101
|
May NR, Thomer M, Murnen KF, Calvi BR. Levels of the origin-binding protein Double parked and its inhibitor Geminin increase in response to replication stress. J Cell Sci 2005; 118:4207-17. [PMID: 16141238 DOI: 10.1242/jcs.02534] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The regulation of a pre-replicative complex (pre-RC) at origins ensures that the genome is replicated only once per cell cycle. Cdt1 is an essential component of the pre-RC that is rapidly degraded at G1-S and also inhibited by Geminin (Gem) protein to prevent re-replication. We have previously shown that destruction of the Drosophila homolog of Cdt1, Double-parked (Dup), at G1-S is dependent upon cyclin-E/CDK2 and important to prevent re-replication and cell death. Dup is phosphorylated by cyclin-E/Cdk2, but this direct phosphorylation was not sufficient to explain the rapid destruction of Dup at G1-S. Here, we present evidence that it is DNA replication itself that triggers rapid Dup destruction. We find that a range of defects in DNA replication stabilize Dup protein and that this stabilization is not dependent on ATM/ATR checkpoint kinases. This response to replication stress was cell-type specific, with neuroblast stem cells of the larval brain having the largest increase in Dup protein. Defects at different steps in replication also increased Dup protein during an S-phase-like amplification cell cycle in the ovary, suggesting that Dup stabilization is sensitive to DNA replication and not an indirect consequence of a cell-cycle arrest. Finally, we find that cells with high levels of Dup also have elevated levels of Gem protein. We propose that, in cycling cells, Dup destruction is coupled to DNA replication and that increased levels of Gem balance elevated Dup levels to prevent pre-RC reformation when Dup degradation fails.
Collapse
Affiliation(s)
- Noah R May
- Department of Genetics, University of Pennsylvania School of Medicine, 415 Curie Blvd, Philadelphia, PA 19104-6145, USA
| | | | | | | |
Collapse
|
102
|
Abstract
Initiation and completion of DNA replication defines the beginning and ending of S phase of the cell cycle. Successful progression through S phase requires that replication be properly regulated and monitored to ensure that the entire genome is duplicated exactly once, without errors, in a timely fashion. Given the immense size and complexity of eukaryotic genomes, this presents a significant challenge for the cell. As a result, DNA replication has evolved into a tightly regulated process involving the coordinated action of numerous factors that function in all phases of the cell cycle. We will review our current understanding of these processes from the formation of prereplicative complexes in preparation for S phase to the series of events that culminate in the loading of DNA polymerases during S phase. We will incorporate structural data from archaeal and bacterial replication proteins and discuss their implications for understanding the mechanism of action of their corresponding eukaryotic homologues. We will also describe the concept of replication licensing which protects against genomic instability by limiting initiation events to once per cell cycle. Lastly, we will review our knowledge of checkpoint pathways that maintain the integrity of stalled forks and relay defects in replication to the rest of the cell cycle.
Collapse
Affiliation(s)
- David Y Takeda
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
103
|
Holway AH, Hung C, Michael WM. Systematic, RNA-interference-mediated identification of mus-101 modifier genes in Caenorhabditis elegans. Genetics 2005; 169:1451-60. [PMID: 15654100 PMCID: PMC1449550 DOI: 10.1534/genetics.104.036137] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Mus101 family of chromosomal proteins, identified initially in Drosophila, is widely conserved and has been shown to function in a variety of DNA metabolic processes. Such functions include DNA replication, DNA damage repair, postreplication repair, damage checkpoint activation, chromosome stability, and chromosome condensation. Despite its conservation and widespread involvement in chromosome biogenesis, very little is known about how Mus101 is regulated and what other proteins are required for Mus101 to exert its functions. To learn more about Mus101, we have initiated an analysis of the protein in C. elegans. Here, we show that C. elegans mus-101 is an essential gene, that it is required for DNA replication, and that it also plays an important role in the DNA damage response. Furthermore, we use RNA interference (RNAi)-mediated reverse genetics to screen for genes that modify a mus-101 partial loss-of-function RNAi phenotype. Using a systematic approach toward modifier gene discovery, we have found five chromosome I genes that modify the mus-101 RNAi phenotype, and we go on to show that one of them encodes an E3 SUMO ligase that promotes SUMO modification of MUS-101 in vitro. These results expand our understanding of MUS-101 regulation and show that genetic interactions can be uncovered using screening strategies that rely solely on RNAi.
Collapse
Affiliation(s)
- Antonia H Holway
- The Biological Laboratories, Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
104
|
Jurvansuu J, Raj K, Stasiak A, Beard P. Viral transport of DNA damage that mimics a stalled replication fork. J Virol 2005; 79:569-80. [PMID: 15596849 PMCID: PMC538728 DOI: 10.1128/jvi.79.1.569-580.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adeno-associated virus type 2 (AAV2) infection incites cells to arrest with 4N DNA content or die if the p53 pathway is defective. This arrest depends on AAV2 DNA, which is single stranded with inverted terminal repeats that serve as primers during viral DNA replication. Here, we show that AAV2 DNA triggers damage signaling that resembles the response to an aberrant cellular DNA replication fork. UV treatment of AAV2 enhances the G2 arrest by generating intrastrand DNA cross-links which persist in infected cells, disrupting viral DNA replication and maintaining the viral DNA in the single-stranded form. In cells, such DNA accumulates into nuclear foci with a signaling apparatus that involves DNA polymerase delta, ATR, TopBP1, RPA, and the Rad9/Rad1/Hus1 complex but not ATM or NBS1. Focus formation and damage signaling strictly depend on ATR and Chk1 functions. Activation of the Chk1 effector kinase leads to the virus-induced G2 arrest. AAV2 provides a novel way to study the cellular response to abnormal DNA replication without damaging cellular DNA. By using the AAV2 system, we show that in human cells activation of phosphorylation of Chk1 depends on TopBP1 and that it is a prerequisite for the appearance of DNA damage foci.
Collapse
Affiliation(s)
- Jaana Jurvansuu
- Swiss Institute for Experimental Cancer Research and National Center of Competence in Research Molecular Oncology, Epalinges, Lausanne, Switzerland
| | | | | | | |
Collapse
|
105
|
Lisby M, Rothstein R. Localization of checkpoint and repair proteins in eukaryotes. Biochimie 2004; 87:579-89. [PMID: 15989975 DOI: 10.1016/j.biochi.2004.10.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Accepted: 10/25/2004] [Indexed: 12/11/2022]
Abstract
In eukaryotes, the cellular response to DNA damage depends on the type of DNA structure being recognized by the checkpoint and repair machinery. DNA ends and single-stranded DNA are hallmarks of double-strand breaks and replication stress. These two structures are recognized by distinct sets of proteins, which are reorganized into a focal assembly at the lesion. Moreover, the composition of these foci is coordinated with cell cycle progression, reflecting the favoring of end-joining in the G1 phase and homologous recombination in S and G2. The assembly of proteins at sites of DNA damage is largely controlled by a network of protein-protein interactions, with the Mre11 complex initiating assembly at DNA ends and replication protein A directing recruitment to single-stranded DNA. This review summarizes current knowledge on the cellular organization of DSB repair and checkpoint proteins focusing on budding yeast and mammalian cells.
Collapse
Affiliation(s)
- Michael Lisby
- Institute of Molecular Biology, University of Copenhagen, Øster Farimagsgade 2 A, DK-1353 Copenhagen K, Denmark
| | | |
Collapse
|
106
|
Mitkova AV, Biswas-Fiss EE, Biswas SB. Modulation of DNA synthesis in Saccharomyces cerevisiae nuclear extract by DNA polymerases and the origin recognition complex. J Biol Chem 2004; 280:6285-92. [PMID: 15590683 DOI: 10.1074/jbc.m410129200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have analyzed the modulation of DNA synthesis on a supercoiled plasmid DNA template by DNA polymerases (pol), minichromosome maintenance protein complex (Mcm), topoisomerases, and the origin recognition complex (ORC) using an in vitro assay system. Antisera specific against the four-subunit pol alpha, the catalytic subunit of pol delta, and the Mcm467 complex each inhibited DNA synthesis. However, DNA synthesis in this system appeared to be independent of polepsilon. Consequently, DNA synthesis in the in vitro system appeared to depend only on two polymerases, alpha and delta, as well as the Mcm467 DNA helicase. This system requires supercoiled plasmid DNA template and DNA synthesis absolutely required DNA topoisomerase I. In addition, we also report here a novel finding that purified recombinant six subunit ORC significantly stimulated the DNA synthesis on a supercoiled plasmid DNA template containing an autonomously replicating sequence, ARS1.
