101
|
Milde R, Ritter J, Tennent GA, Loesch A, Martinez FO, Gordon S, Pepys MB, Verschoor A, Helming L. Multinucleated Giant Cells Are Specialized for Complement-Mediated Phagocytosis and Large Target Destruction. Cell Rep 2015; 13:1937-48. [PMID: 26628365 PMCID: PMC4675895 DOI: 10.1016/j.celrep.2015.10.065] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/03/2015] [Accepted: 10/22/2015] [Indexed: 01/05/2023] Open
Abstract
Multinucleated giant cells (MGCs) form by fusion of macrophages and are presumed to contribute to the removal of debris from tissues. In a systematic in vitro analysis, we show that IL-4-induced MGCs phagocytosed large and complement-opsonized materials more effectively than their unfused M2 macrophage precursors. MGC expression of complement receptor 4 (CR4) was increased, but it functioned primarily as an adhesion integrin. In contrast, although expression of CR3 was not increased, it became functionally activated during fusion and was located on the extensive membrane ruffles created by excess plasma membrane arising from macrophage fusion. The combination of increased membrane area and activated CR3 specifically equips MGCs to engulf large complement-coated targets. Moreover, we demonstrate these features in vivo in the recently described complement-dependent therapeutic elimination of systemic amyloid deposits by MGCs. MGCs are evidently more than the sum of their macrophage parts. MGCs are specialized for phagocytosis of large and complement-opsonized particles MGCs show extensive membrane ruffles containing pre-activated complement receptor 3 Membrane ruffles provide excess membrane for ingestion of large materials MGCs eliminate systemic amyloid deposits after immunotherapeutic targeting
Collapse
Affiliation(s)
- Ronny Milde
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, 81675 Munich, Germany
| | - Julia Ritter
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, 81675 Munich, Germany
| | - Glenys A Tennent
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, Royal Free Campus, University College London, London NW3 2PF, UK
| | - Andrzej Loesch
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, Royal Free Campus, University College London, London NW3 2PF, UK
| | | | - Siamon Gordon
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Mark B Pepys
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, Royal Free Campus, University College London, London NW3 2PF, UK.
| | - Admar Verschoor
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, 81675 Munich, Germany; Institute for Systemic Inflammation Research, Universität zu Lübeck, 23538 Lübeck, Germany.
| | - Laura Helming
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, 81675 Munich, Germany
| |
Collapse
|
102
|
Lueck K, Busch M, Moss SE, Greenwood J, Kasper M, Lommatzsch A, Pauleikhoff D, Wasmuth S. Complement Stimulates Retinal Pigment Epithelial Cells to Undergo Pro-Inflammatory Changes. Ophthalmic Res 2015; 54:195-203. [PMID: 26502094 DOI: 10.1159/000439596] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/21/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS We examined the effect of human complement sera (HCS) on retinal pigment epithelial (RPE) cells with respect to pro-inflammatory mediators relevant in early age-related macular degeneration (AMD). METHODS RPE cells were treated with complement-containing HCS or with heat-inactivated (HI) HCS or C7-deficient HCS as controls. Cells were analysed for C5b-9 using immunocytochemistry and flow cytometry. Interleukin (IL)-6, IL-8, and monocyte chemoattractant protein-1 (MCP-1) were quantified by ELISA and RT-PCR. Tumour necrosis factor-α (TNF-α), intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), were analysed by Western blotting. The intracellular distribution of nuclear factor (NF)-x03BA;B was investigated by immunofluorescence. RESULTS A concentration-dependent increased staining for C5b-9 but no influence on cell viability was observed after HCS treatment. ELISA and RT-PCR analysis revealed elevated secretion and expression of IL-6, IL-8, and MCP-1. Western blot analysis showed a concentration-dependent increase in ICAM-1, VCAM-1, and TNF-α in response to HCS, and immunofluorescence staining revealed nuclear translocation of NF-x03BA;B. CONCLUSION This study suggests that complement stimulates NF-x03BA;B activation in RPE cells that might further create a pro-inflammatory environment. All these factors together may support early AMD development.
Collapse
Affiliation(s)
- Katharina Lueck
- Ophtha-Lab, Department of Ophthalmology at St. Franziskus Hospital, Muenster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Weinstein JR, Quan Y, Hanson JF, Colonna L, Iorga M, Honda SI, Shibuya K, Shibuya A, Elkon KB, Möller T. IgM-Dependent Phagocytosis in Microglia Is Mediated by Complement Receptor 3, Not Fcα/μ Receptor. THE JOURNAL OF IMMUNOLOGY 2015; 195:5309-17. [PMID: 26500348 DOI: 10.4049/jimmunol.1401195] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/29/2015] [Indexed: 12/11/2022]
Abstract
Microglia play an important role in receptor-mediated phagocytosis in the CNS. In brain abscess and other CNS infections, invading bacteria undergo opsonization with Igs or complement. Microglia recognize these opsonized pathogens by Fc or complement receptors triggering phagocytosis. In this study, we investigated the role of Fcα/μR, the less-studied receptor for IgM and IgA, in microglial phagocytosis. We showed that primary microglia, as well as N9 microglial cells, express Fcα/μR. We also showed that anti-Staphylococcus aureus IgM markedly increased the rate of microglial S. aureus phagocytosis. To unequivocally test the role of Fcα/μR in IgM-mediated phagocytosis, we performed experiments in microglia from Fcα/μR(-/-) mice. Surprisingly, we found that IgM-dependent phagocytosis of S. aureus was similar in microglia derived from wild-type or Fcα/μR(-/-) mice. We hypothesized that IgM-dependent activation of complement receptors might contribute to the IgM-mediated increase in phagocytosis. To test this, we used immunologic and genetic inactivation of complement receptor 3 components (CD11b and CD18) as well as C3. IgM-, but not IgG-mediated phagocytosis of S. aureus was reduced in wild-type microglia and macrophages following preincubation with an anti-CD11b blocking Ab. IgM-dependent phagocytosis of S. aureus was also reduced in microglia derived from CD18(-/-) and C3(-/-) mice. Taken together, our findings implicate complement receptor 3 and C3, but not Fcα/μR, in IgM-mediated phagocytosis of S. aureus by microglia.
Collapse
Affiliation(s)
- Jonathan R Weinstein
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA 98195;
| | - Yi Quan
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA 98195
| | - Josiah F Hanson
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA 98195
| | - Lucrezia Colonna
- Division of Rheumatology, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195; and
| | - Michael Iorga
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA 98195
| | - Shin-ichiro Honda
- Department of Immunology, Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Kazuko Shibuya
- Department of Immunology, Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Akira Shibuya
- Department of Immunology, Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Keith B Elkon
- Division of Rheumatology, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195; and
| | - Thomas Möller
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA 98195
| |
Collapse
|
104
|
Activated Complement Factors as Disease Markers for Sepsis. DISEASE MARKERS 2015; 2015:382463. [PMID: 26420913 PMCID: PMC4572436 DOI: 10.1155/2015/382463] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 08/16/2015] [Indexed: 02/06/2023]
Abstract
Sepsis is a leading cause of death in the United States and worldwide. Early recognition and effective management are essential for improved outcome. However, early recognition is impeded by lack of clinically utilized biomarkers. Complement factors play important roles in the mechanisms leading to sepsis and can potentially serve as early markers of sepsis and of sepsis severity and outcome. This review provides a synopsis of recent animal and clinical studies of the role of complement factors in sepsis development, together with their potential as disease markers. In addition, new results from our laboratory are presented regarding the involvement of the complement factor, mannose-binding lectin, in septic shock patients. Future clinical studies are needed to obtain the complete profiles of complement factors/their activated products during the course of sepsis development. We anticipate that the results of these studies will lead to a multipanel set of sepsis biomarkers which, along with currently used laboratory tests, will facilitate earlier diagnosis, timely treatment, and improved outcome.
Collapse
|
105
|
Sharif‐Paghaleh E, Yap ML, Meader LL, Chuamsaamarkkee K, Kampmeier F, Badar A, Smith RA, Sacks S, Mullen GE. Noninvasive Imaging of Activated Complement in Ischemia-Reperfusion Injury Post-Cardiac Transplant. Am J Transplant 2015; 15:2483-90. [PMID: 25906673 PMCID: PMC4654255 DOI: 10.1111/ajt.13299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 02/24/2015] [Accepted: 02/28/2015] [Indexed: 01/25/2023]
Abstract
Ischemia-reperfusion injury (IRI) is inevitable in solid organ transplantation, due to the transplanted organ being ischemic for prolonged periods prior to transplantation followed by reperfusion. The complement molecule C3 is present in the circulation and is also synthesized by tissue parenchyma in early response to IRI and the final stable fragment of activated C3, C3d, can be detected on injured tissue for several days post-IRI. Complement activation post-IRI was monitored noninvasively by single photon emission computed tomography (SPECT) and CT using (99m) Tc-recombinant complement receptor 2 ((99m) Tc-rCR2) in murine models of cardiac transplantation following the induction of IRI and compared to (99m) Tc-rCR2 in C3(-/-) mice or with the irrelevant protein (99m) Tc-prostate-specific membrane antigen antibody fragment (PSMA). Significant uptake with (99m) Tc-rCR2 was observed as compared to C3(-/-) or (99m) Tc-PSMA. In addition, the transplanted heart to muscle ratio of (99m) Tc-rCR2 was significantly higher than (99m) Tc-PSMA or C3(-/-) . The results were confirmed by histology and autoradiography. (99m) Tc-rCR2 can be used for noninvasive detection of activated complement and in future may be used to quantify the severity of transplant damage due to complement activation postreperfusion.
Collapse
Affiliation(s)
- E. Sharif‐Paghaleh
- Division of Imaging and Biomedical EngineeringSchool of MedicineKing's College LondonLondonEngland,MRC Centre for TransplantationKing's College LondonLondonEngland,Department of ImmunologyFaculty of MedicineTehran University of Medical SciencesTehranIran
| | - M. L. Yap
- Division of Imaging and Biomedical EngineeringSchool of MedicineKing's College LondonLondonEngland
| | - L. L. Meader
- MRC Centre for TransplantationKing's College LondonLondonEngland
| | - K. Chuamsaamarkkee
- Division of Imaging and Biomedical EngineeringSchool of MedicineKing's College LondonLondonEngland
| | - F. Kampmeier
- Division of Imaging and Biomedical EngineeringSchool of MedicineKing's College LondonLondonEngland
| | - A. Badar
- Division of Imaging and Biomedical EngineeringSchool of MedicineKing's College LondonLondonEngland
| | - R. A. Smith
- MRC Centre for TransplantationKing's College LondonLondonEngland
| | - S. Sacks
- MRC Centre for TransplantationKing's College LondonLondonEngland
| | - G. E. Mullen
- Division of Imaging and Biomedical EngineeringSchool of MedicineKing's College LondonLondonEngland,MRC Centre for TransplantationKing's College LondonLondonEngland
| |
Collapse
|
106
|
Yuan X, Shan M, You R, Frazier MV, Hong MJ, Wetsel RA, Drouin S, Seryshev A, MD LZS, Cornwell L, Rossen RD, Corry DB, Kheradmand F. Activation of C3a receptor is required in cigarette smoke-mediated emphysema. Mucosal Immunol 2015; 8:874-85. [PMID: 25465103 PMCID: PMC4454642 DOI: 10.1038/mi.2014.118] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/23/2014] [Indexed: 02/04/2023]
Abstract
Exposure to cigarette smoke can initiate sterile inflammatory responses in the lung and activate myeloid dendritic cells (mDCs) that induce differentiation of T helper type 1 (Th1) and Th17 cells in the emphysematous lungs. Consumption of complement proteins increases in acute inflammation, but the contribution of complement protein 3 (C3) to chronic cigarette smoke-induced immune responses in the lung is not clear. Here, we show that following chronic exposure to cigarette smoke, C3-deficient (C3(-/-)) mice develop less emphysema and have fewer CD11b(+)CD11c(+) mDCs infiltrating the lungs as compared with wild-type mice. Proteolytic cleavage of C3 by neutrophil elastase releases C3a, which in turn increases the expression of its receptor (C3aR) on lung mDCs. Mice deficient in the C3aR (C3ar(-/-)) partially phenocopy the attenuated responses to chronic smoke observed in C3(-/-) mice. Consistent with a role for C3 in emphysema, C3 and its active fragments are deposited on the lung tissue of smokers with emphysema, and smoke-exposed mice. Together, these findings suggest a critical role for C3a through autocrine/paracrine induction of C3aR in the pathogenesis of cigarette smoke-induced sterile inflammation and provide new therapeutic targets for the treatment of emphysema.
