Zurich, Basel, Switzerland
| | - Thomas Hermanns
- Department of Urology, University Hospital Zurich and University Zurich, Zurich, Switzerland
| | - Axel Mischo
- Department of Oncology, University Hospital Zurich and University Zurich, Zurich, Switzerland
| | - Claudia Corrò
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University Zurich, Zurich, Switzerland
| | - Jörg Beyer
- Department of Oncology, University Hospital Zurich and University Zurich, Zurich, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH, Zurich, Basel, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University Zurich, Zurich, Switzerland
| | - Peter Schraml
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University Zurich, Zurich, Switzerland.
| |
Collapse
|
116
|
Hentze JL, Høgdall CK, Høgdall EV. Methylation and ovarian cancer: Can DNA methylation be of diagnostic use? Mol Clin Oncol 2019; 10:323-330. [PMID: 30847169 DOI: 10.3892/mco.2019.1800] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/04/2018] [Indexed: 12/31/2022] Open
Abstract
Ovarian cancer is a silent killer and, due to late diagnosis and frequent chemo resistance in patients, the primary cause of fatality amongst the various types of gynecological cancer. The discovery of a specific and sensitive biomarker for ovarian cancer could improve early diagnosis, thereby saving lives. Biomarkers could also improve treatment, by predicting which patients will benefit from specific treatment strategies. DNA methylation is an epigenetic mechanism, and 'methylation imbalance' is characteristic of cancer. Previous research suggests that changes in DNA methylation can be used diagnostically, and that they may predict resistance to treatment. This paper gives an up-to-date overview of research investigating the potential of DNA methylation-based markers for diagnostics, prognostics, screening and prediction of drug resistance for ovarian cancer patients. DNA methylation cancer-biomarkers may be useful for cancer treatment, particularly since they are chemically stable and since cancer-associated changes in methylation typically precedes tumor growth. DNA methylation markers could improve diagnosis and treatment and might even be used for screening in the future. Furthermore, DNA methylation biomarkers could facilitate the development of precision medicine. However, at this point no biomarkers for ovarian cancer have a sufficient combination of sensitivity and specificity in a clinical setting. A reason for this is that most studies have focused on a single or a few methylation sites. More large screenings and genome-wide studies must be performed to increase the chance of identifying a DNA methylation marker which can identify ovarian cancer.
Collapse
Affiliation(s)
- Julie L Hentze
- Department of Pathology, Herlev Hospital, University of Copenhagen, 2730 Herlev, Denmark
| | - Claus K Høgdall
- Department of Gynecology, The Juliane Marie Centre, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Estrid V Høgdall
- Department of Pathology, Herlev Hospital, University of Copenhagen, 2730 Herlev, Denmark
| |
Collapse
|
117
|
Childebayeva A, Jones TR, Goodrich JM, Leon-Velarde F, Rivera-Chira M, Kiyamu M, Brutsaert TD, Dolinoy DC, Bigham AW. LINE-1 and EPAS1 DNA methylation associations with high-altitude exposure. Epigenetics 2019; 14:1-15. [PMID: 30574831 DOI: 10.1080/15592294.2018.1561117] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent discoveries indicate a genetic basis for high-altitude adaptation among human groups who have resided at high altitude for millennia, including Andeans, Tibetans, and Ethiopians. Yet, genetics alone does not explain the extent of variation in altitude-adaptive phenotypes. Current and past environments may also play a role, and one way to determine the effect of the environment is through the epigenome. To characterize if Andean adaptive responses to high altitude have an epigenetic component, we analyzed DNA methylation of the promoter region of EPAS1 and LINE-1 repetitive element among 572 Quechua individuals from high- (4,388 m) and low-altitude (0 m) in Peru. Participants recruited at high altitude had lower EPAS1 DNA methylation and higher LINE-1 methylation. Altitude of birth was associated with higher LINE-1 methylation, not with EPAS1 methylation. The number of years lived at high altitude was negatively associated with EPAS1 methylation and positively associated with LINE-1 methylation. We found four one-carbon metabolism SNPs (MTHFD1 rs2236225, TYMS rs502396, FOLH1 rs202676, GLDC rs10975681) that cumulatively explained 11.29% of the variation in average LINE-1 methylation. And identified an association between LINE-1 methylation and genome-wide SNP principal component 1 that distinguishes European from Indigenous American ancestry suggesting that European admixture decreases LINE-1 methylation. Our results indicate that both current and lifetime exposure to high-altitude hypoxia have an effect on EPAS1 and LINE-1 methylation among Andean Quechua, suggesting that epigenetic modifications may play a role in high-altitude adaptation.
Collapse
Affiliation(s)
- Ainash Childebayeva
- a Department of Anthropology , University of Michigan , Ann Arbor , MI , USA.,b Department of Environmental Health Sciences , School of Public Health, University of Michigan , Ann Arbor , MI , USA
| | - Tamara R Jones
- b Department of Environmental Health Sciences , School of Public Health, University of Michigan , Ann Arbor , MI , USA
| | - Jaclyn M Goodrich
- b Department of Environmental Health Sciences , School of Public Health, University of Michigan , Ann Arbor , MI , USA
| | - Fabiola Leon-Velarde
- c Departamento de Ciencias Biológicas y Fisiológicas , Universidad Peruana Cayetano Heredia , Lima , Peru
| | - Maria Rivera-Chira
- c Departamento de Ciencias Biológicas y Fisiológicas , Universidad Peruana Cayetano Heredia , Lima , Peru
| | - Melisa Kiyamu
- c Departamento de Ciencias Biológicas y Fisiológicas , Universidad Peruana Cayetano Heredia , Lima , Peru
| | - Tom D Brutsaert
- d Department of Exercise Science , Syracuse University , Syracuse , NY , USA
| | - Dana C Dolinoy
- b Department of Environmental Health Sciences , School of Public Health, University of Michigan , Ann Arbor , MI , USA.,e Department of Nutritional Sciences , School of Public Health, University of Michigan , Ann Arbor , MI , USA
| | - Abigail W Bigham
- a Department of Anthropology , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
118
|
Asmus N, Papale LA, Madrid A, Alisch RS. Simultaneous Targeted Methylation Sequencing (sTM-Seq). ACTA ACUST UNITED AC 2019; 101:e81. [PMID: 30620135 DOI: 10.1002/cphg.81] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mapping patterns of DNA methylation throughout the epigenome are critical to our understanding of several important biological and regulatory functions, such as transcriptional regulation, genomic imprinting, and embryonic development. The development and rapid advancement of next-generation sequencing (NGS) technologies have provided clinicians and researchers with accurate and reliable read-outs of genomic and epigenomic information at the nucleotide level. Such improvements have significantly lowered the cost required for genome-wide sequencing, facilitating the vast acquisition of data that has led to many improvements in patient care. However, the torrid rate of NGS data generation has left targeted validation approaches behind, including the confirmation of epigenetic marks such as DNA methylation. To overcome these shortcomings, we present a rapid and robust protocol for the parallel examination of multiple methylated sequences that we have termed simultaneous targeted methylation sequencing (sTM-Seq). Key features of this technique include the elimination of the need for large amounts of high-molecular weight DNA and the nucleotide specific distinction of both 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). Moreover, sTM-Seq is scalable and can be used to investigate multiple loci in dozens of samples within a single sequencing run. By utilizing freely available web-based software and universal primers for multipurpose barcoding, library preparation, and customized sequencing, sTM-Seq is affordable, efficient, and widely applicable. Together, these features enable sTM-Seq to have wide-reaching clinical applications that will greatly improve turnaround rates for same-day procedures and allow clinicians to collect high-resolution data that can be used in a variety of patient settings. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Natalie Asmus
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| | - Ligia A Papale
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| | - Andy Madrid
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin.,Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin
| | - Reid S Alisch
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin.,Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
119
|
Liu Z, Wang Z, Jia E, Ouyang T, Pan M, Lu J, Ge Q, Bai Y. Analysis of genome-wide in cell free DNA methylation: progress and prospect. Analyst 2019; 144:5912-5922. [DOI: 10.1039/c9an00935c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this work, we focus on the detection methods of cfDNA methylation based on NGS and the latest progress.