Collapse
Affiliation(s)
- Atanaska V Mitkova
- Department of Molecular Biology, GSBS & SOM, University of Medicine & Dentistry of New Jersey, Stratford, New Jersey 08084, USA
| | | | | |
Collapse
|
107
|
Toueille M, Hübscher U. Regulation of the DNA replication fork: a way to fight genomic instability. Chromosoma 2004; 113:113-25. [PMID: 15300444 DOI: 10.1007/s00412-004-0303-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 06/15/2004] [Accepted: 06/17/2004] [Indexed: 12/18/2022]
Abstract
DNA replication is a complex mechanism that functions due to the coordinated interplay of many factors. In the last few years, numerous studies have suggested that DNA replication factors are closely implicated in several DNA transaction events that maintain the integrity of the genome. Therefore, DNA replication fork factors have to be considered as part of a general process that aims to protect and replicate the genome in order to allow correct functioning of a cell and its eventual daughter cells. This is illustrated by the numerous factors that have a well-defined function at the DNA replication fork, but also play crucial roles in different DNA repair pathways such as base excision repair, nucleotide excision repair, double-strand break repair, and mismatch repair. Moreover, several of the replisome proteins have also been shown to be essential in sensing and transducing DNA damages through the checkpoint cascade pathways, including the recently characterised alternative clamps and clamp-loaders. In this review we present DNA replication factors that are involved in different DNA transaction and checkpoint regulation pathways, with emphasis on the link between DNA replication and maintenance of genomic stability.
Collapse
Affiliation(s)
- Magali Toueille
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich-Irchel, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | |
Collapse
|
108
|
Dolan WP, Sherman DA, Forsburg SL. Schizosaccharomyces pombe replication protein Cdc45/Sna41 requires Hsk1/Cdc7 and Rad4/Cut5 for chromatin binding. Chromosoma 2004; 113:145-56. [PMID: 15338237 DOI: 10.1007/s00412-004-0302-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Revised: 06/14/2004] [Accepted: 06/15/2004] [Indexed: 10/26/2022]
Abstract
Cdc45 is a conserved protein required for firing of replication origins and processive DNA replication. We used an in situ chromatin-binding assay to determine factors required for fission yeast Cdc45p chromatin binding. Assembly of the pre-replicative complex is essential for Cdc45p chromatin binding, but pre-replicative complex assembly occurs independently of Cdc45p. Fission yeast Cdc45p associates with MCM proteins in asynchronously growing cells and cells arrested in S phase by hydroxyurea, but not in cells arrested at the G2/M transition. Both hsk1+ (the fission yeast CDC7 homologue) and rad4+/ cut5+ (the fission yeast DPB11 homologue) are required for Cdc45p chromatin binding. Cdc45p also remains chromatin-bound in mutants that fail to recover from replication arrest. In summary, Cdc45p chromatin binding requires an intact pre-replicative complex as well as signaling from both the Dbf4-dependent kinase and cyclin-dependent kinases.
Collapse
Affiliation(s)
- William P Dolan
- MCBL, The Salk Institute, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
109
|
Tsubota T, Maki S, Kubota H, Sugino A, Maki H. Double-stranded DNA binding properties of Saccharomyces cerevisiae DNA polymerase epsilon and of the Dpb3p-Dpb4p subassembly. Genes Cells 2004; 8:873-88. [PMID: 14622139 DOI: 10.1046/j.1365-2443.2003.00683.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND DNA polymerase epsilon (Pol epsilon) of Saccharomyces cerevisiae participates in many aspects of DNA replication, as well as in DNA repair. In order to clarify molecular mechanisms employed in the multiple tasks of Pol epsilon, we have been characterizing the interaction between Pol epsilon and DNA. RESULTS Analysis of the four-subunit Pol epsilon complex by gel mobility shift assay revealed that the complex binds not only to single-stranded (ss) DNA but also equally well to double-stranded (ds) DNA. A truncated polypeptide consisting of the N-terminal domain of Pol2p catalytic subunit binds to ssDNA but not to dsDNA, indicating that the Pol2p C-terminal domain and/or the auxiliary subunits are involved in the dsDNA-binding. The dsDNA-binding by Pol epsilon does not require DNA ends or specific DNA sequences. Further analysis by competition experiments indicated that Pol epsilon contains at least two distinct DNA-binding sites, one of which binds exclusively to ssDNA and the other to dsDNA. The dsDNA-binding site, however, is suggested to also bind ssDNA. The DNA polymerase activity of Pol epsilon is inhibited by ssDNA but not by dsDNA. Furthermore, purification of the Pol epsilon auxiliary subunits Dpb3p and Dpb4p revealed that these proteins form a heterodimer and associate with dsDNA. CONCLUSIONS Pol epsilon has multiple sites at which it interacts with DNA. One of these sites has a strong affinity for dsDNA, a feature that is not generally associated with DNA polymerases. Involvement of the Dpb3p-Dpb4p complex in the dsDNA-binding of Pol epsilon is inferred.
Collapse
Affiliation(s)
- Toshiaki Tsubota
- Department of Molecular Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | | | | | | | | |
Collapse
|
110
|
Affiliation(s)
- Isabelle A Lucas
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
111
|
Kesti T, McDonald WH, Yates JR, Wittenberg C. Cell Cycle-dependent Phosphorylation of the DNA Polymerase Epsilon Subunit, Dpb2, by the Cdc28 Cyclin-dependent Protein Kinase. J Biol Chem 2004; 279:14245-55. [PMID: 14747467 DOI: 10.1074/jbc.m313289200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
DNA polymerase epsilon (Polepsilon), one of the three major eukaryotic replicative polymerases, is comprised of the essential catalytic subunit, called Pol2 in budding yeast, and three accessory subunits, only one of which, Dpb2, is essential. Polepsilon is recruited to replication origins during late G(1) phase prior to activation of replication. In this work we show that the budding yeast Dpb2 is phosphorylated in a cell cycle-dependent manner during late G(1) phase. Phosphorylation results in the appearance of a lower mobility species. The appearance of that species in vivo is dependent upon the Cdc28 cyclin-dependent protein kinase (CDK), which can directly phosphorylate Dpb2 in vitro. Either G(1) cyclin (Cln) or B-type cyclin (Clb)-associated CDK is sufficient for phosphorylation. Mapping of phosphorylation sites by mass spectrometry using a novel gel-based proteolysis protocol shows that, of the three consensus CDK phosphorylation sites, at least two, Ser-144 and Ser-616, are phosphorylated in vivo. The Cdc28 CDK phosphorylates only Ser-144 in vitro. Using site-directed mutagenesis, we show that Ser-144 is sufficient for the formation of the lower mobility form of Dpb2 in vivo. In contrast, Ser-616 appears not to be phosphorylated by Cdc28. Finally, inactivation of all three CDK consensus sites in Dpb2 results in a synthetic phenotype with the pol2-11 mutation, leading to decreased spore viability, slow growth, and increased thermosensitivity. We suggest that phosphorylation of Dpb2 during late G(1) phase at CDK consensus sites facilitates the interaction with Pol2 or the activity of Polepsilon
Collapse
Affiliation(s)
- Tapio Kesti
- Departments of Molecular Biology and Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
112
|
Lucca C, Vanoli F, Cotta-Ramusino C, Pellicioli A, Liberi G, Haber J, Foiani M. Checkpoint-mediated control of replisome-fork association and signalling in response to replication pausing. Oncogene 2004; 23:1206-13. [PMID: 14647447 DOI: 10.1038/sj.onc.1207199] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The replication checkpoint controls the integrity of replicating chromosomes by stabilizing stalled forks, thus preventing the accumulation of abnormal replication and recombination intermediates that contribute to genome instability. Checkpoint-defective cells are susceptible to rearrangements at chromosome fragile sites when replication pauses, and certain human cancer prone diseases suffer checkpoint abnormalities. It is unclear as to how the checkpoint stabilizes stalled forks and how cells sense replication blocks. We have analysed the checkpoint contribution in controlling replisome-fork association when replication pauses. We show that in yeast wild-type cells, stalled forks exhibit stable replisome complexes and the checkpoint sensors Ddc1 and Ddc2, thus activating Rad53 checkpoint kinase. Ddc1/Ddc2 recruitment on stalled forks and Rad53 activation are influenced by the single-strand-binding protein replication factor A (RFA). rad53 forks exhibit a defective association with DNA polymerases alpha, epsilon and delta. Further, in rad53 mutants, stalled forks progressively generate abnormal structures that turn into checkpoint signals by accumulating RFA, Ddc1 and Ddc2. We suggest that, following replication blocks, checkpoint activation mediated by RFA-ssDNA filaments stabilizes stalled forks by controlling replisome-fork association, thus preventing unscheduled recruitment of recombination enzymes that could otherwise cause the pathological processing of the forks.
