101
|
Davis JN, Rogers D, Adams L, Yong T, Jung JS, Cheng B, Fennell K, Borazanci E, Moustafa YW, Sun A, Shi R, Glass J, Mathis JM, Williams BJ, Meyers S. Association of core-binding factor β with the malignant phenotype of prostate and ovarian cancer cells. J Cell Physiol 2010; 225:875-87. [DOI: 10.1002/jcp.22298] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
102
|
Otsubo K, Kanegane H, Eguchi M, Eguchi-Ishimae M, Tamura K, Nomura K, Abe A, Ishii E, Miyawaki T. ETV6-ARNT fusion in a patient with childhood T lymphoblastic leukemia. CANCER GENETICS AND CYTOGENETICS 2010; 202:22-6. [PMID: 20804916 DOI: 10.1016/j.cancergencyto.2010.07.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Revised: 06/14/2010] [Accepted: 07/08/2010] [Indexed: 01/09/2023]
Abstract
The ETS variant gene 6 (ETV6) gene is located at 12p13, and is frequently involved in translocations in various human neoplasms, resulting in the expression of fusion proteins consisting of the amino-terminal part of ETV6 and unrelated transcription factors or protein tyrosine kinases. Leukemia with t(1;12)(q21;p13) was previously described in a 5-year-old boy with acute myeloblastic leukemia (AML-M2) who exhibited a novel ETV6-aryl hydrocarbon receptor nuclear translocator (ARNT) fusion protein. We herein report the case of a 2-year-old boy with T-cell lymphoblastic leukemia (T-ALL) harboring t(1;12)(q21;p13). Fluorescence in situ hybridization (FISH) with a ETV6 dual-color DNA probe revealed that the split signals of the ETV6 gene in 96.7% of bone marrow cells, indicating rearrangement of the ETV6 gene. Therefore, we performed a FISH analysis with bacterial artificial chromosome (BAC) probes containing the ARNT, BCL9, and MLLT11 genes located at 1q21, and these results indicated that the ARNT gene might be involved in the t(1;12)(q21;p13). Reverse transcriptase-polymerase chain reaction analysis disclosed the existence of a ETV6-ARNT fusion gene. To our knowledge, the current report is novel in its report of the ETV6-ARNT fusion in childhood T-ALL. The ETV6-ARNT fusion is associated not only with AML but also with T-ALL.
Collapse
|
103
|
Green SM, Coyne HJ, McIntosh LP, Graves BJ. DNA binding by the ETS protein TEL (ETV6) is regulated by autoinhibition and self-association. J Biol Chem 2010; 285:18496-504. [PMID: 20400516 PMCID: PMC2881775 DOI: 10.1074/jbc.m109.096958] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 04/08/2010] [Indexed: 01/19/2023] Open
Abstract
The ETS protein TEL, a transcriptional repressor, contains a PNT domain that, as an isolated fragment in vitro, self-associates to form a head-to-tail polymer. How such polymerization might affect the DNA-binding properties of full-length TEL is unclear. Here we report that monomeric TEL binds to a consensus ETS site with unusually low affinity (K(d) = 2.8 x 10(-8) M). A deletion analysis demonstrated that the low affinity was caused by a C-terminal inhibitory domain (CID) that attenuates DNA binding by approximately 10-fold. An NMR spectroscopically derived structure of a TEL fragment, deposited in the Protein Data Bank, revealed that the CID consists of two alpha-helices, one of which appears to block the DNA binding surface of the TEL ETS domain. Based on this structure, we substituted two conserved glutamic acids (Glu-431 and Glu-434) with alanines and found that this activated DNA binding and enhanced trypsin sensitivity in the CID. We propose that TEL displays a conformational equilibrium between inhibited and activated states and that electrostatic interactions involving these negatively charged residues play a role in stabilizing the inhibited conformation. Using a TEL dimer as a model polymer, we show that self-association facilitates cooperative binding to DNA. Cooperativity was observed on DNA duplexes containing tandem consensus ETS sites at variable spacing and orientations, suggesting flexibility in the region of TEL linking its self-associating PNT domain and DNA-binding ETS domain. We speculate that TEL compensates for the low affinity, which is caused by autoinhibition, by binding to DNA as a cooperative polymer.
Collapse
Affiliation(s)
- Sean M. Green
- From the
Department of Oncological Sciences, University of Utah School of Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112-5550 and
| | - H. Jerome Coyne
- the
Department of Biochemistry and Molecular Biology, Department of Chemistry, and Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Lawrence P. McIntosh
- the
Department of Biochemistry and Molecular Biology, Department of Chemistry, and Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Barbara J. Graves
- From the
Department of Oncological Sciences, University of Utah School of Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112-5550 and
| |
Collapse
|
104
|
Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo. EMBO J 2010; 29:2147-60. [PMID: 20517297 PMCID: PMC2905244 DOI: 10.1038/emboj.2010.106] [Citation(s) in RCA: 451] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 05/04/2010] [Indexed: 12/30/2022] Open
Abstract
Members of the large ETS family of transcription factors (TFs) have highly similar DNA-binding domains (DBDs)—yet they have diverse functions and activities in physiology and oncogenesis. Some differences in DNA-binding preferences within this family have been described, but they have not been analysed systematically, and their contributions to targeting remain largely uncharacterized. We report here the DNA-binding profiles for all human and mouse ETS factors, which we generated using two different methods: a high-throughput microwell-based TF DNA-binding specificity assay, and protein-binding microarrays (PBMs). Both approaches reveal that the ETS-binding profiles cluster into four distinct classes, and that all ETS factors linked to cancer, ERG, ETV1, ETV4 and FLI1, fall into just one of these classes. We identify amino-acid residues that are critical for the differences in specificity between all the classes, and confirm the specificities in vivo using chromatin immunoprecipitation followed by sequencing (ChIP-seq) for a member of each class. The results indicate that even relatively small differences in in vitro binding specificity of a TF contribute to site selectivity in vivo.
Collapse
|
105
|
t(12:21) is underrepresented in childhood B-lineage acute lymphoblastic leukemia in Punjab, Pakistan. J Pediatr Hematol Oncol 2010; 32:249-51. [PMID: 20387268 DOI: 10.1097/mph.0b013e3181c9af65] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
106
|
Philipot O, Joliot V, Ait-Mohamed O, Pellentz C, Robin P, Fritsch L, Ait-Si-Ali S. The core binding factor CBF negatively regulates skeletal muscle terminal differentiation. PLoS One 2010; 5:e9425. [PMID: 20195544 PMCID: PMC2828485 DOI: 10.1371/journal.pone.0009425] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 02/03/2010] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Core Binding Factor or CBF is a transcription factor composed of two subunits, Runx1/AML-1 and CBF beta or CBFbeta. CBF was originally described as a regulator of hematopoiesis. METHODOLOGY/PRINCIPAL FINDINGS Here we show that CBF is involved in the control of skeletal muscle terminal differentiation. Indeed, downregulation of either Runx1 or CBFbeta protein level accelerates cell cycle exit and muscle terminal differentiation. Conversely, overexpression of CBFbeta in myoblasts slows terminal differentiation. CBF interacts directly with the master myogenic transcription factor MyoD, preferentially in proliferating myoblasts, via Runx1 subunit. In addition, we show a preferential recruitment of Runx1 protein to MyoD target genes in proliferating myoblasts. The MyoD/CBF complex contains several chromatin modifying enzymes that inhibits MyoD activity, such as HDACs, Suv39h1 and HP1beta. When overexpressed, CBFbeta induced an inhibition of activating histone modification marks concomitant with an increase in repressive modifications at MyoD target promoters. CONCLUSIONS/SIGNIFICANCE Taken together, our data show a new role for Runx1/CBFbeta in the control of the proliferation/differentiation in skeletal myoblasts.
Collapse
Affiliation(s)
- Ophélie Philipot
- Institut André Lwoff, FRE2944, CNRS and Université Paris-Sud, Villejuif, France
| | - Véronique Joliot
- Institut André Lwoff, FRE2944, CNRS and Université Paris-Sud, Villejuif, France
| | - Ouardia Ait-Mohamed
- Institut André Lwoff, FRE2944, CNRS and Université Paris-Sud, Villejuif, France
| | - Céline Pellentz
- Institut André Lwoff, FRE2944, CNRS and Université Paris-Sud, Villejuif, France
| | - Philippe Robin
- Institut André Lwoff, FRE2944, CNRS and Université Paris-Sud, Villejuif, France
| | - Lauriane Fritsch
- Institut André Lwoff, FRE2944, CNRS and Université Paris-Sud, Villejuif, France
| | - Slimane Ait-Si-Ali
- Institut André Lwoff, FRE2944, CNRS and Université Paris-Sud, Villejuif, France
- * E-mail:
| |
Collapse
|
107
|
ETV6-RUNX1 Rearrangement in Tunisian Pediatric B-Lineage Acute Lymphoblastic Leukemia. Adv Hematol 2009; 2009:924301. [PMID: 20049174 PMCID: PMC2799269 DOI: 10.1155/2009/924301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 10/01/2009] [Accepted: 11/14/2009] [Indexed: 01/18/2023] Open
Abstract
In this study, Forty-one out of fifty-seven Tunisian children with B-lineage acute lymphoblastic leukemia (B-ALL), and without cytogenetically detectable recurrent abnormalities at the time of the diagnosis, were evaluated by fluorescence in situ hybridization (FISH) for the t(12;21). This translocation leads ETV6-RUNX1 (previously TEL-AML1) fusion gene. 16 patients (28%) had ETV6-RUNX1 rearrangement. In addition to this rearrangement, two cases showed a loss of the normal ETV6 allele, and three others showed an extra signal of the RUNX1 gene.
Seven patients without ETV6-RUNX1 rearrangement showed extra signals of the RUNX1 gene. One out of the 7 patients was also associated with a t(3;12) identified by FISH. This is the first Tunisian study in which we report the incidence of t(12;21) among childhood B-lineage ALL and in which we have found multiple copies of RUNX1.