Collapse
Affiliation(s)
- Zhiyu Liu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| | - Zexin Wang
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| | - Erteng Jia
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| | - Tinglan Ouyang
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| | - Min Pan
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| | - Jiafeng Lu
- Center of Reproduction and Genetics
- Affiliated Suzhou Hospital of Nanjing Medical University
- Suzhou Municipal Hospital
- Suzhou 215002
- China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| | - Yunfei Bai
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| |
Collapse
|
120
|
Eskander RN. The Epigenetic Landscape in the Treatment of Gynecologic Malignancies. Am Soc Clin Oncol Educ Book 2018; 38:480-487. [PMID: 30231335 DOI: 10.1200/edbk_200203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The care of patients with advanced-stage or recurrent endometrial, ovarian, and cervical cancer remains clinically challenging. Despite the identification of novel therapeutics and advancements in supportive care, survival outcomes have been relatively unchanged over the past decade. In addition to established genomic alterations and the contributions of the tumor microenvironment to cancer progression, epigenetic mechanisms have emerged as important contributors to gynecologic cancer progression. DNA methylation, histone modification, and noncoding RNA expression may be important contributors to disease initiation and progression and may represent novel therapeutic targets. This article reviews the epigenetic landscape of endometrial, ovarian, and cervical cancer, describing the state of the science and discussing potential clinical applications. To date, the role of epigenetic drugs in the treatment of gynecologic cancers remains unclear, although continued progress may inform future treatment modalities.
Collapse
Affiliation(s)
- Ramez N Eskander
- From the Division of Gynecologic Oncology, Department of Reproductive Medicine, University of California San Diego Moores Cancer Center, La Jolla, CA
| |
Collapse
|
121
|
Miranda-Gonçalves V, Lameirinhas A, Henrique R, Jerónimo C. Metabolism and Epigenetic Interplay in Cancer: Regulation and Putative Therapeutic Targets. Front Genet 2018; 9:427. [PMID: 30356832 PMCID: PMC6190739 DOI: 10.3389/fgene.2018.00427] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/10/2018] [Indexed: 12/31/2022] Open
Abstract
Alterations in the epigenome and metabolism affect molecular rewiring of cancer cells facilitating cancer development and progression. Modulation of histone and DNA modification enzymes occurs owing to metabolic reprogramming driven by oncogenes and expression of metabolism-associated genes is, in turn, epigenetically regulated, promoting the well-known metabolic reprogramming of cancer cells and, consequently, altering the metabolome. Thus, several malignant traits are supported by the interplay between metabolomics and epigenetics, promoting neoplastic transformation. In this review we emphasize the importance of tumour metabolites in the activity of most chromatin-modifying enzymes and implication in neoplastic transformation. Furthermore, candidate targets deriving from metabolism of cancer cells and altered epigenetic factors is emphasized, focusing on compounds that counteract the epigenomic-metabolic interplay in cancer.
Collapse
Affiliation(s)
- Vera Miranda-Gonçalves
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Ana Lameirinhas
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,Master in Oncology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
122
|
Alahari S, Garcia J, Post M, Caniggia I. The von Hippel Lindau tumour suppressor gene is a novel target of E2F4-mediated transcriptional repression in preeclampsia. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3298-3308. [DOI: 10.1016/j.bbadis.2018.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/20/2018] [Accepted: 07/16/2018] [Indexed: 12/31/2022]
|
123
|
Poletto V, Rosti V, Biggiogera M, Guerra G, Moccia F, Porta C. The role of endothelial colony forming cells in kidney cancer's pathogenesis, and in resistance to anti-VEGFR agents and mTOR inhibitors: A speculative review. Crit Rev Oncol Hematol 2018; 132:89-99. [PMID: 30447930 DOI: 10.1016/j.critrevonc.2018.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 08/07/2018] [Accepted: 09/08/2018] [Indexed: 12/22/2022] Open
Abstract
Renal cell carcinoma (RCC) is highly dependent on angiogenesis, due to the overactivation of the VHL/HIF/VEGF/VEGFRs axis; this justifies the marked sensitivity of this neoplasm to antiangiogenic agents which, however, ultimately fail to control tumor growth. RCC also frequently shows alterations in the mTOR signaling pathway, and mTOR inhibitors have shown a similar pattern of initial activity/late failure as pure antiangiogenic agents. Understanding mechanisms of resistance to these agents would be key to improve the outcome of our patients. Circulating endothelial cells are a family of mainly bone marrow-derived progenitors, which have been postulated to be responsible of the reactivation of angiogenesis in different tumors. In this review, we shall discuss the complex nature and function of these cells, the evidence pro and contra their contribution to tumor vascularization, especially as far as RCC is concerned, and their possible role in determining resistance to presently available treatments.
Collapse
Affiliation(s)
- Valentina Poletto
- Center for the Study of Myelofibrosis, Research and Experimental Biotechnology Laboratory Area, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Piazzale Golgi 19, 27100, Pavia, Italy.
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Research and Experimental Biotechnology Laboratory Area, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Piazzale Golgi 19, 27100, Pavia, Italy.
| | - Marco Biggiogera
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Italy.
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy.
| | - Francesco Moccia
- Laboratory of Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, via Forlanini 6, 27100, Pavia, Italy.
| | - Camillo Porta
- Medical Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Piazzale Golgi 19, 27100, Pavia, Italy; present address: Department of Internal Medicine, University of Pavia, and Division of Translational Oncology, IRCCS Istituti Clinici Scientifici Maugeri, via S. Maugeri 10, 27100 Pavia, Italy.
| |
Collapse
|
124
|
Girgis HZ, Velasco A, Reyes ZE. HebbPlot: an intelligent tool for learning and visualizing chromatin mark signatures. BMC Bioinformatics 2018; 19:310. [PMID: 30176808 PMCID: PMC6122555 DOI: 10.1186/s12859-018-2312-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 08/14/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Histone modifications play important roles in gene regulation, heredity, imprinting, and many human diseases. The histone code is complex and consists of more than 100 marks. Therefore, biologists need computational tools to characterize general signatures representing the distributions of tens of chromatin marks around thousands of regions. RESULTS To this end, we developed a software tool, HebbPlot, which utilizes a Hebbian neural network in learning a general chromatin signature from regions with a common function. Hebbian networks can learn the associations between tens of marks and thousands of regions. HebbPlot presents a signature as a digital image, which can be easily interpreted. Moreover, signatures produced by HebbPlot can be compared quantitatively. We validated HebbPlot in six case studies. The results of these case studies are novel or validating results already reported in the literature, indicating the accuracy of HebbPlot. Our results indicate that promoters have a directional chromatin signature; several marks tend to stretch downstream or upstream. H3K4me3 and H3K79me2 have clear directional distributions around active promoters. In addition, the signatures of high- and low-CpG promoters are different; H3K4me3, H3K9ac, and H3K27ac are the most different marks. When we studied the signatures of enhancers active in eight tissues, we observed that these signatures are similar, but not identical. Further, we identified some histone modifications - H3K36me3, H3K79me1, H3K79me2, and H4K8ac - that are associated with coding regions of active genes. Other marks - H4K12ac, H3K14ac, H3K27me3, and H2AK5ac - were found to be weakly associated with coding regions of inactive genes. CONCLUSIONS This study resulted in a novel software tool, HebbPlot, for learning and visualizing the chromatin signature of a genetic element. Using HebbPlot, we produced a visual catalog of the signatures of multiple genetic elements in 57 cell types available through the Roadmap Epigenomics Project. Furthermore, we made a progress toward a functional catalog consisting of 22 histone marks. In sum, HebbPlot is applicable to a wide array of studies, facilitating the deciphering of the histone code.