Collapse
Affiliation(s)
- Chiara Lucca
- Istituto FIRC di Oncologia Molecolare, Via Adamello 16, Milano 20141, Italy
| | | | | | | | | | | | | |
Collapse
|
113
|
Abstract
The minichromosome maintenance (or MCM) protein family is composed of six related proteins that are conserved in all eukaryotes. They were first identified by genetic screens in yeast and subsequently analyzed in other experimental systems using molecular and biochemical methods. Early data led to the identification of MCMs as central players in the initiation of DNA replication. More recent studies have shown that MCM proteins also function in replication elongation, probably as a DNA helicase. This is consistent with structural analysis showing that the proteins interact together in a heterohexameric ring. However, MCMs are strikingly abundant and far exceed the stoichiometry of replication origins; they are widely distributed on unreplicated chromatin. Analysis of mcm mutant phenotypes and interactions with other factors have now implicated the MCM proteins in other chromosome transactions including damage response, transcription, and chromatin structure. These experiments indicate that the MCMs are central players in many aspects of genome stability.
Collapse
Affiliation(s)
- Susan L Forsburg
- Molecular & Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| |
Collapse
|
114
|
Méndez J, Stillman B. Perpetuating the double helix: molecular machines at eukaryotic DNA replication origins. Bioessays 2004; 25:1158-67. [PMID: 14635251 DOI: 10.1002/bies.10370] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The hardest part of replicating a genome is the beginning. The first step of DNA replication (called "initiation") mobilizes a large number of specialized proteins ("initiators") that recognize specific sequences or structural motifs in the DNA, unwind the double helix, protect the exposed ssDNA, and recruit the enzymatic activities required for DNA synthesis, such as helicases, primases and polymerases. All of these components are orderly assembled before the first nucleotide can be incorporated. On the occasion of the 50th anniversary of the discovery of the DNA structure, we review our current knowledge of the molecular mechanisms that control initiation of DNA replication in eukaryotic cells, with particular emphasis on the recent identification of novel initiator proteins. We speculate how these initiators assemble molecular machines capable of performing specific biochemical tasks, such as loading a ring-shaped helicase onto the DNA double helix.
Collapse
Affiliation(s)
- Juan Méndez
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.
| | | |
Collapse
|
115
|
Perera D, Perez-Hidalgo L, Moens PB, Reini K, Lakin N, Syväoja JE, San-Segundo PA, Freire R. TopBP1 and ATR colocalization at meiotic chromosomes: role of TopBP1/Cut5 in the meiotic recombination checkpoint. Mol Biol Cell 2004; 15:1568-79. [PMID: 14718568 PMCID: PMC379256 DOI: 10.1091/mbc.e03-06-0444] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mammalian TopBP1 is a BRCT domain-containing protein whose function in mitotic cells is linked to replication and DNA damage checkpoint. Here, we study its possible role during meiosis in mice. TopBP1 foci are abundant during early prophase I and localize mainly to histone gamma-H2AX-positive domains, where DNA double-strand breaks (required to initiate recombination) occur. Strikingly, TopBP1 showed a pattern almost identical to that of ATR, a PI3K-like kinase involved in mitotic DNA damage checkpoint. In the synapsis-defective Fkbp6(-/-) mouse, TopBP1 heavily stains unsynapsed regions of chromosomes. We also tested whether Schizosaccharomyces pombe Cut5 (the TopBP1 homologue) plays a role in the meiotic recombination checkpoint, like spRad3, the ATR homologue. Indeed, we found that a cut5 mutation suppresses the checkpoint-dependent meiotic delay of a meiotic recombination defective mutant, indicating a direct role of the Cut5 protein in the meiotic checkpoint. Our findings suggest that ATR and TopBP1 monitor meiotic recombination and are required for activation of the meiotic recombination checkpoint.
Collapse
Affiliation(s)
- David Perera
- Unidad de Investigación, Hospital Universitario de Canarias, Ofra s/n, La Cuesta, 38320 Tenerife, Spain
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Parrilla-Castellar ER, Karnitz LM. Cut5 Is Required for the Binding of Atr and DNA Polymerase α to Genotoxin-damaged Chromatin. J Biol Chem 2003; 278:45507-11. [PMID: 14525986 DOI: 10.1074/jbc.c300418200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA damage triggers the assembly of checkpoint signaling proteins on chromatin that activate the Chk1 signaling pathway and block S-phase progression. Here we show that genotoxin-induced Chk1 activation requires Cut5 (Mus101/TopBP1) in a process that is independent of the role of Cut5 in DNA replication. Analysis of the role of Cut5 in checkpoint activation revealed that it associated with chromatin following DNA damage in a process that required RPA. Additionally, Cut5 was required for the recruitment of Atr, DNA polymerase alpha, and Rad1 but not RPA to chromatin following DNA damage. Taken together, these results demonstrate that Cut5 plays an integral role in the recruitment and assembly of the Chk1 signaling cascade components following DNA damage.
Collapse
|
117
|
Grelon M, Gendrot G, Vezon D, Pelletier G. The Arabidopsis MEI1 gene encodes a protein with five BRCT domains that is involved in meiosis-specific DNA repair events independent of SPO11-induced DSBs. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 35:465-475. [PMID: 12904209 DOI: 10.1046/j.1365-313x.2003.01820.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Arabidopsis thaliana MEI1 was first described as a gene involved in male meiosis, encoding a short protein showing homology with a human acrosin-trypsin inhibitor. We have isolated a new allele of mei1, and shown that in both mutants male and female meiosis are affected. In both reproductive pathways, meiosis proceeds while chromosomes become fragmented, resulting in aberrant meiotic products and in a strongly reduced fertility. We have shown that the gene mutated in mei1 mutants actually encodes a protein of 972 amino acids that contains five BRCA1 C-terminus (BRCT) domains and is similar to proteins involved in the response to DNA damage and replication blocks in eukaryotes. During meiosis, recombination is initiated by the formation of DNA double strand breaks (DSBs) induced by the protein SPO11. We analysed meiotic chromosome behaviour of the mei1 mutant in a spo11 mutant background and proved that the meiotic fragmentation observed in mei1 mutants was not the consequence of defects in the repair of meiotic DSBs induced by SPO11. We also analysed the effect of mei1 on the mitotic cell cycle but could not detect any sensitivity of mei1 seedlings to DNA-damaging agents like gamma-rays or UV. Therefore, MEI1 is a BRCT-domain-containing protein that could be specific to the meiotic cell cycle and that plays a crucial role in some DNA repair events independent of SPO11 DSB recombination repair.
Collapse
Affiliation(s)
- Mathilde Grelon
- INRA, Station de Génétique et d'Amélioration des Plantes, Route de Saint-Cyr 78026, Versailles Cedex, France
| | | | | | | |
Collapse
|
118
|
St Onge RP, Besley BDA, Pelley JL, Davey S. A role for the phosphorylation of hRad9 in checkpoint signaling. J Biol Chem 2003; 278:26620-8. [PMID: 12734188 DOI: 10.1074/jbc.m303134200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The integrity of the human genome is preserved by signal transduction pathways called checkpoints, which delay progression through the cell cycle when DNA damage is present. Three checkpoint proteins, hRad9, hRad1, and hHus1, form a proliferating cell nuclear antigen-like, heterotrimeric complex that has been proposed to function in the initial detection of DNA structural abnormalities. hRad9 is highly modified by phosphorylation, in a constitutive manner and in response to both DNA damage and cell cycle position. Here we present evidence that Thr292 of hRad9 is subject to Cdc2-dependent phosphorylation in mitosis. Furthermore, our data are also consistent with four other hRad9 phosphorylation sites (Ser277, Ser328, Ser336, and Thr355) being regulated in part by Cdc2. We also identify Ser387 as a novel site of hRad9 constitutive phosphorylation and show that phosphorylation at Ser387 is a prerequisite for one form of DNA damage-induced hyperphosphorylation of hRad9. Characterization of nonphosphorylatable mutants has revealed that hRad9 phosphorylation plays a critical role in checkpoint signaling. Overexpression of these mutants blocks the interaction between hRad9 and the DNA damage-responsive protein TopBP1 and impairs the cellular response to DNA damage during S phase.