Finally, our findings confirm that additional or secondary genetic changes are commonly encountered in pediatric B-lineage ALL with ETV6-RUNX1 gene fusion which is envisaged to play a pivotal role in disease progression.
Collapse
|
108
|
Chad Brenner J, Chinnaiyan AM. Translocations in epithelial cancers. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1796:201-15. [PMID: 19406209 PMCID: PMC2752494 DOI: 10.1016/j.bbcan.2009.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 04/21/2009] [Indexed: 01/09/2023]
Abstract
Genomic translocations leading to the expression of chimeric transcripts characterize several hematologic, mesenchymal and epithelial malignancies. While several gene fusions have been linked to essential molecular events in hematologic malignancies, the identification and characterization of recurrent chimeric transcripts in epithelial cancers has been limited. However, the recent discovery of the recurrent gene fusions in prostate cancer has sparked a revitalization of the quest to identify novel rearrangements in epithelial malignancies. Here, the molecular mechanisms of gene fusions that drive several epithelial cancers and the recent technological advances that increase the speed and reliability of recurrent gene fusion discovery are explored.
Collapse
Affiliation(s)
- J. Chad Brenner
- Michigan Center for Translational Pathology, University of Michigan 1400 E. Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA
- Department of Pathology, University of Michigan 1400 E. Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA
| | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan 1400 E. Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA
- Howard Hughes Medical Institute, University of Michigan 1400 E. Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA
- Department of Pathology, University of Michigan 1400 E. Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA
- Department of Urology, University of Michigan 1400 E. Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA
- Comprehensive Cancer Center, University of Michigan 1400 E. Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA
| |
Collapse
|
109
|
Abstract
Although it was definitely not obvious at first, consistent chromosomal translocations are major contributors to cellular transformation in some leukemias, lymphomas, sarcomas, prostate cancer, and other benign and malignant neoplasms. In the 50 years since the discovery of the Ph chromosome, the elucidation of recurring abnormalities has been an ongoing challenge that has evolved as new technologies allowed an ever more accurate definition of the precise changes in DNA resulting from these abnormalities. As we enter a new era of understanding enriched by gene expression studies, we still know little about the changes in the level of critical proteins, which may be the ultimate effectors of the genetic/epigenetic abnormalities in cancer. Despite remarkable progress in identifying both obvious chromosome abnormalities and subtle changes in DNA such as mutations and small copy-number variations, the impact of this knowledge has been variable. The challenge for the future is to enhance our ability to translate these genetic changes into effective therapies for other malignant diseases.
Collapse
Affiliation(s)
- Janet D Rowley
- Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois 60637, USA.
| |
Collapse
|
110
|
Burmeister T, Gökbuget N, Schwartz S, Fischer L, Hubert D, Sindram A, Hoelzer D, Thiel E. Clinical features and prognostic implications of TCF3-PBX1 and ETV6-RUNX1 in adult acute lymphoblastic leukemia. Haematologica 2009; 95:241-6. [PMID: 19713226 DOI: 10.3324/haematol.2009.011346] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The t(9;22) and t(4;11) chromosomal translocations, which generate the BCR-ABL and MLL-AF4 fusion genes, define high-risk subtypes of acute lymphoblastic leukemia in adults. However, the prognostic impact of other rarer fusion genes is less well established in adult acute lymphoblastic leukemia than in the childhood form. DESIGN AND METHODS In the context of the German Multicenter Therapy Study Group for Adult Acute Lymphoblastic Leukemia (GMALL) we used reverse transcriptase polymerase chain reaction to investigate 441 cases of BCR-ABL- and MLL-AF4-negative B-precursor acute lymphoblastic leukemia for the TCF3-PBX1 (E2A-PBX1) and ETV6-RUNX1 (TEL-AML1) fusion transcripts generated by the t(1;19)(q23;p13.3) and t(12;21)(p13;q22) translocations. Both are well-known molecular alterations in pediatric acute lymphoblastic leukemia in which they have favorable prognostic implications. RESULTS We identified 23 adult patients with TCF3-PBX1 and ten with ETV6-RUNX1. In contrast to previous reports we found no significant difference in overall survival between TCF3-PBX1-positive and -negative patients. At 2 years after diagnosis all the ETV6-RUNX1-positive patients were alive and in continuous complete remission, but their long-term outcome was negatively affected by late relapses. TCF3-PBX1-positive patients exhibited a characteristic CD34(-)/CD33(-) and mostly cyIg(+) immunophenotype. ETV6-RUNX1 only occurred in patients under 35 years old and was associated with a significantly lower white blood count. CONCLUSIONS In contrast to previous suggestions, adult patients with TCF3-PBX1-positive acute lymphoblastic leukemia do not appear to have a worse outcome than their negative counterparts. ETV6-RUNX1-positive patients had a very favorable performance status during the first few years but their long-term survival was negatively affected by late relapses. Both groups of patients are characterized by distinct clinicobiological features which facilitate their diagnostic identification.
Collapse
Affiliation(s)
- Thomas Burmeister
- Med Klinik für Hämatologie/Onkologie Hindenburgdamm 30, 12200 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Ganly P, Walker LC, Morris CM. Familial Mutations of the Transcription Factor RUNX1 (AML1, CBFA2) Predispose to Acute Myeloid Leukemia. Leuk Lymphoma 2009; 45:1-10. [PMID: 15061191 DOI: 10.1080/1042819031000139611] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
RUNX1 (AML1, CBFA2) is mutated in affected members of families with autosomal dominant thrombocytopenia and platelet dense granule storage pool deficiency. Many of those affected, usually by point mutations in one allele, are predisposed to the development of acute myeloid leukemia (AML) in adult life. The RUNX1 protein complexes with core binding factor beta (CBFB) to form a heterodimeric core binding transcription factor (CBF) that regulates many genes important in hematopoiesis. RUNX1 was first identified as the gene on chromosome 21 that is rearranged by the translocation t(8;21)(q22;q22.12) recurrently found in the leukemic cells of patients with AML. In addition to the t(8;21), RUNX1 is rearranged with one of several partner genes on other chromosomes by somatically acquired translocations associated with hematological malignancies. Point mutations of RUNX1 are also found in sporadic leukemias to reinforce the important position of this gene on the multi-step path to leukemia. In animal models, at least one functional copy of RUNX1 is required to effect definitive embryonic hematopoiesis. Cells expressing dominant-negative mutants of RUNX1 are readily immortalized and transformed, and those RUNX1 mutants which retain CBFB binding ability may possess dominant-negative function. However, in some families there is transmitted one mutated allele of RUNX1 with no dominant-negative function, demonstrating that simple haploinsufficiency of RUNX1 predisposes to AML and also causes a generalized hematopoietic stem cell disorder most recognizable as thrombocytopenia.
Collapse
Affiliation(s)
- Peter Ganly
- Cancer Genetics Research Group, Christchurch School of Medicine and Health Sciences, PO Box 4345, Christchurch, New Zealand.
| | | | | |
Collapse
|
112
|
Hall BM, Gibson LF. Regulation of Lymphoid and Myeloid Leukemic Cell Survival: Role of Stromal Cell Adhesion Molecules. Leuk Lymphoma 2009; 45:35-48. [PMID: 15061195 DOI: 10.1080/1042819031000139620] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Several laboratories have documented the necessity for direct contact of lymphoid and myeloid leukemic cells with bone marrow stromal cells for optimal survival. Subsequent studies have identified various stromal cell adhesion molecules and soluble factors that facilitate survival through leukemic cell anti-apoptotic signal transduction pathways. This report provides an overview of enhanced leukemic cell survival through adhesive interactions with bone marrow expressed molecules. In addition, we describe the establishment of cloned murine stromal cell lines engineered to constitutively express human VCAM-1 protein on their surface. These stromal cell lines will be useful in studies aimed at better understanding the specific contribution of VCAM-1: VLA-4 signaling in maintenance of residual leukemic disease.
Collapse
Affiliation(s)
- Brett M Hall
- Department of Microbiology, Immunology, and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | | |
Collapse
|
113
|
Peter A, Heiden T, Taube T, Körner G, Seeger K. Interphase FISH on TEL/AML1 positive acute lymphoblastic leukemia relapses--analysis of clinical relevance of additional TEL and AML1 copy number changes. Eur J Haematol 2009; 83:420-32. [PMID: 19594616 DOI: 10.1111/j.1600-0609.2009.01315.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES TEL/AML1 (ETV6/RUNX1) fusion resulting from the translocation t(12;21)(p13;q22) constitutes the most common chimeric fusion gene in initial childhood B-cell precursor (BCP) acute lymphoblastic leukemia (ALL) (19-27%) and has been associated with good prognosis. Three secondary aberrations in TEL/AML1 positive ALL have been suspected to negatively influence outcome: deletion of the second TEL allele (T), gain of the second AML1 allele (A) and duplication of the derivative chromosome 21 (der(21), TA). Many studies have explored such aberrations in initial disease, while only few reports have investigated them in relapses. METHODS In this study, bone marrow samples from 38 children with relapsed TEL/AML1 RT-PCR positive and negative BCP-ALL were analyzed for these mutations by interphase fluorescence in situ hybridization and results were compared with published data. RESULTS In children with TEL/AML1 positive ALL relapse, additional (a) TEL loss, (b) combined AML1 and der(21) gain, (c) combined TEL loss and AML1 gain as well as (d) the occurrence of a subpopulation with the signal pattern 1T/3A/1TA appear to be related to higher peripheral blast counts (PBCs) at relapse diagnosis (a and d) or a tendency towards the occurrence of a subsequent relapse (b and c) (P-values <0.05). CONCLUSIONS Our data together with published results on TEL/AML1 positive ALL suggest that frequencies of additional TEL and AML1 mutations are, with the exception of loss of untranslocated TEL, higher in first relapses than in initial disease. They also show that it is important to consider combined mutations in the analysis of this leukemia entity.