Collapse
Affiliation(s)
- Hani Z. Girgis
- Tandy School of Computer Science, University of Tulsa, 800 South Tucker Drive, Tulsa, 74104-9700 OK USA
| | - Alfredo Velasco
- Tandy School of Computer Science, University of Tulsa, 800 South Tucker Drive, Tulsa, 74104-9700 OK USA
| | - Zachary E. Reyes
- Tandy School of Computer Science, University of Tulsa, 800 South Tucker Drive, Tulsa, 74104-9700 OK USA
| |
Collapse
|
125
|
Renal cell carcinoma for the nephrologist. Kidney Int 2018; 94:471-483. [DOI: 10.1016/j.kint.2018.01.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/16/2018] [Accepted: 01/29/2018] [Indexed: 01/06/2023]
|
126
|
Kim HS, Kim JH, Jang HJ, Han B, Zang DY. Clinicopathologic Significance of VHL Gene Alteration in Clear-Cell Renal Cell Carcinoma: An Updated Meta-Analysis and Review. Int J Mol Sci 2018; 19:ijms19092529. [PMID: 30149673 PMCID: PMC6165550 DOI: 10.3390/ijms19092529] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/18/2018] [Accepted: 08/24/2018] [Indexed: 01/10/2023] Open
Abstract
The von Hippel-Lindau (VHL) gene is inactivated frequently in sporadic clear-cell renal cell carcinomas (ccRCCs) by genetic alteration (mutation, loss of heterozygosity, or promoter hypermethylation). However, the pathological or prognostic significance of VHL gene alteration has not been well defined. We conducted this meta-analysis to evaluate the association between VHL alteration and clinopathologic findings in ccRCCs. We performed a systematic computerized search of online databases, including PubMed, EMBASE, Web of Science, and Google Scholar (up to July 2018). From ten studies, 1,082 patients were included in the pooled analyses of odds ratios (ORs) with 95% confidence intervals (CIs) for pathological features (nuclear grade and disease stage) or hazard ratios (HRs) with 95% CIs for overall survival (OS). VHL alteration was not significantly associated with nuclear grade (OR = 0.79, 95% CI: 0.59–1.06, p = 0.12) or disease stage (OR = 1.07, 95% CI: 0.79–1.46, p = 0.65). There was also no significant correlation between VHL alteration and OS (HR = 0.75, 95% CI: 0.43–1.29, p = 0.30). When we pooled HRs for OS according to the VHL alteration types, the combined HRs were 0.72 (95% CI: 0.47–1.11, p = 0.14) for VHL mutations and 1.32 (95% CI: 0.70–2.47, p = 0.39) for methylation. In conclusion, this meta-analysis indicates that VHL gene alteration is not significantly associated with the pathological features and survival in patients with ccRCC.
Collapse
Affiliation(s)
- Hyeong Su Kim
- Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Korea.
| | - Jung Han Kim
- Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Korea.
| | - Hyun Joo Jang
- Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Korea.
| | - Boram Han
- Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Korea.
| | - Dae Young Zang
- Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Korea.
| |
Collapse
|
127
|
Nam HY, Chandrashekar DS, Kundu A, Shelar S, Kho EY, Sonpavde G, Naik G, Ghatalia P, Livi CB, Varambally S, Sudarshan S. Integrative Epigenetic and Gene Expression Analysis of Renal Tumor Progression to Metastasis. Mol Cancer Res 2018; 17:84-96. [PMID: 30131446 DOI: 10.1158/1541-7786.mcr-17-0636] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/20/2018] [Accepted: 08/03/2018] [Indexed: 12/21/2022]
Abstract
The Cancer Genome Atlas (TCGA) and other large-scale genomic data pipelines have been integral to the current understanding of the molecular events underlying renal cell carcinoma (RCC). These data networks have focused mostly on primary RCC, which often demonstrates indolent behavior. However, metastatic disease is the major cause of mortality associated with RCC and data sets examining metastatic tumors are sparse. Therefore, a more comprehensive analysis of gene expression and DNA methylome profiling of metastatic RCC in addition to primary RCC and normal kidney was performed. Integrative analysis of the methylome and transcriptome identified over 30 RCC-specific genes whose mRNA expression inversely correlated with promoter methylation, including several known targets of hypoxia inducible factors. Notably, genes encoding several metabolism-related proteins were identified as differentially regulated via methylation including hexokinase 2, aldolase C, stearoyl-CoA desaturase, and estrogen-related receptor-γ (ESRRG), which has a known role in the regulation of nuclear-encoded mitochondrial metabolism genes. Several gene expression changes could portend prognosis in the TCGA cohort. Mechanistically, ESRRG loss occurs via DNA methylation and histone repressive silencing mediated by the polycomb repressor complex 2. Restoration of ESRRG in RCC lines suppresses migratory and invasive phenotypes independently of its canonical role in mitochondrial metabolism. IMPLICATIONS: Collectively, these data provide significant insight into the biology of aggressive RCC and demonstrate a novel role for DNA methylation in the promotion of HIF signaling and invasive phenotypes in renal cancer.
Collapse
Affiliation(s)
- Hye-Young Nam
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Anirban Kundu
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sandeep Shelar
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Eun-Young Kho
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Guru Sonpavde
- Department of Medical Oncology, Dana Farber Cancer Institute, Massachusetts
| | - Gurudatta Naik
- Department of Medicine, Section of Hematology-Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Pooja Ghatalia
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia Pennsylvania
| | - Carolina B Livi
- Department of Molecular Medicine, University of Texas Health Sciences Center at San Antonio, Texas
| | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama. .,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Pathology, Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
| | - Sunil Sudarshan
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama. .,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
128
|
Sogabe Y, Seno H, Yamamoto T, Yamada Y. Unveiling epigenetic regulation in cancer, aging, and rejuvenation with in vivo reprogramming technology. Cancer Sci 2018; 109:2641-2650. [PMID: 29989289 PMCID: PMC6125454 DOI: 10.1111/cas.13731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 12/19/2022] Open
Abstract
Reprogramming technology has enabled the fate conversion of terminally differentiated somatic cells into pluripotent stem cells or into another differentiated state. A dynamic reorganization of epigenetic regulation takes place during cellular reprogramming. Given that reprogramming does not require changes in the underlying genome, the technology can be used to actively modify epigenetic regulation. Although reprogramming has been investigated mostly at the cellular level in vitro, studies have reported that somatic cells are reprogrammable in multicellular organisms in vivo. In vivo reprogramming provides a potential strategy for regenerative medicine. Notably, recent studies using in vivo reprogramming technology to alter epigenetic regulation at organismal levels have revealed unappreciated epigenetic mechanisms in various biological phenomena, including cancer development, tissue regeneration, aging, and rejuvenation in mammals. Moreover, in vivo reprogramming technology can be applied to abrogate epigenetic aberrations associated with aging and cancer, which raises the possibility that the technology could provide a potential strategy to control the fate of detrimental cells such as senescent cells and cancer cells in vivo. Here, we review recent progress and future perspectives of in vivo reprogramming.