Collapse
Affiliation(s)
- Robert P St Onge
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
119
|
Nyberg KA, Michelson RJ, Putnam CW, Weinert TA. Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet 2003; 36:617-56. [PMID: 12429704 DOI: 10.1146/annurev.genet.36.060402.113540] [Citation(s) in RCA: 627] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA checkpoints play a significant role in cancer pathology, perhaps most notably in maintaining genome stability. This review summarizes the genetic and molecular mechanisms of checkpoint activation in response to DNA damage. The major checkpoint proteins common to all eukaryotes are identified and discussed, together with how the checkpoint proteins interact to induce arrest within each cell cycle phase. Also discussed are the molecular signals that activate checkpoint responses, including single-strand DNA, double-strand breaks, and aberrant replication forks. We address the connection between checkpoint proteins and damage repair mechanisms, how cells recover from an arrest response, and additional roles that checkpoint proteins play in DNA metabolism. Finally, the connection between checkpoint gene mutation and genomic instability is considered.
Collapse
Affiliation(s)
- Kara A Nyberg
- Molecular and Cellular Biology Department, University of Arizona, Tucson, Arizona, 85721, USA.
| | | | | | | |
Collapse
|
120
|
Huang D, Koshland D. Chromosome integrity in Saccharomyces cerevisiae: the interplay of DNA replication initiation factors, elongation factors, and origins. Genes Dev 2003; 17:1741-54. [PMID: 12865298 PMCID: PMC196182 DOI: 10.1101/gad.1089203] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2003] [Accepted: 05/23/2003] [Indexed: 11/24/2022]
Abstract
The integrity of chromosomes during cell division is ensured by both trans-acting factors and cis-acting chromosomal sites. Failure of either these chromosome integrity determinants (CIDs) can cause chromosomes to be broken and subsequently misrepaired to form gross chromosomal rearrangements (GCRs). We developed a simple and rapid assay for GCRs, exploiting yeast artificial chromosomes (YACs) in Saccharomyces cerevisiae. We used this assay to screen a genome-wide pool of mutants for elevated rates of GCR. The analyses of these mutants define new CIDs (Orc3p, Orc5p, and Ycs4p) and new pathways required for chromosome integrity in DNA replication elongation (Dpb11p), DNA replication initiation (Orc3p and Orc5p), and mitotic condensation (Ycs4p). We show that the chromosome integrity function of Orc5p is associated with its ATP-binding motif and is distinct from its function in controlling the efficiency of initiation of DNA replication. Finally, we used our YAC assay to assess the interplay of trans and cis factors in chromosome integrity. Increasing the number of origins on a YAC suppresses GCR formation in our dpb11 mutant but enhances it in our orc mutants. This result provides potential insights into the counterbalancing selective pressures necessary for the evolution of origin density on chromosomes.
Collapse
Affiliation(s)
- Dongli Huang
- Howard Hughes Medical Institute, Carnegie Institution of Washington, Department of Embryology, Baltimore, Maryland , Johns Hopkins University, Department of Biology, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
121
|
Osborn AJ, Elledge SJ. Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53. Genes Dev 2003; 17:1755-67. [PMID: 12865299 PMCID: PMC196183 DOI: 10.1101/gad.1098303] [Citation(s) in RCA: 288] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
When DNA replication is stalled, a signal transduction pathway is activated that promotes the stability of stalled forks and resumption of DNA synthesis. In budding yeast, this pathway includes the kinases Mec1 and Rad53. Here we report that the Mediator protein Mrc1, which is required for normal DNA replication and for activation of Rad53, is present at replication forks. Mrc1 initially binds early-replicating sequences and moves along chromatin with the replication fork. Blocking initiation of DNA replication blocks Mrc1 loading onto origins, providing an explanation for why so many mutants in DNA replication show checkpoint defects. In the presence of replication blocks, we find that Mec1 is recruited to regions of stalled replication, where it encounters and presumably phosphorylates Mrc1. Mutation of the canonical Mec1 phosphorylation sites on Mrc1 prevents Mrc1 phosphorylation and blocks Rad53 activation, but does not alter Mrc1's role in DNA replication. Our results suggest a model whereby in response to DNA replication interference, the Mec1 kinase is recruited to sites of replication blocks and phosphorylates a component of the DNA replication complex, Mrc1, thereby setting up a solid-state Rad53 activation platform to initiate the checkpoint response.
Collapse
Affiliation(s)
- Alexander J Osborn
- Verna and Marrs MacLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
122
|
Schultz LB, Chehab NH, Malikzay A, DiTullio RA, Stavridi ES, Halazonetis TD. The DNA damage checkpoint and human cancer. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 65:489-98. [PMID: 12760066 DOI: 10.1101/sqb.2000.65.489] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- L B Schultz
- Wistar Institute, Graduate Program in Biomedical Sciences, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
123
|
Esashi F, Mochida S, Matsusaka T, Obara T, Ogawa A, Tamai K, Yanagida M. Establishment of and recovery from damage checkpoint requires sequential interactions of Crb2 with protein kinases Rad3, Chk1, and Cdc2. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 65:443-9. [PMID: 12760060 DOI: 10.1101/sqb.2000.65.443] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- F Esashi
- CREST Research Project, Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
124
|
Hashimoto Y, Takisawa H. Xenopus Cut5 is essential for a CDK-dependent process in the initiation of DNA replication. EMBO J 2003; 22:2526-35. [PMID: 12743046 PMCID: PMC155996 DOI: 10.1093/emboj/cdg238] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fission yeast Cut5/Rad4 and its budding yeast homolog Dpb11 are required for both DNA replication and the S-phase checkpoint. Here, we have investigated the role of the Xenopus homolog of Cut5 in the initiation of DNA replication using Xenopus egg extracts. Xenopus Cut5, which shows sequence similarity to DmMus101 and HsTopBP1, is essential for DNA replication in the egg extracts. It is required for the chromatin binding of Cdc45 and DNA polymerases, but not for the formation of pre-replicative complexes or the elongation stage of DNA replication. The chromatin binding of Cut5 consists of two distinct modes. S-phase cyclin-dependent kinase (S-CDK)-independent binding is sufficient for DNA replication while S-CDK-dependent binding is dispensable. Further, S-CDK acts after the chromatin binding of Cut5 and before the binding of Cdc45. These results demonstrate that the chromatin binding of Cut5 is required for the action of S-CDK, which in turn triggers the formation of pre-initiation complexes of DNA replication.
Collapse
Affiliation(s)
- Yoshitami Hashimoto
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Japan
| | | |
Collapse
|
125
|
Kubota Y, Takase Y, Komori Y, Hashimoto Y, Arata T, Kamimura Y, Araki H, Takisawa H. A novel ring-like complex of Xenopus proteins essential for the initiation of DNA replication. Genes Dev 2003; 17:1141-52. [PMID: 12730133 PMCID: PMC196047 DOI: 10.1101/gad.1070003] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have identified Xenopus homologs of the budding yeast Sld5 and its three interacting proteins. These form a novel complex essential for the initiation of DNA replication in Xenopus egg extracts. The complex binds to chromatin in a manner dependent on replication licensing and S-phase CDK. The chromatin binding of the complex and that of Cdc45 are mutually dependent and both bindings require Xenopus Cut5, the yeast homolog of which interacts with Sld5. On replicating chromatin the complex interacts with Cdc45 and MCM, putative components of replication machinery. Electron microscopy further reveals that the complex has a ring-like structure. These results suggest that the complex plays an essential role in the elongation stage of DNA replication as well as the initiation stage.