Collapse
Affiliation(s)
- Anita Peter
- Department of Pediatric Oncology and Hematology, Otto-Heubner-Center for Pediatrics, Charité Campus Virchow-Klinikum, Berlin D-13353, Germany
| | | | | | | | | |
Collapse
|
114
|
North TE, Goessling W, Peeters M, Li P, Ceol C, Lord AM, Harris J, Cutting CC, Huang P, Dzierzak E, Zon LI. Hematopoietic stem cell development is dependent on blood flow. Cell 2009; 137:736-48. [PMID: 19450519 PMCID: PMC2722870 DOI: 10.1016/j.cell.2009.04.023] [Citation(s) in RCA: 356] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 12/23/2008] [Accepted: 04/07/2009] [Indexed: 01/20/2023]
Abstract
During vertebrate embryogenesis, hematopoietic stem cells (HSCs) arise in the aorta-gonads-mesonephros (AGM) region. We report here that blood flow is a conserved regulator of HSC formation. In zebrafish, chemical blood flow modulators regulated HSC development, and silent heart (sih) embryos, lacking a heartbeat and blood circulation, exhibited severely reduced HSCs. Flow-modifying compounds primarily affected HSC induction after the onset of heartbeat; however, nitric oxide (NO) donors regulated HSC number even when treatment occurred before the initiation of circulation, and rescued HSCs in sih mutants. Morpholino knockdown of nos1 (nnos/enos) blocked HSC development, and its requirement was shown to be cell autonomous. In the mouse, Nos3 (eNos) was expressed in HSCs in the AGM. Intrauterine Nos inhibition or embryonic Nos3 deficiency resulted in a reduction of hematopoietic clusters and transplantable murine HSCs. This work links blood flow to AGM hematopoiesis and identifies NO as a conserved downstream regulator of HSC development.
Collapse
Affiliation(s)
- Trista E. North
- Stem Cell Program and Hematology/Oncology, Children's Hospital, HHMI, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center; Boston, MA 02115, USA
| | - Wolfram Goessling
- Stem Cell Program and Hematology/Oncology, Children's Hospital, HHMI, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
- Genetics Division, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston, MA 02115
- Gastroenterology Division, Brigham and Women's Hospital and Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Marian Peeters
- Erasmus Stem Cell Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Pulin Li
- Stem Cell Program and Hematology/Oncology, Children's Hospital, HHMI, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Craig Ceol
- Stem Cell Program and Hematology/Oncology, Children's Hospital, HHMI, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Allegra M. Lord
- Stem Cell Program and Hematology/Oncology, Children's Hospital, HHMI, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - James Harris
- Department of Pathology, Beth Israel Deaconess Medical Center; Boston, MA 02115, USA
| | - Claire C. Cutting
- Genetics Division, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Paul Huang
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114
| | - Elaine Dzierzak
- Erasmus Stem Cell Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Leonard I. Zon
- Stem Cell Program and Hematology/Oncology, Children's Hospital, HHMI, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
115
|
Ford AM, Palmi C, Bueno C, Hong D, Cardus P, Knight D, Cazzaniga G, Enver T, Greaves M. The TEL-AML1 leukemia fusion gene dysregulates the TGF-beta pathway in early B lineage progenitor cells. J Clin Invest 2009; 119:826-36. [PMID: 19287094 PMCID: PMC2662549 DOI: 10.1172/jci36428] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 02/04/2009] [Indexed: 12/31/2022] Open
Abstract
Chromosome translocation to generate the TEL-AML1 (also known as ETV6-RUNX1) chimeric fusion gene is a frequent and early or initiating event in childhood acute lymphoblastic leukemia (ALL). Our starting hypothesis was that the TEL-AML1 protein generates and maintains preleukemic clones and that conversion to overt disease requires secondary genetic changes, possibly in the context of abnormal immune responses. Here, we show that a murine B cell progenitor cell line expressing inducible TEL-AML1 proliferates at a slower rate than parent cells but is more resistant to further inhibition of proliferation by TGF-beta. This facilitates the competitive expansion of TEL-AML1-expressing cells in the presence of TGF-beta. Further analysis indicated that TEL-AML1 binds to a principal TGF-beta signaling target, Smad3, and compromises its ability to activate target promoters. In mice expressing a TEL-AML1 transgene, early, pre-pro-B cells were increased in number and also showed reduced sensitivity to TGF-beta-mediated inhibition of proliferation. Moreover, expression of TEL-AML1 in human cord blood progenitor cells led to the expansion of a candidate preleukemic stem cell population that had an early B lineage phenotype (CD34+CD38-CD19+) and a marked growth advantage in the presence of TGF-beta. Collectively, these data suggest a plausible mechanism by which dysregulated immune responses to infection might promote the malignant evolution of TEL-AML1-expressing preleukemic clones.
Collapse
Affiliation(s)
- Anthony M. Ford
- Section of Haemato-Oncology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom.
Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo, Monza, Italy.
PhD Program in Molecular Medicine, Vita Salute San Raffaele University, Milan, Italy.
Andalusian Stem Cell Bank/University of Granada, Centro de Investigacion Biomedica, Parque Tecnologico Ciencas de la Salud, Granada, Spain.
Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Chiara Palmi
- Section of Haemato-Oncology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom.
Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo, Monza, Italy.
PhD Program in Molecular Medicine, Vita Salute San Raffaele University, Milan, Italy.
Andalusian Stem Cell Bank/University of Granada, Centro de Investigacion Biomedica, Parque Tecnologico Ciencas de la Salud, Granada, Spain.
Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Clara Bueno
- Section of Haemato-Oncology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom.
Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo, Monza, Italy.
PhD Program in Molecular Medicine, Vita Salute San Raffaele University, Milan, Italy.
Andalusian Stem Cell Bank/University of Granada, Centro de Investigacion Biomedica, Parque Tecnologico Ciencas de la Salud, Granada, Spain.
Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Dengli Hong
- Section of Haemato-Oncology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom.
Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo, Monza, Italy.
PhD Program in Molecular Medicine, Vita Salute San Raffaele University, Milan, Italy.
Andalusian Stem Cell Bank/University of Granada, Centro de Investigacion Biomedica, Parque Tecnologico Ciencas de la Salud, Granada, Spain.
Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Penny Cardus
- Section of Haemato-Oncology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom.
Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo, Monza, Italy.
PhD Program in Molecular Medicine, Vita Salute San Raffaele University, Milan, Italy.
Andalusian Stem Cell Bank/University of Granada, Centro de Investigacion Biomedica, Parque Tecnologico Ciencas de la Salud, Granada, Spain.
Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Deborah Knight
- Section of Haemato-Oncology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom.
Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo, Monza, Italy.
PhD Program in Molecular Medicine, Vita Salute San Raffaele University, Milan, Italy.
Andalusian Stem Cell Bank/University of Granada, Centro de Investigacion Biomedica, Parque Tecnologico Ciencas de la Salud, Granada, Spain.
Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Giovanni Cazzaniga
- Section of Haemato-Oncology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom.
Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo, Monza, Italy.
PhD Program in Molecular Medicine, Vita Salute San Raffaele University, Milan, Italy.
Andalusian Stem Cell Bank/University of Granada, Centro de Investigacion Biomedica, Parque Tecnologico Ciencas de la Salud, Granada, Spain.
Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Tariq Enver
- Section of Haemato-Oncology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom.
Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo, Monza, Italy.
PhD Program in Molecular Medicine, Vita Salute San Raffaele University, Milan, Italy.
Andalusian Stem Cell Bank/University of Granada, Centro de Investigacion Biomedica, Parque Tecnologico Ciencas de la Salud, Granada, Spain.
Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Mel Greaves
- Section of Haemato-Oncology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom.
Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo, Monza, Italy.
PhD Program in Molecular Medicine, Vita Salute San Raffaele University, Milan, Italy.
Andalusian Stem Cell Bank/University of Granada, Centro de Investigacion Biomedica, Parque Tecnologico Ciencas de la Salud, Granada, Spain.
Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| |
Collapse
|
116
|
Roudaia L, Cheney MD, Manuylova E, Chen W, Morrow M, Park S, Lee CT, Kaur P, Williams O, Bushweller JH, Speck NA. CBFbeta is critical for AML1-ETO and TEL-AML1 activity. Blood 2009; 113:3070-9. [PMID: 19179469 PMCID: PMC2662647 DOI: 10.1182/blood-2008-03-147207] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 01/11/2009] [Indexed: 01/29/2023] Open
Abstract
AML1-ETO and TEL-AML1 are chimeric proteins resulting from the t(8;21)(q22;q22) in acute myeloid leukemia, and the t(12;21)(p13;q22) in pre-B-cell leukemia, respectively. The Runt domain of AML1 in both proteins mediates DNA binding and heterodimerization with the core binding factor beta (CBFbeta) subunit. To determine whether CBFbeta is required for AML1-ETO and TEL-AML1 activity, we introduced amino acid substitutions into the Runt domain that disrupt heterodimerization with CBFbeta but not DNA binding. We show that CBFbeta contributes to AML1-ETO's inhibition of granulocyte differentiation, is essential for its ability to enhance the clonogenic potential of primary mouse bone marrow cells, and is indispensable for its cooperativity with the activated receptor tyrosine kinase TEL-PDGFbetaR in generating acute myeloid leukemia in mice. Similarly, CBFbeta is essential for TEL-AML1's ability to promote self-renewal of B cell precursors in vitro. These studies validate the Runt domain/CBFbeta interaction as a therapeutic target in core binding factor leukemias.