Collapse
Affiliation(s)
- Xiaoyi Yuan
- Department of Medicine, The University of Texas Medical School at Houston, Houston TX 77030
| | - Ming Shan
- Department of Medicine, The University of Texas Medical School at Houston, Houston TX 77030
| | - Ran You
- Department of Medicine, The University of Texas Medical School at Houston, Houston TX 77030
| | - Michael V. Frazier
- Department of Medicine, The University of Texas Medical School at Houston, Houston TX 77030
| | - Monica Jeongsoo Hong
- Department of Medicine, The University of Texas Medical School at Houston, Houston TX 77030
| | - Rick A. Wetsel
- Brown Foundation Institute of Molecular Medicine-Research Center for Immunology and Autoimmune Diseases, The University of Texas Medical School at Houston, Houston TX 77030
| | - Scott Drouin
- Brown Foundation Institute of Molecular Medicine-Research Center for Immunology and Autoimmune Diseases, The University of Texas Medical School at Houston, Houston TX 77030
| | - Alexander Seryshev
- Department of Medicine, The University of Texas Medical School at Houston, Houston TX 77030
| | - Li-zhen Song MD
- Department of Medicine, The University of Texas Medical School at Houston, Houston TX 77030
| | | | - Roger D Rossen
- Department of Medicine, The University of Texas Medical School at Houston, Houston TX 77030
- Pathology and Immunology, Baylor College of Medicine, The University of Texas Medical School at Houston, Houston TX 77030
- Michael E DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston TX 77030
| | - David B. Corry
- Department of Medicine, The University of Texas Medical School at Houston, Houston TX 77030
- Pathology and Immunology, Baylor College of Medicine, The University of Texas Medical School at Houston, Houston TX 77030
- Biology of Inflammation Center, Baylor College of Medicine, Houston TX 77030
- Michael E DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston TX 77030
| | - Farrah Kheradmand
- Department of Medicine, The University of Texas Medical School at Houston, Houston TX 77030
- Pathology and Immunology, Baylor College of Medicine, The University of Texas Medical School at Houston, Houston TX 77030
- Biology of Inflammation Center, Baylor College of Medicine, Houston TX 77030
- Michael E DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston TX 77030
| |
Collapse
|
107
|
Scott D, Botto M. The paradoxical roles of C1q and C3 in autoimmunity. Immunobiology 2015; 221:719-25. [PMID: 26001732 DOI: 10.1016/j.imbio.2015.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/21/2015] [Accepted: 05/01/2015] [Indexed: 01/29/2023]
Abstract
In this review we will focus on the links between complement and autoimmune diseases and will highlight how animal models have provided insights into the manner by which C1q and C3 act to modulate both adaptive and innate immune responses. In particular we will highlight how C1q may not only act as initiator of the classical complement pathway, but can also mediate multiple immune responses in a complement activation independent manner.
Collapse
Affiliation(s)
- Diane Scott
- Centre for Complement and Inflammation Research, Department of Medicine, Imperial College London, London, UK
| | - Marina Botto
- Centre for Complement and Inflammation Research, Department of Medicine, Imperial College London, London, UK.
| |
Collapse
|
108
|
Ernst W, Kusi E, Fill Malfertheiner S, Reuschel E, Deml L, Seelbach-Göbel B. The effect of Indomethacin and Betamethasone on the cytokine response of human neonatal mononuclear cells to gram-positive bacteria. Cytokine 2015; 73:91-100. [PMID: 25743243 DOI: 10.1016/j.cyto.2015.01.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/14/2014] [Accepted: 01/23/2015] [Indexed: 11/29/2022]
Abstract
Intrauterine infections with gram-positive bacteria pose a serious threat to neonates since they can result in neonatal sepsis, induce a fetal inflammatory response and also cause preterm birth. Despite intensive care, prematurity remains a leading cause of neonatal death, and is often accompanied by a number of morbidities. In order to prevent premature birth, tocolytic agents like Indomethacin are administered. Betamethasone is used to promote lung maturation and prevent respiratory distress syndrome. A combination of both drugs is assumed to prevent premature delivery while simultaneously facilitating lung maturation. This study investigates the effect of Betamethasone, Indomethacin and a combination of both on the cytokine production of neonatal cord blood mononuclear cells (CBMC) after stimulation with lysates of the gram-positive pathogens Streptococcus agalactiae and Enterococcus faecalis. The aim of the study is to determine the impact of these drugs on the function of the neonatal immune system which should aid clinicians in choosing the optimal therapy in case of preterm birth associated with intrauterine infection. Betamethasone reduced the production of the pro-inflammatory cytokines IL-6, IL-12p40, MIP-1α and TNF and increased the expression of the anti-inflammatory cytokine IL-10, depending on the pathogen used for stimulation. In contrast to Betamethasone, Indomethacin almost exclusively increased IL-10 production. The combination of both drugs decreased the expression of IL-6, IL-12p40, MIP-1α and TNF while increasing IL-10 production, depending on the concentration of Indomethacin and the pathogen used for stimulation. Based on our results, the combination therapy with Indomethacin and Betamethasone has a similar effect on cytokine production as Betamethasone alone, which is generally administered in case of impending preterm birth. However, the combination therapy has the advantage of promoting lung maturation while simultaneously blocking preterm labor effectively.
Collapse
Affiliation(s)
- Wolfgang Ernst
- Clinic of Gynecology and Obstetrics St. Hedwig, University of Regensburg, Regensburg, Germany.
| | - Evelyn Kusi
- Clinic of Gynecology and Obstetrics St. Hedwig, University of Regensburg, Regensburg, Germany
| | - Sara Fill Malfertheiner
- Clinic of Gynecology and Obstetrics St. Hedwig, University of Regensburg, Regensburg, Germany
| | - Edith Reuschel
- Clinic of Gynecology and Obstetrics St. Hedwig, University of Regensburg, Regensburg, Germany
| | - Ludwig Deml
- Institute of Medical Microbiology, University of Regensburg, Regensburg, Germany; Lophius Biosciences GmbH, Josef-Engert Straße 13, 93053 Regensburg, Germany
| | - Birgit Seelbach-Göbel
- Clinic of Gynecology and Obstetrics St. Hedwig, University of Regensburg, Regensburg, Germany
| |
Collapse
|
109
|
Complement C1q-induced activation of β-catenin signalling causes hypertensive arterial remodelling. Nat Commun 2015; 6:6241. [PMID: 25716000 PMCID: PMC4351572 DOI: 10.1038/ncomms7241] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/08/2015] [Indexed: 12/21/2022] Open
Abstract
Hypertension induces structural remodelling of arteries, which leads to arteriosclerosis and end-organ damage. Hyperplasia of vascular smooth muscle cells (VSMCs) and infiltration of immune cells are the hallmark of hypertensive arterial remodelling. However, the precise molecular mechanisms of arterial remodelling remain elusive. We have recently reported that complement C1q activates β-catenin signalling independent of Wnts. Here, we show a critical role of complement C1-induced activation of β-catenin signalling in hypertensive arterial remodelling. Activation of β-catenin and proliferation of VSMCs were observed after blood-pressure elevation, which were prevented by genetic and chemical inhibition of β-catenin signalling. Macrophage depletion and C1qa gene deletion attenuated the hypertension-induced β-catenin signalling, proliferation of VSMCs and pathological arterial remodelling. Our findings unveil the link between complement C1 and arterial remodelling and suggest that C1-induced activation of β-catenin signalling becomes a novel therapeutic target to prevent arteriosclerosis in patients with hypertension. The role of macrophages in hypertension-induced arterial remodeling is poorly understood. Here, Sumida et al. show that high blood pressure drives the alternatively activated macrophages to secrete complement C1q protein, which in turn elicits proliferative β-catenin signalling in the arterial smooth muscle cells.
Collapse
|
110
|
Fossati-Jimack L, Ling GS, Baudino L, Szajna M, Manivannan K, Zhao JC, Midgley R, Chai JG, Simpson E, Botto M, Scott D. Intranasal peptide-induced tolerance and linked suppression: consequences of complement deficiency. Immunology 2015; 144:149-57. [PMID: 25039245 PMCID: PMC4264918 DOI: 10.1111/imm.12358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 12/27/2022] Open
Abstract
A role for complement, particularly the classical pathway, in the regulation of immune responses is well documented. Deficiencies in C1q or C4 predispose to autoimmunity, while deficiency in C3 affects the suppression of contact sensitization and generation of oral tolerance. Complement components including C3 have been shown to be required for both B-cell and T-cell priming. The mechanisms whereby complement can mediate these diverse regulatory effects are poorly understood. Our previous work, using the mouse minor histocompatibility (HY) model of skin graft rejection, showed that both C1q and C3 were required for the induction of tolerance following intranasal peptide administration. By comparing tolerance induction in wild-type C57BL/6 and C1q-, C3-, C4- and C5-deficient C57BL/6 female mice, we show here that the classical pathway components including C3 are required for tolerance induction, whereas C5 plays no role. C3-deficient mice failed to generate a functional regulatory T (Treg) -dendritic cell (DC) tolerogenic loop required for tolerance induction. This was related to the inability of C3-deficient DC to up-regulate the arginine-consuming enzyme, inducible nitric oxide synthase (Nos-2), in the presence of antigen-specific Treg cells and peptide, leading to reduced Treg cell generation. Our findings demonstrate that the classical pathway and C3 play a critical role in the peptide-mediated induction of tolerance to HY by modulating DC function.
Collapse
|
111
|
Yammani RD, Leyva MA, Jennings RN, Haas KM. C4 Deficiency is a predisposing factor for Streptococcus pneumoniae-induced autoantibody production. THE JOURNAL OF IMMUNOLOGY 2014; 193:5434-43. [PMID: 25339671 DOI: 10.4049/jimmunol.1401462] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Reductions in C4 levels may predispose individuals to infection with encapsulated bacteria as well as autoimmunity. In this study, we examined the role C4 has in protection against Streptococcus pneumoniae-induced autoimmunity. Mild respiratory infection with serotype 19F pneumococci selectively induced systemic anti-dsDNA IgA production in naive C4(-/-) mice, but not in C3(-/-) or wild-type mice. Systemic challenge with virulent serotype 3 pneumococci also induced anti-dsDNA IgA production in immune C4(-/-) mice. Remarkably, pneumococcal polysaccharide (PPS) vaccination alone induced C4(-/-) mice to produce increased anti-dsDNA IgA levels that were maintained in some mice for months. These effects were most pronounced in female C4(-/-) mice. Importantly, immunization-induced increases in anti-dsDNA IgA levels were strongly associated with increased IgA deposition in kidneys. Cross-reactivity between pneumococcal Ags and dsDNA played a partial role in the induction of anti-dsDNA IgA, but a major role for PPS-associated TLR2 agonists was also revealed. Administration of the TLR2/4 antagonist, OxPAPC, at the time of PPS immunization completely blocked the production of anti-dsDNA IgA in C4(-/-) mice without suppressing PPS-specific Ab production. The TLR2 agonist, Pam3CSK4, similarly induced anti-dsDNA IgA production in C4(-/-) mice, which OxPAPC also prevented. LPS, a TLR4 agonist, had no effect. Pam3CSK4, but not LPS, also induced dsDNA-specific IgA production by C4(-/-) splenic IgA(+) B cells in vitro, indicating that TLR2 agonists can stimulate autoantibody production via B cell-intrinsic mechanisms. Collectively, our results show an important role for C4 in suppressing autoantibody production elicited by cross-reactive Ags and TLR2 agonists associated with S. pneumoniae.
