101
|
Strauch MA, Tomaz MA, Monteiro-Machado M, Cons BL, Patrão-Neto FC, Teixeira-Cruz JDM, Tavares-Henriques MDS, Nogueira-Souza PD, Gomes SLS, Costa PRR, Schaeffer E, da Silva AJM, Melo PA. Lapachol and synthetic derivatives: in vitro and in vivo activities against Bothrops snake venoms. PLoS One 2019; 14:e0211229. [PMID: 30689661 PMCID: PMC6349327 DOI: 10.1371/journal.pone.0211229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/09/2019] [Indexed: 01/18/2023] Open
Abstract
Background It is known that local tissue injuries incurred by snakebites are quickly instilled causing extensive, irreversible, tissue destruction that may include loss of limb function or even amputation. Such injuries are not completely neutralized by the available antivenins, which in general are focused on halting systemic effects. Therefore it is prudent to investigate the potential antiophidic effects of natural and synthetic compounds, perhaps combining them with serum therapy, to potentially attenuate or eliminate the adverse local and systemic effects of snake venom. This study assessed a group of quinones that are widely distributed in nature and constitute an important class of natural products that exhibit a range of biological activities. Of these quinones, lapachol is one of the most important compounds, having been first isolated in 1882 from the bark of Tabebuia avellanedae. Methodology/Principal findings It was investigated the ability of lapachol and some new potential active analogues based on the 2-hydroxi-naphthoquinone scaffold to antagonize important activities of Bothrops venoms (Bothrops atrox and Bothrops jararaca) under different experimental protocols in vitro and in vivo. The bioassays used to test the compounds were: procoagulant, phospholipase A2, collagenase and proteolytic activities in vitro, venom-induced hemorrhage, edematogenic, and myotoxic effects in mice. Proteolytic and collagenase activities of Bothrops atrox venom were shown to be inhibited by lapachol and its analogues 3a, 3b, 3c, 3e. The inhibition of these enzymatic activities might help to explain the effects of the analogue 3a in vivo, which decreased skin hemorrhage induced by Bothrops venom. Lapachol and the synthetic analogues 3a and 3b did not inhibit the myotoxic activity induced by Bothrops atrox venom. The negative protective effect of these compounds against the myotoxicity can be partially explained by their lack of ability to effectively inhibit phospholipase A2 venom activity. Bothrops atrox venom also induced edema, which was significantly reduced by the analogue 3a. Conclusions This research using a natural quinone and some related synthetic quinone compounds has shown that they exhibit antivenom activity; especially the compound 3a. The data from 3a showed a decrease in inflammatory venom effects, presumably those that are metalloproteinase-derived. Its ability to counteract such snake venom activities contributes to the search for improving the management of venomous snakebites.
Collapse
Affiliation(s)
- Marcelo A. Strauch
- Laboratório de Farmacologia das Toxinas, Instituto de Ciências Biomédicas—Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
- Instituto Vital Brazil, Niterói-RJ, Brazil
- * E-mail: (MAS); (MAT); (PAM)
| | - Marcelo Amorim Tomaz
- Laboratório de Farmacologia das Toxinas, Instituto de Ciências Biomédicas—Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
- * E-mail: (MAS); (MAT); (PAM)
| | - Marcos Monteiro-Machado
- Laboratório de Farmacologia das Toxinas, Instituto de Ciências Biomédicas—Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | - Bruno Lemos Cons
- Laboratório de Farmacologia das Toxinas, Instituto de Ciências Biomédicas—Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | - Fernando Chagas Patrão-Neto
- Laboratório de Farmacologia das Toxinas, Instituto de Ciências Biomédicas—Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | - Jhonatha da Mota Teixeira-Cruz
- Laboratório de Farmacologia das Toxinas, Instituto de Ciências Biomédicas—Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | - Matheus da Silva Tavares-Henriques
- Laboratório de Farmacologia das Toxinas, Instituto de Ciências Biomédicas—Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | - Pâmella Dourila Nogueira-Souza
- Laboratório de Farmacologia das Toxinas, Instituto de Ciências Biomédicas—Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | - Sara L. S. Gomes
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais Walter Mors-Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
- Laboratório de Catálise Orgânica, Instituto de Pesquisas de Produtos Naturais Walter Mors-Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | - Paulo R. R. Costa
- Laboratório de Catálise Orgânica, Instituto de Pesquisas de Produtos Naturais Walter Mors-Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | - Edgar Schaeffer
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais Walter Mors-Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | - Alcides J. M. da Silva
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais Walter Mors-Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | - Paulo A. Melo
- Laboratório de Farmacologia das Toxinas, Instituto de Ciências Biomédicas—Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
- * E-mail: (MAS); (MAT); (PAM)
| |
Collapse
|
102
|
Choo GS, Lim DP, Kim SM, Yoo ES, Kim SH, Kim CH, Woo JS, Kim HJ, Jung JY. Anti‑inflammatory effects of Dendropanax morbifera in lipopolysaccharide‑stimulated RAW264.7 macrophages and in an animal model of atopic dermatitis. Mol Med Rep 2019; 19:2087-2096. [PMID: 30747232 PMCID: PMC6390048 DOI: 10.3892/mmr.2019.9887] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 11/28/2018] [Indexed: 12/11/2022] Open
Abstract
Dendropanax morbifera (D. morbifera), known as Dendro, means 'omnipotent drug' (Panax), and has been called the panacea tree. Various studies on D. morbifera are currently ongoing, aiming to determine its medicinal uses. The present study investigated the anti‑inflammatory effects and underlying mechanism of a natural extract of D. morbifera leaves (DPL) in lipopolysaccharide (LPS)‑stimulated RAW264.7 macrophages. In the present study, the following assays and models were used: MTT assay, nitric oxide (NO) assay, western blotting, ELISA and mouse models of atopic dermatitis. DPL extract markedly reduced the production of NO, inducible NO synthase and interleukin‑6, as well as the nuclear translocation of nuclear factor‑κB (NF‑κB). Additionally, the LPS‑induced activation of extracellular signal‑regulated kinase 1/2 (ERK1/2), P38 and c‑Jun N‑terminal kinase (JNK) was suppressed by DPL extract. Taken together, these results indicate that NF‑κB, ERK1/2, P38 and JNK may be potential molecular targets of DPL extract in the LPS‑induced inflammatory response. Subsequently, the present study investigated the effects of DPL extract in a 2,4‑dinitrochlorobenzene‑induced atopic dermatitis mouse model. Ear thickness, serum immunoglobulin E levels and histological analysis revealed that the DPL extract was effective in attenuating the inflammatory response. These results indicate that DPL extract has anti‑inflammatory potential and may be developed as a botanical drug to treat atopic dermatitis.
Collapse
Affiliation(s)
- Gang-Sik Choo
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, Chungcheongnam 32439, Republic of Korea
| | | | | | - Eun-Seon Yoo
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, Chungcheongnam 32439, Republic of Korea
| | - Sung-Hyun Kim
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, Chungcheongnam 32439, Republic of Korea
| | | | - Joong-Seok Woo
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, Chungcheongnam 32439, Republic of Korea
| | - Hyeong-Jin Kim
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, Chungcheongnam 32439, Republic of Korea
| | - Ji-Youn Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, Chungcheongnam 32439, Republic of Korea
| |
Collapse
|
103
|
Abubakar S, Al-Mansoub MA, Murugaiyah V, Chan KL. The phytochemical and anti-inflammatory studies of Dillenia suffruticosa leaves. Phytother Res 2019; 33:660-675. [PMID: 30653753 DOI: 10.1002/ptr.6255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/01/2018] [Accepted: 11/13/2018] [Indexed: 12/17/2022]
Abstract
The Dillenia suffruticosa leaves (Dilleniaceae), a folk medicine recommended in Southeast Asia for treating inflammation, were phytochemically studied for the first time and assessed for suppression of λ-carrageenan-induced paw oedema in rats. The crude methanolic extract orally administered at 5,000 mg/kg, displayed no toxicity and at 250 to 1,000 mg/kg significantly suppressed the paw oedema. Two-isolated triterpenoids, betulinic acid (1) and koetjapic acid (2) orally administered at 50 mg/kg, significantly reduced the paw oedema, (p < 0.001) and (p < 0.005) at the fourth h onwards to 47.36% ± 2.23 and 53.43% ± 7.09, respectively, from 95.90% ± 6.88 oedema induced by λ-carrageenan alone. 1 and the isolated flavonoids of vitexin (3), tiliroside (4), and kaempferol (5), displayed moderately more of cyclooxygenase (COX)-2 than COX-1 enzyme inhibition, whereas 2 was slightly more inhibition of COX-1. The in silico molecular docking studies provided support to the in vitro COX studies that the isolated compounds formed H-bonding with the amino acid residues at the COX-2 catalytic sites. The triterpenoids were bound to the peroxidase, possibly inhibiting the peroxidase reaction, whereas the flavonoids interacted more at the cyclooxygenase, resembling celecoxib, therefore providing evidences that these compounds were responsible for the anti-inflammatory properties of D. suffruticosa.
Collapse
Affiliation(s)
- Saifullah Abubakar
- School of Pharmaceutical Sciences, Discipline of Pharmaceutical Chemistry, Universiti Sains Malaysia, Penang, Malaysia
| | - Majed Ahmed Al-Mansoub
- School of Pharmaceutical Sciences, Discipline of Pharmacology, Universiti Sains Malaysia, Penang, Malaysia
| | - Vikneswaran Murugaiyah
- School of Pharmaceutical Sciences, Discipline of Pharmacology, Universiti Sains Malaysia, Penang, Malaysia
| | - Kit-Lam Chan
- School of Pharmaceutical Sciences, Discipline of Pharmaceutical Chemistry, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
104
|
Barghash RF, Geronikaki A, Abdou WM. Synthesis of a Series of Substituted Thiazole Derivatives: New COX‐2 Enzyme Inhibitors for Colon Cancer and Inflammation Treatment. ChemistrySelect 2018. [DOI: 10.1002/slct.201802969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Reham F. Barghash
- Chemical Research Industries DivisionNational Research Centre Dokki. D-12622, Giza Egypt
| | - Athina Geronikaki
- School of PharmacyAristotle, University of Thessaloniki, Thessaloniki Greece
| | - Wafaa M. Abdou
- Chemical Research Industries DivisionNational Research Centre Dokki. D-12622, Giza Egypt
| |
Collapse
|
105
|
Li C, Sridhara M, Rakesh K, Vivek H, Manukumar H, Shantharam C, Qin HL. Multi-targeted dihydrazones as potent biotherapeutics. Bioorg Chem 2018; 81:389-395. [DOI: 10.1016/j.bioorg.2018.08.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 11/16/2022]
|
106
|
Abdel-Aziz AAM, Angeli A, El-Azab AS, Hammouda MEA, El-Sherbeny MA, Supuran CT. Synthesis and anti-inflammatory activity of sulfonamides and carboxylates incorporating trimellitimides: Dual cyclooxygenase/carbonic anhydrase inhibitory actions. Bioorg Chem 2018; 84:260-268. [PMID: 30508771 DOI: 10.1016/j.bioorg.2018.11.033] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/18/2018] [Accepted: 11/20/2018] [Indexed: 01/11/2023]
Abstract
Trimellitimides 6-21 were prepared and investigated in vivo for anti-inflammatory and ulcerogenic effects and in vitro for cytotoxicity. They were subjected to in vitro cyclooxygenase (COX-1/2) and carbonic anhydrase inhibition protocols. Compounds 6-11 and 18 exhibited anti-inflammatory activities and had median effective doses (ED50) of 34.3-49.8 mg kg-1 and 63.6-86.6% edema inhibition relative to the reference drug celecoxib (ED50: 33.9 mg kg-1 and 85.2% edema inhibition). Compounds 6-11 and 18 were weakly cytotoxic at 10 μM against 59 cell lines compared with the reference standard 5-fluorouracil (5-FU). Compounds 6-11 had optimal selectivity against COX-2. The selectivity index (SI) range was >200-490 and was comparable to that for celecoxib [COX-2 (SI) > 416.7]. In contrast, compounds 12, 13, and 16-18 were nonselective COX inhibitors with a selectivity index range of 0.92-0.25. The carbonic anhydrase inhibition assay showed that sulfonamide incorporating trimellitimides 6-11 inhibited the cytosolic isoforms hCA I and hCA II, and tumor-associated isoform hCA IX. They were relatively more susceptible to inhibition by compounds 8, 9, and 11. The KI ranges were 54.1-81.9 nM for hCA I, 25.9-55.1 nM for hCA II, and 46.0-348.3 nM for hCA IX. © 2018 Elsevier Science. All rights reserved.