Collapse
Affiliation(s)
- Yumiko Kubota
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Takayama Y, Kamimura Y, Okawa M, Muramatsu S, Sugino A, Araki H. GINS, a novel multiprotein complex required for chromosomal DNA replication in budding yeast. Genes Dev 2003; 17:1153-65. [PMID: 12730134 PMCID: PMC196052 DOI: 10.1101/gad.1065903] [Citation(s) in RCA: 282] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Eukaryotic chromosomal DNA replication requires a two-step assembly of replication proteins on origins; formation of the prereplicative complex (pre-RC) in late M and G1 phases of the cell cycle, and assembly of other replication proteins in S phase to load DNA polymerases to initiate DNA synthesis. In budding yeast, assembly of Dpb11 and the Sld3–Cdc45 complex on the pre-RC at origins is required for loading DNA polymerases. Here we describe a novel replication complex, GINS (Go, Ichi, Nii, and San; five, one, two, and three in Japanese), in budding yeast, consisting of Sld5, Psf1 (partner of Sld five 1), Psf2, and Psf3 proteins, all of which are highly conserved in eukaryotic cells. Since the conditional mutations of Sld5 and Psf1 confer defect of DNA replication under nonpermissive conditions, GINS is suggested to function for chromosomal DNA replication. Consistently, in S phase, GINS associates first with replication origins and then with neighboring sequences. Without GINS, neither Dpb11 nor Cdc45 associates properly with chromatin DNA. Conversely, without Dpb11 or Sld3, GINS does not associate with origins. Moreover, genetic and two-hybrid interactions suggest that GINS interacts with Sld3 and Dpb11. Therefore, Dpb11, Sld3, Cdc45, and GINS assemble in a mutually dependent manner on replication origins to initiate DNA synthesis.
Collapse
Affiliation(s)
- Yuko Takayama
- Division of Microbial Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | | | | | | | | |
Collapse
|
127
|
Tercero JA, Longhese MP, Diffley JFX. A central role for DNA replication forks in checkpoint activation and response. Mol Cell 2003; 11:1323-36. [PMID: 12769855 DOI: 10.1016/s1097-2765(03)00169-2] [Citation(s) in RCA: 294] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The checkpoint proteins Rad53 and Mec1-Ddc2 regulate many aspects of cell metabolism in response to DNA damage. We have examined the relative importance of downstream checkpoint effectors on cell viability. Checkpoint regulation of mitosis, gene expression, and late origin firing make only modest contributions to viability. By contrast, the checkpoint is essential for preventing irreversible breakdown of stalled replication forks. Moreover, recruitment of Ddc2 to nuclear foci and subsequent activation of the Rad53 kinase only occur during S phase and require the assembly of replication forks. Thus, DNA replication forks are both activators and primary effectors of the checkpoint pathway in S phase.
Collapse
Affiliation(s)
- José Antonio Tercero
- Cancer Research UK, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, United Kingdom
| | | | | |
Collapse
|
128
|
Edwards S, Li CM, Levy DL, Brown J, Snow PM, Campbell JL. Saccharomyces cerevisiae DNA polymerase epsilon and polymerase sigma interact physically and functionally, suggesting a role for polymerase epsilon in sister chromatid cohesion. Mol Cell Biol 2003; 23:2733-48. [PMID: 12665575 PMCID: PMC152548 DOI: 10.1128/mcb.23.8.2733-2748.2003] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The large subunit of Saccharomyces cerevisiae DNA polymerase epsilon, Pol2, comprises two essential functions. The N terminus has essential DNA polymerase activity. The C terminus is also essential, but its function is unknown. We report here that the C-terminal domain of Pol2 interacts with polymerase sigma (Pol sigma), a recently identified, essential nuclear nucleotidyl transferase encoded by two redundant genes, TRF4 and TRF5. This interaction is functional, since Pol sigma stimulates the polymerase activity of the Pol epsilon holoenzyme significantly. Since Trf4 is required for sister chromatid cohesion as well as for completion of S phase and repair, the interaction suggested that Pol epsilon, like Pol sigma, might form a link between the replication apparatus and sister chromatid cohesion and/or repair machinery. We present evidence that pol2 mutants are defective in sister chromatid cohesion. In addition, Pol2 interacts with SMC1, a subunit of the cohesin complex, and with ECO1/CTF7, required for establishing sister chromatid cohesion; and pol2 mutations act synergistically with smc1 and scc1. We also show that trf5 Delta mutants, like trf4 Delta mutants, are defective in DNA repair and sister chromatid cohesion.
Collapse
Affiliation(s)
- Shaune Edwards
- Braun Laboratories, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | | | |
Collapse
|
129
|
Clarke DJ. Establishment of dependence relationships between genome replication and mitosis. J Cell Biochem 2003; 88:95-103. [PMID: 12461778 DOI: 10.1002/jcb.10324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although budding yeast cell biology and genetics provided a powerful system to isolate S-phase checkpoint mutants, initial studies relied on a defect not likely to be relevant in higher eukaryotes. The first mutants were isolated for their inability to restrain mitotic spindle elongation in S-phase. Since most eukaryotes do not assemble spindles until prometaphase the validity of this approach might have been questioned. However, these early studies were designed with a highly valid assumption in mind; that checkpoints have a variety of targets, but comprise conserved kinase cascades that make up these signaling pathways. The task that lies ahead is to determine targets of the S-phase checkpoint relevant to mammals. One step forward might be the realization that the budding yeast S-phase checkpoint prevents loss of sister chromatid cohesion while DNA replication is ongoing. If this mechanism is conserved in mammals, it could prove vital for chromosome segregation fidelity.
Collapse
Affiliation(s)
- Duncan J Clarke
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, 420 Washington Avenue SE, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
130
|
Khare V, Eckert KA. The proofreading 3'-->5' exonuclease activity of DNA polymerases: a kinetic barrier to translesion DNA synthesis. Mutat Res 2002; 510:45-54. [PMID: 12459442 DOI: 10.1016/s0027-5107(02)00251-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 3'-->5' exonuclease activity intrinsic to several DNA polymerases plays a primary role in genetic stability; it acts as a first line of defense in correcting DNA polymerase errors. A mismatched basepair at the primer terminus is the preferred substrate for the exonuclease activity over a correct basepair. The efficiency of the exonuclease as a proofreading activity for mispairs containing a DNA lesion varies, however, being dependent upon both the DNA polymerase/exonuclease and the type of DNA lesion. The exonuclease activities intrinsic to the T4 polymerase (family B) and DNA polymerase gamma (family A) proofread DNA mispairs opposite endogenous DNA lesions, including alkylation, oxidation, and abasic adducts. However, the exonuclease of the Klenow polymerase cannot discriminate between correct and incorrect bases opposite alkylation and oxidative lesions. DNA damage alters the dynamics of the intramolecular partitioning of DNA substrates between the 3'-->5' exonuclease and polymerase activities. Enzymatic idling at lesions occurs when an exonuclease activity efficiently removes the same base that is preferentially incorporated by the DNA polymerase activity. Thus, the exonuclease activity can also act as a kinetic barrier to translesion synthesis (TLS) by preventing the stable incorporation of bases opposite DNA lesions. Understanding the downstream consequences of exonuclease activity at DNA lesions is necessary for elucidating the mechanisms of translesion synthesis and damage-induced cytotoxicity.
Collapse
Affiliation(s)
- Vineeta Khare
- Department of Pathology, Gittlen Cancer Research Institute, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | | |
Collapse
|
131
|
Abstract
The maintenance of the eukaryotic genome requires precisely coordinated replication of the entire genome each time a cell divides. To achieve this coordination, eukaryotic cells use an ordered series of steps to form several key protein assemblies at origins of replication. Recent studies have identified many of the protein components of these complexes and the time during the cell cycle they assemble at the origin. Interestingly, despite distinct differences in origin structure, the identity and order of assembly of eukaryotic replication factors is highly conserved across all species. This review describes our current understanding of these events and how they are coordinated with cell cycle progression. We focus on bringing together the results from different organisms to provide a coherent model of the events of initiation. We emphasize recent progress in determining the function of the different replication factors once they have been assembled at the origin.
Collapse
Affiliation(s)
- Stephen P Bell
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA.
| | | |
Collapse
|
132
|
Abstract
Any living cell is faced with the fundamental task of keeping the genome intact in order to develop in an organized manner, to function in a complex environment, to divide at the right time, and to die when it is appropriate. To achieve this goal, an efficient machinery is required to maintain the genetic information encoded in DNA during cell division, DNA repair, DNA recombination, and the bypassing of damage in DNA. DNA polymerases (pols) alpha, beta, gamma, delta, and epsilon are the key enzymes required to maintain the integrity of the genome under all these circumstances. In the last few years the number of known pols, including terminal transferase and telomerase, has increased to at least 19. A particular pol might have more than one functional task in a cell and a particular DNA synthetic event may require more than one pol, which suggests that nature has provided various safety mechanisms. This multi-functional feature is especially valid for the variety of novel pols identified in the last three years. These are the lesion-replicating enzymes pol zeta, pol eta, pol iota, pol kappa, and Rev1, and a group of pols called pol theta;, pol lambda, pol micro, pol sigma, and pol phi that fulfill a variety of other tasks.