Collapse
Affiliation(s)
- Rama D Yammani
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101
| | - Marcela A Leyva
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101
| | - Ryan N Jennings
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101
| | - Karen M Haas
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101
| |
Collapse
|
112
|
Kataoka H, Kono H, Patel Z, Rock KL. Evaluation of the contribution of multiple DAMPs and DAMP receptors in cell death-induced sterile inflammatory responses. PLoS One 2014; 9:e104741. [PMID: 25127469 PMCID: PMC4134227 DOI: 10.1371/journal.pone.0104741] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 07/16/2014] [Indexed: 02/01/2023] Open
Abstract
When cells die by necrosis in vivo they stimulate an inflammatory response. It is thought that this response is triggered when the injured cells expose proinflammatory molecules, collectively referred to as damage associated molecular patterns (DAMPs), which are recognized by cells or soluble molecules of the innate or adaptive immune system. Several putative DAMPs and/or their receptors have been identified, but whether and how much they participate in responses in vivo is incompletely understood, and they have not previously been compared side-by-side in the same models. This study focuses on evaluating the contribution of multiple mechanisms that have been proposed to or potentially could participate in cell death-induced inflammation: The third component of complement (C3), ATP (and its receptor P2X7), antibodies, the C-type lectin receptor Mincle (Clec4e), and protease-activated receptor 2 (PAR2). We investigate the role of these factors in cell death-induced inflammation to dead cells in the peritoneum and acetaminophen-induced liver damage. We find that mice deficient in antibody, C3 or PAR2 have impaired inflammatory responses to dying cells. In contrast there was no reduction in inflammation to cell death in the peritoneum or liver of mice that genetically lack Mincle, the P2X7 receptor or that were treated with apyrase to deplete ATP. These results indicate that antibody, complement and PAR2 contribute to cell death-induced inflammation but that Mincle and ATP- P2X7 receptor are not required for this response in at least 2 different in vivo models.
Collapse
Affiliation(s)
- Hiroshi Kataoka
- Department of Pathology, UMass Medical School, Worcester, Massachusetts, United States of America
| | - Hajime Kono
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Zubin Patel
- Department of Pathology, UMass Medical School, Worcester, Massachusetts, United States of America
| | - Kenneth L. Rock
- Department of Pathology, UMass Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
113
|
Belperron AA, Liu N, Booth CJ, Bockenstedt LK. Dual role for Fcγ receptors in host defense and disease in Borrelia burgdorferi-infected mice. Front Cell Infect Microbiol 2014; 4:75. [PMID: 24967215 PMCID: PMC4052197 DOI: 10.3389/fcimb.2014.00075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/19/2014] [Indexed: 11/19/2022] Open
Abstract
Arthritis in mice infected with the Lyme disease spirochete, Borrelia burgdorferi, results from the influx of innate immune cells responding to the pathogen in the joint and is influenced in part by mouse genetics. Production of inflammatory cytokines by innate immune cells in vitro is largely mediated by Toll-like receptor (TLR) interaction with Borrelia lipoproteins, yet surprisingly mice deficient in TLR2 or the TLR signaling molecule MyD88 still develop arthritis comparable to that seen in wild type mice after B. burgdorferi infection. These findings suggest that other, MyD88-independent inflammatory pathways can contribute to arthritis expression. Clearance of B. burgdorferi is dependent on the production of specific antibody and phagocytosis of the organism. As Fc receptors (FcγR) are important for IgG-mediated clearance of immune complexes and opsonized particles by phagocytes, we examined the role that FcγR play in host defense and disease in B. burgdorferi-infected mice. B. burgdorferi-infected mice deficient in the Fc receptor common gamma chain (FcεRγ−/− mice) harbored ~10 fold more spirochetes than similarly infected wild type mice, and this was associated with a transient increase in arthritis severity. While the elevated pathogen burdens seen in B. burgdorferi-infected MyD88−/− mice were not affected by concomitant deficiency in FcγR, arthritis was reduced in FcεRγ−/−MyD88−/− mice in comparison to wild type or single knockout mice. Gene expression analysis from infected joints demonstrated that absence of both MyD88 and FcγR lowers mRNA levels of proteins involved in inflammation, including Cxcl1 (KC), Xcr1 (Gpr5), IL-1beta, and C reactive protein. Taken together, our results demonstrate a role for FcγR-mediated immunity in limiting pathogen burden and arthritis in mice during the acute phase of B. burgdorferi infection, and further suggest that this pathway contributes to the arthritis that develops in B. burgdorferi-infected MyD88−/− mice.
Collapse
Affiliation(s)
- Alexia A Belperron
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine New Haven, CT, USA
| | - Nengyin Liu
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine New Haven, CT, USA
| | - Carmen J Booth
- Section of Comparative Medicine, Yale University School of Medicine New Haven, CT, USA
| | - Linda K Bockenstedt
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine New Haven, CT, USA
| |
Collapse
|
114
|
Hobday PM, Auger JL, Schuneman GR, Haasken S, Verbeek JS, Binstadt BA. Fcγ receptor III and Fcγ receptor IV on macrophages drive autoimmune valvular carditis in mice. Arthritis Rheumatol 2014; 66:852-62. [PMID: 24757138 DOI: 10.1002/art.38311] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 12/05/2013] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Arthritis and valvular carditis coexist in several human rheumatic diseases, including systemic lupus erythematosus, rheumatic fever, and rheumatoid arthritis. T cell receptor-transgenic K/BxN mice develop spontaneous autoantibody-associated arthritis and valvular carditis. The common Fc receptor γ (FcRγ) signaling chain is required for carditis to develop in K/BxN mice. FcRγ pairs with numerous receptors in a variety of cells. The aim of this study was to identify the FcRγ-associated receptors and Fcγ receptor (FcγR)-expressing cells that mediate valvular carditis in this model. METHODS We bred K/BxN mice lacking the genes that encode activating Fcγ receptors (FcγRI, FcγRIII, and FcγRIV), and we assessed these mice for valvular carditis. We similarly evaluated complement component C3-deficient K/BxN mice. Immunohistochemistry, bone marrow transplantation, and macrophage depletion were used to define the key FcRγ-expressing cell type. RESULTS Genetic deficiency of only one of the activating Fcγ receptors did not prevent carditis, whereas deficiency of all 3 activating Fcγ receptors did. Further analysis demonstrated that FcγRIII and FcγRIV were the key drivers of valve inflammation; FcγRI was dispensable. C3 was not required. FcRγ expression by radioresistant cells was critical for valvular carditis to develop, and further analysis indicated that macrophages were the key candidate FcγR-expressing effectors of carditis. CONCLUSION FcγRIII and FcγRIV act redundantly to promote valvular carditis in K/BxN mice with systemic autoantibody-associated arthritis. Macrophage depletion reduced the severity of valve inflammation. These findings suggest that pathogenic autoantibodies engage Fcγ receptors on macrophages to drive valvular carditis. Our study provides new insight into the pathogenesis of cardiovascular inflammation in the setting of autoantibody-associated chronic inflammatory diseases.
Collapse
|
115
|
Asgari E, Farrar CA, Lynch N, Ali YM, Roscher S, Stover C, Zhou W, Schwaeble WJ, Sacks SH. Mannan-binding lectin-associated serine protease 2 is critical for the development of renal ischemia reperfusion injury and mediates tissue injury in the absence of complement C4. FASEB J 2014; 28:3996-4003. [PMID: 24868011 DOI: 10.1096/fj.13-246306] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 05/19/2014] [Indexed: 01/19/2023]
Abstract
Mannan-binding lectin-associated serine protease 2 (MASP-2) has been described as the essential enzyme for the lectin pathway (LP) of complement activation. Since there is strong published evidence indicating that complement activation via the LP critically contributes to ischemia reperfusion (IR) injury, we assessed the effect of MASP-2 deficiency in an isogenic mouse model of renal transplantation. The experimental transplantation model used included nephrectomy of the remaining native kidney at d 5 post-transplantation. While wild-type (WT) kidneys grafted into WT recipients (n=7) developed acute renal failure (control group), WT grafts transplanted into MASP-2-deficient recipients (n=7) showed significantly better kidney function, less C3 deposition, and less IR injury. In the absence of donor or recipient complement C4 (n=7), the WT to WT phenotype was preserved, indicating that the MASP-2-mediated damage was independent of C4 activation. This C4-bypass MASP-2 activity was confirmed in mice deficient for both MASP-2 and C4 (n=7), where the protection from postoperative acute renal failure was no greater than in mice with MASP-2 deficiency alone. Our study highlights the role of LP activation in renal IR injury and indicates that injury occurs through MASP-2-dependent activation events independent of C4.
Collapse
Affiliation(s)
- Elham Asgari
- Medical Research Council Centre for Transplantation, King's College London, Guy's Campus, London, UK; and
| | - Conrad A Farrar
- Medical Research Council Centre for Transplantation, King's College London, Guy's Campus, London, UK; and
| | - Nicholas Lynch
- Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester, UK
| | - Youssif M Ali
- Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester, UK
| | - Silke Roscher
- Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester, UK
| | - Cordula Stover
- Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester, UK
| | - Wuding Zhou
- Medical Research Council Centre for Transplantation, King's College London, Guy's Campus, London, UK; and
| | - Wilhelm J Schwaeble
- Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester, UK
| | - Steven H Sacks
- Medical Research Council Centre for Transplantation, King's College London, Guy's Campus, London, UK; and
| |
Collapse
|
116
|
Role of capsule and suilysin in mucosal infection of complement-deficient mice with Streptococcus suis. Infect Immun 2014; 82:2460-71. [PMID: 24686060 DOI: 10.1128/iai.00080-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Virulent Streptococcus suis serotype 2 strains are invasive extracellular bacteria causing septicemia and meningitis in piglets and humans. One objective of this study was to elucidate the function of complement in innate immune defense against S. suis. Experimental infection of wild-type (WT) and C3(-/-) mice demonstrated for the first time that the complement system protects naive mice against invasive mucosal S. suis infection. S. suis WT but not an unencapsulated mutant caused mortality associated with meningitis and other pathologies in C3(-/-) mice. The capsule contributed also substantially to colonization of the upper respiratory tract. Experimental infection of C3(-/-) mice with a suilysin mutant indicated that suilysin expression facilitated an early disease onset and the pathogenesis of meningitis. Flow cytometric analysis revealed C3 antigen deposition on the surface of ca. 40% of S. suis WT bacteria after opsonization with naive WT mouse serum, although to a significantly lower intensity than on the unencapsulated mutant. Ex vivo multiplication in murine WT and C3(-/-) blood depended on capsule but not suilysin expression. Interestingly, S. suis invasion of inner organs was also detectable in C5aR(-/-) mice, suggesting that chemotaxis and activation of immune cells via the anaphylatoxin receptor C5aR is, in addition to opsonization, a further important function of the complement system in defense against mucosal S. suis infection. In conclusion, we unequivocally demonstrate here the importance of complement against mucosal S. suis serotype 2 infection and that the capsule of this pathogen is also involved in escape from complement-independent immunity.