Collapse
Affiliation(s)
- Alaa A-M Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Andrea Angeli
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Adel S El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; Department of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Mohammed E A Hammouda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Magda A El-Sherbeny
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City, Egypt
| | - Claudiu T Supuran
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
107
|
Tietz O, Kaur J, Bhardwaj A, Wuest FR. Pyrimidine-based fluorescent COX-2 inhibitors: synthesis and biological evaluation. Org Biomol Chem 2018; 14:7250-7. [PMID: 27383140 DOI: 10.1039/c6ob00493h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The cyclooxygenase-2 (COX-2) enzyme is overexpressed in a variety of cancers and mediates inflammatory processes that aid the growth and progression of malignancies. Three novel and selective fluorescent COX-2 inhibitors have been designed and synthesized on the basis of previously reported pyrimidine-based COX-2 inhibitors and the 7-nitrobenzofurazan fluorophore. In vitro evaluation of COX-1/COX-2 isozyme inhibition identified N-(2-((7-nitro-benzo[c][1,2,5]oxadiazol-4-yl)amino)propyl)-4-[4-(methylsulfonyl)phenyl]-6-(trifluoro-methyl)-pyrimidin-2-amine (6) as a novel potent and selective COX-2 inhibitor (IC50 = 1.8 μM). Lead compound (6) was further evaluated for its ability to selectively visualize COX-2 isozyme in COX-2 expressing human colon cancer cell line HCA-7 using confocal microscopy experiments.
Collapse
Affiliation(s)
- Ole Tietz
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, T6G 1Z2, Edmonton, AB, Canada.
| | - Jatinder Kaur
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, T6G 1Z2, Edmonton, AB, Canada. and Department of Pharmacy and Pharmaceutical Sciences, Medical Sciences Building, University of Alberta, T6G 2H1, Edmonton, AB, Canada
| | - Atul Bhardwaj
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, T6G 1Z2, Edmonton, AB, Canada. and Department of Pharmacy and Pharmaceutical Sciences, Medical Sciences Building, University of Alberta, T6G 2H1, Edmonton, AB, Canada
| | - Frank R Wuest
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, T6G 1Z2, Edmonton, AB, Canada. and Department of Pharmacy and Pharmaceutical Sciences, Medical Sciences Building, University of Alberta, T6G 2H1, Edmonton, AB, Canada
| |
Collapse
|
108
|
Catelan TBS, Santos Radai JA, Leitão MM, Branquinho LS, Vasconcelos PCDP, Heredia-Vieira SC, Kassuya CAL, Cardoso CAL. Evaluation of the toxicity and anti-inflammatory activities of the infusion of leaves of Campomanesia guazumifolia (Cambess.) O. Berg. JOURNAL OF ETHNOPHARMACOLOGY 2018; 226:132-142. [PMID: 30114515 DOI: 10.1016/j.jep.2018.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/26/2018] [Accepted: 08/12/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Some species of Campomanesia are used in the folk medicine due to anti-inflammatory, anti-diarrheal, anti-diabetes and hypercholesterolemic. However studies with Campomanesia guazumifolia (Cambess.) O. Berg. are scarce. AIM OF THE STUDY This study investigated the anti-inflammatory activity and toxicological profile of infusion obtained from leaves of Campomanesia guazumifolia in mice. MATERIALS AND METHODS Leaves infusion of C. guazumifolia was obtained in the proportion of 20 g/L (leaves/water) at 95-100 °C for 10 min in an enclosed container. The acute toxicity of the leaves infusion of C. guazumifolia lyophilized (ICG) was assessed by oral administration to female mice at doses of 500, 1000, 2000, and 5000 mg/kg, and the general behavior and toxic symptoms were observed for 14 days. In the subacute toxicity model, female mice were treated orally with the ICG (250, 500, and 1000 mg/kg) during 28 days, and biochemical, toxic signs and the estrous cycle were evaluated. The anti-inflammatory activity of the ICG (70, 300 and 700 mg/kg) was analyzed using carrageenan-induced pleurisy and inflammatory paw (mechanical and thermal hyperalgesia). RESULTS Three flavonoids glycosylated and a cyclohexanecarboxylic acid were identified in the ICG: quercetin pentose, quercetin deoxyhexoside, myricetin deoxyhexoside and quinic acid. No clinical signs of acute toxicity were observed, suggesting that the LD50 (Lethal Dose) is above 5000 mg/kg. Subacute exposure of mice to the ICG did not change significantly the hematological and biochemical parameters as well as histology of organs. The ICG increased the duration of estrous cycle in all phases, showing anti-inflammatory potential by decreasing leukocyte migration, extravasation protein in the pleural cavity and antiedematogenic activity. The ICG treatment at a dose of 700 mg/kg decreased the mechanical hyperalgesia, while at doses of 300 mg/kg and 700 mg/kg, decreased the sensitivity to the cold. CONCLUSION The results evidenced the anti-inflammatory potential with low toxicity of infusion of the leaves of C. guazumifolia, supporting the popular use of this species.
Collapse
Affiliation(s)
- Taline Baganha Stefanello Catelan
- Programa de Pós-Graduação em Recursos Naturais - Centro de Estudos de Recursos Naturais (CERNA), UEMS, 79804-970 Dourados, MS, Brazil; Curso de Farmácia - Centro Universitário de Grande Dourados - UNIGRAN, Jd. Universidade, 79.824-900 Dourados, MS, Brazil.
| | | | - Maicon Matos Leitão
- Pós-graduação em Ciências da Saúde, UFGD, Cidade Universitária,79804-970 Dourados, MS, Brazil
| | | | | | - Silvia Cristina Heredia-Vieira
- Programa de Pós-Graduação em Recursos Naturais - Centro de Estudos de Recursos Naturais (CERNA), UEMS, 79804-970 Dourados, MS, Brazil
| | | | - Claudia Andrea Lima Cardoso
- Programa de Pós-Graduação em Recursos Naturais - Centro de Estudos de Recursos Naturais (CERNA), UEMS, 79804-970 Dourados, MS, Brazil.
| |
Collapse
|
109
|
Cortes-Salva MY, Shrestha S, Singh P, Morse CL, Jenko KJ, Montero Santamaria JA, Zoghbi SS, Innis RB, Pike VW. 2-(4-Methylsulfonylphenyl)pyrimidines as Prospective Radioligands for Imaging Cyclooxygenase-2 with PET-Synthesis, Triage, and Radiolabeling. Molecules 2018; 23:molecules23112850. [PMID: 30400142 PMCID: PMC6278313 DOI: 10.3390/molecules23112850] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 11/23/2022] Open
Abstract
Cyclooxygenase 2 (COX-2) is an inducible enzyme responsible for the conversion of arachidonic acid into the prostaglandins, PGG2 and PGH2. Expression of this enzyme increases in inflammation. Therefore, the development of probes for imaging COX-2 with positron emission tomography (PET) has gained interest because they could be useful for the study of inflammation in vivo, and for aiding anti-inflammatory drug development targeting COX-2. Nonetheless, effective PET radioligands are still lacking. We synthesized eleven COX-2 inhibitors based on a 2(4-methylsulfonylphenyl)pyrimidine core from which we selected three as prospective PET radioligands based on desirable factors, such as high inhibitory potency for COX-2, very low inhibitory potency for COX-1, moderate lipophilicity, and amenability to labeling with a positron-emitter. These inhibitors, namely 6-methoxy-2-(4-(methylsulfonyl)phenyl-N-(thiophen-2ylmethyl)pyrimidin-4-amine (17), the 6-fluoromethyl analogue (20), and the 6-(2-fluoroethoxy) analogue (27), were labeled in useful yields and with high molar activities by treating the 6-hydroxy analogue (26) with [11C]iodomethane, [18F]2-fluorobromoethane, and [d2-18F]fluorobromomethane, respectively. [11C]17, [18F]20, and [d2-18F]27 were readily purified with HPLC and formulated for intravenous injection. These methods allow these radioligands to be produced for comparative evaluation as PET radioligands for measuring COX-2 in healthy rhesus monkey and for assessing their abilities to detect inflammation.
Collapse
Affiliation(s)
- Michelle Y Cortes-Salva
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Stal Shrestha
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Prachi Singh
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Cheryl L Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Kimberly J Jenko
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Jose A Montero Santamaria
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
110
|
Park M, Park SY, Lee HJ, Kim CE. A Systems-Level Analysis of Mechanisms of Platycodon grandiflorum Based on A Network Pharmacological Approach. Molecules 2018; 23:E2841. [PMID: 30388815 PMCID: PMC6278259 DOI: 10.3390/molecules23112841] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/23/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022] Open
Abstract
Platycodon grandiflorum (PG) is widely used in Asia for its various beneficial effects. Although many studies were conducted to understand the molecular mechanisms of PG, it is still unclear how the combinations of multiple ingredients work together to exert its therapeutic effects. The aim of the present study was to provide a comprehensive review of the systems-level mechanisms of PG by adopting network pharmacological analysis. We constructed a compound⁻target⁻disease network for PG using experimentally validated and machine-leaning-based prediction results. Each target of the network was analyzed based on previously known pharmacological activities of PG. Gene ontology analysis revealed that the majority of targets were related to cellular and metabolic processes, responses to stimuli, and biological regulation. In pathway enrichment analyses of targets, the terms related to cancer showed the most significant enrichment and formed distinct clusters. Degree matrix analysis for target⁻disease associations of PG suggested the therapeutic potential of PG in various cancers including hepatocellular carcinoma, gastric cancer, prostate cancer, small-cell lung cancer, and renal cell carcinoma. We expect that network pharmacological approaches will provide an understanding of the systems-level mechanisms of medicinal herbs and further develop their therapeutic potentials.
Collapse
Affiliation(s)
- Musun Park
- Department of Physiology, College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| | - Sa-Yoon Park
- Department of Physiology, College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Korea.
| | - Chang-Eop Kim
- Department of Physiology, College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| |
Collapse
|
111
|
New antibacterial and 5-lipoxygenase activities of synthetic benzyl phenyl ketones: Biological and docking studies. Bioorg Chem 2018; 82:385-392. [PMID: 30428417 DOI: 10.1016/j.bioorg.2018.10.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/15/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022]
Abstract
We investigated twelve benzyl phenyl ketone derivatives which are synthetic precursors of isoflavonoids that are shown be good 5-hLOX inhibitors, especially those that have the catechol group, but these precursors never have been assayed as 5-hLOX inhibitors being a novelty as inhibitors of the enzyme, due to sharing important structural characteristics. Screening assays, half maximal inhibitory concentration (IC50) and kinetic assays of all the studied molecules (5 µg/ml in media assay) showed that 1-(2,4-dihydroxy-3-methylphenyl)-2-(3-chlorophenyl)-ethanone (K205; IC50 = 3.5 µM; Ki = 4.8 µM) and 1-(2,4-dihydroxy-3-methylphenyl)-2-(2-nitrophenyl)-ethanone (K206; IC50 = 2.3 µM; Ki = 0.7 µM) were potent, selective, competitive and nonredox inhibitors of 5-hLOX. Antioxidant behavior was also assayed by DPPH, FRAP, and assessing ROS production, and those with antibacterial and antiproliferative properties relating to 1-(2,4-dihydroxy-3-methylphenyl)-2-(2-chlorophenyl)-ethanone (K208) established it as the most interesting and relevant compound studied, as it showed nearly 100% inhibition of bacterial growth of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Finally, docking studies were done that helped to characterize how the inhibitor structures correlated to decreased 5-hLOX activity.