Collapse
Affiliation(s)
- Ulrich Hubscher
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| | | | | |
Collapse
|
133
|
Van Hatten RA, Tutter AV, Holway AH, Khederian AM, Walter JC, Michael WM. The Xenopus Xmus101 protein is required for the recruitment of Cdc45 to origins of DNA replication. J Cell Biol 2002; 159:541-7. [PMID: 12438414 PMCID: PMC2173091 DOI: 10.1083/jcb.200207090] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The initiation of eukaryotic DNA replication involves origin recruitment and activation of the MCM2-7 complex, the putative replicative helicase. Mini-chromosome maintenance (MCM)2-7 recruitment to origins in G1 requires origin recognition complex (ORC), Cdt1, and Cdc6, and activation at G1/S requires MCM10 and the protein kinases Cdc7 and S-Cdk, which together recruit Cdc45, a putative MCM2-7 cofactor required for origin unwinding. Here, we show that the Xenopus BRCA1 COOH terminus repeat-containing Xmus101 protein is required for loading of Cdc45 onto the origin. Xmus101 chromatin association is dependent on ORC, and independent of S-Cdk and MCM2-7. These results define a new factor that is required for Cdc45 loading. Additionally, these findings indicate that the initiation complex assembly pathway bifurcates early, after ORC association with the origin, and that two parallel pathways, one controlled by MCM2-7, and the other by Xmus101, cooperate to load Cdc45 onto the origin.
Collapse
Affiliation(s)
- Ruth A Van Hatten
- Department of Molecular and Cellular Biology, The Biological Laboratories, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | |
Collapse
|
134
|
Abstract
To ensure the fidelity of DNA replication, cells activate a stress-response pathway when DNA replication is perturbed. This pathway regulates not only progress through the cell cycle but also transcription, apoptosis, DNA repair/recombination and DNA replication itself. Mounting evidence has suggested that this pathway is important for the maintenance of genomic integrity. Here, we discuss recent findings about how this pathway is activated by replication stress and how it regulates the DNA-replication machinery to alleviate the stress.
Collapse
Affiliation(s)
- Alexander J Osborn
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, Baylor College of Medicine, One Baylor Plaza, TX 77030, USA
| | | | | |
Collapse
|
135
|
Shimizu K, Hashimoto K, Kirchner JM, Nakai W, Nishikawa H, Resnick MA, Sugino A. Fidelity of DNA polymerase epsilon holoenzyme from budding yeast Saccharomyces cerevisiae. J Biol Chem 2002; 277:37422-9. [PMID: 12124389 DOI: 10.1074/jbc.m204476200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerases delta and epsilon (pol delta and epsilon) are the major replicative polymerases and possess 3'-5' proofreading exonuclease activities that correct errors arising during DNA replication in the yeast Saccharomyces cerevisiae. This study measures the fidelity of the holoenzyme of wild-type pol epsilon, the 3'-5' exonuclease-deficient pol2-4, a +1 frameshift mutator for homonucleotide runs, pol2C1089Y, and pol2C1089Y pol2-4 enzymes using a synthetic 30-mer primer/100-mer template. The nucleotide substitution rate for wild-type pol epsilon was 0.47 x 10(-5) for G:G mismatches, 0.15 x 10(-5) for T:G mismatches, and less than 0.01 x 10(-5) for A:G mismatches. The accuracy for A opposite G was not altered in the exonuclease-deficient pol2-4 pol epsilon; however, G:G and T:G misincorporation rates increased 40- and 73-fold, respectively. The pol2C1089Y pol epsilon mutant also exhibited increased G:G and T:G misincorporation rates, 22- and 10-fold, respectively, whereas A:G misincorporation did not differ from that of wild type. Since the fidelity of the double mutant pol2-4 pol2C1089Y was not greatly decreased, these results suggest that the proofreading 3'-5' exonuclease activity of pol2C1089Y pol epsilon is impaired even though it retains nuclease activity and the mutation is not in the known exonuclease domain.
Collapse
Affiliation(s)
- Kikuo Shimizu
- The Department of Biochemistry and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
136
|
Abstract
The checkpoint-mediated control of DNA replication is essential for maintaining the stability of the genome and preventing cancer in humans. The RecQ family of helicases has been shown to be important for the maintenance of genomic integrity in organisms ranging from bacteria to man. We propose that the RecQ homologue, Sgs1p, has an important function in the S-phase checkpoint response of budding yeast, where it may be both a 'sensor' for damage during replication and a 'resolvase' for structures that arise at paused forks. RecQ helicases may serve a unique function that integrates checkpoint proteins with the recombination and replication fork machinery.
Collapse
Affiliation(s)
- Jennifer A Cobb
- University of Geneva, Department of Molecular Biology, Quai Ernest-Ansermet 30, CH-1211, Geneva, Switzerland
| | | | | |
Collapse
|
137
|
Ohya T, Kawasaki Y, Hiraga SI, Kanbara S, Nakajo K, Nakashima N, Suzuki A, Sugino A. The DNA polymerase domain of pol(epsilon) is required for rapid, efficient, and highly accurate chromosomal DNA replication, telomere length maintenance, and normal cell senescence in Saccharomyces cerevisiae. J Biol Chem 2002; 277:28099-108. [PMID: 12015307 DOI: 10.1074/jbc.m111573200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae POL2 encodes the catalytic subunit of DNA polymerase epsilon. This study investigates the cellular functions performed by the polymerase domain of Pol2p and its role in DNA metabolism. The pol2-16 mutation has a deletion in the catalytic domain of DNA polymerase epsilon that eliminates its polymerase and exonuclease activities. It is a viable mutant, which displays temperature sensitivity for growth and a defect in elongation step of chromosomal DNA replication even at permissive temperatures. This mutation is synthetic lethal in combination with temperature-sensitive mutants or the 3'- to 5'-exonuclease-deficient mutant of DNA polymerase delta in a haploid cell. These results suggest that the catalytic activity of DNA polymerase epsilon participates in the same pathway as DNA polymerase delta, and this is consistent with the observation that DNA polymerases delta and epsilon colocalize in some punctate foci on yeast chromatids during S phase. The pol2-16 mutant senesces more rapidly than wild type strain and also has shorter telomeres. These results indicate that the DNA polymerase domain of Pol2p is required for rapid, efficient, and highly accurate chromosomal DNA replication in yeast.
Collapse
Affiliation(s)
- Tomoko Ohya
- Department of Biochemistry and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Marquitz AR, Harrison JC, Bose I, Zyla TR, McMillan JN, Lew DJ. The Rho-GAP Bem2p plays a GAP-independent role in the morphogenesis checkpoint. EMBO J 2002; 21:4012-25. [PMID: 12145202 PMCID: PMC126160 DOI: 10.1093/emboj/cdf416] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2002] [Revised: 06/17/2002] [Accepted: 06/17/2002] [Indexed: 11/12/2022] Open
Abstract
The Saccharomyces cerevisiae morphogenesis checkpoint delays mitosis in response to insults that impair actin organization and/or bud formation. The delay is due to accumulation of the inhibitory kinase Swe1p, which phosphorylates the cyclin-dependent kinase Cdc28p. Having screened through a panel of yeast mutants with defects in cell morphogenesis, we report here that the polarity establishment protein Bem2p is required for the checkpoint response. Bem2p is a Rho-GTPase activating protein (GAP) previously shown to act on Rho1p, and we now show that it also acts on Cdc42p, the GTPase primarily responsible for establishment of cell polarity in yeast. Whereas the morphogenesis role of Bem2p required GAP activity, the checkpoint role of Bem2p did not. Instead, this function required an N-terminal Bem2p domain. Thus, this single protein has a GAP-dependent role in promoting cell polarity and a GAP-independent role in responding to defects in cell polarity by enacting the checkpoint. Surprisingly, Swe1p accumulation occurred normally in bem2 cells, but they were nevertheless unable to promote Cdc28p phosphorylation. Therefore, Bem2p defines a novel pathway in the morphogenesis checkpoint.