Collapse
|
117
|
Ganguly T, Johnson JB, Kock ND, Parks GD, Deora R. The Bordetella pertussis Bps polysaccharide enhances lung colonization by conferring protection from complement-mediated killing. Cell Microbiol 2014; 16:1105-18. [PMID: 24438122 DOI: 10.1111/cmi.12264] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/24/2013] [Accepted: 01/06/2014] [Indexed: 01/01/2023]
Abstract
Bordetella pertussis is a human-restricted Gram-negative bacterial pathogen that causes whooping cough or pertussis. Pertussis is the leading vaccine preventable disease that is resurging in the USA and other parts of the developed world. There is an incomplete understanding of the mechanisms by which B. pertussis evades killing and clearance by the complement system, a first line of host innate immune defence. The present study examined the role of the Bps polysaccharide to resist complement activity in vitro and in the mouse respiratory tract. The isogenic bps mutant strain containing a large non-polar in-frame deletion of the bpsA-D locus was more sensitive to serum and complement mediated killing than the WT strain. As determined by Western blotting, flow cytometry and electron microscopic studies, the heightened sensitivity of the mutant strain was due to enhanced deposition of complement proteins and the formation of membrane attack complex, the end-product of complement activation. Bps was sufficient to confer complement resistance as evidenced by a Bps-expressing Escherichia coli being protected by serum killing. Additionally, Western blotting and flow cytometry assays revealed that Bps inhibited the deposition of complement proteins independent of other B. pertussis factors. The bps mutant strain colonized the lungs of complement-deficient mice at higher levels than that observed in C57Bl/6 mice. These results reveal a previously unknown interaction between Bps and the complement system in controlling B. pertussis colonization of the respiratory tract. These findings also make Bps a potential target for the prevention and therapy of whooping cough.
Collapse
Affiliation(s)
- Tridib Ganguly
- Department of Microbiology and Immunology, Medical Center Blvd., Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | | | | | | | | |
Collapse
|
118
|
Ito K, Furukawa JI, Yamada K, Tran NL, Shinohara Y, Izui S. Lack of galactosylation enhances the pathogenic activity of IgG1 but Not IgG2a anti-erythrocyte autoantibodies. THE JOURNAL OF IMMUNOLOGY 2013; 192:581-8. [PMID: 24337750 DOI: 10.4049/jimmunol.1302488] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
IgG bears asparagine-linked oligosaccharide side chains in the Fc region. Variations in their extent of galactosylation and sialylation could modulate IgG Fc-dependent effector functions, and hence Ab activity. However, it has not yet been clarified whether the pathogenic potential of IgG autoantibodies is consistently enhanced by the absence of galactose residues per se or the lack of terminal sialylation, which is dependent on galactosylation. Moreover, it remains to be defined whether the increased pathogenicity of agalactosylated IgG is related to activation of the complement pathway by mannose-binding lectin, as suggested by in vitro studies. Using a murine model of autoimmune hemolytic anemia, we defined the contribution of galactosylation or sialylation to the pathogenic activity of IgG1 and IgG2a anti-erythrocyte class-switch variants of 34-3C monoclonal autoantibody. We generated their degalactosylated or highly sialylated glycovariants and compared their pathogenic effects with those of highly galactosylated or desialylated counterparts. Our results demonstrated that lack of galactosylation, but not sialylation, enhanced the pathogenic activity of 34-3C IgG1, but not IgG2a autoantibodies. Moreover, analysis of in vivo complement activation and of the pathogenic activity in mice deficient in C3 or IgG FcRs excluded the implication of mannose-binding lectin-mediated complement activation in the enhanced pathogenic effect of agalactosylated IgG1 anti-erythrocyte autoantibodies.
Collapse
Affiliation(s)
- Kiyoaki Ito
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
119
|
Dutow P, Fehlhaber B, Bode J, Laudeley R, Rheinheimer C, Glage S, Wetsel RA, Pabst O, Klos A. The complement C3a receptor is critical in defense against Chlamydia psittaci in mouse lung infection and required for antibody and optimal T cell response. J Infect Dis 2013; 209:1269-78. [PMID: 24273177 DOI: 10.1093/infdis/jit640] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The complement system protects against extracellular pathogens and links innate and adaptive immunity. In this study, we investigated the anaphylatoxin C3a receptor (C3aR) in Chlamydia psittaci lung infection and elucidated C3a-dependent adaptive immune mechanisms. METHODS Survival, body weight, and clinical score were monitored in primary mouse infection and after serum transfer. Bacterial load, histology, cellular distribution, cytokines, antibodies, and lymphocytes were analyzed. RESULTS C3aR(-/-) mice showed prolonged pneumonia with decreased survival, lower weight, and higher clinical score. Compared to wild-type mice bacterial clearance was impaired, and inflammatory parameters were increased. In lung-draining lymph nodes of C3aR(-/-) mice the total number of B cells, CD4(+) T cells, and Chlamydia-specific IFN-γ(+) (CD4(+) or CD8(+)) cells was reduced upon infection, and the mice were incapable of Chlamydia-specific immunoglobulin M or immunoglobulin G production. Performed before infection, transfer of hyperimmune serum prolonged survival of C3aR(-/-) mice. CONCLUSIONS C3a and its receptor are critical for defense against C. psittaci in mouse lung infection. In this model, C3a acts via its receptor as immune modulator. Enhancement of specific B and T cell responses upon infection with an intracellular bacterium were identified as hitherto unknown features of C3a/C3aR. These new functions might be of general immunological importance.
Collapse
Affiliation(s)
- Pavel Dutow
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School (MHH)
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Esser-von Bieren J, Mosconi I, Guiet R, Piersgilli A, Volpe B, Chen F, Gause WC, Seitz A, Verbeek JS, Harris NL. Antibodies trap tissue migrating helminth larvae and prevent tissue damage by driving IL-4Rα-independent alternative differentiation of macrophages. PLoS Pathog 2013; 9:e1003771. [PMID: 24244174 PMCID: PMC3828184 DOI: 10.1371/journal.ppat.1003771] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/02/2013] [Indexed: 12/18/2022] Open
Abstract
Approximately one-third of the world's population suffers from chronic helminth infections with no effective vaccines currently available. Antibodies and alternatively activated macrophages (AAM) form crucial components of protective immunity against challenge infections with intestinal helminths. However, the mechanisms by which antibodies target these large multi-cellular parasites remain obscure. Alternative activation of macrophages during helminth infection has been linked to signaling through the IL-4 receptor alpha chain (IL-4Rα), but the potential effects of antibodies on macrophage differentiation have not been explored. We demonstrate that helminth-specific antibodies induce the rapid trapping of tissue migrating helminth larvae and prevent tissue necrosis following challenge infection with the natural murine parasite Heligmosomoides polygyrus bakeri (Hp). Mice lacking antibodies (JH−/−) or activating Fc receptors (FcRγ−/−) harbored highly motile larvae, developed extensive tissue damage and accumulated less Arginase-1 expressing macrophages around the larvae. Moreover, Hp-specific antibodies induced FcRγ- and complement-dependent adherence of macrophages to larvae in vitro, resulting in complete larval immobilization. Antibodies together with helminth larvae reprogrammed macrophages to express wound-healing associated genes, including Arginase-1, and the Arginase-1 product L-ornithine directly impaired larval motility. Antibody-induced expression of Arginase-1 in vitro and in vivo occurred independently of IL-4Rα signaling. In summary, we present a novel IL-4Rα-independent mechanism of alternative macrophage activation that is antibody-dependent and which both mediates anti-helminth immunity and prevents tissue disruption caused by migrating larvae. Intestinal helminths present a pressing problem in developing countries with approximately 2 billion people suffering from chronic infection. To date no successful vaccines are available and a detailed mechanistic understanding of anti-helminth immunity is urgently needed to improve strategies for prevention and therapy. Antibodies form a crucial component of protective immunity against challenge infections with intestinal helminths. However, the exact mechanisms by which antibodies target these large multi-cellular parasites have remained obscure. We now demonstrate that helminth-specific antibodies induce the rapid trapping of tissue migrating helminth larvae by activating phagocytes. In the absence of antibodies or their receptors, helminth-infected mice developed extensive tissue damage, revealing a novel role for antibodies in limiting parasite-caused tissue disruption. Furthermore, helminth-specific antibodies reprogrammed macrophages to express wound-healing factors such as the arginine-metabolizing enzyme Arginase-1. Interestingly, the Arginase-1 product L-ornithine directly impaired the motility of helminth larvae. In summary, our study provides detailed mechanistic insights into how antibodies can modulate phagocyte function to provide protection against a large multi-cellular parasite. Our findings suggest that novel anti-helminth vaccines should target the larval surface and activate wound-healing macrophages to provide rapid protection against tissue-disruptive larvae.
Collapse
Affiliation(s)
- Julia Esser-von Bieren
- Swiss Vaccine Research Institute and Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ilaria Mosconi
- Swiss Vaccine Research Institute and Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Romain Guiet
- Bioimaging and Optics Core Facility, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Beatrice Volpe
- Swiss Vaccine Research Institute and Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Fei Chen
- Center for Immunity and Inflammation, New Jersey Medical School, Newark, New Jersey, United States of America
| | - William C. Gause
- Center for Immunity and Inflammation, New Jersey Medical School, Newark, New Jersey, United States of America
| | - Arne Seitz
- Bioimaging and Optics Core Facility, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - J. Sjef Verbeek
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Nicola L. Harris
- Swiss Vaccine Research Institute and Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
121
|
Kiang JG, Ledney GD. Skin injuries reduce survival and modulate corticosterone, C-reactive protein, complement component 3, IgM, and prostaglandin E 2 after whole-body reactor-produced mixed field (n + γ-photons) irradiation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:821541. [PMID: 24175013 PMCID: PMC3791621 DOI: 10.1155/2013/821541] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/05/2013] [Accepted: 08/13/2013] [Indexed: 01/19/2023]
Abstract
Skin injuries such as wounds or burns following whole-body γ-irradiation (radiation combined injury (RCI)) increase mortality more than whole-body γ-irradiation alone. Wound-induced decreases in survival after irradiation are triggered by sustained activation of inducible nitric oxide synthase pathways, persistent alteration of cytokine homeostasis, and increased susceptibility to systemic bacterial infection. Among these factors, radiation-induced increases in interleukin-6 (IL-6) concentrations in serum were amplified by skin wound trauma. Herein, the IL-6-induced stress proteins including C-reactive protein (CRP), complement 3 (C3), immunoglobulin M (IgM), and prostaglandin E2 (PGE2) were evaluated after skin injuries given following a mixed radiation environment that might be found after a nuclear incident. In this report, mice received 3 Gy of reactor-produced mixed field (n + γ-photons) radiations at 0.38 Gy/min followed by nonlethal skin wounding or burning. Both wounds and burns reduced survival and increased CRP, C3, and PGE2 in serum after radiation. Decreased IgM production along with an early rise in corticosterone followed by a subsequent decrease was noted for each RCI situation. These results suggest that RCI-induced alterations of corticosterone, CRP, C3, IgM, and PGE2 cause homeostatic imbalance and may contribute to reduced survival. Agents inhibiting these responses may prove to be therapeutic for RCI and improve related survival.