Collapse
Affiliation(s)
- Yuko Sogabe
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,AMED-CREST, AMED, Tokyo, Japan
| | - Yasuhiro Yamada
- AMED-CREST, AMED, Tokyo, Japan.,Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
129
|
Abstract
Renal cell carcinoma (RCC) is the most common kidney cancer and includes several molecular and histological subtypes with different clinical characteristics. While survival rates are high if RCC is diagnosed when still confined to the kidney and treated definitively, there are no specific diagnostic screening tests available and symptoms are rare in early stages of the disease. Management of advanced RCC has changed significantly with the advent of targeted therapies, yet survival is usually increased by months due to acquired resistance to these therapies. DNA methylation, the covalent addition of a methyl group to a cytosine, is essential for normal development and transcriptional regulation, but becomes altered commonly in cancer. These alterations result in broad transcriptional changes, including in tumor suppressor genes. Because DNA methylation is one of the earliest molecular changes in cancer and is both widespread and stable, its role in cancer biology, including RCC, has been extensively studied. In this review, we examine the role of DNA methylation in RCC disease etiology and progression, the preclinical use of DNA methylation alterations as diagnostic, prognostic and predictive biomarkers, and the potential for DNA methylation-directed therapies.
Collapse
Affiliation(s)
- Brittany N Lasseigne
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806-2908, USA.
| | - James D Brooks
- Department of Urology, Stanford University Medical Center, 300 Pasteur Drive, Stanford, CA, 94305-5118, USA
| |
Collapse
|
130
|
Zhang H, Song G, Song G, Li R, Gao M, Ye L, Zhang C. Identification of DNA methylation prognostic signature of acute myelocytic leukemia. PLoS One 2018; 13:e0199689. [PMID: 29933410 PMCID: PMC6014658 DOI: 10.1371/journal.pone.0199689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/12/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The aim of this study is to find the potential survival related DNA methylation signature capable of predicting survival time for acute myelocytic leukemia (AML) patients. METHODS DNA methylation data were downloaded. DNA methylation signature was identified in the training group, and subsequently validated in an independent validation group. The overall survival of DNA methylation signature was performed. Functional analysis was used to explore the function of corresponding genes of DNA methylation signature. Differentially methylated sites and CpG islands were also identified in poor-risk group. RESULTS A DNA methylation signature involving 8 DNA methylation sites and 6 genes were identified. Functional analysis showed that protein binding and cytoplasm were the only two enriched Gene Ontology terms. A total of 70 differentially methylated sites and 6 differentially methylated CpG islands were identified in poor-risk group. CONCLUSIONS The identified survival related DNA methylation signature adds to the prognostic value of AML.
Collapse
Affiliation(s)
- Haiguo Zhang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China
- Department of Hematology, Jining NO.1 People’s Hospital, Jining, Shandong, P.R. China
| | - Guanli Song
- Department of Preventive and Health Care, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, P.R. China
| | - Guanbo Song
- Department of Clinical Laboratory, Jining Chinese Medicine Hospital, Jining, Shandong, P.R. China
| | - Ruolei Li
- Department of Clinical Laboratory, Jining NO.1 People’s Hospital, Jining, Shandong, P.R. China
| | - Min Gao
- Department of Clinical Laboratory, Jining NO.1 People’s Hospital, Jining, Shandong, P.R. China
| | - Ling Ye
- Department of Hematology, Jining NO.1 People’s Hospital, Jining, Shandong, P.R. China
| | - Chengfang Zhang
- Department of Clinical Laboratory, Jining NO.1 People’s Hospital, Jining, Shandong, P.R. China
- * E-mail:
| |
Collapse
|
131
|
|
132
|
Ribeiro IP, Caramelo F, Esteves L, Oliveira C, Marques F, Barroso L, Melo JB, Carreira IM. Genomic and epigenetic signatures associated with survival rate in oral squamous cell carcinoma patients. J Cancer 2018; 9:1885-1895. [PMID: 29896272 PMCID: PMC5995936 DOI: 10.7150/jca.23239] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/17/2018] [Indexed: 11/05/2022] Open
Abstract
Purpose: Although oral squamous cell carcinoma (OSCC) presents great mortality and morbidity worldwide, the mechanisms behind its clinical behavior remain unclear. Biomarkers are needed to forecast patients' survival and, among those patients undergoing curative therapy, which are more likely to develop tumor recurrence/metastasis. Demonstrating clinical relevance of these biomarkers could be crucial both for surveillance and in helping to establish adjuvant therapy strategies. We aimed to identify genomic and epigenetic biomarkers of OSCC prognosis as well as to explore a noninvasive strategy to perform its detection. Methods: OSCC tumor and non-tumor tissue samples and cells scrapped from the tumor surface were genomic and epigenetically evaluated by Methylation-Specific Multiplex Ligation-dependent Probe Amplification technique. Results: Copy number alterations in ATM, CASR, TP73, CADM1, RARB, CDH13, PAX5, RB1 genes and GATA5, PAX6, CADM1 and CHFR promoter methylation were shown to be associated with worse OSCC patients' survival. Copy number alterations in BRCA1, CDKN2A, CHFR, GATA5, PYCARD, STK11, TP53, VHL genes and GATA5, CADM1, KLLN, MSH6, PAX5, WT1 promoter methylation were shown to be associated with development of metastasis/relapses during or after OSCC patients' treatment. We also found a good agreement in the status of CDKN2A promoter methylation evaluated noninvasively or in the tumor tissue. Conclusions: Genomic and epigenetic signatures were validated in a larger and geographically separate cohort, from TCGA database, which reinforce their clinical applicability. Noninvasive methodologies for detection of these signatures require further studies before translation in to clinical practice.
Collapse
Affiliation(s)
- Ilda Patrícia Ribeiro
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal.,CIMAGO - Center of Investigation on Environment Genetics and Oncobiology - Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Francisco Caramelo
- Laboratory of Biostatistics and Medical Informatics, IBILI - Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Luísa Esteves
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Camila Oliveira
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Francisco Marques
- CIMAGO - Center of Investigation on Environment Genetics and Oncobiology - Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal.,Department of Dentistry, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal.,Stomatology Unit, Coimbra Hospital and University Centre, CHUC, EPE, 3000-075 Coimbra, Portugal
| | - Leonor Barroso
- Maxillofacial Surgery Department, Coimbra Hospital and University Centre, CHUC, EPE, 3000-075 Coimbra, Portugal
| | - Joana Barbosa Melo
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal.,CIMAGO - Center of Investigation on Environment Genetics and Oncobiology - Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Isabel Marques Carreira
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal.,CIMAGO - Center of Investigation on Environment Genetics and Oncobiology - Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| |
Collapse
|
133
|
Thibault A, Figg WD, Bergan RC, Lush RM, Myers CE, Tompkins A, Reed E, Samid D. A Phase II Study of 5-AZA-2'Deoxycytidine (Decitabine) in Hormone Independent Metastatic (D2) Prostate Cancer. TUMORI JOURNAL 2018; 84:87-9. [PMID: 9619724 DOI: 10.1177/030089169808400120] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aims and Background Decitabine (5-aza-2′-deoxycytidine) is an S-phase-specific pyrimidine analog with hypomethylation properties. In laboratory models of prostate cancer (PC-3 and DU-145), decitabine induces cellular differentiation and enhanced expression of genes involved in tumor suppression, immunogenicity, and programmed cell death. Methods We conducted a phase II study of decitabine in 14 men with progressive, metastatic prostate cancer recurrent after total androgen blockade and flutamide withdrawal. Decitabine was administered at a dose of 75 mg/m2/dose IV as a 1 hour infusion every 8 hours for three doses. Cycles of therapy were repeated every 5 to 8 weeks to allow for resolution of toxicity. Results Two of 12 patients evaluable for response had stable disease with a time to progression of more than 10 weeks. This activity was seen in 2 of 3 African-American patients. Toxicity was similar to previously reported experience. No significant changes in urinary concentrations of the angiogenic factor bFGF, a potential biomarker of tumor activity, were identified over time in 7 unselected patients with progressive disease. Conclusions We conclude that decitabine is a well tolerated regimen with modest clinical activity against hormone-independent prostate cancer. Further investigations in patients of African-American origin may be warranted.