Collapse
Affiliation(s)
| | | | - Indrani Bose
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
Present address: Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA Corresponding author e-mail:
| | | | | | - Daniel J. Lew
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
Present address: Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA Corresponding author e-mail:
| |
Collapse
|
139
|
Marchetti MA, Kumar S, Hartsuiker E, Maftahi M, Carr AM, Freyer GA, Burhans WC, Huberman JA. A single unbranched S-phase DNA damage and replication fork blockage checkpoint pathway. Proc Natl Acad Sci U S A 2002; 99:7472-7. [PMID: 12032307 PMCID: PMC124255 DOI: 10.1073/pnas.112702399] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The eukaryotic intra-S-phase checkpoint, which slows DNA synthesis in response to DNA damage, is poorly understood. Is DNA damage recognized directly, or indirectly through its effects on replication forks? Is the slowing of S phase in part because of competition between DNA synthesis and recombination/repair processes? The results of our genetic analyses of the intra-S-phase checkpoint in the fission yeast, Schizosaccharomyces pombe, suggest that the slowing of S phase depends weakly on the helicases Rqh1 and Srs2 but not on other recombination/repair pathways. The slowing of S phase depends strongly on the six checkpoint-Rad proteins, on Cds1, and on Rad4/Cut5 (similar to budding yeast Dpb11, which interacts with DNA polymerase epsilon) but not on Rhp9 (similar to budding yeast Rad9, necessary for direct damage recognition). These results suggest that, in fission yeast, the signal activating the intra-S-phase checkpoint is generated only when replication forks encounter DNA damage.
Collapse
Affiliation(s)
- Maria A Marchetti
- Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263-0001, USA
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Nakajima R, Masukata H. SpSld3 is required for loading and maintenance of SpCdc45 on chromatin in DNA replication in fission yeast. Mol Biol Cell 2002; 13:1462-72. [PMID: 12006645 PMCID: PMC111119 DOI: 10.1091/mbc.02-01-0006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Initiation of DNA replication in eukaryotic cells is regulated through the ordered assembly of replication complexes at origins of replication. Association of Cdc45 with the origins is a crucial step in assembly of the replication machinery, hence can be considered a target for the regulation of origin activation. To examine the process required for SpCdc45 loading, we isolated fission yeast SpSld3, a counterpart of budding yeast Sld3 that interacts with Cdc45. SpSld3 associates with the replication origin during G1-S phases and this association depends on Dbf4-dependent (DDK) kinase activity. In the corresponding period, SpSld3 interacts with minichromosome maintenance (MCM) proteins and then with SpCdc45. A temperature-sensitive sld3-10 mutation suppressed by the multicopy of the sna41+ encoding SpCdc45 impairs loading of SpCdc45 onto chromatin. In addition, this mutation leads to dissociation of preloaded Cdc45 from chromatin in the hydroxyurea-arrested S phase, and DNA replication upon removal of hydroxyurea is retarded. Thus, we conclude that SpSld3 is required for stable association of Cdc45 with chromatin both in initiation and elongation of DNA replication. The DDK-dependent origin association suggests that SpSld3 is involved in temporal regulation of origin firing.
Collapse
Affiliation(s)
- Reiko Nakajima
- Department of Biology, Graduate School of Science, Osaka University, 560-0043, Japan
| | | |
Collapse
|
141
|
Murakami H, Yanow SK, Griffiths D, Nakanishi M, Nurse P. Maintenance of replication forks and the S-phase checkpoint by Cdc18p and Orp1p. Nat Cell Biol 2002; 4:384-8. [PMID: 11988741 DOI: 10.1038/ncb789] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
S-phase and DNA damage checkpoint controls block the onset of mitosis when DNA is damaged or DNA replication is incomplete. It has been proposed that damaged or incompletely replicated DNA generates structures that are sensed by the checkpoint control pathway, although little is known about the structures and mechanisms involved. Here, we show that the DNA replication initiation proteins Orp1p and Cdc18p are required to induce and maintain the S-phase checkpoint in Schizosaccharomyces pombe. The presence of DNA replication structures correlates with activation of the Cds1p checkpoint protein kinase and the S-phase checkpoint pathway. By contrast, induction of the DNA damage pathway is not dependent on Orp1p or Cdc18p. We propose that the presence of unresolved replication forks, together with Orp1p and Cdc18p, are necessary to activate the Cds1p-dependent S-phase checkpoint.
Collapse
Affiliation(s)
- Hiroshi Murakami
- Cell Cycle Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.
| | | | | | | | | |
Collapse
|
142
|
Noguchi E, Shanahan P, Noguchi C, Russell P. CDK phosphorylation of Drc1 regulates DNA replication in fission yeast. Curr Biol 2002; 12:599-605. [PMID: 11937031 DOI: 10.1016/s0960-9822(02)00739-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclin-dependent kinases (CDKs) are absolutely required for DNA replication in eukaryotic cells. CDKs are thought to activate one or more replication factors, but the identities of these proteins are unknown. Here we describe fission yeast Drc1, a protein required for DNA replication that is phosphorylated by Cdc2. Drc1 depletion leads to catastrophic mitotic divisions with incompletely replicated DNA, indicating that Drc1 is required for DNA synthesis and S-M replication checkpoint control. Drc1 associates with Cdc2 and is phosphorylated at the onset of S phase when Cdc2 is activated. Mutant Drc1 that lacks CDK phosphorylation sites is nonfunctional and fails to interact with Cut5 replication factor. These data suggest that Cdc2 promotes DNA replication by phosphorylating Drc1 and regulating its association with Cut5.
Collapse
Affiliation(s)
- Eishi Noguchi
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
143
|
Myung K, Kolodner RD. Suppression of genome instability by redundant S-phase checkpoint pathways in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2002; 99:4500-7. [PMID: 11917116 PMCID: PMC123677 DOI: 10.1073/pnas.062702199] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cancer cells show increased genome rearrangements, although it is unclear what defects cause these rearrangements. Previous studies have implicated the Saccharomyces cerevisiae replication checkpoint in the suppression of spontaneous genome rearrangements. In the present study, low doses of methyl methane sulfonate that activate the intra-S checkpoint but not the G1 or G2 DNA damage checkpoints were found to cause increased accumulation of genome rearrangements in both wild-type strains and to an even greater extent in strains containing mutations causing defects in the intra-S checkpoint. The rearrangements were primarily translocations or events resulting in deletion of a portion of a chromosome arm along with the addition of a new telomere. Combinations of mutations causing individual defects in the RAD24 or SGS1 branches of the intra-S checkpoint or the replication checkpoint showed synergistic interactions with regard to the spontaneous genome instability rate. PDS1 and the RAD50-MRE11-XRS2 complex were found to be important members of all the S-phase checkpoints in suppressing genome instability, whereas RAD53 only seemed to play a role in the intra-S checkpoints. Combinations of mutations that seem to result in inactivation of the S-phase checkpoints and critical effectors resulted in as much as 12,000-14,000-fold increases in the genome instability rate. These data support the view that spontaneous genome rearrangements result from DNA replication errors and indicate that there is a high degree of redundancy among the checkpoints that act in S phase to suppress such genome instability.
Collapse
Affiliation(s)
- Kyungjae Myung
- Ludwig Institute for Cancer Research, Cancer Center, and Department of Medicine, University of California at San Diego School of Medicine, La Jolla, CA 92093, USA
| | | |
Collapse
|
144
|
Wang H, Elledge SJ. Genetic and physical interactions between DPB11 and DDC1 in the yeast DNA damage response pathway. Genetics 2002; 160:1295-304. [PMID: 11973288 PMCID: PMC1462046 DOI: 10.1093/genetics/160.4.1295] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DPB11 is essential for DNA replication and S/M checkpoint control in Saccharomyces cerevisiae. The Dpb11 protein contains four BRCT domains, which have been proposed to be involved in protein-protein interactions. To further investigate the regulation and function of Dpb11, a yeast two-hybrid screen was carried out to identify proteins that physically interact with Dpb11. One positive clone isolated from the screen encoded a carboxyl-terminal fragment of Ddc1 (339-612 aa). Ddc1 is a DNA damage checkpoint protein, which, together with Mec3 and Rad17, has been proposed to form a PCNA-like complex and acts upstream in the DNA damage checkpoint pathways. We further determined that the carboxyl region of Dpb11 is required for its interaction with Ddc1. DDC1 and DPB11 also interact genetically. The Deltaddc1 dpb11-1 double mutant is more UV and MMS sensitive than the Deltaddc1 or the dpb11-1 single mutants. Furthermore, the double mutant is more hydroxyurea sensitive and displayed a lower restrictive temperature than dpb11-1. These results suggest that DPB11 and DDC1 may function in the same or parallel pathways after DNA damage and that DDC1 may play a role in responding to replication defects.