Collapse
Affiliation(s)
- Juliann G. Kiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889, USA
- Department of Radiation Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - G. David Ledney
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889, USA
| |
Collapse
|
122
|
Yamada K, Ito K, Furukawa JI, Nakata J, Alvarez M, Verbeek JS, Shinohara Y, Izui S. Galactosylation of IgG1 modulates FcγRIIB-mediated inhibition of murine autoimmune hemolytic anemia. J Autoimmun 2013; 47:104-10. [PMID: 24055197 DOI: 10.1016/j.jaut.2013.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/27/2013] [Accepted: 09/02/2013] [Indexed: 10/26/2022]
Abstract
Murine immune effector cells express three different stimulatory FcγRs (FcγRI, FcγRIII and FcγRIV) and one inhibitory receptor, FcγRIIB. Competitive engagement of stimulatory and inhibitory FcγRs has been shown to be critical for the development of immune complex-mediated inflammatory disorders. Because of the previous demonstration that FcγRIIB was unable to inhibit FcγRIII-mediated autoimmune hemolytic anemia induced by 105-2H IgG1 anti-RBC mAb, we reevaluated the regulatory role of FcγRIIB on the development of anemia using two additional IgG1 anti-RBC mAbs (34-3C and 3H5G1) and different 34-3C IgG subclass-switch variants. We were able to induce a more severe anemia in FcγRIIB-deficient mice than in FcγRIIB-sufficient mice after injection of 34-3C and 3H5G1 IgG1, but not 105-2H IgG1. Structural analysis of N-linked oligosaccharides attached to the CH2 domain revealed that 105-2H was poorly galactosylated as compared with the other mAbs, while the extent of sialylation was comparable between all mAbs. In addition, we observed that a more galactosylated 105-2H variant provoked more severe anemia in FcγRIIB-deficient mice than FcγRIIB-sufficient mice. In contrast, the development of anemia induced by three non-IgG1 subclass variants of the 34-3C mAb was not down-regulated by FcγRIIB, although they were more galactosylated than its IgG1 variant. These data indicate that FcγRIIB-mediated inhibition of autoimmune hemolytic anemia is restricted to the IgG1 subclass and that galactosylation, but not sialylation, of IgG1 (but not other IgG subclasses) is critical for the interaction with FcγR, thereby determining the pathogenic potential of IgG1 autoantibodies.
Collapse
Affiliation(s)
- Kazunori Yamada
- Department of Pathology and Immunology, University of Geneva, Geneva 1211, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Charlagorla P, Liu J, Patel M, Rushbrook JI, Zhang M. Loss of plasma membrane integrity, complement response and formation of reactive oxygen species during early myocardial ischemia/reperfusion. Mol Immunol 2013; 56:507-12. [PMID: 23911407 DOI: 10.1016/j.molimm.2013.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 05/01/2013] [Indexed: 11/25/2022]
Abstract
Loss of plasma membrane integrity (LPMI) is a hallmark of necrotic cell death. The involvement of complement and ROS in the development of LPMI during the early stages of murine myocardial ischemia-reperfusion injury was investigated. LPMI developed within 1 h of reperfusion to a level that was sustained through 24 h. C3 deposition became significant at 3-h reperfusion and thus contributed little to LPMI prior to this time. SOD1 transgenic mice had significantly less LPMI compared with WT mice at 1 h of reperfusion but not at later time points. Catalase transgenic mice were not protected from LPMI at 1-h reperfusion compared with WT mice, but had 69% less LPMI at 3-h reperfusion. This protection was transient. At 24-h reperfusion the LPMI of catalase transgenic mice was identical to that of WT mice. The delayed benefits of over-expressed catalase compared with SOD1 are consistent with its antioxidant action downstream of SOD1. The onset of LPMI occurs within 1 h of reperfusion at a level that is maintained through 24 h. ROS contribute significantly to LPMI during the first 3 h of reperfusion, while complement deposition, which becomes significant after 3-h reperfusion, may contribute thereafter.
Collapse
|
124
|
Kurniyati K, Zhang W, Zhang K, Li C. A surface-exposed neuraminidase affects complement resistance and virulence of the oral spirochaete Treponema denticola. Mol Microbiol 2013; 89:842-56. [PMID: 23808705 DOI: 10.1111/mmi.12311] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2013] [Indexed: 12/17/2022]
Abstract
Neuraminidases (sialidases) catalyse the removal of terminal sialic acid from glycoconjugates. Bacterial pathogens often utilize neuraminidases to scavenge host sialic acid, which can be utilized either as a nutrient or as a decorating molecule to disguise themselves from host immune attacks. Herein, a putative neuraminidase (TDE0471) was identified in Treponema denticola, an oral spirochaete associated with human periodontitis. TDE0471 is a cell surface-exposed exo-neuraminidase that removes sialic acid from human serum proteins; it is required for T.denticola to grow in a medium that mimics gingival crevice fluid, suggesting that the spirochaete may use sialic acid as a nutrient in vivo. TDE0471 protects T.denticola from serum killing by preventing the deposition of membrane attack complexes on the bacterial cell surface. Animal studies revealed that a TDE0471-deficient mutant is less virulent than its parental wild-type strain in BALB/C mice. However, it causes a level of tissue damage similar to the wild type in complement-deficient B6.129S4-C3(tm1) (Crr) /J mice albeit the damage caused by both bacterial strains is more severe in these transgenic mice. Based on these results, we propose that T.denticola has evolved a strategy to scavenge host sialic acid using its neuraminidase, which allows the spirochaete to acquire nutrients and evade complement killing.
Collapse
Affiliation(s)
- Kurni Kurniyati
- Department of Oral Biology, the State University of New York at Buffalo, New York, 14214, USA
| | | | | | | |
Collapse
|
125
|
Movert E, Wu Y, Lambeau G, Kahn F, Touqui L, Areschoug T. Secreted Group IIA Phospholipase A2 Protects Humans Against the Group B Streptococcus: Experimental and Clinical Evidence. J Infect Dis 2013; 208:2025-35. [DOI: 10.1093/infdis/jit359] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
126
|
Straub T, Schweier O, Bruns M, Nimmerjahn F, Waisman A, Pircher H. Nucleoprotein-specific nonneutralizing antibodies speed up LCMV elimination independently of complement and FcγR. Eur J Immunol 2013; 43:2338-48. [PMID: 23749409 DOI: 10.1002/eji.201343565] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/21/2013] [Accepted: 06/04/2013] [Indexed: 12/12/2022]
Abstract
CD8(+) T cells have an essential role in controlling lymphocytic choriomeningitis virus (LCMV) infection in mice. Here, we examined the contribution of humoral immunity, including nonneutralizing antibodies (Abs), in this infection induced by low virus inoculation doses. Mice with impaired humoral immunity readily terminated infection with the slowly replicating LCMV strain Armstrong but showed delayed virus elimination after inoculation with the faster replicating LCMV strain WE and failed to clear the rapidly replicating LCMV strain Docile, which is in contrast to the results obtained with wild-type mice. Thus, the requirement for adaptive humoral immunity to control the infection was dependent on the replication speed of the LCMV strains used. Ab transfers further showed that LCMV-specific IgG Abs isolated from LCMV immune serum accelerated virus elimination. These Abs were mainly directed against the viral nucleoprotein (NP) and completely lacked virus neutralizing activity. Moreover, mAbs specific for the LCMV NP were also able to decrease viral titers after transfer into infected hosts. Intriguingly, neither C3 nor Fcγ receptors were required for the antiviral activity of the transferred Abs. In conclusion, our study suggests that rapidly generated nonneutralizing Abs specific for the viral NP speed up virus elimination and thereby may counteract T-cell exhaustion.
Collapse
Affiliation(s)
- Tobias Straub
- Department of Immunology, Institute of Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
127
|
Richter K, Oxenius A. Non-neutralizing antibodies protect from chronic LCMV infection independently of activating FcγR or complement. Eur J Immunol 2013; 43:2349-60. [PMID: 23749374 DOI: 10.1002/eji.201343566] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/22/2013] [Accepted: 06/04/2013] [Indexed: 01/10/2023]
Abstract
Chronic viral infections lead to CD8(+) T cell exhaustion, characterized by impaired cytokine secretion. The presence of the immune-regulatory cytokine IL-10 promotes chronic lymphocytic choriomeningitis virus (LCMV) Clone 13 infection in mice, whereas the absence of IL-10/IL-10R signaling early during infection results in viral clearance and higher percentages and numbers of antiviral, cytokine-producing T cells. However, it is currently unclear which cell populations and effector molecules are crucial to protect against chronic infection. In this study, we demonstrate that antiviral, LCMV-binding, non-neutralizing antibodies are needed, in addition to CD4(+) and CD8(+) T cells, to clear a high-dose LCMV infection in mice, in the absence of IL-10. The interaction between CD4(+) T cells and B cells in B-cell follicles via CD40/CD40L, in addition to class switch and/or somatic hypermutation, is crucial for viral control in the absence of IL-10. Interestingly, transfer of LCMV-binding non-neutralizing antibodies protected recipients from chronic infection. In addition, viral clearance in the absence of IL-10R signaling was independent of activating Fcγ receptors and complement. These data highlight that non-neutralizing antibodies effectively contribute to the control of LCMV infection when present prior to infection, suggesting that the induction of neutralizing antibodies is not implicitly necessary for the generation of successful vaccines.
Collapse
|
128
|
Muscular dystrophy in dysferlin-deficient mouse models. Neuromuscul Disord 2013; 23:377-87. [DOI: 10.1016/j.nmd.2013.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/09/2013] [Accepted: 02/05/2013] [Indexed: 11/17/2022]
|
129
|
Thurman JM, Kulik L, Orth H, Wong M, Renner B, Sargsyan SA, Mitchell LM, Hourcade DE, Hannan JP, Kovacs JM, Coughlin B, Woodell AS, Pickering MC, Rohrer B, Holers VM. Detection of complement activation using monoclonal antibodies against C3d. J Clin Invest 2013; 123:2218-30. [PMID: 23619360 DOI: 10.1172/jci65861] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 02/21/2013] [Indexed: 12/21/2022] Open
Abstract
During complement activation the C3 protein is cleaved, and C3 activation fragments are covalently fixed to tissues. Tissue-bound C3 fragments are a durable biomarker of tissue inflammation, and these fragments have been exploited as addressable binding ligands for targeted therapeutics and diagnostic agents. We have generated cross-reactive murine monoclonal antibodies against human and mouse C3d, the final C3 degradation fragment generated during complement activation. We developed 3 monoclonal antibodies (3d8b, 3d9a, and 3d29) that preferentially bind to the iC3b, C3dg, and C3d fragments in solution, but do not bind to intact C3 or C3b. The same 3 clones also bind to tissue-bound C3 activation fragments when injected systemically. Using mouse models of renal and ocular disease, we confirmed that, following systemic injection, the antibodies accumulated at sites of C3 fragment deposition within the glomerulus, the renal tubulointerstitium, and the posterior pole of the eye. To detect antibodies bound within the eye, we used optical imaging and observed accumulation of the antibodies within retinal lesions in a model of choroidal neovascularization (CNV). Our results demonstrate that imaging methods that use these antibodies may provide a sensitive means of detecting and monitoring complement activation-associated tissue inflammation.