Collapse
Affiliation(s)
- Liya Roudaia
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Yang LJ, Yu WD, DU JB, Chao S, Chen MX, Zhao HH, Guo JZ. Overexpression or knock-down of runt-related transcription factor 1 affects BCR-ABL-induced proliferation and migration in vitro and leukemogenesis in vivo in mice. Chin Med J (Engl) 2009; 122:331-337. [PMID: 19236814 DOI: 10.3760/cma.j.issn.0366-6999.2009.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Runt-related transcription factor 1 (Runx1) plays a crucial role in hematogenesis and its dysfunction may contribute to leukemogenesis. However, it is not clear whether or not abnormal expression of Runx1 will induce leukemia and how the change of Runx1 expression level could affect BCR-ABL-induced leukemogenesis. In the present study, we aimed to analyze if abnormal expression of Runx1 in BaF3 cells alone would induce leukemogenesis. And we also wanted to know if abnormal expression of Runx1 in leukemic cells would affect leukemogenesis. Furthermore, we investigated whether overexpression or knock-down of Runx1 in BaF3 cells would induce leukemogenesis. METHODS Plasmids containing full-length Runx1 cDNA were transduced into BaF3 cells and BaF3-P185wt cells (BCR-ABL transformed BaF3 cells) by electroporation. Plasmids containing a short hairpin RNA of Runx1 were transduced into BaF3 cells and BaF3-P185wt cells by electroporation. Runx1 expression level was quantified by Western blotting and quantitative real-time PCR. The effects of overexpression or knock-down of Runx1 on proliferation, apoptosis and migration of cells were detected in vitro. Then, using MSCV-P185wt-EGFP as a control, we transplanted MSCV-P185wt-Runx1 cells or MSCV-P185wt-shRNA cells into Balb/c mice through tail vein and observed tumorgenesis of the different phenotypes. RESULTS In vitro analysis revealed that overexpression of Runx1 in P185wt cells could inhibit cell proliferation and slow down cell migration; while knock-down of Runx1 could promote cell proliferation and speed up cell migration. In vivo analysis indicated that mice transplanted with MSCV-P185wt-Runx1 survived longer than controls. In contrast, mice transplanted with MSCV-P185wt-shRNA survived shorter than the control group. Gross pathological analysis revealed that the MSCV-P185wt-Runx1 group had less severe splenomegaly and hepatomegaly compared to the control group, and the MSCV-P185wt-shRNA group had more severe splenomegaly and hepatomegaly. No splenomegaly or hepatomegaly was detected in mice transplanted with MSCV-BaF3-Runx1 cells or MSCV-BaF3-shRNA cells. Both the mice of MSCV-BaF3-Runx1 group and MSCV-BaF3-shRNA group were healthy with no sign of leukemia for up to three months. CONCLUSIONS Overexpression or knock-down of Runx1 gene in BaF3 cells alone could not induce leukemogenesis. However, in BaF3-P185wt cells, alteration of Runx1 expression could affect BCR-ABL-induced proliferation and migration in vitro and leukemogenesis in vivo.
Collapse
Affiliation(s)
- Li-jun Yang
- Department of Pediatrics, Peking University People's Hospital, Beijing 100044, China
| | | | | | | | | | | | | |
Collapse
|
118
|
Teitell MA, Pandolfi PP. Molecular Genetics of Acute Lymphoblastic Leukemia. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2009; 4:175-98. [DOI: 10.1146/annurev.pathol.4.110807.092227] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michael A. Teitell
- Departments of Pathology and Pediatrics, Jonsson Comprehensive Cancer Center, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and California NanoSystems Institute, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1732;
| | - Pier Paolo Pandolfi
- Departments of Medicine and Pathology, Harvard Medical School, Boston, Massachusetts 02115
- Division of Cancer Genetics and Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215;
| |
Collapse
|
119
|
Overexpression of an isoform of AML1 in acute leukemia and its potential role in leukemogenesis. Leukemia 2009; 23:739-45. [PMID: 19151769 DOI: 10.1038/leu.2008.350] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
AML1/RUNX1 is a critical transcription factor in hematopoietic cell differentiation and proliferation. From the AML1 gene, at least three isoforms, AML1a, AML1b and AML1c, are produced through alternative splicing. AML1a interferes with the function of AML1b/1c, which are often called AML1. In this study, we found a higher expression level of AML1a in acute lymphoblastic leukemia and acute myeloid leukemia (AML)-M2 patients in comparison to the controls. Additionally, AML1a represses transcription of promoter of macrophage colony-stimulating factor receptor mediated by AML1b, indicating that AML1a antagonized the effect of AML1b. To investigate the role of AML1a in hematopoiesis and leukemogenesis in vivo, murine bone marrow mononuclear cells were transduced with AML1a and then transplanted into lethally irradiated mice, which developed lymphoblastic leukemia after transplantation. Taken together, these results indicate that overexpression of AML1a may be an important contributing factor to leukemogenesis.
Collapse
|
120
|
Engel ME, Hiebert SW. Proleukemic RUNX1 and CBFbeta mutations in the pathogenesis of acute leukemia. Cancer Treat Res 2009; 145:127-47. [PMID: 20306249 DOI: 10.1007/978-0-387-69259-3_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The existence of non-random mutations in critical regulators of cell growth and differentiation is a recurring theme in cancer pathogenesis and provides the basis for our modern, molecular approach to the study and treatment of malignant diseases. Nowhere is this more true than in the study of leukemogenesis, where research has converged upon a critical group of genes involved in hematopoietic stem and progenitor cell self-renewal and fate specification. Prominent among these is the heterodimeric transcriptional regulator, RUNX1/CBFbeta. RUNX1 is a site-specific DNA-binding protein whose consensus response element is found in the promoters of many hematopoietically relevant genes. CBFbeta interacts with RUNX1, stabilizing its interaction with DNA to promote the actions of RUNX1/CBFbeta in transcriptional control. Both the RUNX1 and the CBFbeta genes participate in proleukemic chromosomal alterations. Together they contribute to approximately one-third of acute myelogenous leukemia (AML) and one-quarter of acute lymphoblastic leukemia (ALL) cases, making RUNX1 and CBFbeta the most frequently affected genes known in the pathogenesis of acute leukemia. Investigating the mechanisms by which RUNX1, CBFbeta, and their proleukemic fusion proteins influence leukemogenesis has contributed greatly to our understanding of both normal and malignant hematopoiesis. Here we present an overview of the structural features of RUNX1/CBFbeta and their derivatives, their roles in transcriptional control, and their contributions to normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Michael E Engel
- Department of Pediatrics, Monroe Carell Jr. Children's Hospital, Nashville, TN, USA.
| | | |
Collapse
|
121
|
Parker H, An Q, Barber K, Case M, Davies T, Konn Z, Stewart A, Wright S, Griffiths M, Ross FM, Moorman AV, Hall AG, Irving JA, Harrison CJ, Strefford JC. The complex genomic profile of ETV6-RUNX1 positive acute lymphoblastic leukemia highlights a recurrent deletion of TBL1XR1. Genes Chromosomes Cancer 2008; 47:1118-25. [PMID: 18767146 DOI: 10.1002/gcc.20613] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The ETV6-RUNX1 fusion is the molecular consequence of the t(12;21)(p13;q22) seen in approximately 25% of children with acute lymphoblastic leukemia (ALL). Studies have shown that the fusion alone is insufficient for the initiation of leukemia; additional genetic changes are required. Genomic profiling identified copy number alterations at high frequencies in these patients. Focal deletions of TBL1XR1 were observed in 15% of cases; 3 patients exhibited deletions distal to the gene. Fluorescence in situ hybridization confirmed these deletions and quantitative RT-PCR showed that the TBL1XR1 gene was significantly under-expressed. TBL1XR1 is a key component of the SMRT and N-CoR compressor complexes, which control hormone-receptor mediated gene expression. Differential expression of the retinoic acid target genes, RARB, CRABP1, and CRABP2, indicated that deletion of TBL1XR1 compromised the function of SMRT/N-CoR in the appropriate control of gene expression. This study identifies deletions of TBL1XR1 as a recurrent abnormality in ETV6-RUNX1 positive ALL. We provide evidence that implicates this deletion in the inappropriate control of gene expression in these patients. The target of the interaction between TBL1XR1 and the signaling pathways described here may be exploited in cancer therapy.
Collapse
Affiliation(s)
- Helen Parker
- Leukaemia Research Cytogenetics Group, Cancer Sciences Division, University of Southampton, Southampton, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
|
123
|
Satoh Y, Matsumura I, Tanaka H, Ezoe S, Fukushima K, Tokunaga M, Yasumi M, Shibayama H, Mizuki M, Era T, Okuda T, Kanakura Y. AML1/RUNX1 works as a negative regulator of c-Mpl in hematopoietic stem cells. J Biol Chem 2008; 283:30045-56. [PMID: 18687690 DOI: 10.1074/jbc.m804768200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In this study, we analyzed the roles for AML1/RUNX1 in the regulation of the c-mpl promoter. Wild-type AML1 activated the c-mpl promoter through the proximal AML-binding site in luciferase assays using 293T and HeLa cells. In accord with this result, electrophoretic mobility shift assay and chromatin immunoprecipitation assays demonstrated that AML1 bound to this site. Next, we analyzed the function of AML1 using a mutant of AML1 lacking the C terminus (AML1dC), which was originally found in a patient with myelodysplastic syndromes. AML1dC dominant-negatively suppressed transcriptional activity of wild-type AML1. However, unexpectedly, AML1dC-transduced murine c-Kit(+)Sca1(+)Lineage(-) cells expressed c-mpl mRNA and c-Mpl protein more abundantly than mock-transduced cells, which led to the enhanced thrombopoietin-mediated proliferation. Moreover, when AML1dC was induced to express during the development of hematopoietic cells from embryonic stem (ES) cells, AML1dC augmented the c-Mpl expression on hematopoietic stem/progenitor cells. Furthermore, we found that early hematopoietic cells that derived from AML1(+/-) ES cells expressed c-Mpl more intensely than those that developed from wild-type ES cells. In contrast, AML1dC hardly affected c-Mpl expression and maturation of megakaryocytes. As for the mechanism of the different roles of AML1 in the regulation of the c-mpl promoter, we found that AML1 forms a complex with a transcription repressor mSin3A on the c-mpl promoter in hematopoietic stem/progenitor cells, although it forms a complex with a transcription activator p300 on the same promoter in megakaryocytic cells. Together, these data indicate that AML1 can regulate the c-mpl promoter both positively and negatively by changing the binding partner according to cell types.