Collapse
|
112
|
Adeyemi OO, Ishola IO, Adesanya ET, Alohan DO. Antinociceptive and anti-inflammatory properties of Tetracera alnifolia Willd. (Dilleniaceae) hydroethanolic leaf extract. J Basic Clin Physiol Pharmacol 2018; 30:173-184. [PMID: 30332392 DOI: 10.1515/jbcpp-2016-0190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 08/04/2018] [Indexed: 06/08/2023]
Abstract
Background Tetracera alnifolia Willd. (Dilleniaceae) is used in traditional African Medicine for the treatment of headache, abdominal pain, and rheumatism. Hence, this study sought to investigate the antinociceptive and anti-inflammatory effects of the hydroethanolic leaf extract of T. alnifolia (HeTA) in rodents. Methods Antinociceptive activity was evaluated using the acetic acid-induced writhing, formalin-/capsaicin-induced paw licking and hot plate tests in mice. The contribution of opioidergic, l-arginine-nitric oxide, and ATP-sensitive potassium channel pathways in HeTA-induced antinociception was also evaluated. The anti-inflammatory effect was assessed using the carrageenan-induced paw edema, xylene ear edema, cotton pellet granuloma, and complete Freund's adjuvant (CFA)-induced arthritis in rats. Results HeTA (100, 200, and 400 mg/kg, p.o.) produced significant (p<0.05) decrease in mean number of acetic acid-induced writhing, time spent licking paw in formalin, and capsaicin tests as well as time course increase in nociceptive reaction latency in hot plate test. HeTA-induced antinociception was prevented by pretreatment of mice with naloxone (non-selective opioid receptor antagonist), l-arginine (nitric oxide precursor), or glibenclamide (ATP-sensitive potassium channel blocker). HeTA (100 mg/kg, p.o.) produced a significant anti-inflammatory effect against carrageenan-induced rat paw edema (1-5 h), xylene-induced ear edema, cotton pellet-induced granuloma formation, and CFA-induced arthritis in rats. The effects of HeTA in various models were similar to the effect of the standard reference drugs. Conclusions Findings from this study showed that HeTA possesses antinociceptive effect possibly mediated through peripheral opioid receptors with activation of l-arginine-nitric oxide and ATP-sensitive potassium channel pathway as well as anti-inflammatory activity.
Collapse
Affiliation(s)
- Olufunmilayo O Adeyemi
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria, Phone: +2348034459618
| | - Ismail O Ishola
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Elizabeth T Adesanya
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Destiny O Alohan
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| |
Collapse
|
113
|
Elgazar AA, Knany HR, Ali MS. Insights on the molecular mechanism of anti-inflammatory effect of formula from Islamic traditional medicine: An in-silico study. J Tradit Complement Med 2018; 9:353-363. [PMID: 31453132 PMCID: PMC6702150 DOI: 10.1016/j.jtcme.2018.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 02/09/2023] Open
Abstract
Background and aim Traditional medicine is an important source for drug discovery. However, many challenges face the scientific community to develop novel drugs from it. To investigate the rationale behind the medical legacy of centuries of precious knowledge from traditional medicine, we aimed at performing virtual screening to identify potential leads from the middle-age textbook, The Canon of Medicine. Experimental procedure A database of chemical constituents of plants mentioned within the book was built and docked against different molecular targets associated with inflammation such as phospholipase A2, p38 alpha mitogen activated protein kinase, cyclooxygenase-2 and leukotriene B4 dehydrogenase, after that literature survey was done to determine the consistency of traditional uses and molecular docking results with the current knowledge obtained from previous studies and reports. Results and conclusion The in-silico study revealed the ability of several chemical constituents, in the plants under investigation, to bind effectively to different targets associated with inflammation, which was consistent with previous reports, indicating that Islamic traditional medicine can be considered as a reliable promising source for developing new anti-inflammatory agents with low toxicity and minimal side effects.
Collapse
Affiliation(s)
- Abdullah A Elgazar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Egypt
| | - Hamada Ramadan Knany
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Egypt
| | - Mohammed Soliman Ali
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Egypt
| |
Collapse
|
114
|
Yoon KN, Jang HS. Anti-Xanthine Oxidase, Anti-Cholinesterase, and Anti-Inflammatory Activities of Fruiting Bodies of Phellinus gilvus. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2018. [DOI: 10.15324/kjcls.2018.50.3.225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Ki Nam Yoon
- Department of Clinical Laboratory Science, Ansan University, Ansan, Korea
| | - Hyung Seok Jang
- Department of Clinical Laboratory Science, Ansan University, Ansan, Korea
| |
Collapse
|
115
|
Gatis-Carrazzoni ASSG, Mota FVB, Leite TCC, de Oliveira TB, da Silva SC, Bastos IVA, de Souza Maia MB, Pereira PS, Neto PPM, de Oliveira Chagas EC, Silva TMS, do Nascimento MS, da Silva TG. Anti-inflammatory and antinociceptive activities of the leaf methanol extract of Miconia minutiflora (Bonpl.) DC. and characterization of compounds by UPLC-DAD-QTOF-MS/MS. Naunyn Schmiedebergs Arch Pharmacol 2018; 392:55-68. [DOI: 10.1007/s00210-018-1561-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 08/24/2018] [Indexed: 01/14/2023]
|
116
|
Suyama K, Sakai D, Hirayama N, Nakamura Y, Matsushita E, Terayama H, Qu N, Tanaka O, Sakabe K, Watanabe M. Effects of interleukin-17A in nucleus pulposus cells and its small-molecule inhibitors for intervertebral disc disease. J Cell Mol Med 2018; 22:5539-5551. [PMID: 30207057 PMCID: PMC6201370 DOI: 10.1111/jcmm.13828] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/07/2018] [Indexed: 01/05/2023] Open
Abstract
Intervertebral discs (IVD) degeneration, which is caused by ageing or mechanical stress, leads to IVD disease, including back pain and sciatica. The cytokine interleukin (IL)-17A is elevated in NP cells during IVD disease. Here we explored the pharmacotherapeutic potential of IL-17A for the treatment of IVD disease using small-molecule inhibitors that block binding of IL-17A to the IL-17A receptor (IL-17RA). Treatment of NP cells with IL-17A increased expression of cyclooxygenase-2 (COX-2), IL-6, matrix metalloproteinase (MMP)-3 and MMP-13. These increases were suppressed by an IL-17A-neutralizing antibody, and small molecules that were identified as inhibitors by binding to the IL-17A-binding region of IL-17RA. IL-17A signalling also altered sulphated glycosaminoglycan deposition and spheroid colony formation, while treatment with small-molecule inhibitors of IL-17A attenuated this response. Furthermore, mitogen-activated protein kinase pathways were activated by IL-17A stimulation and induced IL-6 and COX-2 expression, while small-molecule inhibitors of IL-17A suppressed their expression. Taken together, these results show that IL-17A is a valid target for IVD disease therapy and that small-molecule inhibitors that inhibit the IL-17A-IL-17RA interaction may be useful for pharmacotherapy of IVD disease.
Collapse
Affiliation(s)
- Kaori Suyama
- Department of Anatomy and Cellular biology, Basic Medical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Noriaki Hirayama
- Institute of Advanced Biosciences, Tokai University, Kanagawa, Japan
| | - Yoshihiko Nakamura
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Erika Matsushita
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Hayato Terayama
- Department of Anatomy and Cellular biology, Basic Medical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Ning Qu
- Department of Anatomy and Cellular biology, Basic Medical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Osamu Tanaka
- Department of Anatomy and Cellular biology, Basic Medical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Kou Sakabe
- Department of Anatomy and Cellular biology, Basic Medical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Kanagawa, Japan
| |
Collapse
|
117
|
Coleshill MJ, Sharpe L, Colloca L, Zachariae R, Colagiuri B. Placebo and Active Treatment Additivity in Placebo Analgesia: Research to Date and Future Directions. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 139:407-441. [PMID: 30146056 PMCID: PMC6179351 DOI: 10.1016/bs.irn.2018.07.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Placebo analgesia is a robust experimental and clinical phenomenon. While our understanding of the mechanisms of placebo analgesia has developed rapidly, some central questions remain unanswered. Among the important questions is how placebo analgesia interacts with active analgesic effects. It is an assumption underlying double-blind randomized placebo-controlled trials (RCTs) that the true effect of a treatment can be determined by examining the effect of the active treatment arm and subtracting the response in the placebo group ("the assumption of additivity"). However, despite the importance of this assumption for the interpretation of RCTs, it has rarely been formally examined. This article reviews the assumption of additivity in placebo analgesia by examining studies employing factorial designs manipulating both the receipt of an active analgesic and instructions about the treatment being delivered. In reviewing the literature, we identified seven studies that allowed a test of additivity. Of these, four found evidence against additivity, while the remaining three studies found results consistent with additivity. While the limited available data are somewhat mixed, the evidence suggests that at least under some conditions the assumption of additivity does not hold in placebo analgesia. The concordance between mechanisms of the active analgesic and placebo analgesia may influence whether additivity occurs or not. However, more research using factorial designs is needed to disentangle the relationship between placebo analgesia and the active effect of analgesic treatments.
Collapse
Affiliation(s)
- Matthew J Coleshill
- School of Psychology, University of Sydney, Sydney, NSW, Australia; St Vincent's Clinical School, St Vincent's Hospital, University of New South Wales, Sydney, NSW, Australia; Department of Clinical Pharmacology and Toxicology, St Vincent's Hospital, Sydney, NSW, Australia.
| | - Louise Sharpe
- School of Psychology, University of Sydney, Sydney, NSW, Australia
| | - Luana Colloca
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD, United States; School of Nursing, University of Maryland, Baltimore, MD, United States; School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Robert Zachariae
- Aarhus University Hospital and Department of Psychology and Behavioural Science, Aarhus University, Aarhus, Denmark
| | - Ben Colagiuri
- School of Psychology, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
118
|
Molecular hydrogen alleviates asphyxia-induced neuronal cyclooxygenase-2 expression in newborn pigs. Acta Pharmacol Sin 2018; 39:1273-1283. [PMID: 29565041 DOI: 10.1038/aps.2017.148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/08/2017] [Indexed: 12/24/2022]
Abstract
Cyclooxygenase-2 (COX-2) has an established role in the pathogenesis of hypoxic-ischemic encephalopathy (HIE). In this study we sought to determine whether COX-2 was induced by asphyxia in newborn pigs, and whether neuronal COX-2 levels were affected by H2 treatment. Piglets were subjected to either 8 min of asphyxia or a more severe 20 min of asphyxia followed by H2 treatment (inhaling room air containing 2.1% H2 for 4 h). COX-2 immunohistochemistry was performed on brain samples from surviving piglets 24 h after asphyxia. The percentages of COX-2-immunopositive neurons were determined in cortical and subcortical areas. Only in piglets with more severe HIE, we observed significant, region-specific increases in neuronal COX-2 expression within the parietal and occipital cortices and in the CA3 hippocampal subfield. H2 treatment essentially prevented the increases in COX-2-immunopositive neurons. In the parietal cortex, the attenuation of COX-2 induction was associated with reduced 8'-hydroxy-2'-deoxyguanozine immunoreactivity and retained microglial ramifcation index, which are markers of oxidative stress and neuroinfiammation, respectively. This study demonstrates for the first time that asphyxia elevates neuronal COX-2 expression in a piglet HIE model. Neuronal COX-2 induction may play region-specific roles in brain lesion progression during HIE development, and inhibition of this response may contribute to the antioxidant/anti-infiammatory neuroprotective effects of H2 treatment.