Collapse
Affiliation(s)
- Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Differentially expressed genes in cisplatin-induced premature ovarian failure in rats. Anim Reprod Sci 2013; 137:205-13. [DOI: 10.1016/j.anireprosci.2012.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 11/15/2012] [Accepted: 11/17/2012] [Indexed: 01/05/2023]
|
131
|
Auger JL, Haasken S, Binstadt BA. Autoantibody-mediated arthritis in the absence of C3 and activating Fcγ receptors: C5 is activated by the coagulation cascade. Arthritis Res Ther 2012; 14:R269. [PMID: 23237573 PMCID: PMC3674630 DOI: 10.1186/ar4117] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/11/2012] [Indexed: 01/14/2023] Open
Abstract
Introduction The effector functions of immunoglobulin G (IgG) are mediated by interaction of its Fc region with Fc receptors (FcγRs) and/or the complement system. The three main pathways of complement activation converge at C3. However, C3-independent pathways can activate C5 and other downstream complement components during IgG-initiated inflammatory responses. These C3-independent pathways of C5 activation are triggered by activating FcγRs in some systems or can be activated by factors of the coagulation cascade such as thrombin. Here we studied the interplay of C3, C5, and activating FcγRs in a model of spontaneous autoantibody-driven arthritis. Methods We utilized the K/BxN TCR transgenic mouse model of arthritis. We bred K/BxN mice bearing targeted or naturally-occurring mutations in one or more of the genes encoding complement components C3, C5, and FcRγ, the cytoplasmic signaling chain shared by the activating FcγRs. We measured arthritis development, the production of arthritogenic autoantibodies, T cell activation status and cytokine synthesis. In addition, we treated mice with anti-C5 monoclonal antibodies or with the thrombin inhibitor argatroban. Results We have previously shown that genetic deficiency of C5 protects K/BxN mice from the development of arthritis. We found here that C3-deficient K/BxN mice developed arthritis equivalent in severity to C3-sufficient animals. Arthritis also developed normally in K/BxN mice lacking both C3 and FcRγ, but could be ameliorated in these animals by treatment with anti-C5 monoclonal antibody or by treatment with argatroban. Production of arthritogenic autoantibodies, T cell activation, and T cell cytokine production were not affected by the absence of C3, C5, and/or FcRγ. Conclusions In K/BxN mice, C5-dependent autoantibody-driven arthritis can occur in the genetic absence of both complement C3 and activating FcγRs. Our findings suggest that in this setting, thrombin activates C5 to provoke arthritis.
Collapse
|
132
|
Bode J, Dutow P, Sommer K, Janik K, Glage S, Tümmler B, Munder A, Laudeley R, Sachse KW, Klos A. A new role of the complement system: C3 provides protection in a mouse model of lung infection with intracellular Chlamydia psittaci. PLoS One 2012. [PMID: 23189195 PMCID: PMC3506576 DOI: 10.1371/journal.pone.0050327] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The complement system modulates the intensity of innate and specific immunity. While it protects against infections by extracellular bacteria its role in infection with obligate intracellular bacteria, such as the avian and human pathogen Chlamydia (C.) psittaci, is still unknown. In the present study, knockout mice lacking C3 and thus all main complement effector functions were intranasally infected with C. psittaci strain DC15. Clinical parameters, lung histology, and cytokine levels were determined. A subset of infections was additionally performed with mice lacking C5 or C5a receptors. Complement activation occurred before symptoms of pneumonia appeared. Mice lacking C3 were ∼100 times more susceptible to the intracellular bacteria compared to wild-type mice, with all C3−/− mice succumbing to infection after day 9. At a low infective dose, C3−/− mice became severely ill after an even longer delay, the kinetics suggesting a so far unknown link of complement to the adaptive, protective immune response against chlamydiae. The lethal phenotype of C3−/− mice is not based on differences in the anti-chlamydial IgG response (which is slightly delayed) as demonstrated by serum transfer experiments. In addition, during the first week of infection, the absence of C3 was associated with partial protection characterized by reduced weight loss, better clinical score and lower bacterial burden, which might be explained by a different mechanism. Lack of complement functions downstream of C5 had little effect. This study demonstrates for the first time a strong and complex influence of complement effector functions, downstream of C3 and upstream of C5, on the outcome of an infection with intracellular bacteria, such as C. psittaci.
Collapse
Affiliation(s)
- Jenny Bode
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School (MHH), Hannover, Germany
| | - Pavel Dutow
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School (MHH), Hannover, Germany
| | - Kirsten Sommer
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School (MHH), Hannover, Germany
| | - Katrin Janik
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School (MHH), Hannover, Germany
| | - Silke Glage
- Institute for Laboratory Animal Science, Hannover Medical School (MHH), Hannover, Germany
| | - Burkhard Tümmler
- Clinical Research Group, Pediatric Pulmonology and Neonatology, Hannover Medical School (MHH), Hannover, Germany
| | - Antje Munder
- Clinical Research Group, Pediatric Pulmonology and Neonatology, Hannover Medical School (MHH), Hannover, Germany
| | - Robert Laudeley
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School (MHH), Hannover, Germany
| | - Konrad W. Sachse
- Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| | - Andreas Klos
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School (MHH), Hannover, Germany
- * E-mail:
| |
Collapse
|
133
|
PspK of Streptococcus pneumoniae increases adherence to epithelial cells and enhances nasopharyngeal colonization. Infect Immun 2012; 81:173-81. [PMID: 23115034 DOI: 10.1128/iai.00755-12] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) colonizes the human nasopharynx and can cause invasive disease aided by the pneumococcal capsule. Group II nontypeable S. pneumoniae (NTSp) lacks a polysaccharide capsule, and a subgroup of NTSp carriage isolates has been found to have a novel gene, pneumococcal surface protein K (pspK), which replaces the capsule locus. A recent rise in the number of NTSp isolates colonizing the human nasopharynx has been observed, but the colonization factors of NTSp have not been well studied. PspK has been shown to play a role in mouse colonization. We therefore examined PspK-mediated immune evasion along with adherence to host cells and colonization. PspK bound human secretory immunoglobulin A (sIgA) but not the complement regulator factor H and did not decrease C3b deposition on the pneumococcal surface. PspK increased binding of pneumococci to epithelial cells and enhanced pneumococcal colonization independently of the genetic background. Understanding how NTSp colonizes and survives within the nasopharynx is important due to the increase in NTSp carriage. Our data suggest that PspK may aid in the persistence of NTSp within the nasopharynx but is not involved in invasion.
Collapse
|
134
|
Lopez ME, Klein AD, Scott MP. Complement is dispensable for neurodegeneration in Niemann-Pick disease type C. J Neuroinflammation 2012; 9:216. [PMID: 22985423 PMCID: PMC3511250 DOI: 10.1186/1742-2094-9-216] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/30/2012] [Indexed: 11/10/2022] Open
Abstract
Background The immune system has been implicated in neurodegeneration during development and disease. In various studies, the absence of complement (that is, C1q deficiency) impeded the elimination of apoptotic neurons, allowing survival. In the genetic lysosomal storage disease Niemann-Pick C (NPC), caused by loss of NPC1 function, the expression of complement system components, C1q especially, is elevated in degenerating brain regions of Npc1-/- mice. Here we test whether complement is mediating neurodegeneration in NPC disease. Findings In normal mature mice, C1q mRNA was found in neurons, particularly cerebellar Purkinje neurons (PNs). In Npc1-/- mice, C1q mRNA was additionally found in activated microglia, which accumulate during disease progression and PN loss. Interestingly, C1q was not enriched on or near degenerating neurons. Instead, C1q was concentrated in other brain regions, where it partially co-localized with a potential C1q inhibitor, chondroitin sulfate proteoglycan (CSPG). Genetic deletion of C1q, or of the downstream complement pathway component C3, did not significantly alter patterned neuron loss or disease progression. Deletion of other immune response factors, a Toll-like receptor, a matrix metalloprotease, or the apoptosis facilitator BIM, also failed to alter neuron loss. Conclusion We conclude that complement is not involved in the death and clearance of neurons in NPC disease. This study supports a view of neuroinflammation as a secondary response with non-causal relationship to neuron injury in the disease. This disease model may prove useful for understanding the conditions in which complement and immunity do contribute to neurodegeneration in other disorders.
Collapse
Affiliation(s)
- Manuel E Lopez
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Clark Center W200, 318 Campus Drive, Stanford, CA, USA
| | | | | |
Collapse
|
135
|
Naito AT, Sumida T, Nomura S, Liu ML, Higo T, Nakagawa A, Okada K, Sakai T, Hashimoto A, Hara Y, Shimizu I, Zhu W, Toko H, Katada A, Akazawa H, Oka T, Lee JK, Minamino T, Nagai T, Walsh K, Kikuchi A, Matsumoto M, Botto M, Shiojima I, Komuro I. Complement C1q activates canonical Wnt signaling and promotes aging-related phenotypes. Cell 2012; 149:1298-313. [PMID: 22682250 DOI: 10.1016/j.cell.2012.03.047] [Citation(s) in RCA: 247] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 11/13/2010] [Accepted: 03/28/2012] [Indexed: 12/12/2022]
Abstract
Wnt signaling plays critical roles in development of various organs and pathogenesis of many diseases, and augmented Wnt signaling has recently been implicated in mammalian aging and aging-related phenotypes. We here report that complement C1q activates canonical Wnt signaling and promotes aging-associated decline in tissue regeneration. Serum C1q concentration is increased with aging, and Wnt signaling activity is augmented during aging in the serum and in multiple tissues of wild-type mice, but not in those of C1qa-deficient mice. C1q activates canonical Wnt signaling by binding to Frizzled receptors and subsequently inducing C1s-dependent cleavage of the ectodomain of Wnt coreceptor low-density lipoprotein receptor-related protein 6. Skeletal muscle regeneration in young mice is inhibited by exogenous C1q treatment, whereas aging-associated impairment of muscle regeneration is restored by C1s inhibition or C1qa gene disruption. Our findings therefore suggest the unexpected role of complement C1q in Wnt signal transduction and modulation of mammalian aging.
Collapse
Affiliation(s)
- Atsuhiko T Naito
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Langevin C, Blanco M, Martin SAM, Jouneau L, Bernardet JF, Houel A, Lunazzi A, Duchaud E, Michel C, Quillet E, Boudinot P. Transcriptional responses of resistant and susceptible fish clones to the bacterial pathogen Flavobacterium psychrophilum. PLoS One 2012; 7:e39126. [PMID: 22720048 PMCID: PMC3374740 DOI: 10.1371/journal.pone.0039126] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 05/16/2012] [Indexed: 12/31/2022] Open
Abstract
Flavobacterium psychrophilum is a bacterial species that represents one of the most important pathogens for aquaculture worldwide, especially for salmonids. To gain insights into the genetic basis of the natural resistance to F. psychrophilum, we selected homozygous clones of rainbow trout with contrasted susceptibility to the infection. We compared the transcriptional response to the bacteria in the pronephros of a susceptible and a resistant line by micro-array analysis five days after infection. While the basal transcriptome of healthy fish was significantly different in the resistant and susceptible lines, the transcriptome modifications induced by the bacteria involved essentially the same genes and pathways. The response to F. psychrophilum involved antimicrobial peptides, complement, and a number of enzymes and chemokines. The matrix metalloproteases mmp9 and mmp13 were among the most highly induced genes in both genetic backgrounds. Key genes of both pro- and anti-inflammatory response such as IL1 and IL10, were up-regulated with a greater magnitude in susceptible animals where the bacterial load was also much higher. While higher resistance to F. psychrophilum does not seem to be based on extensive differences in the orientation of the immune response, several genes including complement C3 showed stronger induction in the resistant fish. They may be important for the variation of susceptibility to the infection.