Collapse
Affiliation(s)
- A Thibault
- Medicine Branch, Division of Clinical Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Marques-Magalhães Â, Graça I, Henrique R, Jerónimo C. Targeting DNA Methyltranferases in Urological Tumors. Front Pharmacol 2018; 9:366. [PMID: 29706891 PMCID: PMC5909196 DOI: 10.3389/fphar.2018.00366] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 03/28/2018] [Indexed: 12/14/2022] Open
Abstract
Urological cancers are a heterogeneous group of malignancies accounting for a considerable proportion of cancer-related morbidity and mortality worldwide. Aberrant epigenetic traits, especially altered DNA methylation patterns constitute a hallmark of these tumors. Nonetheless, these alterations are reversible, and several efforts have been carried out to design and test several epigenetic compounds that might reprogram tumor cell phenotype back to a normal state. Indeed, several DNMT inhibitors are currently under evaluation for therapeutic efficacy in clinical trials. This review highlights the critical role of DNA methylation in urological cancers and summarizes the available data on pre-clinical assays and clinical trials with DNMT inhibitors in bladder, kidney, prostate, and testicular germ cell cancers.
Collapse
Affiliation(s)
- Ângela Marques-Magalhães
- Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Inês Graça
- Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| |
Collapse
|
135
|
Greer YE, Porat-Shliom N, Nagashima K, Stuelten C, Crooks D, Koparde VN, Gilbert SF, Islam C, Ubaldini A, Ji Y, Gattinoni L, Soheilian F, Wang X, Hafner M, Shetty J, Tran B, Jailwala P, Cam M, Lang M, Voeller D, Reinhold WC, Rajapakse V, Pommier Y, Weigert R, Linehan WM, Lipkowitz S. ONC201 kills breast cancer cells in vitro by targeting mitochondria. Oncotarget 2018; 9:18454-18479. [PMID: 29719618 PMCID: PMC5915085 DOI: 10.18632/oncotarget.24862] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/06/2018] [Indexed: 12/31/2022] Open
Abstract
We report a novel mechanism of action of ONC201 as a mitochondria-targeting drug in cancer cells. ONC201 was originally identified as a small molecule that induces transcription of TNF-related apoptosis-inducing ligand (TRAIL) and subsequently kills cancer cells by activating TRAIL death receptors. In this study, we examined ONC201 toxicity on multiple human breast and endometrial cancer cell lines. ONC201 attenuated cell viability in all cancer cell lines tested. Unexpectedly, ONC201 toxicity was not dependent on either TRAIL receptors nor caspases. Time-lapse live cell imaging revealed that ONC201 induces cell membrane ballooning followed by rupture, distinct from the morphology of cells undergoing apoptosis. Further investigation found that ONC201 induces phosphorylation of AMP-dependent kinase and ATP loss. Cytotoxicity and ATP depletion were significantly enhanced in the absence of glucose, suggesting that ONC201 targets mitochondrial respiration. Further analysis indicated that ONC201 indirectly inhibits mitochondrial respiration. Confocal and electron microscopic analysis demonstrated that ONC201 triggers mitochondrial structural damage and functional impairment. Moreover, ONC201 decreased mitochondrial DNA (mtDNA). RNAseq analysis revealed that ONC201 suppresses expression of multiple mtDNA-encoded genes and nuclear-encoded mitochondrial genes involved in oxidative phosphorylation and other mitochondrial functions. Importantly, fumarate hydratase deficient cancer cells and multiple cancer cell lines with reduced amounts of mtDNA were resistant to ONC201. These results indicate that cells not dependent on mitochondrial respiration are ONC201-resistant. Our data demonstrate that ONC201 kills cancer cells by disrupting mitochondrial function and further suggests that cancer cells that are dependent on glycolysis will be resistant to ONC201.
Collapse
Affiliation(s)
- Yoshimi Endo Greer
- Women's Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Kunio Nagashima
- Electron Microscope Laboratory, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD, USA
| | - Christina Stuelten
- Laboratory of Cellular and Molecular Biology, CCR, NCI, NIH, Bethesda, MD, USA
| | - Dan Crooks
- Urologic Oncology Branch, CCR, NCI, NIH, Bethesda, MD, USA
| | - Vishal N. Koparde
- CCR Collaborative Bioinformatics Resource, Leidos Biomedical Research, Inc., FNLCR, Frederick, MD, USA
| | - Samuel F. Gilbert
- Women's Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Celia Islam
- Women's Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ashley Ubaldini
- Women's Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yun Ji
- Experimental Transplantation and Immunology Branch, CCR, NCI, NIH, Bethesda, MD, USA
| | - Luca Gattinoni
- Experimental Transplantation and Immunology Branch, CCR, NCI, NIH, Bethesda, MD, USA
| | - Ferri Soheilian
- Electron Microscope Laboratory, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD, USA
| | - Xiantao Wang
- RNA Molecular Biology Group, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Markus Hafner
- RNA Molecular Biology Group, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Jyoti Shetty
- CCR Sequencing Facility, Leidos Biomedical Research, Inc., FNLCR, Frederick, MD, USA
| | - Bao Tran
- CCR Sequencing Facility, Leidos Biomedical Research, Inc., FNLCR, Frederick, MD, USA
| | - Parthav Jailwala
- CCR Collaborative Bioinformatics Resource, Leidos Biomedical Research, Inc., FNLCR, Frederick, MD, USA
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource, Leidos Biomedical Research, Inc., FNLCR, Frederick, MD, USA
| | - Martin Lang
- Urologic Oncology Branch, CCR, NCI, NIH, Bethesda, MD, USA
| | - Donna Voeller
- Women's Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Vinodh Rajapakse
- Developmental Therapeutics Branch, CCR, NCI, NIH, Bethesda, MD, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, CCR, NCI, NIH, Bethesda, MD, USA
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, CCR, NCI, NIH, Bethesda, MD, USA
| | | | - Stanley Lipkowitz
- Women's Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
136
|
Alahari S, Post M, Rolfo A, Weksberg R, Caniggia I. Compromised JMJD6 Histone Demethylase Activity Affects VHL Gene Repression in Preeclampsia. J Clin Endocrinol Metab 2018; 103:1545-1557. [PMID: 29373688 DOI: 10.1210/jc.2017-02197] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/09/2018] [Indexed: 12/16/2022]
Abstract
CONTEXT The von Hippel Lindau (VHL) protein is a key executor of the cellular hypoxic response that is compromised in preeclampsia, a serious disorder complicating 5% to 7% of pregnancies. To date, the mechanisms controlling VHL gene expression in the human placenta remain elusive. OBJECTIVE We examined VHL epigenetic regulation in normal pregnancy and in preeclampsia, a pathology characterized by placental hypoxia. DESIGN, SETTING, AND PARTICIPANTS Placentae were obtained from early-onset preeclampsia (n = 56; <34 weeks of gestation) and late-onset preeclampsia (n = 19; ≥34 weeks of gestation). Placentae from healthy normotensive age-matched preterm control (n = 43) and term control (n = 23) pregnancies were included as controls. MAIN OUTCOME MEASURE(S) We measured the activity of Jumonji domain containing protein 6 (JMJD6), a ferrous iron (Fe2+)- and oxygen-dependent histone demethylase, and examined its function in the epigenetic control of VHL. RESULTS JMJD6 regulates VHL gene expression in the human placenta. VHL downregulation in preeclampsia is dependent on decreased JMJD6 demethylase activity due to hypoxia and reduced Fe2+ bioavailability. Chromatin immunoprecipitation assays revealed decreased association of JMJD6 and its histone targets with the VHL promoter. Findings in preeclampsia were corroborated in a murine model of pharmacological hypoxia using FG-4592. Placentae from FG-4592-treated mice exhibited reduced VHL levels, accompanied by placental morphological alterations and reduced pup weights. Notably, Fe2+ supplementation rescued JMJD6 histone demethylase activity in histone from E-PE and FG-4592-treated mice. CONCLUSIONS Our study uncovers epigenetic regulation of VHL and its functional consequences for altered oxygen and iron homeostasis in preeclampsia.