Collapse
|
119
|
Amuk NG, Kurt G, Baran Y, Seyrantepe V, Yandim MK, Adan A, Demir SA, Kiraz Y, Sonmez MF. Effects of cell-mediated osteoprotegerin gene transfer and mesenchymal stem cell applications on orthodontically induced root resorption of rat teeth. Eur J Orthod 2018; 39:235-242. [PMID: 27733487 DOI: 10.1093/ejo/cjw054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Aim The aim of this study is to evaluate and compare therapeutic effects of mesenchymal stem cell (MSCs) and osteoprotegerin (OPG) gene transfer applications on inhibition and/or repair of orthodontically induced inflammatory root resorption (OIIRR). Materials and methods Thirty Wistar rats were divided into four groups as untreated group (negative control), treated with orthodontic appliance group (positive control), MSCs injection group, and OPG transfected MSCs [gene therapy (GT) group]. About 100g of orthodontic force was applied to upper first molar teeth of rats for 14 days. MSCs and transfected MSC injections were performed at 1st, 6th, and 11th days to the MSC and GT group rats. At the end of experiment, upper first molar teeth were prepared for genetical, scanning electron microscopy (SEM), fluorescent microscopy, and haematoxylin eosin-tartrate resistant acid phosphatase staining histological analyses. Number of total cells, number of osteoclastic cells, number of resorption lacunae, resorption area ratio, SEM resorption ratio, OPG, RANKL, Cox-2 gene expression levels at the periodontal ligament (PDL) were calculated. Paired t-test, Kruskal-Wallis, and chi-square tests were performed. Results Transferred MSCs showed marked fluorescence in PDL. The results revealed that number of osteoclastic cells, resorption lacunae, resorption area ratio, RANKL, and Cox-2 were reduced after single MSC injections significantly (P < 0.05). GT group showed the lowest number of osteoclastic cells (P < 0.01), number of resorption lacunae, resorption area ratio, and highest OPG expression (P < 0.001). Conclusions Taken together all these results, MSCs and GT showed marked inhibition and/or repair effects on OIIRR during orthodontic treatment on rats.
Collapse
Affiliation(s)
- Nisa Gul Amuk
- Department of Orthodontics, Faculty of Dentistry, Erciyes University, Kayseri
| | - Gökmen Kurt
- Department of Orthodontics, Faculty of Dentistry, Istanbul Yeni Yüzyil University
| | - Yusuf Baran
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology.,Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri
| | - Volkan Seyrantepe
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology
| | - Melis Kartal Yandim
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology.,Department of Medical biology, Faculty of Medicine, Izmir University of Economics
| | - Aysun Adan
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology.,Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri
| | - Secil Akyildiz Demir
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology
| | - Yagmur Kiraz
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology.,Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri
| | - Mehmet Fatih Sonmez
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
120
|
Identification of luteolin 7-O-β-D-glucuronide from Cirsium japonicum and its anti-inflammatory mechanism. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
121
|
Li J, Moe B, Liu Y, Li XF. Halobenzoquinone-Induced Alteration of Gene Expression Associated with Oxidative Stress Signaling Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6576-6584. [PMID: 29737854 DOI: 10.1021/acs.est.7b06428] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Halobenzoquinones (HBQs) are emerging disinfection byproducts (DBPs) that effectively induce reactive oxygen species and oxidative damage in vitro. However, the impacts of HBQs on oxidative-stress-related gene expression have not been investigated. In this study, we examined alterations in the expression of 44 genes related to oxidative-stress-induced signaling pathways in human uroepithelial cells (SV-HUC-1) upon exposure to six HBQs. The results show the structure-dependent effects of HBQs on the studied gene expression. After 2 h of exposure, the expression levels of 9 to 28 genes were altered, while after 8 h of exposure, the expression levels of 29 to 31 genes were altered. Four genes ( HMOX1, NQO1, PTGS2, and TXNRD1) were significantly upregulated by all six HBQs at both exposure time points. Ingenuity pathway analysis revealed that the Nrf2 pathway was significantly responsive to HBQ exposure. Other canonical pathways responsive to HBQ exposure included GSH redox reductions, superoxide radical degradation, and xenobiotic metabolism signaling. This study has demonstrated that HBQs significantly alter the gene expression of oxidative-stress-related signaling pathways and contributes to the understanding of HBQ-DBP-associated toxicity.
Collapse
Affiliation(s)
- Jinhua Li
- Department of Health Toxicology, School of Public Health , Jilin University , Changchun , Jilin , China 130021
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada T6G 2G3
| | - Birget Moe
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada T6G 2G3
- Alberta Centre for Toxicology, Department of Physiology and Pharmacology, Faculty of Medicine , University of Calgary , Calgary , Alberta , Canada T2N 4N1
| | - Yanming Liu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada T6G 2G3
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada T6G 2G3
| |
Collapse
|
122
|
Bouglé A, Rocheteau P, Hivelin M, Haroche A, Briand D, Tremolada C, Mantz J, Chrétien F. Micro-fragmented fat injection reduces sepsis-induced acute inflammatory response in a mouse model. Br J Anaesth 2018; 121:1249-1259. [PMID: 30442252 DOI: 10.1016/j.bja.2018.03.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Severe sepsis has a high mortality rate. There is increasing evidence that human mesenchymal stem cells possess immunomodulatory properties in sepsis, particularly those from adipose tissue. We hypothesised that micro-fragmented human fat, obtained with minimal alteration of the stromal vascular niche, attenuates the inflammatory response and improves outcome in a murine model of sepsis. METHODS Micro-fragmented fat, lipoaspirate, or saline was administered intraperitoneally 2 h after caecal ligation and puncture (CLP) in C57Bl/6RJ ketamine-xylazine anaesthetised mice. The primary endpoint was the inflammatory score. Secondary endpoints included survival, physiological, histological, and biological parameters. RESULTS In CLP mice, micro-fragmented fat administration significantly decreased the median (range) inflammatory score compared with saline [17 (14-20) vs 9 (8-12), P=0.006]. Secondary endpoints were also significantly improved in micro-fragmented fat-treated compared with saline-treated CLP mice. Improvement in inflammatory score and in survival was suppressed when micro-fragmented fat was co-administered with liposomes loaded with clodronate (macrophage toxin) or NS-398 (cyclo-oxygenase 2 inhibitor), but not with SC-560 (cyclo-oxygenase 1 inhibitor). CONCLUSIONS In a murine model of severe sepsis, micro-fragmented fat improved early inflammatory status and outcome, at least in part, by a cyclo-oxygenase-2-mediated mechanism. The potential therapeutic value of micro-fragmented fat in severe sepsis warrants further investigation.
Collapse
Affiliation(s)
- A Bouglé
- Infection and Epidemiology Department, Institut Pasteur Human Histopathology and Animal Models Unit, Paris, France; Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Anesthesiology and Critical Care Medicine, Institute of Cardiology, Pitié-Salpêtrière Hospital, Paris, France
| | - P Rocheteau
- Infection and Epidemiology Department, Institut Pasteur Human Histopathology and Animal Models Unit, Paris, France; Centre Hospitalier Sainte-Anne, Service Hospitalo Universitaire, Paris, France
| | - M Hivelin
- Department of Plastic Surgery, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris (APHP), PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - A Haroche
- Infection and Epidemiology Department, Institut Pasteur Human Histopathology and Animal Models Unit, Paris, France
| | - D Briand
- Infection and Epidemiology Department, Institut Pasteur Human Histopathology and Animal Models Unit, Paris, France
| | | | - J Mantz
- Infection and Epidemiology Department, Institut Pasteur Human Histopathology and Animal Models Unit, Paris, France; Department of Anesthesiology and Critical Care Medicine, Hôpital Européen Georges-Pompidou, Université Paris-Descartes Sorbonne Paris Cité, France
| | - F Chrétien
- Infection and Epidemiology Department, Institut Pasteur Human Histopathology and Animal Models Unit, Paris, France; TRIGGERSEP, F-CRIN Network, Versailles, France; Neuropathology Laboratory, Sainte-Anne Hospital, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
123
|
Srivastava RAK, Cornicelli JA, Markham B, Bisgaier CL. Gemcabene, a First-in-Class Hypolipidemic Small Molecule in Clinical Development, Attenuates Osteoarthritis and Pain in Animal Models of Arthritis and Pain. Front Pharmacol 2018; 9:471. [PMID: 29867478 PMCID: PMC5958179 DOI: 10.3389/fphar.2018.00471] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/23/2018] [Indexed: 01/23/2023] Open
Abstract
Our clinical studies have demonstrated that gemcabene, a small molecule in late-stage clinical development, lowers pro-inflammatory acute-phase protein, C-reactive protein (CRP). This observation was further confirmed in a cell-based study showing inhibition of cytokine-induced CRP production. Based on these observations, in the present study, we tested the hypothesis that gemcabene may possess anti-inflammatory activities in animal models of inflammatory disease. Efficacy of gemcabene was investigated in rat models of carrageenan-induced thermal hyperalgesia (CITH), monosodium iodoacetate (MIA)-induced osteoarthritis (OA), and IL-6/IL-6sR-induced inflammation. We also evaluated efficacy of gemcabene in collagen antibody-induced joint swelling and arthritis in BALB/c mice. In CITH rat model, gemcabene administration attenuated paw withdrawal latency (60% at 30 mg/kg/d and 97% at 100 mg/kg/d) and showed improvement in joint swelling (-50% at 30 mg/kg/d) in MIA model of OA. These findings were further corroborated by IL-6/IL-6sR knee injection model in rat, showing 63 and 71% reduction in hind paw weight distribution at 10 and 30 mg/kg/d doses, respectively. In mouse model of monoclonal antibody-induced arthritis, a dose-dependent attenuation of joint swelling was observed. These results demonstrate that the anti-inflammatory activity of gemcabene previously observed in cell-based and in clinical studies also occurred in animal models of inflammation-induced arthritis and hyperalgesia. Thus, in addition to hypolipidemic efficacy, the anti-inflammatory activity of gemcabene may have additional benefits to patients with elevated vascular inflammation.