Collapse
Affiliation(s)
- Hong Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology and Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
145
|
Oakley TJ, Hickson ID. Defending genome integrity during S-phase: putative roles for RecQ helicases and topoisomerase III. DNA Repair (Amst) 2002; 1:175-207. [PMID: 12509252 DOI: 10.1016/s1568-7864(02)00002-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The maintenance of genome stability is important not only for cell viability, but also for the suppression of neoplastic transformation in higher eukaryotes. It has long been recognised that a common feature of cancer cells is genomic instability. Although the so-called three 'Rs' of genome maintenance, DNA replication, recombination and repair, have historically been studied in isolation, a wealth of recent evidence indicates that these processes are intimately interrelated and interdependent. In this article, we will focus on challenges to the maintenance of genome integrity that arise during the S-phase of the cell cycle, and the possible roles that RecQ helicases and topoisomerase III play in the maintenance of genome integrity during the process of DNA replication.
Collapse
Affiliation(s)
- Thomas J Oakley
- Cancer Research UK Laboratories, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | | |
Collapse
|
146
|
Masai H, Arai KI. Cdc7 kinase complex: a key regulator in the initiation of DNA replication. J Cell Physiol 2002; 190:287-96. [PMID: 11857444 DOI: 10.1002/jcp.10070] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA replication results from the action of a staged set of highly regulated processes. Among the stages of DNA replication, initiation is the key point at which all the G1 regulatory signals culminate. Cdc7 kinase is the critical regulator for the ultimate firing of the origins of initiation. Cdc7, originally identified in budding yeast and later in higher eukaryotes, forms a complex with a Dbf4-related regulatory subunit to generate an active kinase. Genetic evidence in mammals demonstrates essential roles for Cdc7 in mammalian DNA replication. Mini-chromosome maintenance protein (MCM) is the major physiological target of Cdc7. Genetic studies in yeasts indicate additional roles of Cdc7 in meiosis, checkpoint responses, maintenance of chromosome structures, and repair. The interplay between Cdc7 and Cdk, another kinase essential for the S phase, is also discussed.
Collapse
Affiliation(s)
- Hisao Masai
- Department of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan.
| | | |
Collapse
|
147
|
Masumoto H, Muramatsu S, Kamimura Y, Araki H. S-Cdk-dependent phosphorylation of Sld2 essential for chromosomal DNA replication in budding yeast. Nature 2002; 415:651-5. [PMID: 11807498 DOI: 10.1038/nature713] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cyclin-dependent protein kinases (Cdks) in eukaryotic cells work as a key enzyme at various points in the cell cycle. At the onset of S phase, active S-phase Cdks (S-Cdks) are essential for chromosomal DNA replication. Although several replication proteins are phosphorylated in a Cdk-dependent manner, the biological effects of phosphorylation of these proteins on the activation of DNA replication have not been elucidated. Here we show that Sld2 (ref. 4) (also known as Drc1; ref. 5), one of the replication proteins of budding yeast (Saccharomyces cerevisiae), is phosphorylated in S phase in an S-Cdk-dependent manner, and mutant Sld2 lacking all the preferred Cdk phosphorylation sites (All-A) is defective in chromosomal DNA replication. Moreover, the complex that contains, at least, Sld2 and Dpb11 (ref. 6) (the Sld2-Dpb11 complex) is formed predominantly in S phase; the All-A protein is defective in this complex formation. Because this complex is suggested to be essential for chromosomal DNA replication, it seems likely that S-Cdk positively regulates formation of the Sld2-Dpb11 complex and, consequently, chromosomal DNA replication.
Collapse
Affiliation(s)
- Hiroshi Masumoto
- Division of Microbial Genetics, National Institute of Genetics, The Graduate University for Advanced Studies, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | | | | | | |
Collapse
|
148
|
Yamane K, Wu X, Chen J. A DNA damage-regulated BRCT-containing protein, TopBP1, is required for cell survival. Mol Cell Biol 2002; 22:555-66. [PMID: 11756551 PMCID: PMC139754 DOI: 10.1128/mcb.22.2.555-566.2002] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BRCA1 carboxyl-terminal (BRCT) motifs are present in a number of proteins involved in DNA repair and/or DNA damage-signaling pathways. Human DNA topoisomerase II binding protein 1 (TopBP1) contains eight BRCT motifs and shares sequence similarity with the fission yeast Rad4/Cut5 protein and the budding yeast DPB11 protein, both of which are required for DNA damage and/or replication checkpoint controls. We report here that TopBP1 is phosphorylated in response to DNA double-strand breaks and replication blocks. TopBP1 forms nuclear foci and localizes to the sites of DNA damage or the arrested replication forks. In response to DNA strand breaks, TopBP1 phosphorylation depends on the ataxia telangiectasia mutated protein (ATM) in vivo. However, ATM-dependent phosphorylation of TopBP1 does not appear to be required for focus formation following DNA damage. Instead, focus formation relies on one of the BRCT motifs, BRCT5, in TopBP1. Antisense Morpholino oligomers against TopBP1 greatly reduced TopBP1 expression in vivo. Similar to that of ataxia telangiectasia-related protein (ATR), Chk1, or Hus1, downregulation of TopBP1 leads to reduced cell survival, probably due to increased apoptosis. Taken together, the data presented here suggest that, like its putative counterparts in yeast species, TopBP1 may be involved in DNA damage and replication checkpoint controls.
Collapse
Affiliation(s)
- Kazuhiko Yamane
- Division of Oncology Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
149
|
Labib K, Kearsey SE, Diffley JF. MCM2-7 proteins are essential components of prereplicative complexes that accumulate cooperatively in the nucleus during G1-phase and are required to establish, but not maintain, the S-phase checkpoint. Mol Biol Cell 2001; 12:3658-67. [PMID: 11694596 PMCID: PMC60283 DOI: 10.1091/mbc.12.11.3658] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A prereplicative complex (pre-RC) of proteins is assembled at budding yeast origins of DNA replication during the G1-phase of the cell cycle, as shown by genomic footprinting. The proteins responsible for this prereplicative footprint have yet to be identified but are likely to be involved in the earliest stages of the initiation step of chromosome replication. Here we show that MCM2-7 proteins are essential for both the formation and maintenance of the pre-RC footprint at the origin ARS305. It is likely that pre-RCs contain heteromeric complexes of MCM2-7 proteins, since degradation of Mcm2, 3, 6, or 7 during G1-phase, after pre-RC formation, causes loss of Mcm4 from the nucleus. It has been suggested that pre-RCs on unreplicated chromatin may generate a checkpoint signal that inhibits premature mitosis during S-phase. We show that, although mitosis does indeed occur in the absence of replication if MCM proteins are degraded during G1-phase, anaphase is prevented if MCMs are degraded during S-phase. Our data indicate that pre-RCs do not play a direct role in checkpoint control during chromosome replication.
Collapse
Affiliation(s)
- K Labib
- ICRF Clare Hall Laboratories, South Mimms, Hertfordshire, EN6 3LD, United Kingdom
| | | | | |
Collapse
|
150
|
Liang DT, Forsburg SL. Characterization of Schizosaccharomyces pombe mcm7(+) and cdc23(+) (MCM10) and interactions with replication checkpoints. Genetics 2001; 159:471-86. [PMID: 11606526 PMCID: PMC1461838 DOI: 10.1093/genetics/159.2.471] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
MCM proteins are required for the proper regulation of DNA replication. We cloned fission yeast mcm7(+) and showed it is essential for viability; spores lacking mcm7(+) begin S phase later than wild-type cells and arrest with an apparent 2C DNA content. We isolated a novel temperature-sensitive allele, mcm7-98, and also characterized two temperature-sensitive alleles of the fission yeast homolog of MCM10, cdc23(+). mcm7-98 and both cdc23ts alleles arrest with damaged chromosomes and an S phase delay. We find that mcm7-98 is synthetically lethal with the other mcmts mutants but does not interact genetically with either cdc23ts allele. However, cdc23-M36 interacts with mcm4ts. Unlike other mcm mutants or cdc23, mcm7-98 is synthetically lethal with checkpoint mutants Deltacds1, Deltachk1, or Deltarad3, suggesting chromosomal defects even at permissive temperature. Mcm7p is a nuclear protein throughout the cell cycle, and its localization is dependent on the other MCM proteins. Our data suggest that the Mcm3p-Mcm5p dimer interacts with the Mcm4p-Mcm6p-Mcm7p core complex through Mcm7p.
Collapse
Affiliation(s)
- D T Liang
- Department of Biology, University of California, San Diego, 92093, USA
| | | |
Collapse
|