Collapse
Affiliation(s)
- Christelle Langevin
- INRA, Molecular Virology and Immunology, Domaine de Vilvert, Jouy en Josas, France
| | - Mar Blanco
- Department of Animal Health, Faculty of Veterinary Sciences, Complutense University, Madrid, Spain
| | - Samuel A. M. Martin
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Luc Jouneau
- INRA, Molecular Virology and Immunology, Domaine de Vilvert, Jouy en Josas, France
| | | | - Armel Houel
- INRA, Molecular Virology and Immunology, Domaine de Vilvert, Jouy en Josas, France
| | - Aurélie Lunazzi
- INRA, Molecular Virology and Immunology, Domaine de Vilvert, Jouy en Josas, France
| | - Eric Duchaud
- INRA, Molecular Virology and Immunology, Domaine de Vilvert, Jouy en Josas, France
| | - Christian Michel
- INRA, Molecular Virology and Immunology, Domaine de Vilvert, Jouy en Josas, France
| | - Edwige Quillet
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, Domaine de Vilvert, Jouy en Josas, France
| | - Pierre Boudinot
- INRA, Molecular Virology and Immunology, Domaine de Vilvert, Jouy en Josas, France
- * E-mail:
| |
Collapse
|
137
|
Ramos TN, Darley MM, Weckbach S, Stahel PF, Tomlinson S, Barnum SR. The C5 convertase is not required for activation of the terminal complement pathway in murine experimental cerebral malaria. J Biol Chem 2012; 287:24734-8. [PMID: 22689574 DOI: 10.1074/jbc.c112.378364] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cerebral malaria (CM) is the most severe manifestation of clinical malaria syndromes and has a high fatality rate especially in the developing world. Recent studies demonstrated that C5(-/-) mice are resistant to experimental CM (ECM) and that protection was due to the inability to form the membrane attack complex. Unexpectedly, we observed that C4(-/-) and factor B(-/-) mice were fully susceptible to disease, indicating that activation of the classical or alternative pathways is not required for ECM. C3(-/-) mice were also susceptible to ECM, indicating that the canonical C5 convertases are not required for ECM development and progression. Abrogation of ECM by treatment with anti-C9 antibody and detection of C5a in serum of C3(-/-) mice confirmed that C5 activation occurs in ECM independent of C5 convertases. Our data indicate that activation of C5 in ECM likely occurs via coagulation enzymes of the extrinsic protease pathway.
Collapse
Affiliation(s)
- Theresa N Ramos
- Department of Microbiology, University of Alabama, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
138
|
Fujieda M, Aoyagi Y, Matsubara K, Takeuchi Y, Fujimaki W, Matsushita M, Bohnsack JF, Takahashi S. L-ficolin and capsular polysaccharide-specific IgG in cord serum contribute synergistically to opsonophagocytic killing of serotype III and V group B streptococci. Infect Immun 2012; 80:2053-60. [PMID: 22451515 PMCID: PMC3370578 DOI: 10.1128/iai.06232-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 03/15/2012] [Indexed: 11/20/2022] Open
Abstract
Group B streptococci (GBS; Streptococcus agalactiae) are the most common cause of neonatal sepsis and meningitis. Serotype-specific IgG antibody is known to protect neonates against GBS infections by promoting opsonophagocytosis. The L-ficolin-mediated lectin pathway of the complement is also a potential mechanism for opsonization of GBS, because L-ficolin activates the complement after binding to serotype Ib, III, V, VI, and VIII GBS. In the present study, we investigated how L-ficolin and serotype-specific IgG in cord sera contribute to opsonophagocytic killing of GBS. Neither L-ficolin nor serotype-specific IgG concentrations correlated with C3b deposition on serotype Ib and VI GBS, suggesting L-ficolin- and serotype-specific IgG-independent mechanisms of complement activation. The percentage of serotype VIII GBS killed was high regardless of the concentration of L-ficolin and IgG. In contrast, L-ficolin and serotype-specific IgG can each initiate C3b deposition on serotype III and V GBS and promote phagocytosis by polymorphonuclear leukocytes, but L-ficolin and serotype-specific IgG together promote opsonophagocytic killing to a greater extent than does either alone in vitro. This synergy was observed when serotype III-specific IgG concentrations were between 1 and 6 μg/ml and when serotype V-specific IgG concentrations were between 2 and 5 μg/ml. Concentrations of serotype III-specific IgG in cord blood above 7 μg/ml are considered protective for neonates colonized with GBS, but most neonates with IgG levels of less than 7 μg/ml do not develop GBS infections. The data presented here suggest that L-ficolin enhances opsonophagocytosis of serotype III and V GBS when serotype-specific IgG alone is suboptimal for protection.
Collapse
Affiliation(s)
| | | | | | | | - Wakae Fujimaki
- Human Medical Science, Joshi-Eiyoh (Kagawa Nutrition) University, Sakado, Japan
| | - Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | - John F. Bohnsack
- Department of Pediatrics, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | | |
Collapse
|
139
|
Fu H, Liu B, Frost JL, Hong S, Jin M, Ostaszewski B, Shankar GM, Costantino IM, Carroll MC, Mayadas TN, Lemere CA. Complement component C3 and complement receptor type 3 contribute to the phagocytosis and clearance of fibrillar Aβ by microglia. Glia 2012; 60:993-1003. [PMID: 22438044 PMCID: PMC3325361 DOI: 10.1002/glia.22331] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 02/28/2012] [Indexed: 11/08/2022]
Abstract
Complement components and their receptors are found within and around amyloid β (Aβ) cerebral plaques in Alzheimer's disease (AD). Microglia defend against pathogens through phagocytosis via complement component C3 and/or engagement of C3 cleavage product iC3b with complement receptor type 3 (CR3, Mac-1). Here, we provide direct evidence that C3 and Mac-1 mediate, in part, phagocytosis and clearance of fibrillar amyloid-β (fAβ) by murine microglia in vitro and in vivo. Microglia took up not only synthetic fAβ(42) but also amyloid cores from patients with AD, transporting them to lysosomes in vitro. Fibrillar Aβ(42) uptake was significantly attenuated by the deficiency or knockdown of C3 or Mac-1 and scavenger receptor class A ligands. In addition, C3 or Mac-1 knockdown combined with a scavenger receptor ligand, fucoidan, further attenuated fibrillar Aβ(42) uptake by N9 microglia. Fluorescent fibrillar Aβ(42) microinjected cortically was significantly higher in C3 and Mac-1 knockout mice compared with wild-type mice 5 days after surgery, indicating reduced clearance in vivo. Together, these results demonstrate that C3 and Mac-1 are involved in phagocytosis and clearance of fAβ by microglia, providing support for a potential beneficial role for microglia and the complement system in AD pathogenesis. © 2012 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hongjun Fu
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Bin Liu
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Jeffrey L. Frost
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Soyon Hong
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Ming Jin
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Beth Ostaszewski
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Ganesh M. Shankar
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Isabel M. Costantino
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | | | - Tanya N. Mayadas
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Cynthia A. Lemere
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
140
|
Link A, Zabel F, Schnetzler Y, Titz A, Brombacher F, Bachmann MF. Innate immunity mediates follicular transport of particulate but not soluble protein antigen. THE JOURNAL OF IMMUNOLOGY 2012; 188:3724-33. [PMID: 22427639 DOI: 10.4049/jimmunol.1103312] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ag retention on follicular dendritic cells (FDCs) is essential for B cell activation and clonal selection within germinal centers. Protein Ag is deposited on FDCs after formation of immune complexes with specific Abs. In this study, by comparing the same antigenic determinant either as soluble protein or virus-like particle (VLP), we demonstrate that VLPs are transported efficiently to murine splenic FDCs in vivo in the absence of prior immunity. Natural IgM Abs and complement were required and sufficient to mediate capture and transport of VLPs by noncognate B cells. In contrast, soluble protein was only deposited on FDCs in the presence of specifically induced IgM or IgG Abs. Unexpectedly, IgG Abs had the opposite effect on viral particles and inhibited FDC deposition. These findings identify size and repetitive structure as critical factors for efficient Ag presentation to B cells and highlight important differences between soluble proteins and viral particles.
Collapse
Affiliation(s)
- Alexander Link
- Cytos Biotechnology AG, 8952 Zurich-Schlieren, Switzerland.
| | | | | | | | | | | |
Collapse
|
141
|
Segura M. Fisher scientific award lecture - the capsular polysaccharides of Group B Streptococcus and Streptococcus suis differently modulate bacterial interactions with dendritic cells. Can J Microbiol 2012; 58:249-60. [PMID: 22356626 DOI: 10.1139/w2012-003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Infections with encapsulated bacteria cause serious clinical problems. Besides being poorly immunogenic, the bacterial capsular polysaccharide (CPS) cloaks antigenic proteins, allowing bacterial evasion of the host immune system. Despite the clinical significance of bacterial CPS and its suggested role in the pathogenesis of the infection, the mechanisms underlying innate and, critically, adaptive immune responses to encapsulated bacteria have not been fully elucidated. As such, we became interested in studying the CPS of two similar, but unique, streptococcal species: Group B Streptococcus (GBS) and Streptococcus suis . Both streptococci are well encapsulated, some capsular types are more virulent than others, and they can cause severe meningitis and septicemia. For both pathogens, the CPS is considered the major virulence factor. Finally, these two streptococci are the sole Gram-positive bacteria possessing sialic acid in their capsules. GBS type III is a leading cause of neonatal invasive infections. Streptococcus suis type 2 is an important swine and emerging zoonotic pathogen in humans. We recently characterized the S. suis type 2 CPS. It shares common structural elements with GBS, but sialic acid is α2,6-linked to galactose rather than α2,3-linked. Differential sialic acid expression by pathogens might result in modulation of immune cell activation and, consequently, may affect the immuno-pathogenesis of these bacterial infections. Here, we review and compare the interactions of these two sialylated encapsulated bacteria with dendritic cells, known as the most potent antigen-presenting cells linking innate and adaptive immunity. We further address differences between dendritic cells and professional phagocytes, such as macrophages and neutrophils, in their interplay with these encapsulated pathogens. Elucidation of the molecular and cellular basis of the impact of CPS composition on bacterial interactions with immune cells is critical for mechanistic understanding of anti-CPS responses. Knowledge generated will help to advance the development of novel, more effective anti-CPS vaccines and improved immunotherapies.
Collapse
Affiliation(s)
- Mariela Segura
- Laboratory of Immunology, Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, QC J2S 2M2, Canada.
| |
Collapse
|
142
|
The effect of human complement C3 protein applied at different times in treatment of polymicrobial sepsis. Inflamm Res 2012; 61:581-9. [DOI: 10.1007/s00011-012-0448-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 01/15/2012] [Accepted: 02/06/2012] [Indexed: 02/07/2023] Open
|
143
|
Otani M, Nakata J, Kihara M, Leroy V, Moll S, Wada Y, Izui S. O-glycosylated IgA rheumatoid factor induces IgA deposits and glomerulonephritis. J Am Soc Nephrol 2011; 23:438-46. [PMID: 22193386 DOI: 10.1681/asn.2011070701] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Structural aberrations of O-linked glycans present in the IgA1 hinge region are associated with IgA nephropathy, but their contribution to its pathogenesis remains incompletely understood. In this study, mice implanted with hybridoma secreting 6-19 IgA anti-IgG2a rheumatoid factor, but not 46-42 IgA rheumatoid factor bearing the same IgA allotype, developed mesangial deposits consisting of IgA, IgG2a, and C3. Studies in immunoglobulin- and C3-deficient mice revealed that the development of these glomerular lesions required the formation of IgA-IgG2a immune complexes and subsequent activation of complement. The proportion of polymeric and monomeric forms, the IgG2a-binding affinity, and the serum levels of IgA-IgG2a immune complexes were similar between 6-19 IgA- and 46-42 IgA-injected mice. In contrast, the analysis of oligosaccharide structures revealed highly galactosylated O-linked glycans in the hinge region of 6-19 IgA and poorly O-glycosylated in the hinge region of 46-42 IgA. Furthermore, the structure of N-linked glycans in the CH1 domain was the complex type in 6-19 IgA and the hybrid type in 46-42 IgA. In summary, this study demonstrates the presence of O-linked glycans in the hinge region of mouse IgA and suggests that 6-19 IgA rheumatoid factor-induced GN could serve as an experimental model for IgA nephropathy.