Collapse
|
124
|
Yatam S, Gundla R, Jadav SS, Pedavenkatagari NR, Chimakurthy J, Rani B N, Kedam T. Focused library design and synthesis of 2-mercapto benzothiazole linked 1,2,4-oxadiazoles as COX-2/5-LOX inhibitors. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.01.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
125
|
Theisen E, McDougal CE, Nakanishi M, Stevenson DM, Amador-Noguez D, Rosenberg DW, Knoll LJ, Sauer JD. Cyclooxygenase-1 and -2 Play Contrasting Roles in Listeria-Stimulated Immunity. THE JOURNAL OF IMMUNOLOGY 2018; 200:3729-3738. [PMID: 29678951 DOI: 10.4049/jimmunol.1700701] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 04/03/2018] [Indexed: 01/11/2023]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit cyclooxygenase (COX) activity and are commonly used for pain relief and fever reduction. NSAIDs are used following childhood vaccinations and cancer immunotherapies; however, how NSAIDs influence the development of immunity following these therapies is unknown. We hypothesized that NSAIDs would modulate the development of an immune response to Listeria monocytogenes-based immunotherapy. Treatment of mice with the nonspecific COX inhibitor indomethacin impaired the generation of cell-mediated immunity. This phenotype was due to inhibition of the inducible COX-2 enzyme, as treatment with the COX-2-selective inhibitor celecoxib similarly inhibited the development of immunity. In contrast, loss of COX-1 activity improved immunity to L. monocytogenes Impairments in immunity were independent of bacterial burden, dendritic cell costimulation, or innate immune cell infiltrate. Instead, we observed that PGE2 production following L. monocytogenes is critical for the formation of an Ag-specific CD8+ T cell response. Use of the alternative analgesic acetaminophen did not impair immunity. Taken together, our results suggest that COX-2 is necessary for optimal CD8+ T cell responses to L. monocytogenes, whereas COX-1 is detrimental. Use of pharmacotherapies that spare COX-2 activity and the production of PGE2 like acetaminophen will be critical for the generation of optimal antitumor responses using L. monocytogenes.
Collapse
Affiliation(s)
- Erin Theisen
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | - Courtney E McDougal
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | - Masako Nakanishi
- Center for Molecular Medicine, University of Connecticut Health Center, Farmington, CT 06030; and
| | - David M Stevenson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
| | | | - Daniel W Rosenberg
- Center for Molecular Medicine, University of Connecticut Health Center, Farmington, CT 06030; and
| | - Laura J Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706;
| |
Collapse
|
126
|
Gao J, Mfuh A, Amako Y, Woo CM. Small Molecule Interactome Mapping by Photoaffinity Labeling Reveals Binding Site Hotspots for the NSAIDs. J Am Chem Soc 2018. [PMID: 29543447 DOI: 10.1021/jacs.7b11639] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jinxu Gao
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, United States
| | - Adelphe Mfuh
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, United States
| | - Yuka Amako
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, United States
| | - Christina M. Woo
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, United States
| |
Collapse
|
127
|
Asiry MA. Biological aspects of orthodontic tooth movement: A review of literature. Saudi J Biol Sci 2018; 25:1027-1032. [PMID: 30174498 PMCID: PMC6117289 DOI: 10.1016/j.sjbs.2018.03.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 01/26/2023] Open
Abstract
This review of literature describes the cellular and molecular biology of orthodontic tooth movement, including various theories and effect of chemical mediators on tooth movement. The better understanding of the tooth movement mechanism will inspire the clinicians to design and implement effective appliances that will result in maximum benefits and minimum tissue damage to the patients. This paper also emphasizes the applied aspect of different medication and hormones, during orthodontic treatment, on the signaling molecules which produce bone remodeling.
Collapse
Affiliation(s)
- Moshabab A Asiry
- Department of Paediatric Dentistry and Orthodontics, College of Dentistry, King Saud University, Building No 3500, Riyadh 12372-7325 Saudi Arabia
| |
Collapse
|
128
|
Small AH, Marini D, Dyall T, Paull D, Lee C. A randomised field study evaluating the effectiveness of buccal meloxicam and topical local anaesthetic formulations administered singly or in combination at improving welfare of female Merino lambs undergoing surgical mulesing and hot knife tail docking. Res Vet Sci 2018; 118:305-311. [PMID: 29567597 DOI: 10.1016/j.rvsc.2018.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 02/05/2018] [Accepted: 03/07/2018] [Indexed: 11/24/2022]
Abstract
This study was a field-based behavioural assessment of the pain responses to surgical mulesing modulated by a buccal formulation of meloxicam (Buccalgesic) and a topical local anaesthetic wound dressing (Tri-Solfen). 20 lambs were randomly allocated to each of: 1) Placebo and sham handled (Sham); 2) Placebo and mulesing (Mules); 3) Buccalgesic and mulesing (Mules+B); 4) Tri-Solfen and mulesing (Mules+T); 5) Placebo, Tri-Solfen and mulesing (Mules+T+P); 6) Buccalgesic, Tri-Solfen and mulesing (Mules+T+B). Lamb behaviour was observed by scan sampling every 15 min for 6 h post mulesing then for 1.5 h daily over the subsequent 10 days. Wound score, wound sensitivity and body weight were recorded on day 4, 7 and 10. On the day of mulesing, abnormal behaviours were reduced for all groups that received the analgesic drugs compared to the Mules group (P < 0.05). Tri-Solfen reduced expression of abnormal behaviours in the first 4 h; Buccalgesic reduced expression of abnormal behaviours between 2 and 6 h; and combination treatment reduced expression of abnormal behaviours over the entire observation period. On the subsequent two days, the drug combination resulted in fewer abnormal postures than Tri-Solfen alone. The drug combination tended to result in lower pain sensitivity (965.3 g tolerated) than either Mules+T+P (828.8 g), or Mules+B (791.2 g) on day 7 (P < 0.05). Use of Tri-Solfen and Buccalgesic singly or in combination improved the welfare of lambs undergoing surgical mulesing. The residual effect of pain and discomfort caused by mulesing, were evident despite provision of analgesic drugs.
Collapse
Affiliation(s)
- Alison Holdhus Small
- CSIRO Agriculture & Food, FD McMaster Laboratory, New England Highway, Armidale, NSW 2350, Australia.
| | - Danila Marini
- CSIRO Agriculture & Food, FD McMaster Laboratory, New England Highway, Armidale, NSW 2350, Australia
| | - Tim Dyall
- CSIRO Agriculture & Food, FD McMaster Laboratory, New England Highway, Armidale, NSW 2350, Australia
| | - David Paull
- CSIRO Agriculture & Food, FD McMaster Laboratory, New England Highway, Armidale, NSW 2350, Australia
| | - Caroline Lee
- CSIRO Agriculture & Food, FD McMaster Laboratory, New England Highway, Armidale, NSW 2350, Australia
| |
Collapse
|
129
|
Small AH, Marini D, le Floch M, Paull D, Lee C. A pen study evaluation of buccal meloxicam and topical anaesthetic at improving welfare of lambs undergoing surgical mulesing and hot knife tail docking. Res Vet Sci 2018. [PMID: 29539592 DOI: 10.1016/j.rvsc.2018.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Mulesing is a painful husbandry procedure commonly used to reduce the risk of breech strike in sheep. This study assessed the behavioural (over 6 h), cortisol, haptoglobin and haematology responses to surgical mulesing plus tail hot knife docking (mulesing); modulated by a buccal meloxicam formulation (Buccalgesic), a topical local anaesthetic wound dressing (Tri-Solfen) or both agents. 24 lambs were allocated to each of: 1) Placebo and sham handled (Sham); 2) Placebo and mulesing (Mules); 3) Buccalgesic and mulesing (Mules + B); 4) Tri-Solfen and mulesing (Mules + T); 5) Placebo, Tri-Solfen and mulesing (Mules + T + P); 6) Buccalgesic, Tri-Solfen and mulesing (Mules + T + B). Compared with Mules, Mules + T had a lower cortisol response (72.5 ± 8.7 nmol/L v 122.9 ± 8.7 nmol/L) at 30 min, reduced statue standing at 2 h (3.9% v 11.4%) and increased lying (20.9-25.0% v 7.3-12.5%). Mules + B had reduced cortisol response at 6 h (48.1 ± 8.5 nmol/L), reduced Neutrophil:Lymphocyte ratio at 6 h (Mules + B: 1.25; Mules: 2.44), reduced statue standing at 2 h and 4-6 h (4.1-8.3%), and increased lying at 5 h (27.4%). Mules + B + T had lower cortisol concentrations at 30 mins (86.51 ± 8.71 nmol/L), TWCC not significantly different from Sham at 6 h (9.07 vs 8.09) and 24 h (9.05 vs 8.38). Mules + T + B had significantly lower TWCC than Mules at 12 h (9.56 vs 11.05) and 24 h (9.05 vs 10.42). Mules + T + B did not.
Collapse
Affiliation(s)
- Alison Holdhus Small
- CSIRO Agriculture & Food, FD McMaster Laboratory, New England Highway, Armidale, NSW 2350, Australia.
| | - Danila Marini
- CSIRO Agriculture & Food, FD McMaster Laboratory, New England Highway, Armidale, NSW 2350, Australia
| | - Maxime le Floch
- CSIRO Agriculture & Food, FD McMaster Laboratory, New England Highway, Armidale, NSW 2350, Australia
| | - David Paull
- CSIRO Agriculture & Food, FD McMaster Laboratory, New England Highway, Armidale, NSW 2350, Australia
| | - Caroline Lee
- CSIRO Agriculture & Food, FD McMaster Laboratory, New England Highway, Armidale, NSW 2350, Australia
| |
Collapse
|
130
|
Wang S, Zhang D, Hu J, Jia Q, Xu W, Su D, Song H, Xu Z, Cui J, Zhou M, Yang J, Xiao J. A clinical and mechanistic study of topical borneol-induced analgesia. EMBO Mol Med 2018; 9:802-815. [PMID: 28396565 PMCID: PMC5452010 DOI: 10.15252/emmm.201607300] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bingpian is a time‐honored herb in traditional Chinese medicine (TCM). It is an almost pure chemical with a chemical composition of (+)‐borneol and has been historically used as a topical analgesic for millennia. However, the clinical efficacy of topical borneol lacks stringent evidence‐based clinical studies and verifiable scientific mechanism. We examined the analgesic efficacy of topical borneol in a randomized, double‐blind, placebo‐controlled clinical study involving 122 patients with postoperative pain. Topical application of borneol led to significantly greater pain relief than placebo did. Using mouse models of pain, we identified the TRPM8 channel as a molecular target of borneol and showed that topical borneol‐induced analgesia was almost exclusively mediated by TRPM8, and involved a downstream glutamatergic mechanism in the spinal cord. Investigation of the actions of topical borneol and menthol revealed mechanistic differences between borneol‐ and menthol‐induced analgesia and indicated that borneol exhibits advantages over menthol as a topical analgesic. Our work demonstrates that borneol, which is currently approved by the US FDA to be used only as a flavoring substance or adjuvant in food, is an effective topical pain reliever in humans and reveals a key part of the molecular mechanism underlying its analgesic effect.
Collapse
Affiliation(s)
- Shu Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Dan Zhang
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Jinsheng Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Qi Jia
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Wei Xu
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Deyuan Su
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Hualing Song
- Department of Preventive Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhichun Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Jianmin Cui
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO, USA
| | - Ming Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jian Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China .,Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Jianru Xiao
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai, China
| |
Collapse
|
131
|
Boukharsa Y, Lakhlili W, El harti J, Meddah B, Tiendrebeogo RY, Taoufik J, El Abbes Faouzi M, Ibrahimi A, Ansar M. Synthesis, anti-inflammatory evaluation in vivo and docking studies of some new 5-(benzo[b]furan-2-ylmethyl)-6-methyl-pyridazin- 3(2H) -one derivatives. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.09.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
132
|
Ibuprofen impairs capsulolabral healing in a rat model of anterior glenohumeral instability. J Shoulder Elbow Surg 2018; 27:315-324. [PMID: 29195899 DOI: 10.1016/j.jse.2017.09.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/10/2017] [Accepted: 09/20/2017] [Indexed: 02/01/2023]
Abstract
BACKGROUND Failure of glenoid labrum and capsular healing after glenohumeral dislocation can lead to persistent shoulder instability. The purpose of this study was to determine the effect of nonsteroidal anti-inflammatory drugs (NSAIDs) on the healing glenoid labrum and capsule after glenohumeral dislocation in a rat model. METHODS Sixty-six rats had surgically induced anterior-inferior labral tears and anterior glenohumeral dislocation. Postoperatively, the animals were assigned to either normal (n = 32) or ibuprofen drinking water (n = 31). Animals were euthanized at 2 and 4 weeks postoperatively for biomechanical testing and histologic analysis. RESULTS The maximum load increased from 2 to 4 weeks after injury in the NSAID groups but not in the control groups. At 2 weeks, the maximum load was lower in the NSAID group compared with the control group. In a matched comparison between injured and uninjured limbs, the maximum load was significantly decreased in the injured limb of the 2-week NSAID group. At 4 weeks, the NSAID group had decreased stiffness compared with the 4-week control group. CONCLUSIONS In a new rat model of glenohumeral instability, the postinjury administration of ibuprofen resulted in decreased capsulolabral healing. A matched pair analysis of injured to uninjured limbs supported the findings of impaired healing in the NSAID-treated animals. These findings demonstrate that the use of NSAIDs after glenohumeral dislocation may impair capsulolabral healing and should be limited or avoided to optimize glenohumeral stability.