Collapse
Affiliation(s)
- Sruthi Alahari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Martin Post
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alessandro Rolfo
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Rosanna Weksberg
- Genetics & Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Isabella Caniggia
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
137
|
Stark A, Shin DJ, Wang TH. A sample-to-answer droplet magnetofluidic assay platform for quantitative methylation-specific PCR. Biomed Microdevices 2018; 20:31. [PMID: 29594810 DOI: 10.1007/s10544-018-0276-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dysregulation of DNA methylation has been identified as an epigenetic biomarker for numerous cancer types. Gene-specific identification techniques relying on methylation-specific PCR (MSP) require a lengthy manual benchtop process that is susceptible to human-error and contamination. This MSP assay requires a series of discrete sample processing steps including genomic DNA extraction, bisulfite conversion and readout via PCR. In this work, we present a streamlined assay platform utilizing droplet magnetofluidic principles for integration of all sample processing steps required to obtain quantitative MSP signal from raw biological samples. We present a streamlined protocol for solid-phase extraction and bisulfite conversion of genomic DNA, which minimizes reagent use and simplifies the sample preparation protocol for implementation on a compact assay platform. Furthermore, we present a thermally robust assay chip that enables DNA extraction, bisulfite conversion and quantitative PCR from biological samples on a single device. Technical improvements to facilitate DNA extraction and PCR on a single chip in addition to chip performance characterization data are presented.
Collapse
Affiliation(s)
- Alejandro Stark
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Dong Jin Shin
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA. .,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA. .,Johns Hopkins Institute for NanoBioTechnology, Baltimore, MD, 21218, USA.
| |
Collapse
|
138
|
Investigation of the relationship of Epstein-Barr virus with in situ hybridization in renal-cell carcinomas. Ann Diagn Pathol 2018; 34:45-49. [PMID: 29661727 DOI: 10.1016/j.anndiagpath.2018.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/15/2017] [Accepted: 01/13/2018] [Indexed: 01/22/2023]
|
139
|
Kang MR, Park KH, Lee CW, Lee MY, Han SB, Li LC, Kang JS. Small activating RNA induced expression of VHL gene in renal cell carcinoma. Int J Biochem Cell Biol 2018; 97:36-42. [PMID: 29425832 DOI: 10.1016/j.biocel.2018.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/25/2022]
Abstract
Recent studies have reported that chemically synthesized double-stranded RNAs (dsRNAs), also known as small activating RNA (saRNAs), can specifically induce gene expression by targeting promoter sequences by a mechanism termed RNA activation (RNAa). In the present study, we designed 4 candidate saRNAs targeting the Von Hippel-Lindau (VHL) gene promoter. Among these saRNAs, dsVHL-821 significantly inhibited cell growth by up-regulating VHL at both the mRNA and protein levels in renal cell carcinoma 769-P cells. Functional analysis showed that dsVHL-821 induced apoptosis by increasing p53, decreasing Bcl-xL, activating caspase 3/7 and poly-ADP-ribose polymerase in a dose-dependent manner. Chromatin immunoprecipitation analysis revealed that dsVHL-821 increased the enrichment of Ago2 and RNA polymerase II at the dsVHL-821 target site. In addition, Ago2 depletion significantly suppressed dsVHL-821-induced up-regulation of VHL gene expression and related effects. Single transfection of dsVHL-821 caused long-lasting (14 days) VHL up-regulation. Furthermore, the activation of VHL by dsVHL-821 was accompanied by an increase in dimethylation of histone 3 at lysine 4 (H3K4me2) and acetylation of histone 4 (H4ac) and a decrease in dimethylation of histone 3 at lysine 9 (H3K9me2) and lysine 27 (H3K27me2) in the dsVHL-821 target region. Taken together, these results demonstrate that dsVHL-821, a novel saRNA for VHL, induces the expression of the VHL gene by epigenetic changes, leading to inhibition of cell growth and induction of apoptosis, and suggest that targeted activation of VHL by dsVHL-821 may be explored as a novel treatment of renal cell carcinoma.
Collapse
Affiliation(s)
- Moo Rim Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanjiro, Cheongju, 28116, Republic of Korea; Ractigen Therapeutics, Nantong, Jiangsu, 226400, China
| | - Ki Hwan Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanjiro, Cheongju, 28116, Republic of Korea
| | - Chang Woo Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanjiro, Cheongju, 28116, Republic of Korea
| | - Myeong Youl Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanjiro, Cheongju, 28116, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, 1 Chungdaero, Cheongju, 28644, Republic of Korea
| | - Long-Cheng Li
- Medical School of Nantong University, Nantong, Jiangsu, 226001, China; Ractigen Therapeutics, Nantong, Jiangsu, 226400, China
| | - Jong Soon Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanjiro, Cheongju, 28116, Republic of Korea.
| |
Collapse
|
140
|
Espana-Agusti J, Warren A, Chew SK, Adams DJ, Matakidou A. Loss of PBRM1 rescues VHL dependent replication stress to promote renal carcinogenesis. Nat Commun 2017; 8:2026. [PMID: 29229903 PMCID: PMC5725450 DOI: 10.1038/s41467-017-02245-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 11/15/2017] [Indexed: 12/16/2022] Open
Abstract
Inactivation of the VHL (Von Hippel Lindau) tumour suppressor has long been recognised as necessary for the pathogenesis of clear cell renal cancer (ccRCC); however, the molecular mechanisms underlying transformation and the requirement for additional genetic hits remain unclear. Here, we show that loss of VHL alone results in DNA replication stress and damage accumulation, effects that constrain cellular growth and transformation. By contrast, concomitant loss of the chromatin remodelling factor PBRM1 (mutated in 40% of ccRCC) rescues VHL-induced replication stress, maintaining cellular fitness and allowing proliferation. In line with these data we demonstrate that combined deletion of Vhl and Pbrm1 in the mouse kidney is sufficient for the development of fully-penetrant, multifocal carcinomas, closely mimicking human ccRCC. Our results illustrate how VHL and PBRM1 co-operate to drive renal transformation and uncover replication stress as an underlying vulnerability of all VHL mutated renal cancers that could be therapeutically exploited.