Collapse
Affiliation(s)
- Yusuke Satoh
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Transcriptional repression of the RUNX3/AML2 gene by the t(8;21) and inv(16) fusion proteins in acute myeloid leukemia. Blood 2008; 112:3391-402. [PMID: 18663147 DOI: 10.1182/blood-2008-02-137083] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
RUNX3/AML2 is a Runt domain transcription factor like RUNX1/AML1 and RUNX2/AML3. Regulated by 2 promoters P1 and P2, RUNX3 is frequently inactivated by P2 methylation in solid tumors. Growing evidence has suggested a role of this transcription factor in hematopoiesis. However, genetic alterations have not been reported in blood cancers. In this study on 73 acute myeloid leukemia (AML) patients (44 children and 29 adults), we first showed that high RUNX3 expression among childhood AML was associated with a shortened event-free survival, and RUNX3 was significantly underexpressed in the prognostically favorable subgroup of AML with the t(8;21) and inv(16) translocations. We further demonstrated that this RUNX3 repression was mediated not by P2 methylation, but RUNX1-ETO and CBFbeta-MYH11, the fusion products of t(8;21) and inv(16), via a novel transcriptional mechanism that acts directly or indirectly in collaboration with RUNX1, on 2 conserved RUNX binding sites in the P1 promoter. In in vitro studies, ectopically expressed RUNX1-ETO and CBFbeta-MYH11 also inhibited endogenous RUNX3 expression. Taken together, RUNX3 was the first transcriptional target found to be commonly repressed by the t(8;21) and inv(16) fusion proteins and might have an important role in core-binding factor AML.
Collapse
|
125
|
Choi WH, Choi BR, Kim JH, Yeo WS, Oh S, Kim DE. Design and kinetic analysis of hammerhead ribozyme and DNAzyme that specifically cleave TEL-AML1 chimeric mRNA. Biochem Biophys Res Commun 2008; 374:169-74. [PMID: 18627769 DOI: 10.1016/j.bbrc.2008.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 07/05/2008] [Indexed: 10/21/2022]
Abstract
In order to develop the oligonucleotides to abolish an expression of TEL-AML1 chimeric RNA, which is a genetic aberration that causes the acute lymphoblastic leukemia (ALL), hammerhead ribozymes and deoxyoligoribozymes that can specifically cleave TEL-AML1 fusion RNA were designed. Constructs of the deoxyribozyme with an asymmetric substrate binding arm (Dz26) and the hammerhead ribozyme with a 4nt-bulged substrate binding arm in the stem III (buRz28) were able to cleave TEL-AML1 chimeric RNA specifically at sites close to the junction in vitro, without cleaving the normal TEL and AML1 RNA. Single-turnover kinetic analysis under enzyme-excess condition revealed that the buRz28 is superior to the Dz26 in terms of substrate binding and RNA-cleavage. In conjunction with current progress in a gene-delivery technology, the designed oligonucleotides that specifically cleave the TEL-AML1 chimeric mRNA are hoped to be applicable for the treatment of ALL in vivo.
Collapse
Affiliation(s)
- Woo-Hyung Choi
- Department of Bioscience and Biotechnology, Konkuk University, 1-Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
126
|
Müller AMS, Duque J, Shizuru JA, Lübbert M. Complementing mutations in core binding factor leukemias: from mouse models to clinical applications. Oncogene 2008; 27:5759-73. [PMID: 18604246 DOI: 10.1038/onc.2008.196] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A great proportion of acute myeloid leukemias (AMLs) display cytogenetic abnormalities including chromosomal aberrations and/or submicroscopic mutations. These abnormalities significantly influence the prognosis of the disease. Hence, a thorough genetic work-up is an essential constituent of standard diagnostic procedures. Core binding factor (CBF) leukemias denote AMLs with chromosomal aberrations disrupting one of the CBF transcription factor genes; the most common examples are translocation t(8;21) and inversion inv(16), which result in the generation of the AML1-ETO and CBFbeta-MYH11 fusion proteins, respectively. However, in murine models, these alterations alone do not suffice to generate full-blown leukemia, but rather, complementary events are required. In fact, a substantial proportion of primary CBF leukemias display additional activating mutations, mostly of the receptor tyrosine kinase (RTK) c-KIT. The awareness of the impact and prognostic relevance of these 'second hits' is increasing with a wider range of mutations tested in clinical trials. Furthermore, novel agents targeting RTKs are emanating rapidly and entering therapeutic regimens. Here, we present a concise review on complementing mutations in CBF leukemias including pathophysiology, mouse models, and clinical implications.
Collapse
Affiliation(s)
- A M S Müller
- Department of Hematology/Oncology, University Medical Center Freiburg, Baden Wuerttemberg, Freiburg, Germany
| | | | | | | |
Collapse
|
127
|
Hanson CA, Wood LD, Hiebert SW. Cellular stress triggers TEL nuclear export via two genetically separable pathways. J Cell Biochem 2008; 104:488-98. [PMID: 18022807 DOI: 10.1002/jcb.21637] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
TEL (translocation ets leukemia, also known as ETV6) is a repressor of transcription that is disrupted by the t(12;21), which is the most frequent chromosomal translocation in pediatric acute lymphocytic leukemia. TEL is modified by SUMOylation, and the lysine (Lys 99) that is conjugated to SUMO is required for TEL nuclear export. In addition, TEL is phosphorylated by p38 kinase, which is activated by cellular stress. Induction of cellular stress reduced the ability of TEL to repress transcription in vitro, but the mechanistic basis of this phenomenon was unclear. In this study, we show that osmotic stress causes re-localization of TEL to the cytoplasm and that p38-mediated phosphorylation of TEL is sufficient for this re-localization. However, impairment of both SUMOylation of Lys 99 and p38-dependent phosphorylation of Ser 257 of TEL were required to impair the re-localization of TEL in response to cellular stress induced by high salt, identifying two separate nuclear export pathways. Thus, alteration of the cellular localization of TEL may be a part of the cellular stress response and re-localization of TEL to the cytoplasm is an important step in the regulation of TEL.
Collapse
Affiliation(s)
- Caroline A Hanson
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
128
|
|
129
|
Chinen Y, Taki T, Nishida K, Shimizu D, Okuda T, Yoshida N, Kobayashi C, Koike K, Tsuchida M, Hayashi Y, Taniwaki M. Identification of the novel AML1 fusion partner gene, LAF4, a fusion partner of MLL, in childhood T-cell acute lymphoblastic leukemia with t(2;21)(q11;q22) by bubble PCR method for cDNA. Oncogene 2008; 27:2249-2256. [PMID: 17968322 DOI: 10.1038/sj.onc.1210857] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 09/13/2007] [Accepted: 09/17/2007] [Indexed: 11/08/2022]
Abstract
The AML1 gene is frequently rearranged by chromosomal translocations in acute leukemia. We identified that the LAF4 gene on 2q11.2-12 was fused to the AML1 gene on 21q22 in a pediatric patient having T-cell acute lymphoblastic leukemia (T-ALL) with t(2;21)(q11;q22) using the bubble PCR method for cDNA. The genomic break points were within intron 7 of AML1 and of LAF4, resulting in the in-frame fusion of exon 7 of AML1 and exon 8 of LAF4. The LAF4 gene is a member of the AF4/FMR2 family and was previously identified as a fusion partner of MLL in B-precursor ALL with t(2;11)(q11;q23), although AML1-LAF4 was in T-ALL. LAF4 is the first gene fused with both AML1 and MLL in acute leukemia. Almost all AML1 translocations except for TEL-AML1 are associated with myeloid leukemia; however, AML1-LAF4 was associated with T-ALL as well as AML1-FGA7 in t(4;21)(q28;q22). These findings provide new insight into the common mechanism of AML1 and MLL fusion proteins in the pathogenesis of ALL. Furthermore, we successfully applied bubble PCR to clone the novel AML1-LAF4 fusion transcript. Bubble PCR is a powerful tool for detecting unknown fusion transcripts as well as genomic fusion points.
Collapse
Affiliation(s)
- Y Chinen
- Department of Molecular Laboratory Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kamigyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Forestier E, Heyman M, Andersen MK, Autio K, Blennow E, Borgström G, Golovleva I, Heim S, Heinonen K, Hovland R, Johannsson JH, Kerndrup G, Nordgren A, Rosenquist R, Swolin B, Johansson B. Outcome of ETV6/RUNX1-positive childhood acute lymphoblastic leukaemia in the NOPHO-ALL-1992 protocol: frequent late relapses but good overall survival. Br J Haematol 2008; 140:665-72. [DOI: 10.1111/j.1365-2141.2008.06980.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
131
|
Sasaki K, Yamagata T, Mitani K. Histone deacetylase inhibitors trichostatin A and valproic acid circumvent apoptosis in human leukemic cells expressing the RUNX1 chimera. Cancer Sci 2008; 99:414-22. [PMID: 18271940 PMCID: PMC11158480 DOI: 10.1111/j.1349-7006.2007.00699.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Disturbance of the normal functions of wild-type RUNX1 resulting from chromosomal translocations or gene mutations is one of the major molecular mechanisms in human leukemogenesis. RUNX1-related chimeras generated by the chromosomal translocations repress transcriptional activity of wild-type RUNX1 by recruiting the co-repressor/histone deacetylase complex. Thus, histone deacetylase inhibitors are expected to restore normal functions of wild-type RUNX1 and thereby affect the growth and differentiation ability of leukemic cells expressing the chimera. We investigated the in vitro effects of histone deacetylase inhibitors, trichostatin A and valproic acid, on human leukemic cell lines such as SKNO-1 and Kasumi-1 expressing RUNX1/ETO, Reh expressing TEL/RUNX1 and SKH-1 co-expressing RUNX1/EVI1 and BCR/ABL. We also employed K562 cells expressing BCR/ABL without such a chimera as a control. Treatment with each inhibitor increased acetylated histone 4 in all of these cell lines. Interestingly, proliferation of SKNO-1, Kasumi-1, SKH-1 and Reh cells was significantly suppressed after 3-day culture with trichostatin A or valproic acid, when compared to that of K562 cells. We observed cell cycle arrest and apoptotic induction in the RUNX1 chimera-expressing cells by the propidium iodide staining. Up- and downregulation of cell cycle regulator genes appeared to be the molecular basis for the former, and activation of both extrinsic and intrinsic apoptotic caspases for the latter. We propose histone deacetylase inhibitors to be an attractive choice in the molecular targeting therapy of RUNX1-related leukemia.