Collapse
|
133
|
Abstract
Humans swallow a great variety and often large amounts of chemicals as nutrients, incidental food additives and contaminants, drugs, and inhaled particles and chemicals, thus exposing the gastrointestinal tract to many potentially toxic substances. It serves as a barrier in many cases to protect other components of the body from such substances and infections. Fortunately, the gastrointestinal tract is remarkably robust and generally is able to withstand multiple daily assaults by the chemicals to which it is exposed. Some chemicals, however, can affect one or more aspects of the gastrointestinal tract to produce abnormal events that reflect toxicity. It is the purpose of this chapter to evaluate the mechanisms by which toxic chemicals produce their deleterious effects and to determine the consequences of the toxicity on integrity of gastrointestinal structure and function. Probably because of the intrinsic ability of the gastrointestinal tract to resist toxic chemicals, there is a paucity of data regarding gastrointestinal toxicology. It is therefore necessary in many cases to extrapolate toxic mechanisms from infectious processes, inflammatory conditions, ischemia, and other insults in addition to more conventional chemical sources of toxicity.
Collapse
|
134
|
The Effects of Thai Herbal Ha-Rak Formula on COX Isoform Expression in Human Umbilical Vein Endothelial Cells Induced by IL-1 β. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:9383272. [PMID: 29234444 PMCID: PMC5682063 DOI: 10.1155/2017/9383272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 09/27/2017] [Indexed: 11/18/2022]
Abstract
Objective To investigate the modulated effects of HRF on cyclooxygenase isoform expression and its activity, using the human umbilical vein endothelial cell (HUVEC) model induced by interleukin-1 beta (IL-1β). Methods Cells were treated with indomethacin (positive control), HRF, and its components at various concentrations prior to treatment with IL-1β at 24 h. Cell viability was determined by MTT assay. Moreover, the anti-inflammatory effects of HRF and its components through mRNA and protein expression were established using real-time quantitative PCR and Western blot, respectively. COX activity was identified via exogenous and endogenous PGE2 productions using the EIA. Result There was no cytotoxicity in HUVECs treated with HRF. None of the experimental conditions used in the study affected the expression of COX-1, but COX-2 protein expression was inhibited at concentrations under 10 µg/mL. Despite the significantly increased levels of exogenous PGE2, HRF had no effect on COX-2 mRNA expression. However, the production of PGE2 was lower at a concentration of 100 µg/mL HRF than at a concentration below 10 µg/mL. Interestingly, each component of HRF revealed different effects of the Ha-Rak formula. Conclusion Our preliminary findings suggest that HRF and its components provide diverse modulation of COX-2 and PGE2 at the in vitro level.
Collapse
|
135
|
Abotsi WKM, Lamptey SB, Afrane S, Boakye-Gyasi E, Umoh RU, Woode E. An evaluation of the anti-inflammatory, antipyretic and analgesic effects of hydroethanol leaf extract of Albizia zygia in animal models. PHARMACEUTICAL BIOLOGY 2017; 55:338-348. [PMID: 27927089 PMCID: PMC6130645 DOI: 10.1080/13880209.2016.1262434] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
CONTEXT The leaves of Albizia zygia (DC.) J.F. Macbr. (Leguminosae-Mimosoideae) are used in Ghanaian traditional medicine for the treatment of pain, inflammatory disorders and fever (including malaria). OBJECTIVES The present study evaluated the anti-inflammatory, antipyretic and analgesic effects of the hydroethanol leaf extract of Albizia zygia (AZE) in animal models. MATERIALS AND METHODS The anti-inflammatory and antipyretic effects of AZE were examined in the carrageenan-induced foot oedema model and the baker's yeast-induced pyrexia test respectively. The analgesic effect and possible mechanisms of action were also assessed in the formalin test. RESULTS AZE (30-300 mg/kg, p.o.), either preemptively or curatively, significantly inhibited carrageenan-induced foot edema in 7-day-old chicks (ED50 values; preemptive: 232.9 ± 53.33 mg/kg; curative: 539.2 ± 138.28 mg/kg). Similarly, the NSAID diclofenac (10-100 mg/kg, i.p.) significantly reduced the oedema in both preemptive (ED50: 21.16 ± 4.07 mg/kg) and curative (ED50: 44.28 ± 5.75 mg/kg) treatments. The extract (30-300 mg/kg, p.o.) as well as paracetamol (150 mg/kg, p.o.) also showed significant antipyretic activity in the baker's yeast-induced pyrexia test (ED50 of AZE: 282.5 ± 96.55 mg/kg). AZE and morphine (1-10 mg/kg, i.p.; positive control), exhibited significant analgesic activity in the formalin test. The analgesic effect was partly or wholly reversed by the systemic administration of naloxone, theophylline and atropine. CONCLUSION The results suggest that AZE possesses anti-inflammatory, antipyretic and analgesic properties, which justifies its traditional use. Also, the results show the involvement of the opioidergic, adenosinergic and the muscarinic cholinergic pathways in the analgesic effects of AZE.
Collapse
Affiliation(s)
- Wonder Kofi Mensah Abotsi
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science & Technology, Kumasi, Ghana
- CONTACT Wonder Kofi Mensah Abotsi, Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science & Technology, Kumasi, Ghana
| | - Stanley Benjamin Lamptey
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science & Technology, Kumasi, Ghana
| | - Stephen Afrane
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science & Technology, Kumasi, Ghana
| | - Eric Boakye-Gyasi
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science & Technology, Kumasi, Ghana
| | - Ruth Uwa Umoh
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science & Technology, Kumasi, Ghana
| | - Eric Woode
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science & Technology, Kumasi, Ghana
| |
Collapse
|
136
|
Discovery of a COX-2 selective inhibitor hit with anti-inflammatory activity and gastric ulcer protective effect. Future Med Chem 2017; 9:1899-1912. [PMID: 29076755 DOI: 10.4155/fmc-2017-0115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM A novel series of 2-arylimino-5-arylidenethiazolidin-4-ones 12a-n were synthesized and all the target compounds were fully characterized by IR, 1H NMR, 13C NMR, mass spectroscopy and elemental analysis. Materials & methods: All the target compounds were evaluated for their COX inhibition by enzyme immunoassay kit and in vivo anti-inflammatory activity. RESULTS Tested compounds were found more potent inhibitors of COX-2 (IC50 = 0.54-3.14 µM) than COX-1 (IC50 = 4.97-11.52 µM). The ulcerogenic liability of compounds 12(d, e, f, h, k, m) was performed and showed gastric safety more than or comparable to celecoxib. CONCLUSION In addition, docking study of the most potent and selective compound 12h into COX-2 active site revealed that this target compound assumed interactions and binding pattern similar to that of as a cocrystallized ligand bromocelecoxib (S-58).
Collapse
|
137
|
Protective Effects of Red Ginseng Oil against Aβ 25-35-Induced Neuronal Apoptosis and Inflammation in PC12 Cells. Int J Mol Sci 2017; 18:ijms18102218. [PMID: 29065557 PMCID: PMC5666897 DOI: 10.3390/ijms18102218] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 02/07/2023] Open
Abstract
One of pathological characteristics of Alzheimer's disease (AD), aggregation and deposition of β amyloid (Aβ), has been accepted as a potent activator of neuronal cell death. Red ginseng is well-known for various pharmacological activities, but most studies have been focused on red ginseng water extract (RGW), which has resulted in the conception of the present study of red ginseng oil (RGO) against Aβ25-35-induced neurotoxicity. Cytotoxicity and apoptosis induction by Aβ were verified and the underlying mechanism by which RGO inhibited neuronal cell death, mitochondria dysfunction and NF-κB pathway related protein markers were evaluated. RGO attenuated Aβ25-35-induced apoptosis, not only by inhibiting calcium influx, but also by reducing mitochondrial membrane potential loss. RGO significantly decreased Bax, whereas increased Bcl-2 and inactivated of caspase-3 and -9 and PARP-1 stimulated by Aβ25-35. Anti-neuroinflammatory effect of RGO was demonstrated by downregulating c-Jun N-terminal kinase (JNK) and p38, resulting in inhibiting of the NF-κB pathway and thereby suppressing the expressions of pro-inflammatory mediators such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), prostaglandin E₂ (PGE₂), nitric oxide (NO) and tumor necrosis factor-α (TNF-α). The present study revealed that RGO is a potential natural resource of the functional foods industry as well as a promising candidate of multi-target neuronal protective agent for the prevention of AD.
Collapse
|
138
|
Zhang Z, Zhu J, Dong Y, Xu H, Jiang T, Li W, Xu D, Shi L, Yu J, Zhang J, Du J. Global transcriptome‑wide analysis of the function of GDDR in acute gastric lesions. Mol Med Rep 2017; 16:8673-8684. [PMID: 28990076 PMCID: PMC5779945 DOI: 10.3892/mmr.2017.7687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/25/2017] [Indexed: 12/25/2022] Open
Abstract
Acute gastric lesions induced by stress are frequent occurrences in medical establishments. The gastric dramatic downrelated gene (GDDR) is a secreted protein, which is abundantly expressed in normal gastric epithelia and is significantly decreased in gastric cancer. In our previous study, it was found that GDDR aggravated stress-induced acute gastric lesions. However, the role of GDDR in acute gastric lesions remains to be fully elucidated. In the present study, RNA sequencing was performed in order to examine the gene expression profile regulated by GDDR in acute gastric lesions. The dataset comprised four stomach samples from wild-type (WT) mice and four stomach samples from GDDR-knockout mice. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to analyze the differentially-expressed genes (DEGs). Weighted correlation network analysis was used to identify clusters of highly correlated genes. Cytoscape was used to construct a protein-protein interaction network (PPI) of the DEGs. Based on the GO analysis, the upregulated DEGs were distinctly enriched in muscle contraction and response to wounding; and the downregulated DEGs were significantly enriched in the regulation of nitrogen compound metabolic process and regulation of RNA metabolic process. The results of the KEGG pathway analysis showed that the upregulated DEGs were enriched in ECM-receptor interaction and the signaling pathway of cGMP-PKG, and the downregulated DEGs were enriched in the renin-angiotensin system and glycerolipid metabolism. The co-expression network revealed a group of genes, which were associated with increased wound healing in the WT mice. Significant pathways were identified through the PPI network, including negative regulation of the signaling pathway of glucocorticoid receptor, regulation of cellular stress response, and regulation of hormone secretion. In conclusion, the present study improves current understanding of the molecular mechanism underlying acute gastric lesions and may assist in the treatment of gastric lesions.