Collapse
Affiliation(s)
- Judit Espana-Agusti
- Department of Oncology, University of Cambridge, CRUK Cambridge institute, Cambridge, CB2 0RE, UK.,MedImmune, AstraZeneca, Cambridge, CB21 6GH, UK
| | - Anne Warren
- Department of Pathology, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Su Kit Chew
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK.,Translational Cancer Therapeutics Laboratory UCL Cancer Institute, London, WC1E 6DD, UK
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | - Athena Matakidou
- Department of Oncology, University of Cambridge, CRUK Cambridge institute, Cambridge, CB2 0RE, UK. .,Centre for Genomics Research, IMED Biotech Unit, AstraZeneca, Melbourn, SG8 6HB, UK.
| |
Collapse
|
141
|
Yang X, Gao L, Zhang S. Comparative pan-cancer DNA methylation analysis reveals cancer common and specific patterns. Brief Bioinform 2017; 18:761-773. [PMID: 27436122 DOI: 10.1093/bib/bbw063] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Indexed: 01/05/2023] Open
Abstract
Abnormal DNA methylation is an important epigenetic regulator involving tumorigenesis. Deciphering cancer common and specific DNA methylation patterns is essential for us to understand the mechanisms of tumor development. The Cancer Genome Atlas (TCGA) project provides a large number of samples of different cancers that enable a pan-cancer study of DNA methylation possible. Here we investigate cancer common and specific DNA methylation patterns among 5480 DNA methylation profiles of 15 cancer types from TCGA. We first define differentially methylated CpG sites (DMCs) in each cancer and then identify 5450 hyper- and 4433 hypomethylated pan-cancer DMCs (PDMCs). Intriguingly, three adjacent hypermethylated PDMC constitute an enhancer region, which potentially regulates two tumor suppressor genes BVES and PRDM1 negatively. Moreover, we identify six distinct motif clusters, which are enriched in hyper- or hypomethylated PDMCs and are associated with several well-known cancer hallmarks. We also observe that PDMCs relate to distinct transcriptional groups. Additionally, 55 hypermethylated and 7 hypomethylated PDMCs are significantly associated with patient survival. Lastly, we find that cancer-specific DMCs are enriched in known cancer genes and cell-type-specific super-enhancers. In summary, this study provides a comprehensive investigation and reveals meaningful cancer common and specific DNA methylation patterns.
Collapse
|
142
|
Julian CG. Epigenomics and human adaptation to high altitude. J Appl Physiol (1985) 2017; 123:1362-1370. [PMID: 28819001 PMCID: PMC6157641 DOI: 10.1152/japplphysiol.00351.2017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 12/17/2022] Open
Abstract
Over the past decade, major technological and analytical advancements have propelled efforts toward identifying the molecular mechanisms that govern human adaptation to high altitude. Despite remarkable progress with respect to the identification of adaptive genomic signals that are strongly associated with the "hypoxia-tolerant" physiological characteristics of high-altitude populations, many questions regarding the fundamental biological processes underlying human adaptation remain unanswered. Vital to address these enduring questions will be determining the role of epigenetic processes, or non-sequence-based features of the genome, that are not only critical for the regulation of transcriptional responses to hypoxia but heritable across generations. This review proposes that epigenomic processes are involved in shaping patterns of adaptation to high altitude by influencing adaptive potential and phenotypic variability under conditions of limited oxygen supply. Improved understanding of the interaction between genetic, epigenetic, and environmental factors holds great promise to provide deeper insight into the mechanisms underlying human adaptive potential, and clarify its implications for biomedical research.
Collapse
Affiliation(s)
- Colleen G Julian
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
143
|
Li Y, Wang Y, Li D, Zhang Y, Zhao T, Li C. Procaine is a specific DNA methylation inhibitor with anti‐tumor effect for human gastric cancer. J Cell Biochem 2017; 119:2440-2449. [PMID: 28926119 DOI: 10.1002/jcb.26407] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/12/2017] [Indexed: 02/04/2023]
Affiliation(s)
- Yong‐Chao Li
- Department of Gastrointestinal SurgeryChina‐Japan Union Hospital of Jilin UniversityChangchunJilinP.R. China
| | - Yun Wang
- Department of MedicineLiver and Biliary Disease Hospital of Jilin ProvinceChangchunP.R. China
| | - Dan‐Dan Li
- Department of Endoscopy CenterChina‐Japan Union Hospital of Jilin UniversityChangchunJilinP.R. China
| | - Ying Zhang
- Department of Endoscopy CenterChina‐Japan Union Hospital of Jilin UniversityChangchunJilinP.R. China
| | - Tian‐Cheng Zhao
- Department of Endoscopy CenterChina‐Japan Union Hospital of Jilin UniversityChangchunJilinP.R. China
| | - Chang‐Feng Li
- Department of Endoscopy CenterChina‐Japan Union Hospital of Jilin UniversityChangchunJilinP.R. China
| |
Collapse
|
144
|
Angulo JC, López JI, Ropero S. DNA Methylation and Urological Cancer, a Step Towards Personalized Medicine: Current and Future Prospects. Mol Diagn Ther 2017; 20:531-549. [PMID: 27501813 DOI: 10.1007/s40291-016-0231-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Urologic malignancies are some of the commonest tumors often curable when diagnosed at early stage. However, accurate diagnostic markers and faithful predictors of prognosis are needed to avoid over-diagnosis leading to overtreatment. Many promising exploratory studies have identified epigenetic markers in urinary malignancies based on DNA methylation, histone modification and non-coding ribonucleic acid (ncRNA) expression that epigenetically regulate gene expression. We review and discuss the current state of development and the future potential of epigenetic biomarkers for more accurate and less invasive detection of urological cancer, tumor recurrence and progression of disease serving to establish diagnosis and monitor treatment efficacies. The specific clinical implications of such methylation tests on therapeutic decisions and patient outcome and current limitations are also discussed.
Collapse
Affiliation(s)
- Javier C Angulo
- Servicio de Urología, Hospital Universitario de Getafe, Departamento Clínico, Facultad de Ciencias Biomédicas, Universidad Europea de Madrid, Laureate Universities, Hospital Universitario de Getafe, Carretera de Toledo Km 12.5, Getafe, 28905, Madrid, Spain.
| | - Jose I López
- Servicio de Anatomía Patológica, Hospital Universitario de Cruces, Instituto BioCruces,Universidad del País Vasco (UPV-EHU), Bilbao, Spain
| | - Santiago Ropero
- Departamento de Biología de Sistemas, Unidad Docente de Bioquímica y Biología Molecular, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
145
|
Lau J, Lin KS, Bénard F. Past, Present, and Future: Development of Theranostic Agents Targeting Carbonic Anhydrase IX. Am J Cancer Res 2017; 7:4322-4339. [PMID: 29158829 PMCID: PMC5695016 DOI: 10.7150/thno.21848] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/18/2017] [Indexed: 12/15/2022] Open
Abstract
Theranostics is the integration of diagnostic information with pharmaceuticals to increase effectiveness and safety of cancer treatments. Nuclear medicine provides a non-invasive means to visualize drug target expression across primary and metastatic sites, and assess pharmacokinetics and efficacy of companion therapeutic agents. This is significant given the increasing recognition of the importance of clonal heterogeneity in treatment response and resistance. Carbonic anhydrase IX (CA-IX) has been advocated as an attractive diagnostic and therapeutic biomarker for targeting hypoxia in solid malignancies. CA-IX confers cancer cell survival under low oxygen tension, and is associated with increased propensity for metastasis. As such, CA-IX is overexpressed in a broad spectrum of cancers. Different classes of antigen recognition molecules targeting CA-IX including monoclonal antibodies, peptides, small molecule inhibitors, and antibody mimetics have been radiolabeled for imaging and therapeutic applications. cG250, a chimeric monoclonal antibody, has been labeled with an assortment of radionuclides (124I, 111In, 89Zr, 131I, 90Y, and 177Lu) and is the most extensively investigated CA-IX radiopharmaceutical. In recent years, there have been tremendous advancements made by the research community in developing alternatives to cG250. Although still in preclinical settings, several small molecule inhibitors and antibody mimetics hold great promise in improving the management of aggressive and resistant cancers.