Collapse
Affiliation(s)
- Ko Sasaki
- Department of Hematology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi 321-0293, Japan
| | | | | |
Collapse
|
132
|
Hong D, Gupta R, Ancliff P, Atzberger A, Brown J, Soneji S, Green J, Colman S, Piacibello W, Buckle V, Tsuzuki S, Greaves M, Enver T. Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia. Science 2008; 319:336-9. [PMID: 18202291 DOI: 10.1126/science.1150648] [Citation(s) in RCA: 290] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2025]
Abstract
Understanding cancer pathogenesis requires knowledge of not only the specific contributory genetic mutations but also the cellular framework in which they arise and function. Here we explore the clonal evolution of a form of childhood precursor-B cell acute lymphoblastic leukemia that is characterized by a chromosomal translocation generating a TEL-AML1 fusion gene. We identify a cell compartment in leukemic children that can propagate leukemia when transplanted in mice. By studying a monochorionic twin pair, one preleukemic and one with frank leukemia, we establish the lineal relationship between these "cancer-propagating" cells and the preleukemic cell in which the TEL-AML1 fusion first arises or has functional impact. Analysis of TEL-AML1-transduced cord blood cells suggests that TEL-AML1 functions as a first-hit mutation by endowing this preleukemic cell with altered self-renewal and survival properties.
Collapse
MESH Headings
- ADP-ribosyl Cyclase 1/analysis
- Acute Disease
- Animals
- Antigens, CD19/analysis
- Antigens, CD34/analysis
- Apoptosis
- Bone Marrow Transplantation
- Child, Preschool
- Core Binding Factor Alpha 2 Subunit/analysis
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/physiology
- Diseases in Twins/genetics
- Diseases in Twins/metabolism
- Diseases in Twins/pathology
- Female
- Fetal Blood/transplantation
- Gene Rearrangement, B-Lymphocyte, Heavy Chain
- Humans
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Neoplasm Transplantation
- Neoplastic Stem Cells/pathology
- Oncogene Proteins, Fusion/analysis
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/physiology
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Precursor Cells, B-Lymphoid/chemistry
- Precursor Cells, B-Lymphoid/physiology
- Preleukemia/genetics
- Preleukemia/metabolism
- Preleukemia/pathology
- Recombination, Genetic
- Transplantation, Heterologous
- Twins, Monozygotic
Collapse
Affiliation(s)
- Dengli Hong
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute for Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Taylor M, Harrison C, Eden T, Birch J, Greaves M, Lightfoot T, Hussain A. HLA-DPB1 supertype-associated protection from childhood leukaemia: relationship to leukaemia karyotype and implications for prevention. Cancer Immunol Immunother 2008; 57:53-61. [PMID: 17622527 PMCID: PMC11031005 DOI: 10.1007/s00262-007-0349-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 05/25/2007] [Indexed: 10/23/2022]
Abstract
Most childhood B cell precursor (BCP) acute lymphoblastic leukaemia (ALL) cases carry the reciprocal translocation t(12;21)(p13;q22) ( approximately 25%), or a high hyperdiploid (HeH) karyotype (30%). The t(12;21) translocation leads to the expression of a novel fusion gene, TEL-AML1 (ETV6-RUNX1), and HeH often involves tri- and tetrasomy for chromosome 21. The presence of TEL-AML1+ and HeH cells in utero prior to the development of leukaemia suggests that these lesions play a critical role in ALL initiation. Based on our previous analysis of HLA-DP in childhood ALL, and evidence from in vitro studies that TEL-AML1 can activate HLA-DP-restricted T cell responses, we hypothesised that the development of TEL-AML1+ ALL might be influenced by the child's DPB1 genotype. To test this, we analysed the frequency of six HLA-DPB1 supertypes in a population-based series of childhood leukaemias (n = 776) classified by their karyotype (TEL-AML1+, HeH and others), in comparison with newborn controls (n = 864). One DPB1 supertype (GKD) conferred significant protection against TEL-AML1+ ALL (odds ratio (OR), 95% confidence interval (95% CI): 0.42, 0.22-0.81; p < 0.005) and HeH ALL (OR; 95% CI: 0.44, 0.30-0.65; p < 0.0001). These negative associations were almost entirely due to a single allele, DPB1*0101. Our results suggest that DPB1*0101 may afford protection from the development of TEL-AML1+ and HeH BCP ALL, possibly as the result of a DP-restricted immune response to BCP ALL-associated antigen(s), the identification of which could have important implications for the design of prophylactic vaccines.
Collapse
Affiliation(s)
- Malcolm Taylor
- Cancer Immunogenetics Laboratory, St Mary's Hospital, University of Manchester, Manchester, M13 0JH, UK.
| | | | | | | | | | | | | |
Collapse
|
134
|
Gmidène A, Sennana H, Elghezal H, Ziraoui S, Youssef YB, Elloumi M, Issaoui L, Harrabi I, Raynaud S, Saad A. Cytogenetic analysis of 298 newly diagnosed cases of acute lymphoblastic leukaemia in Tunisia. Hematol Oncol 2008; 26:91-7. [DOI: 10.1002/hon.840] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
135
|
|
136
|
Putnik J, Zhang CD, Archangelo LF, Tizazu B, Bartels S, Kickstein M, Greif PA, Bohlander SK. The interaction of ETV6 (TEL) and TIP60 requires a functional histone acetyltransferase domain in TIP60. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1772:1211-24. [PMID: 17980166 DOI: 10.1016/j.bbadis.2007.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 09/25/2007] [Accepted: 09/27/2007] [Indexed: 12/19/2022]
Abstract
The ets-family transcription factor ETV6 (TEL) has been shown to be the target of a large number of balanced chromosomal translocations in various hematological malignancies and in some soft tissue tumors. Furthermore, ETV6 is essential for hematopoietic stem cell function. We identified ETV6 interacting proteins using the yeast two hybrid system. One of these proteins is the HIV Tat interacting protein (TIP60), a histone acetyltransferase (HAT) containing the highly conserved MYST domain. TIP60 functions as a corepressor of ETV6 in reporter gene assays. Fluorescently tagged ETV6 and TIP60 colocalize in the nucleus and an increase in nuclear localization of ETV6 was seen when TIP60 was cotransfected. ETV6 interacts with TIP60 through a 63 amino acids region located in the central domain of ETV6 between the pointed and the ets domain. The ETV6 interacting region of TIP60 mapped to the C2HC zinc finger of the TIP60 MYST domain. The interaction of TIP60 with full length ETV6 required an intact acetyltransferase domain of TIP60. Interestingly, the MYST domains of MOZ and MORF were also able to interact with portions of ETV6. These observations suggest that MYST domain HATs regulate ETV6 transcriptional activity and may therefore play critical roles in leukemogenesis and possibly in normal hematopoietic development.
Collapse
Affiliation(s)
- Jasmina Putnik
- Institute of Human Genetics, Heinrich-Düker-Weg 12, 37037 Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Chromatin regulation by AML1 complex. Int J Hematol 2007; 87:19-24. [DOI: 10.1007/s12185-007-0004-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Accepted: 09/01/2007] [Indexed: 11/27/2022]
|
138
|
Pina C, Enver T. Differential contributions of haematopoietic stem cells to foetal and adult haematopoiesis: insights from functional analysis of transcriptional regulators. Oncogene 2007; 26:6750-65. [PMID: 17934483 DOI: 10.1038/sj.onc.1210759] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An increasing number of molecules have been identified as candidate regulators of stem cell fates through their involvement in leukaemia or via post-genomic gene discovery approaches. A full understanding of the function of these molecules requires (1) detailed knowledge of the gene networks in which they participate and (2) an appreciation of how these networks vary as cells progress through the haematopoietic cell hierarchy. An additional layer of complexity is added by the occurrence of different haematopoietic cell hierarchies at different stages of ontogeny. Beyond these issues of cell context dependence, it is important from a mechanistic point of view to define the particular cell fate pathway impacted by any given regulator. Herein, we advance the notion that haematopoietic stem cells (HSC), which sustain haematopoiesis throughout adult life and are specified in foetal life, have a minimal or late contribution to foetal haematopoiesis but instead largely proliferate during the foetal period. In light of this notion, we revisit published data on mouse knockouts of haematopoietically-affiliated transcription factors highlighting novel insights that may be gained from taking such a view.
Collapse
Affiliation(s)
- C Pina
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| | | |
Collapse
|
139
|
Lilljebjörn H, Heidenblad M, Nilsson B, Lassen C, Horvat A, Heldrup J, Behrendtz M, Johansson B, Andersson A, Fioretos T. Combined high-resolution array-based comparative genomic hybridization and expression profiling of ETV6/RUNX1-positive acute lymphoblastic leukemias reveal a high incidence of cryptic Xq duplications and identify several putative target genes within the commonly gained region. Leukemia 2007; 21:2137-44. [PMID: 17690704 DOI: 10.1038/sj.leu.2404879] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 06/08/2007] [Accepted: 06/28/2007] [Indexed: 11/08/2022]
Abstract
Seventeen ETV6/RUNX1-positive pediatric acute lymphoblastic leukemias were investigated by high-resolution array-based comparative genomic hybridization (array CGH), gene expression profiling and fluorescence in situ hybridization. Comparing the array CGH and gene expression patterns revealed that genomic imbalances conferred a great impact on the expression of genes in the affected regions. The array CGH analyses identified a high frequency of cytogenetically cryptic genetic changes, for example, del(9p) and del(12p). Interestingly, a duplication of Xq material, varying between 30 and 60 Mb in size, was found in 6 of 11 males (55%), but not in females. Genes on Xq were found to have a high expression level in cases with dup(Xq); a similar overexpression was confirmed in t(12;21)-positive cases in an external gene expression data set. By studying the expression profile and the proposed function of genes in the minimally gained region, several candidate target genes (SPANXB, HMGB3, FAM50A, HTATSF1 and RAP2C) were identified. Among them, the testis-specific SPANXB gene was the only one showing a high and uniform overexpression, irrespective of gender and presence of Xq duplication, suggesting that this gene plays an important pathogenetic role in t(12;21)-positive leukemia.