Collapse
Affiliation(s)
- Ziqiang Zhang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jie Zhu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yuanqiang Dong
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Hongyuan Xu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Tao Jiang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Wenshuai Li
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Diannan Xu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Liubin Shi
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jianghong Yu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jun Zhang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jianjun Du
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
139
|
Yoshida E, Kurita M, Eto K, Kumagai Y, Kaji T. Methylmercury promotes prostacyclin release from cultured human brain microvascular endothelial cells via induction of cyclooxygenase-2 through activation of the EGFR-p38 MAPK pathway by inhibiting protein tyrosine phosphatase 1B activity. Toxicology 2017; 392:40-46. [PMID: 28958600 DOI: 10.1016/j.tox.2017.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/22/2017] [Accepted: 09/24/2017] [Indexed: 12/26/2022]
Abstract
Methylmercury is an environmental pollutant that exhibits neurotoxicity when ingested, primarily in the form of neuropathological lesions that localize along deep sulci and fissures, in addition to edematous and inflammatory changes in patient cerebrums. These conditions been known to give rise to a variety of ailments that have come to be collectively termed Minamata disease. Since prostaglandins I2 and E2 (PGI2 and PGE2) increase vascular permeability and contribute to the progression of inflammatory changes, we hypothesize that methylmercury induces the synthesis of these prostaglandins in brain microvascular endothelial cells and pericytes. To test this theory, human brain microvascular endothelial cells and pericytes were cultured and treated with methylmercury, after which the PGI2 and PGE2 released from endothelial cells and/or pericytes were quantified by enzyme-linked immunosorbent assay while protein and mRNA expressions in endothelial cells were analyzed by western blot analysis and real-time reverse transcription polymerase chain reaction, respectively. Experimental results indicate that methylmercury inhibits the activity of protein tyrosine phosphatase 1B, which in turn activates the epidermal growth factor receptor-p38 mitogen-activated protein kinase pathway that induces cyclooxygenase-2 expression. It was also found that the cyclic adenosine 3',5'-monophosphate pathway, which can be activated by PGI2 and PGE2, is involved in methylmercury-induced cyclooxygenase-2 expression. Since it appears that protein tyrosine phosphatase 1 B serves as a sensor protein for methylmercury in these mechanisms, it is our belief that the results of the present study may provide additional insights into the molecular mechanisms responsible for edematous and inflammatory changes in the cerebrum of patients with Minamata disease.
Collapse
Affiliation(s)
- Eiko Yoshida
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Masaru Kurita
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Komyo Eto
- Health and Nursing Facilities for the Aged, Jushindai, Shinwakai, 272 Ikura Kitakata, Tamana 865-0041, Japan
| | - Yoshito Kumagai
- Environmental Biology Section, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Toshiyuki Kaji
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan.
| |
Collapse
|
140
|
Yadav DK, Saloni, Sharma P, Misra S, Singh H, Mancera RL, Kim K, Jang C, Kim MH, Pérez-Sánchez H, Choi EH, Kumar S. Studies of the benzopyran class of selective COX-2 inhibitors using 3D-QSAR and molecular docking. Arch Pharm Res 2017; 41:1178-1189. [PMID: 28822076 DOI: 10.1007/s12272-017-0945-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 07/31/2017] [Indexed: 02/02/2023]
Abstract
The Gaussian-based 3D-QSAR studies for 58 selective COX-2 (cyclooxygenase-2) inhibitors belonging to benzopyran chemical class were performed. Partial least squares analysis produced statistically significant model with (R training 2 = 0.866) and predictability (Q training 2 = 0.66, Q test 2 = 0.846). The 3D-QSAR model includes steric, electrostatic, hydrophobic, and hydrogen bond acceptor field indicators, whereas the potential field contributions indicate that the steric and hydrophobic features of the molecules play an important role in governing their biological activity. A molecular docking simulation and protein-ligand interaction pattern analysis reveal the importance of Tyr-361 and Ser-516 of the COX-2 active site for X-ray crystal structures and this class of molecules. Thus the combined approach of ligand-based and structure-based models provided an improved understanding in the interaction between benzopyran chemical class and COX-2 inhibition, which will guide the future identification of more potent anti-inflammatory drugs.
Collapse
Affiliation(s)
- Dharmendra K Yadav
- College of Pharmacy, Gachon University, Hambakmoeiro 191, Yeonsu-gu, Incheon City, 406-799, Korea.
| | - Saloni
- College of Pharmacy, Gachon University, Hambakmoeiro 191, Yeonsu-gu, Incheon City, 406-799, Korea
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Sanjeev Misra
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Harpreet Singh
- Department of Bioinformatics, Indian Council of Medical Research, New Delhi, India
| | - Ricardo L Mancera
- School of Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Kang Kim
- College of Pharmacy, Gachon University, Hambakmoeiro 191, Yeonsu-gu, Incheon City, 406-799, Korea
| | - Cheongyun Jang
- College of Pharmacy, Gachon University, Hambakmoeiro 191, Yeonsu-gu, Incheon City, 406-799, Korea
| | - Mi-Hyun Kim
- College of Pharmacy, Gachon University, Hambakmoeiro 191, Yeonsu-gu, Incheon City, 406-799, Korea
| | - Horacio Pérez-Sánchez
- Computer Science Department, Catholic University of Murcia (UCAM), E30107, Murcia, Spain
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Kwangwoon University, Nowon-Gu, Seoul, 139-701, Korea
| | - Surendra Kumar
- College of Pharmacy, Gachon University, Hambakmoeiro 191, Yeonsu-gu, Incheon City, 406-799, Korea.
| |
Collapse
|
141
|
Pharmacological evaluation and molecular docking of new di-tert-butylphenol compound, LQFM-091, a new dual 5-LOX/COX inhibitor. Eur J Pharm Sci 2017; 106:231-243. [DOI: 10.1016/j.ejps.2017.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/08/2017] [Accepted: 06/05/2017] [Indexed: 11/24/2022]
|
142
|
Begum R, Sheliya MA, Mir SR, Singh E, Sharma M. Inhibition of proinflammatory mediators by coumaroyl lupendioic acid, a new lupane-type triterpene from Careya arborea, on inflammation-induced animal model. JOURNAL OF ETHNOPHARMACOLOGY 2017; 206:376-392. [PMID: 28502905 DOI: 10.1016/j.jep.2017.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 04/28/2017] [Accepted: 05/10/2017] [Indexed: 01/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Careya arborea Roxb. (Lecythidaceae) is a large tree found throughout India in deciduous forests and grasslands. C. arborea is traditionally used in tumors, inflammation, anthelmintic, bronchitis, epileptic fits, astringents, antidote to snake-venom, skin disease, diarrhea, dysentery with bloody stools, dyspepsia, ulcer, tooth ache, and ear pain. AIM OF THE STUDY In our previous work, the methanolic extract of Careya arborea stem bark showed significant anti-inflammatory activity. As a continuity of that work, this study aimed at the isolation and evaluation of the anti-inflammatory effect of coumaroyl lupendioic acid, a new lupane-type triterpene from Careya arborea stem bark. Further, to give an insight into the underlying mechanism of action of the compound on the modulation of proinflammatory mediators. MATERIALS AND METHODS Methanolic extract of Careya arborea stem bark was suspended in water, and sequentially fractionated with n-hexane and ethyl acetate. Further ethyl acetate fraction was subjected to medium pressure liquid chromatography (MPLC) to isolate the active molecules. The isolated compounds were characterized by the various spectral techniques namely UV, IR, 1H NMR, 13C NMR, DEPT, 1H-1H COSY, HMBC and Mass spectral techniques. In vitro COX-1 and COX-2 enzyme inhibition assays using human whole blood was performed to investigate the inhibitory effect of the isolated compounds. The resulted potent COX-2 inhibitor of the isolated constituents compound 5, designated as coumaroyl lupendioic acid (CLA), was investigated in carrageenan induced inflammation and its effect was also compared with betulinic acid (BA) at the doses of 10 and 20mgkg-1, p.o. using indomethacin and celecoxib (10 and 20mgkg-1, p.o., respectively) as reference drugs. The effect of CLA on the production of NO, MPO, PGE2, TNF-α, IL-1β and IL-6 were assessed. In addition, the histopathology and immunohistochemistry (NF-ҡB, COX-2 and TNF-α protein expression) in paw tissues were also carried out. RESULTS The chromatographic fractionation of the methanolic extract resulted in isolation of six new derivatives of lupane type triterpenes for the first time from the stem bark of C. arborea; 3β-hydroxy-lup-5,20 (29),21-trien-28-oic acid (Compound 1), 1, 3, 13, 16-tetrahydroxy-lup-9(11), 20(29)-diene-28-oic acid (Compound 2), 1, 7-di hydroxy betulinic acid (Compound 3), 3β-O-dihydrocinnamyl betulinic acid (Compound 4), 3β-O-trans-coumaryl-lup-6, 9(11), 20(29)-triene-27, 28-dioic acid (Compound 5), 16β-hydroxy-2, 3-seco-lup-5, 20(29)-dien-2, 3, 28-trioic acid (Compound 6). Among the all isolated compounds 3β-O-trans-coumaryl-lup-6, 9(11), 20(29)-triene-27, 28-olioic acid designated as coumaroyl lupendioic acid (CLA) showed higher COX-2 selectivity which is comparable to reference drug (celecoxib). CLA significantly reduced carrageenan induced inflammation whereas CLA revealed greater effect as compared to BA at the similar corresponding doses. Moreover, CLA significantly inhibited pro-inflammatory mediators elevated by carrageenan. CLA also preserved the tissue architecture as evidenced by the histopathology. Furthermore, immunohistochemical studies revealed that CLA significantly down regulated NF-ҡB, COX-2 and TNF-α protein expression. CONCLUSION The study gives an insight into the molecular mechanisms of coumaroyl lupendioic acid and suggests that the down-regulations of proinflammatory mediators provide credence to the ethno botanical use of the plant in the management of inflammation.
Collapse
Affiliation(s)
- Rayhana Begum
- Department of Pharmacy, Primeasia University, Dhaka, Bangladesh
| | - Manjur Ali Sheliya
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, New Delhi, India
| | - Showkat R Mir
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Hamdard University, New Delhi, India
| | - Ekta Singh
- National Institute for Stroke and Applied Neuroscience, Auckland University of Technology, Auckland, New Zealand
| | - Manju Sharma
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, New Delhi, India.
| |
Collapse
|
143
|
Han BH, Lee YJ, Yoon JJ, Choi ES, Namgung S, Jin XJ, Jeong DH, Kang DG, Lee HS. Hwangryunhaedoktang exerts anti-inflammation on LPS-induced NO production by suppressing MAPK and NF-κB activation in RAW264.7 macrophages. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2017; 15:326-336. [DOI: 10.1016/s2095-4964(17)60350-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
144
|
El Jemli M, Kamal R, Marmouzi I, Doukkali Z, Bouidida EH, Touati D, Nejjari R, El Guessabi L, Cherrah Y, Alaoui K. Chemical composition, acute toxicity, antioxidant and anti-inflammatory activities of Moroccan Tetraclinis articulata L. J Tradit Complement Med 2017; 7:281-287. [PMID: 28725621 PMCID: PMC5506650 DOI: 10.1016/j.jtcme.2016.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 06/04/2016] [Accepted: 06/22/2016] [Indexed: 11/25/2022] Open
Abstract
Hydro-distilled essential oil (EO) from the leaves of the western Mediterranean and Moroccan endemic plant Tetraclinis articulata was analyzed by GC/MS and examined for its acute toxicity on mice, in order to establish the safe doses. Furthermore, the anti-Inflammatory activity was evaluated based on carrageenan and trauma induced rats paw edema and the antioxidant potential has been investigated using different methods including DPPH radical-scavenging assay, Trolox equivalent antioxidant capacity (TEAC) and Ferric-reducing antioxidant power assay (FRAP). The major identified compounds in GC/MS analysis were bornyl acetate (26.81%), camphor (22.40%) and α-pinene (7.16%), with 25 other minor constituents. No mortalities in acute toxicity were observed, indicating that the LD50 of T. articulata essential oil is highest than 5 g/kg. In the anti-inflammatory test based on chemical and mechanical induced trauma, the EO demonstrated an effective reduce swelling by 64.71 ± 9.38% and 69.09 ± 6.02% respectively obtained 6 h after administration at the dose of 200 mg/kg when compared to the control groups. Moreover in the antioxidant testing battery, T. articulata essential oil showed a promising scavenging effect measured by DPPH, TEAC and ferric-reducing power assays with IC50 values of 12.05 ± 0.24 mg/mL, 8.90 ± 0.17 mg/mL and 0.15 ± 0.01 mg/mL respectively. These results suggest that, the EO from the leaves of T. articulata constitutes a valuable source of anti-inflammatory and antioxidant metabolites. These findings argue for the possible integration of this oil in pharmaceutical, cosmetic and food industries.