Collapse
Affiliation(s)
- Masako Otani
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
144
|
Verschoor A, Neuenhahn M, Navarini AA, Graef P, Plaumann A, Seidlmeier A, Nieswandt B, Massberg S, Zinkernagel RM, Hengartner H, Busch DH. A platelet-mediated system for shuttling blood-borne bacteria to CD8α+ dendritic cells depends on glycoprotein GPIb and complement C3. Nat Immunol 2011; 12:1194-201. [PMID: 22037602 DOI: 10.1038/ni.2140] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 09/21/2011] [Indexed: 12/30/2022]
Abstract
The acquisition of pathogen-derived antigen by dendritic cells (DCs) is a key event in the generation of cytotoxic CD8(+) T cell responses. In mice, the intracellular bacterium Listeria monocytogenes is directed from the blood to splenic CD8α(+) DCs. We report that L. monocytogenes rapidly associated with platelets in the bloodstream in a manner dependent on GPIb and complement C3. Platelet association targeted a small but immunologically important portion of L. monocytogenes to splenic CD8α(+) DCs, diverting bacteria from swift clearance by other, less immunogenic phagocytes. Thus, an effective balance is established between maintaining sterility of the circulation and induction of antibacterial immunity by DCs. Other gram-positive bacteria also were rapidly tagged by platelets, revealing a broadly active shuttling mechanism for systemic bacteria.
Collapse
Affiliation(s)
- Admar Verschoor
- Institute for Medical Microbiology, Immunology and Hygiene, and Focus Group, Clinical Cell Processing and Purification, Technische Universität München, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Beneficial and detrimental effects of plasmin(ogen) during infection and sepsis in mice. PLoS One 2011; 6:e24774. [PMID: 21931850 PMCID: PMC3171470 DOI: 10.1371/journal.pone.0024774] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 08/17/2011] [Indexed: 12/05/2022] Open
Abstract
Plasmin has been proposed to be an important mediator during inflammation/infection. In this study, by using mice lacking genes for plasminogen, tissue-type plasminogen activator (tPA), and urokinase-type PA (uPA), we have investigated the functional roles of active plasmin in infection and sepsis. Two models were used: an infection model by intravenous injection of 1×107 CFU of S. aureus, and a sepsis model by intravenous injection of 1.6×108 CFU of S. aureus. We found that in the infection model, wild-type (WT) mice showed significantly higher survival rates than plasminogen-deficient (plg-/-) mice. However, in the sepsis model, plg-/- or tPA-/-/uPA-/- mice showed the highest survival rate whereas WT and tPA+/-/uPA+/- mice showed the lowest survival rate, and plg+/-, tPA-/-, and uPA-/- mice had an intermediate survival rate. These results indicate that the levels of active plasmin are critical in determining the survival rate in the sepsis, partly through high levels of inflammatory cytokines and enhanced STAT3 activation. We conclude that plasmin is beneficial in infection but promotes the production of inflammatory cytokines in sepsis that may cause tissue destruction, diminished neutrophil function, and an impaired capacity to kill bacteria which eventually causes death of these mice.
Collapse
|
146
|
Mershon-Shier KL, Vasuthasawat A, Takahashi K, Morrison SL, Beenhouwer DO. In vitro C3 deposition on Cryptococcus capsule occurs via multiple complement activation pathways. Mol Immunol 2011; 48:2009-18. [PMID: 21723612 PMCID: PMC3163710 DOI: 10.1016/j.molimm.2011.06.215] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 04/13/2011] [Accepted: 06/06/2011] [Indexed: 12/20/2022]
Abstract
Complement can be activated via three pathways: classical, alternative, and lectin. Cryptococcus gattii and Cryptococcus neoformans are closely related fungal pathogens possessing a polysaccharide capsule composed mainly of glucuronoxylomannan (GXM), which serves as a site for complement activation and deposition of complement components. We determined C3 deposition on Cryptococcus spp. by flow cytometry and confocal microscopy after incubation with serum from C57BL/6J mice as well as mice deficient in complement components C4, C3, factor B, and mannose binding lectin (MBL). C. gattii and C. neoformans activate complement in EGTA-treated serum indicating that they can activate the alternative pathway. However, complement activation was seen with factor B(-/-) serum suggesting activation could also take place in the absence of a functional alternative pathway. Furthermore, we uncovered a role for C4 in the alternative pathway activation by Cryptococcus spp. We also identified an unexpected and complex role for MBL in complement activation by Cryptococcus spp. No complement activation occurred in the absence of MBL-A and -C proteins although activation took place when the lectin binding activity of MBL was disrupted by calcium chelation. In addition, alternative pathway activation by C. neoformans required both MBL-A and -C, while either MBL-A or -C was sufficient for alternative pathway activation by C. gattii. Thus, complement activation by Cryptococcus spp. can take place through multiple pathways and complement activation via the alternative pathway requires the presence of C4 and MBL proteins.
Collapse
Affiliation(s)
- Kileen L. Mershon-Shier
- Department of Microbiology, Immunology, and Molecular Genetics and the Molecular Biology Institute, University of California, Los Angeles, California
| | - Alex Vasuthasawat
- Department of Microbiology, Immunology, and Molecular Genetics and the Molecular Biology Institute, University of California, Los Angeles, California
| | - Kazue Takahashi
- Developmental Immunology, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sherie L. Morrison
- Department of Microbiology, Immunology, and Molecular Genetics and the Molecular Biology Institute, University of California, Los Angeles, California
- David Geffen School of Medicine at the University of California, Los Angeles, California
| | - David O. Beenhouwer
- David Geffen School of Medicine at the University of California, Los Angeles, California
- Division of Infectious Diseases, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California
| |
Collapse
|
147
|
Levy Y, Flashner Y, Tidhar A, Zauberman A, Aftalion M, Lazar S, Gur D, Shafferman A, Mamroud E. T cells play an essential role in anti-F1 mediated rapid protection against bubonic plague. Vaccine 2011; 29:6866-73. [PMID: 21803090 DOI: 10.1016/j.vaccine.2011.07.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 07/14/2011] [Accepted: 07/16/2011] [Indexed: 10/17/2022]
Abstract
Plague, which is initiated by Yersinia pestis infection, is a fatal disease that progresses rapidly and leads to high mortality rates if not treated. Antibiotics are an effective plague therapy, but antibiotic-resistant Y. pestis strains have been reported and therefore alternative countermeasures are needed. In the present study, we assessed the potential of an F1 plus LcrV-based vaccine to provide protection shortly pre- or post-exposure to a lethal Y. pestis infection. Mice vaccinated up to one day before or even several hours after subcutaneous challenge were effectively protected. Mice immunized one or three days pre-challenge were protected even though their anti-F1 and anti-LcrV titers were below detection levels at the day of challenge. Moreover, using B-cell deficient μMT mice, we found that rapidly induced protective immunity requires the integrity of the humoral immune system. Analysis of the individual contributions of vaccine components to protection revealed that rF1 is responsible for the observed rapid antibody-mediated immunity. Applying anti-F1 passive therapy in the mouse model of bubonic plague demonstrated that anti-F1 F(ab')(2) can delay mortality, but it cannot provide long-lasting protection, as do intact anti-F1 molecules. Fc-dependent immune components, such as the complement system and (to a lesser extent) neutrophils, were found to contribute to mouse survival. Interestingly, T cells but not B cells were found to be essential for the recovery of infected animals following passive anti-F1 mediated therapy. These data extend our understanding of the immune mechanisms required for the development of a rapid and effective post-exposure therapy against plague.
Collapse
Affiliation(s)
- Yinon Levy
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Minocycline attenuates photoreceptor degeneration in a mouse model of subretinal hemorrhage microglial: inhibition as a potential therapeutic strategy. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1265-77. [PMID: 21763674 DOI: 10.1016/j.ajpath.2011.05.042] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 05/09/2011] [Accepted: 05/26/2011] [Indexed: 01/09/2023]
Abstract
Hemorrhage under the neural retina (subretinal hemorrhage) can occur in the context of age-related macular degeneration and induce subsequent photoreceptor cell death and permanent vision loss. Current treatments with the objective of removing or displacing the hemorrhage are invasive and of mixed efficacy. We created a mouse model of subretinal hemorrhage to characterize the inflammatory responses and photoreceptor degeneration that occur in the acute aftermath of hemorrhage. It was observed that microglial infiltration into the outer retina commences as early as 6 hours after hemorrhage. Inflammatory cells progressively accumulate in the outer nuclear layer concurrently with photoreceptor degeneration and apoptosis. Administration of minocycline, an inhibitor of microglial activation, decreased microglial expression of chemotactic cytokines in vitro and reduced microglial infiltration and photoreceptor cell loss after subretinal hemorrhage in vivo. Inflammatory responses and photoreceptor atrophy occurred after subretinal hemorrhage, however, the degree of response and atrophy were similar between C3-deficient and C3-sufficient mice, indicating a limited role for complement-mediated processes. Our data indicate a role for inflammatory responses in driving photoreceptor cell loss in subretinal hemorrhage, and it is proposed that microglial inhibition may be beneficial in the treatment of subretinal hemorrhage.
Collapse
|
149
|
Cain DW, Snowden PB, Sempowski GD, Kelsoe G. Inflammation triggers emergency granulopoiesis through a density-dependent feedback mechanism. PLoS One 2011; 6:e19957. [PMID: 21655273 PMCID: PMC3104996 DOI: 10.1371/journal.pone.0019957] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 04/17/2011] [Indexed: 12/17/2022] Open
Abstract
Normally, neutrophil pools are maintained by homeostatic mechanisms that require
the transcription factor C/EBPα. Inflammation, however, induces neutrophilia
through a distinct pathway of “emergency” granulopoiesis that is
dependent on C/EBPβ. Here, we show in mice that alum triggers emergency
granulopoiesis through the IL-1RI-dependent induction of G-CSF. G-CSF/G-CSF-R
neutralization impairs proliferative responses of hematopoietic stem and
progenitor cells (HSPC) to alum, but also abrogates the acute mobilization of BM
neutrophils, raising the possibility that HSPC responses to inflammation are an
indirect result of the exhaustion of BM neutrophil stores. The induction of
neutropenia, via depletion with Gr-1 mAb or myeloid-specific ablation of Mcl-1,
elicits G-CSF via an IL-1RI-independent pathway, stimulating granulopoietic
responses indistinguishable from those induced by adjuvant. Notably, C/EBPβ,
thought to be necessary for enhanced generative capacity of BM, is dispensable
for increased proliferation of HSPC to alum or neutropenia, but plays a role in
terminal neutrophil differentiation during granulopoietic recovery. We conclude
that alum elicits a transient increase in G-CSF production via IL-1RI for the
mobilization of BM neutrophils, but density-dependent feedback sustains G-CSF
for accelerated granulopoiesis.
Collapse
Affiliation(s)
- Derek W. Cain
- Department of Immunology, Duke University,
Durham, North Carolina, United States of America
| | - Pilar B. Snowden
- Department of Immunology, Duke University,
Durham, North Carolina, United States of America
| | - Gregory D. Sempowski
- Duke University Human Vaccine Institute, Duke
University Medical Center, Durham, North Carolina, United States of
America
| | - Garnett Kelsoe
- Department of Immunology, Duke University,
Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
150
|
Georgiou AS, Gil MA, Almiñana C, Cuello C, Vazquez JM, Roca J, Martinez EA, Fazeli A. Effects of Complement Component 3 Derivatives on Pig Oocyte Maturation, Fertilization and Early Embryo Development In Vitro. Reprod Domest Anim 2011; 46:1017-21. [DOI: 10.1111/j.1439-0531.2011.01777.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|