Collapse
|
146
|
Toledo RA. New HIF2α inhibitors: potential implications as therapeutics for advanced pheochromocytomas and paragangliomas. Endocr Relat Cancer 2017; 24:C9-C19. [PMID: 28667082 DOI: 10.1530/erc-16-0479] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 06/23/2017] [Indexed: 12/21/2022]
Abstract
Two recent independent studies published in Nature show robust responses of clear cell renal cell carcinoma (ccRCC) cell lines, preclinical ccRCC xenograft models and, remarkably, a patient with progressive ccRCC despite receiving multiple lines of treatment, to the long-awaited, recently developed inhibitors of hypoxia-inducible factor 2-alpha (HIF2α). This commentary published in Endocrine-Related Cancer is based on the recognition of similar molecular drivers in ccRCC and the endocrine neoplasias pheochromocytomas and paragangliomas (PPGLs), ultimately leading to stabilization of HIFs. HIF-stabilizing mutations have been detected in the von Hippel-Lindau (VHL) gene, as well as in other genes, such as succinate dehydrogenase (SDHx), fumarate hydratase (FH) and transcription elongation factor B subunit 1 (TCEB1), as well as the gene that encodes HIF2α itself: EPAS1HIF2α Importantly, the recent discovery of EPAS1 mutations in PPGLs and the results of comprehensive in vitro and in vivo studies revealing their oncogenic roles characterized a hitherto unknown direct mechanism of HIF2α activation in human cancer. The now available therapeutic opportunity to successfully inhibit HIF2α pharmacologically with PT2385 and PT2399 will certainly spearhead a series of investigations in several types of cancers, including patients with SDHB-related metastatic PPGL for whom limited therapeutic options are currently available. Future studies will determine the efficacy of these promising drugs against the hotspot EPAS1 mutations affecting HIF2α amino acids 529-532 (in PPGLs) and amino acids 533-540 (in erythrocytosis type 4), as well as against HIF2α protein activated by VHL, SDHx and FH mutations in PPGL-derived chromatin cells.
Collapse
Affiliation(s)
- Rodrigo Almeida Toledo
- Division of Hematology and Medical OncologyDepartment of Medicine, Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, USA
| |
Collapse
|
147
|
Rinaldi G, Rossi M, Fendt SM. Metabolic interactions in cancer: cellular metabolism at the interface between the microenvironment, the cancer cell phenotype and the epigenetic landscape. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 10. [DOI: 10.1002/wsbm.1397] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Gianmarco Rinaldi
- Laboratory of Cellular Metabolism and Metabolic Regulation; VIB Center for Cancer Biology; Leuven Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology; KU Leuven and Leuven Cancer Institute (LKI); Leuven Belgium
| | - Matteo Rossi
- Laboratory of Cellular Metabolism and Metabolic Regulation; VIB Center for Cancer Biology; Leuven Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology; KU Leuven and Leuven Cancer Institute (LKI); Leuven Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation; VIB Center for Cancer Biology; Leuven Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology; KU Leuven and Leuven Cancer Institute (LKI); Leuven Belgium
| |
Collapse
|
148
|
Ma K, Cheng Z, Sun L, Li H. Identification of potential therapeutic targets for gliomas by bioinformatics analysis. Oncol Lett 2017; 14:5203-5210. [PMID: 29113156 PMCID: PMC5652254 DOI: 10.3892/ol.2017.6850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/09/2017] [Indexed: 01/16/2023] Open
Abstract
Gliomas are primary tumors that originate in the brain or spinal cord and develop from supportive glial cells. The present study aimed to identify potential candidate molecular markers for the treatment of gliomas, and to explore the underlying mechanisms of this disease. The gene expression profile data GSE50021, which consisted of 10 specimens of normal brain tissues and 35 specimens of glioma tissues, was downloaded from Gene Expression Omnibus (GEO). The methylation microarray data GSE50022, consisting of 28 glioma specimens, was also downloaded from GEO. Differentially expressed genes (DEGs) between patients with glioma and normal individuals were identified, and key methylation sites were screened. Transcriptional regulatory networks were constructed, and target genes were selected. Survival analysis of key methylation sites and risk analysis of sub-pathways were performed, from which key genes and pathways were selected. A total of 79 DEGs and 179 key methylation sites were identified, of which 20 target genes and 36 transcription factors were included in the transcriptional regulatory network. Glutamate metabotropic receptor 2 (GRM2) was regulated by 8 transcription factors. Inositol-trisphosphate 3-kinase A (ITPKA) was a significantly enriched DEG, associated with the inositol phosphate metabolism pathway, Survival analysis revealed that the survival time of patients with lower methylation levels in cg00157228 was longer than patients with higher methylation levels. ITPKA was the closest located gene to cg00157228. In conclusion, GRM2 and enriched ITPKA, associated with the inositol phosphate metabolism pathway, may be key mechanisms in the development and progression of gliomas. Furthermore, the present study provided evidence for an additional mechanism of methylation-induced gliomas, in which methylation results in the dysregulation of specific transcripts. The results of the present study may provide a research direction for studying the mechanisms underlying the development and progression of gliomas.
Collapse
Affiliation(s)
- Ke Ma
- Department of Paediatric Emergency, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhihua Cheng
- Department of Vascular Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Liqun Sun
- Department of Paediatric Emergency, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Haibo Li
- Department of Paediatric Emergency, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
149
|
Epigenome Aberrations: Emerging Driving Factors of the Clear Cell Renal Cell Carcinoma. Int J Mol Sci 2017; 18:ijms18081774. [PMID: 28812986 PMCID: PMC5578163 DOI: 10.3390/ijms18081774] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/29/2017] [Accepted: 08/12/2017] [Indexed: 12/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC), the most common form of Kidney cancer, is characterized by frequent mutations of the von Hippel-Lindau (VHL) tumor suppressor gene in ~85% of sporadic cases. Loss of pVHL function affects multiple cellular processes, among which the activation of hypoxia inducible factor (HIF) pathway is the best-known function. Constitutive activation of HIF signaling in turn activates hundreds of genes involved in numerous oncogenic pathways, which contribute to the development or progression of ccRCC. Although VHL mutations are considered as drivers of ccRCC, they are not sufficient to cause the disease. Recent genome-wide sequencing studies of ccRCC have revealed that mutations of genes coding for epigenome modifiers and chromatin remodelers, including PBRM1, SETD2 and BAP1, are the most common somatic genetic abnormalities after VHL mutations in these tumors. Moreover, recent research has shed light on the extent of abnormal epigenome alterations in ccRCC tumors, including aberrant DNA methylation patterns, abnormal histone modifications and deregulated expression of non-coding RNAs. In this review, we discuss the epigenetic modifiers that are commonly mutated in ccRCC, and our growing knowledge of the cellular processes that are impacted by them. Furthermore, we explore new avenues for developing therapeutic approaches based on our knowledge of epigenome aberrations of ccRCC.
Collapse
|
150
|
Epigenetic drivers of tumourigenesis and cancer metastasis. Semin Cancer Biol 2017; 51:149-159. [PMID: 28807546 DOI: 10.1016/j.semcancer.2017.08.004] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/13/2017] [Accepted: 08/02/2017] [Indexed: 02/07/2023]
Abstract
Since the completion of the first human genome sequence and the advent of next generation sequencing technologies, remarkable progress has been made in understanding the genetic basis of cancer. These studies have mainly defined genetic changes as either causal, providing a selective advantage to the cancer cell (a driver mutation) or consequential with no selective advantage (not directly causal, a passenger mutation). A vast unresolved question is how a primary cancer cell becomes metastatic and what are the molecular events that underpin this process. However, extensive sequencing efforts indicate that mutation may not be a causal factor for primary to metastatic transition. On the other hand, epigenetic changes are dynamic in nature and therefore potentially play an important role in determining metastatic phenotypes and this area of research is just starting to be appreciated. Unlike genetic studies, current limitations in studying epigenetic events in cancer metastasis include a lack of conceptual understanding and an analytical framework for identifying putative driver and passenger epigenetic changes. In this review, we discuss the key concepts involved in understanding the role of epigenetic alterations in the metastatic cascade. We particularly focus on driver epigenetic events, and we describe analytical approaches and biological frameworks for distinguishing between "epi-driver" and "epi-passenger" events in metastasis. Finally, we suggest potential directions for future research in this important area of cancer research.
Collapse
|