Collapse
Key Words
- Anti-inflammatory activity
- Antioxidant potential
- BHT, Butylatedhydroxytoluene
- DPPH, 2,2-diphenyl-1-picrylhydrazyl radical-scavenging assay
- EO, Essential oil
- Essential oil
- FRAP, Ferric-reducing antioxidant power
- GC/MS, Gas chromatography/mass spectrometry
- GC–MS analysis
- IC50, Concentration providing 50% inhibition
- LD50, lethal dose of 50%
- SD, Standard deviation
- T. articulata
- T. articulata, Tetraclinis articulata
- TEAC, Trolox equivalent antioxidant capacity
- Toxicity
Collapse
Affiliation(s)
- Meryem El Jemli
- Pharmacodynamy Research Team ERP, Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Morocco
| | - Rabie Kamal
- Pharmacodynamy Research Team ERP, Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Morocco
| | - Ilias Marmouzi
- Pharmacodynamy Research Team ERP, Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Morocco
| | - Zouhra Doukkali
- Pharmacodynamy Research Team ERP, Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Morocco
| | - El Houcine Bouidida
- National Laboratory of Drugs Controlled, BP 6203, Rabat Instituts, Agdal, Rabat, Morocco
| | - Driss Touati
- Laboratory of Pharmacognosy, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Rachid Nejjari
- Laboratory of Pharmacognosy, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Lahcen El Guessabi
- Laboratory of Pharmacognosy, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Yahia Cherrah
- Pharmacodynamy Research Team ERP, Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Morocco
| | - Katim Alaoui
- Pharmacodynamy Research Team ERP, Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Morocco
| |
Collapse
|
145
|
Microglial TNFα Induces COX2 and PGI2 Synthase Expression in Spinal Endothelial Cells during Neuropathic Pain. eNeuro 2017; 4:eN-NWR-0064-17. [PMID: 28451639 PMCID: PMC5399753 DOI: 10.1523/eneuro.0064-17.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/28/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023] Open
Abstract
Prostaglandins (PGs) are typical lipid mediators that play a role in homeostasis and disease. They are synthesized from arachidonic acid by cyclooxygenase 1 (COX1) and COX2. Although COX2 has been reported to be upregulated in the spinal cord after nerve injury, its expression and functional roles in neuropathic pain remain unclear. In this study, we investigated the expression of Cox2, PGI2 synthase (Pgis), and prostaglandin I2 receptor (IP receptor) mRNA in the rat spinal cord after spared nerve injury (SNI). Levels of Cox2 and Pgis mRNA increased in endothelial cells from 24 to 48 h after nerve injury. IP receptor mRNA was constitutively expressed in dorsal horn neurons. A COX2 inhibitor and IP receptor antagonists attenuated pain behavior in the early phase of neuropathic pain. Furthermore, we examined the relationship between COX2 and tumor necrosis factor-α (TNFα) in the spinal cord of a rat SNI model. Levels of TNFα mRNA transiently increased in the spinal microglia 24 h after SNI. The TNF receptors Tnfr1 and Tnfr2 mRNA were colocalized with COX2. Intrathecal injection of TNFα induced Cox2 and Pgis mRNA expression in endothelial cells. These results revealed that microglia-derived TNFα induced COX2 and PGIS expression in spinal endothelial cells and that endothelial PGI2 played a critical role in neuropathic pain via neuronal IP receptor. These findings further suggest that the glia–endothelial cell interaction of the neurovascular unit via transient TNFα is involved in the generation of neuropathic pain.
Collapse
|
146
|
Ficus hispida Bark Extract Prevents Nociception, Inflammation, and CNS Stimulation in Experimental Animal Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:7390359. [PMID: 28491111 PMCID: PMC5405571 DOI: 10.1155/2017/7390359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/19/2017] [Accepted: 03/30/2017] [Indexed: 01/30/2023]
Abstract
Background. Ficus hispida is traditionally used in the ailment of pain, inflammation, and neurological disorders. The present study set out to evaluate the in vivo antinociceptive, anti-inflammatory, and sedative activity of the ethanol extract of Ficus hispida bark (EFHB). Methods. The antinociceptive activity of EFHB was evaluated by using acetic acid induced writhing, formalin, hot plate, and tail immersion methods in Swiss albino mice. Its anti-inflammatory activity was assessed by using carrageenan and histamine induced rat paw oedema test in Wister rats. The central stimulating activity was studied by using pentobarbital induced hypnosis, hole cross, and open field tests in Swiss albino mice. Results. EFHB demonstrated antinociceptive activity both centrally and peripherally. It showed 62.24% of writhing inhibition. It significantly inhibited licking responses in early (59.29%) and late phase (71.61%). It increased the reaction time to the thermal stimulus in both hot plate and tail immersion. It inhibited the inflammation to the extent of 59.49%. A substantial increase in duration of sleep up to 60.80 min and decrease of locomotion up to 21.70 at 400 mg/kg were also observed. Conclusion. We found significant dose dependent antinociceptive, anti-inflammatory, and sedative properties of EFHB in experimental animal models.
Collapse
|
147
|
Chen CL, Chen JT, Liang CM, Tai MC, Lu DW, Chen YH. Silibinin treatment prevents endotoxin-induced uveitis in rats in vivo and in vitro. PLoS One 2017; 12:e0174971. [PMID: 28376126 PMCID: PMC5380317 DOI: 10.1371/journal.pone.0174971] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/17/2017] [Indexed: 11/18/2022] Open
Abstract
Uveitis, an intraocular inflammatory disease, occurs mostly in young people and can result in the loss of socioeconomic capabilities. Silibinin has been shown to exert anti-inflammatory effects in human retinal pigment epithelial (RPE) cells. The present study investigated the anti-inflammatory effect of silibinin pretreatment on endotoxin-induced uveitis (EIU) in rats and the mechanisms by which it exerts these effects. Uveitis was induced via injection of lipopolysaccharides (LPS) into Lewis rats. Twenty-four hours after the LPS injection, histological examination showed that silibinin decreased inflammatory cell infiltration in the anterior segment of the eyes of LPS-treated rats. Analyses of the aqueous humor showed that silibinin decreased cell infiltration, protein concentration, nitric oxide (NO), and prostaglandin (PG)-E2 production. Western blot analysis indicated that silibinin decreased the expression of inducible NO synthase (iNOS), cyclooxygenase (COX-2), and phosphorylated IkB in the iris-ciliary body (ICB). Immunohistochemistry showed that silibinin decreased intercellular adhesion molecule (ICAM-1) expression in the ICB. In addition, western blot analysis showed that silibinin attenuated the expression of iNOS, COX-2, ICAM-1, and nuclear p65 in LPS-treated RAW cells. In conclusion, silibinin pretreatment prevents EIU and the subsequent production of proinflammatory mediators and ICAM-1, at least in part, by blocking the NF-κB–dependent signaling pathway both in vivo and in vitro. These effects may contribute to the silibinin-mediated preventive effects on intraocular inflammatory diseases such as acute uveitis.
Collapse
Affiliation(s)
- Ching-Long Chen
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jiann-Torng Chen
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chang-Min Liang
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Cheng Tai
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Da-Wen Lu
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Hao Chen
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
148
|
Seo MJ, Oh DK. Prostaglandin synthases: Molecular characterization and involvement in prostaglandin biosynthesis. Prog Lipid Res 2017; 66:50-68. [DOI: 10.1016/j.plipres.2017.04.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/30/2017] [Accepted: 04/01/2017] [Indexed: 01/30/2023]
|
149
|
Dias KST, de Paula CT, dos Santos T, Souza IN, Boni MS, Guimarães MJ, da Silva FM, Castro NG, Neves GA, Veloso CC, Coelho MM, de Melo ISF, Giusti FC, Giusti-Paiva A, da Silva ML, Dardenne LE, Guedes IA, Pruccoli L, Morroni F, Tarozzi A, Viegas C. Design, synthesis and evaluation of novel feruloyl-donepezil hybrids as potential multitarget drugs for the treatment of Alzheimer's disease. Eur J Med Chem 2017; 130:440-457. [DOI: 10.1016/j.ejmech.2017.02.043] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 01/04/2023]
|
150
|
Jiang X, Feng X, Huang H, Liu L, Qiao L, Zhang B, Yu W. The effects of rotenone-induced toxicity via the NF-κB-iNOS pathway in rat liver. Toxicol Mech Methods 2017; 27:318-325. [PMID: 28110601 DOI: 10.1080/15376516.2017.1285972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rotenone has been used as a pesticide for many years, it is an environmental poison reported to cause neurological diseases. However, the effects of rotenone on the rat liver are unclear, as are the mechanisms of toxicity. In the present study, Sprague-Dawley (SD) rats were divided into five groups: control, dimethyl sulfoxide (DMSO), rotenone low-dose (1 mg/kg), rotenone mid-dose (2 mg/kg) and rotenone high-dose (4 mg/kg). The treatments were orally administered daily for 28 days, we assessed health status, mRNA expression levels of inflammatory factors, protein levels, nitric oxide (NO) content and histological changes. The results showed that body weight was significantly decreased in each rotenone group in a dose-dependent manner, compared with the control group. Rotenone significantly increased the mRNA levels of cyclooxygenase-2 (COX-2), nuclear factor kappaB (NF-κB), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS) and tumor necrosis factor (TNF-α) in each rotenone group compared with the control group, except iNOS and TNF-α mRNA expression in the low-dose group. The protein levels of COX-2 were significantly higher in each rotenone group compared with the control group, NF-κB protein expression were significantly higher in the rotenone mid and high-dose groups, but not in the low-dose group, compared with the control group, similar changes were observed in NO content. Additionally, histological analysis revealed that the most severe tissue damage occurred in the high-dose group. These results indicated that rotenone has toxic effect in rat liver relating to inflammatory factors. Our findings provide insight into the mechanisms of rotenone hepatotoxicity.
Collapse
Affiliation(s)
- Xiaowen Jiang
- a Department of Veterinary Medicine , Northeast Agricultural University , Harbin , China
| | - Xinxin Feng
- a Department of Veterinary Medicine , Northeast Agricultural University , Harbin , China
| | - Hui Huang
- a Department of Veterinary Medicine , Northeast Agricultural University , Harbin , China
| | - Lin Liu
- a Department of Veterinary Medicine , Northeast Agricultural University , Harbin , China
| | - Lu Qiao
- a Department of Veterinary Medicine , Northeast Agricultural University , Harbin , China
| | - Binqing Zhang
- a Department of Veterinary Medicine , Northeast Agricultural University , Harbin , China
| | - Wenhui Yu
- a Department of Veterinary Medicine , Northeast Agricultural University , Harbin , China
| |
Collapse
|