Collapse
Affiliation(s)
- H Lilljebjörn
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Morrow M, Samanta A, Kioussis D, Brady HJM, Williams O. TEL-AML1 preleukemic activity requires the DNA binding domain of AML1 and the dimerization and corepressor binding domains of TEL. Oncogene 2007; 26:4404-14. [PMID: 17237815 DOI: 10.1038/sj.onc.1210227] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 11/01/2006] [Accepted: 11/22/2006] [Indexed: 12/30/2022]
Abstract
The t(12;21)(p13;q22) translocation generates the TEL-AML1 (TEL, translocation-Ets-leukemia; AML1, acute myeloid leukemia-1) (ETV6-RUNX1) fusion product and is the most common chromosomal abnormality in pediatric leukemia. Our previous studies using a murine fetal liver transplantation model demonstrated that TEL-AML1 promotes the self-renewal of B-cell precursors in vitro and enhances the expansion of hematopoietic stem cells (HSCs) in vivo. This is consistent with the hypothesis that TEL-AML1 induces expansion of a preleukemic clone. Several studies have described domains within TEL-AML1 involved in the transcriptional regulation of specific target genes. However, it is unclear which of these domains is important for the activity of TEL-AML1 in preleukemic hematopoiesis. In order to examine this, we have generated a panel of deletion mutants and expressed them in HSCs. These experiments demonstrate that TEL-AML1 requires multiple domains from both TEL and AML1 to alter hematopoiesis. Furthermore, mutation of a single amino-acid residue within the runt homology domain of AML1, required for DNA binding, was sufficient to abrogate TEL-AML1 activity. These data suggest that TEL-AML1 acts as an aberrant transcription factor to perturb multiple pathways during hematopoiesis.
Collapse
Affiliation(s)
- M Morrow
- Molecular Haematology and Cancer Biology Unit, Institute of Child Health, University College, London, UK
| | | | | | | | | |
Collapse
|
141
|
Wang S, Zhang Y, Soosairajah J, Kraft AS. Regulation of RUNX1/AML1 during the G2/M transition. Leuk Res 2007; 31:839-51. [PMID: 17023045 DOI: 10.1016/j.leukres.2006.08.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 08/22/2006] [Accepted: 08/26/2006] [Indexed: 10/24/2022]
Abstract
The acute myeloid leukemia 1 (AML1, RUNX1) transcription factor is a key regulator of hematopoietic differentiation both in embryonic stem cells and mature hematopoietic progenitors. The RUNX1 protein is thought to play a role in the control of progression through the cell cycle. We have shown that post-transcriptional regulation of RUNX1 activity occurs, in part, through phosphorylation. To investigate whether transit through the cell cycle is associated with changes in the phosphorylation of RUNX1, we have derived phospho-specific antibodies against three of the five major phosphorylation sites in the transcriptional activation domain of RUNX1, S276, S303 and S462. Using these antibodies we demonstrate that treatment of Jurkat T-cells with nocodazole, a G2/M blocking compound, causes an increase in phosphorylation of these three amino acids. By elutriating the Jurkat cells, we are able to demonstrate that these amino acids are normally phosphorylated at the G2/M phase of the cell cycle. Using in vivo inhibitors and in vitro assays this phosphorylation appears to be dependent on Cdk1. We find that RUNX1 degradation occurs at the G2/M-G1 transition and is regulated by both Cdc20 and phosphoryation, suggesting that the anaphase promoting complex plays a role in modifying the level of this protein. Regulation of the extent of phosphorylation of RUNX1 may play a role in controlling the degradation of the protein, implying that additional E3 ligases may also be involved.
Collapse
Affiliation(s)
- Suiquan Wang
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
142
|
Li XL, Arai Y, Harada H, Shima Y, Yoshida H, Rokudai S, Aikawa Y, Kimura A, Kitabayashi I. Mutations of the HIPK2 gene in acute myeloid leukemia and myelodysplastic syndrome impair AML1- and p53-mediated transcription. Oncogene 2007; 26:7231-9. [PMID: 17533375 DOI: 10.1038/sj.onc.1210523] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The AML1 transcription factor complex is the most frequent target of leukemia-associated chromosomal translocations. Homeodomain-interacting protein kinase 2 (HIPK2) is a part of the AML1 complex and activates AML1-mediated transcription. However, chromosomal translocations and mutations of HIPK2 have not been reported. In the current study, we screened mutations of the HIPK2 gene in 50 cases of acute myeloid leukemia (AML) and in 80 cases of myelodysplastic syndrome (MDS). Results indicated there were two missense mutations (R868W and N958I) in the speckle-retention signal (SRS) domain of HIPK2. Subcellular localization analyses indicated that the two mutants were largely localized to nuclear regions with conical or ring shapes, and were somewhat diffused in the nucleus, in contrast to the wild type, which were mainly localized in nuclear speckles. The mutations impaired the overlapping localization of AML1 and HIPK2. The mutants showed decreased activities and a dominant-negative function over wild-type protein in AML1- and p53-dependent transcription. These findings suggest that dysfunction of HIPK2 may play a role in the pathogenesis of leukemia.
Collapse
Affiliation(s)
- X-L Li
- Molecular Oncology Division, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Imagama S, Abe A, Suzuki M, Hayakawa F, Katsumi A, Emi N, Kiyoi H, Naoe T. LRP16 is fused to RUNX1 in monocytic leukemia cell line with t(11;21)(q13;q22). Eur J Haematol 2007; 79:25-31. [PMID: 17532767 DOI: 10.1111/j.1600-0609.2007.00858.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The RUNX1 (also known as AML1) gene is observed frequently as the target of chromosomal rearrangements in human acute leukemia. We describe here a previously unreported rearrangement, t(11;21)(q13;q22), that disrupts the RUNX1 gene in a patient with acute leukemia and the molecular analysis of the fusion gene. METHODS We have established a monocytic leukemia cell line, ELAM-1, from a patient with acute leukemia evolving from myelodysplastic syndrome (MDS). Translocation (11;21) (q13;q22) was observed in both patient leukemia cells and ELAM-1. RESULTS The split signal of RUNX1 was detected by fluorescence in situ hybridization and indicated the involvement of RUNX1 in ELAM-1. Using 3'- Rapid amplification of cDNA ends and reverse transcription-Polymerase chain reaction analysis, we detected both RUNX1 (exon 5)-LRP16 and RUNX1 (exon 6)-LRP16 transcripts, suggesting that the RUNX1 breakpoint lies in intron 6 and that alternative fusion splice variants are generated. Reciprocal LRP16-RUNX1 fusion was also detected. CONCLUSIONS We identified a novel RUNX1 fusion partner, LRP16 on 11q13 involving t(11;21)(q13;q22). Although it was reported that overexpression of LRP16 promotes human breast cancer cell proliferation, the function of LRP16 in leukemia remains to be studied. This fusion gene and cell line may provide a new research tool to investigate the mechanism of leukemogenesis generated by the RUNX1 fusion gene.
Collapse
MESH Headings
- Base Sequence
- Carboxylic Ester Hydrolases
- Cell Line, Tumor
- Chromosomes, Human, Pair 11
- Chromosomes, Human, Pair 21
- Core Binding Factor Alpha 2 Subunit/genetics
- DNA Primers
- Female
- Humans
- Karyotyping
- Leukemia, Monocytic, Acute/genetics
- Leukemia, Monocytic, Acute/pathology
- Middle Aged
- Neoplasm Proteins/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Translocation, Genetic
Collapse
Affiliation(s)
- Shizuka Imagama
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Jin W, Yun C, Hobbie A, Martin MJ, Sorensen PHB, Kim SJ. Cellular transformation and activation of the phosphoinositide-3-kinase-Akt cascade by the ETV6-NTRK3 chimeric tyrosine kinase requires c-Src. Cancer Res 2007; 67:3192-200. [PMID: 17409427 DOI: 10.1158/0008-5472.can-06-3526] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ETV6-NTRK3 (EN) chimeric tyrosine kinase, a potent oncoprotein expressed in tumors derived from multiple cell lineages, functions as a constitutively active protein-tyrosine kinase. ETV6-NTRK expression leads to the constitutive activation of two major effector pathways of wild-type NTRK3, namely, the Ras-mitogen-activated protein kinase (MAPK) mitogenic pathway and the phosphoinositide-3-kinase (PI3K)-Akt pathway mediating cell survival, and both are required for EN transformation. However, it remains unclear how ETV6-NTRK3 activates Ras-Erk1/2 and/or PI3K-Akt cascades. Here, we define some aspects of the molecular mechanisms regulating ETV6-NTRK-dependent Ras-Erk1/2 and PI3K-Akt activation. We show that ETV6-NTRK3 associates with c-Src, and that treatment with SU6656, a c-Src inhibitor, completely blocks ETV6-NTRK-transforming activity. Treatment of NIH3T3 cells expressing ETV6-NTRK3 with SU6656 attenuated the activation of Ras-Erk1/2 and PI3K-Akt. Suppression of c-Src by RNA interference in NIH3T3-ETV6-NTRK3 cells resulted in markedly decreased expression of cyclin D1 and suppression of activation of Ras-Erk1/2 and PI3K-Akt. However, in Src-deficient cells, the ETV6-NTRK3 failed to activate the PI3K-Atk pathway, but not the Ras-Erk1/2 pathway. Therefore, these data indicate that ETV6-NTRK3 induces the PI3K-Akt cascade through the activation of c-Src.
Collapse
Affiliation(s)
- Wook Jin
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
145
|
|
146
|
Peterson LF, Yan M, Zhang DE. The p21Waf1 pathway is involved in blocking leukemogenesis by the t(8;21) fusion protein AML1-ETO. Blood 2007; 109:4392-8. [PMID: 17284535 PMCID: PMC1885483 DOI: 10.1182/blood-2006-03-012575] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The 8;21 translocation is a major contributor to acute myeloid leukemia (AML) of the M2 classification occurring in approximately 40% of these cases. Multiple mouse models using this fusion protein demonstrate that AML1-ETO requires secondary mutagenic events to promote leukemogenesis. Here, we show that the negative cell cycle regulator p21(WAF1) gene is up-regulated by AML1-ETO at the protein, RNA, and promoter levels. Retroviral transduction and hematopoietic cell transplantation experiments with p21(WAF1)-deficient cells show that AML1-ETO is able to promote leukemogenesis in the absence of p21(WAF1). Thus, loss of p21(WAF1) facilitates AML1-ETO-induced leukemogenesis, suggesting that mutagenic events in the p21(WAF1) pathway to bypass the growth inhibitory effect from AML1-ETO-induced p21(WAF1) expression can be a significant factor in AML1-ETO-associated acute myeloid leukemia.
Collapse
MESH Headings
- Animals
- Cell Cycle/genetics
- Chromosomes, Human, Pair 21
- Chromosomes, Human, Pair 8
- Core Binding Factor Alpha 2 Subunit/antagonists & inhibitors
- Core Binding Factor Alpha 2 Subunit/physiology
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- Cyclin-Dependent Kinase Inhibitor p21/physiology
- Gene Expression Regulation, Leukemic
- Humans
- Jurkat Cells
- K562 Cells
- Leukemia/genetics
- Leukemia/prevention & control
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Models, Biological
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/physiology
- Promoter Regions, Genetic
- RUNX1 Translocation Partner 1 Protein
- Signal Transduction/physiology
- Translocation, Genetic
Collapse
Affiliation(s)
- Luke F Peterson
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
147
|
Suvà ML, Cironi L, Riggi N, Stamenkovic I. Sarcomas: genetics, signalling, and cellular origins. Part 2: TET-independent fusion proteins and receptor tyrosine kinase mutations. J Pathol 2007; 213:117-30. [PMID: 17703479 DOI: 10.1002/path.2208] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Although the mechanisms that underlie sarcoma development are still poorly understood, the identification of non-random chromosomal translocations and receptor tyrosine kinase mutations associated with defined sarcoma types has provided new insight into the pathogenesis of these tumours. In Part 1 of the review (J Pathol 2007;213:4-20), we addressed sarcomas that express fusion genes containing TET gene family products. Part 2 of the review summarizes our current understanding of the implications of fusion genes that do not contain TET family members in sarcoma development, as well as that of specific mutations in genes encoding receptor tyrosine kinases (RTKs). The final section will serve as a summary of both reviews and will attempt to provide a synthesis of some of the emerging principles of sarcomagenesis.
Collapse
Affiliation(s)
- M-L Suvà
- Division of Experimental Pathology, Institute of Pathology, University of Lausanne, Lausanne, Switzerland
| | | | | | | |
Collapse
|
148
|
Forestier E, Andersen MK, Autio K, Blennow E, Borgström G, Golovleva I, Heim S, Heinonen K, Hovland R, Johannsson JH, Kerndrup G, Nordgren A, Rosenquist R, Swolin B, Johansson B. Cytogenetic patterns inETV6/RUNX1-positive pediatric B-cell precursor acute lymphoblastic leukemia: A Nordic series of 245 cases and review of the literature. Genes Chromosomes Cancer 2007; 46:440-50. [PMID: 17285576 DOI: 10.1002/gcc.20423] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Between 1992 and 2004, 1,140 children (1 to<15 years) were diagnosed with B-cell precursor acute lymphoblastic leukemia (ALL) in the Nordic countries. Of these, 288 (25%) were positive for t(12;21)(p13;q22) [ETV6/RUNX1]. G-banding analyses were successful in 245 (85%); 43 (15%) were karyotypic failures. The modal chromosome numbers, incidence, types, and numbers of additional abnormalities, genomic imbalances, and chromosomal breakpoints in the 245 karyotypically informative cases, as well as in 152 previously reported cytogenetically characterized t(12;21)-positive ALLs in the same age group, were ascertained. The most common modal numbers among the 397 cases were 46 (67%), 47 (16%), 48 (6%), and 45 (5%). High-hyperdiploidy, triploidy, and tetraploidy were each found in approximately 1%; none had less than 40 chromosomes. Secondary chromosomal abnormalities were identified by chromosome banding in 248 (62%) of the 397 ALLs. Of these, 172 (69%) displayed only unbalanced changes, 14 (6%) only balanced aberrations, and 26 (10%) harbored both unbalanced and balanced abnormalities; 36 (15%) were uninformative because of incomplete karyotypes. The numbers of secondary changes varied between 1 and 19, with a median of 2 additional aberrations per cytogenetically abnormal case. The most frequent genomic imbalances were deletions of 6q21-27 (18%), 8p11-23 (6%), 9p13-24 (7%), 11q23-25 (6%), 12p11-13 (27%), 13q14-34 (7%), loss of the X chromosome (8%), and gains of 10 (9%), 16 (6%), and 21 (29%); no frequent partial gains were noted. The chromosome bands most often involved in structural rearrangements were 3p21 (2%), 5q13 (2%), 6q12 (2%), 6q14 (2%), 6q16 (2%), 6q21 (10%), 6q23 (6%), 6q25 (3%), 9p13 (2%), 11q13 (2%), 11q23 (2%), 12p11 (6%), 12p12 (7%), 12p13 (25%), 21q10 (6%), and 21q22 (6%). Considering that the t(12;21) is known to arise in utero and that the postnatal latency period is protracted, additional mutations are most likely necessary for overt ALL. The frequently rearranged chromosome regions may harbor genes of importance for the transformation and/or progression of an initial preleukemic t(12;21)-positive clone.
Collapse
Affiliation(s)
- Erik Forestier
- Pediatrics Unit, Department of Clinical Sciences, University of Umeå, Umeå, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Kurokawa M. AML1/Runx1 as a versatile regulator of hematopoiesis: regulation of its function and a role in adult hematopoiesis. Int J Hematol 2006; 84:136-42. [PMID: 16926135 DOI: 10.1532/ijh97.06070] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AML1/Runx1, originally identified as a gene located at the breakpoint of the t(8;21) translocation, encodes a transcription factor that is widely expressed in multiple hematopoietic lineages and that regulates the expression of a variety of hematopoietic genes. Numerous studies have shown that AML1 is a critical regulator of hematopoietic development. In addition, AML1 is a frequent target for chromosomal translocation in human leukemia. The activity of AML1 can be modulated by various types of posttranslational modification, including phosphorylation and acetylation. Phosphorylation by extracellular signal-regulated kinase (ERK) is one of the mechanisms that dictate whether AML1 acts as either a transcriptional repressor or an activator of gene expression. Recently, a physiological role for AML1 in adult hematopoiesis was revealed by conditional gene targeting in mice. Remarkably, adult hematopoietic progenitors are maintained even in the absence of AML1, in stark contrast to the total disruption of definitive hematopoiesis during embryogenesis. AML1 is, however, critical for megakaryopoiesis and plays an important role in T-cell and B-cell development in adult mice. Recent analyses engineered to recreate hematopoiesis in vitro revealed that the transcriptional activity of AML1 is closely related with the potential of AML1 to generate hematopoietic cells and support thymocyte development.
Collapse
Affiliation(s)
- Mineo Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
150
|
Nguyen TT, Ma LN, Slovak ML, Bangs CD, Cherry AM, Arber DA. Identification of novel Runx1 (AML1) translocation partner genes SH3D19, YTHDf2, and ZNF687 in acute myeloid leukemia. Genes Chromosomes Cancer 2006; 45:918-32. [PMID: 16858696 DOI: 10.1002/gcc.20355] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Three patients diagnosed with acute myeloid leukemia (AML) with reciprocal 21q22/RUNX1(AML1) translocations involving chromosomes 1 and 4 were studied. Three novel RUNX1 translocation partner genes on 1q21.2 (ZNF687), 1p35 (YTHDF2), and 4q31.3 (SH3D19) were identified using a panhandle polymerase chain reaction and the 3' rapid amplification of cDNA ends method. The translocation events occurred between exons 3 and 7 of the RUNX1 gene. The partner gene breakpoints localized to the region in the partner gene with the highest Alu density, suggesting that Alus may contribute to the recombination events. Two out of three of the cases retained RUNX1's entire RUNT domain in the translocation, and RUNX1 mutations were absent in the fusion transcripts, confirmed by reverse transcription-polymerase chain reaction and sequencing analysis. SH3D19 encodes a cytoplasmic protein EBP known to suppress RAS-induced cellular transformation, which can be inhibited by nuclear recruitment. The t(4;21) created a hybrid RUNX1-EBP protein retaining RUNX1's DNA binding domain, which may result in nuclear localization of the chimeric protein and inhibition of EBP's RAS-suppressive functions. Future studies would be useful to further characterize these novel fusion protein products.
Collapse
MESH Headings
- Acute Disease
- Aged
- Aged, 80 and over
- Chromosomes, Human, Pair 1/genetics
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 4/genetics
- Cloning, Molecular
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Humans
- In Situ Hybridization, Fluorescence
- Infant
- Leukemia, Myeloid/genetics
- Male
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Translocation, Genetic
- Zinc Fingers/genetics
- src Homology Domains/genetics
Collapse
Affiliation(s)
- TuDung T Nguyen
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | | | | | | | | |
Collapse
|