101
|
Kroumova ABM, Sahoo DK, Raha S, Goodin M, Maiti IB, Wagner GJ. Expression of an apoplast-directed, T-phylloplanin-GFP fusion gene confers resistance against Peronospora tabacina disease in a susceptible tobacco. PLANT CELL REPORTS 2013; 32:1771-82. [PMID: 23942845 DOI: 10.1007/s00299-013-1490-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/18/2013] [Accepted: 07/25/2013] [Indexed: 05/10/2023]
Abstract
KEY MESSAGE Phylloplanins are plant-derived, antifungal glycoproteins produced by leaf trichomes. Expression of phylloplanin-GFP fusion gene to the apoplast of a blue mold susceptible tobacco resulted in increased resistance to this pathogen. ABSTRACT Tobaccos and certain other plants secrete phylloplanin glycoproteins to aerial surfaces where they appear to provide first-point-of-contact resistance against fungi/fungi-like pathogens. These proteins can be collected by water washing of aerial plant surfaces, and as shown for tobacco and a sunflower phylloplanins, spraying concentrated washes onto, e.g., turf grass aerial surfaces can provide resistance against various fungi/fungi-like pathogens, in the laboratory. These results suggest that natural-product, phylloplanins may be useful as broad-selectivity fungicides. An obvious question now is can a tobacco phylloplanin gene be introduced into a disease-susceptible plant to confer endogenous resistance. Here we demonstrate that introduction of a tobacco phylloplanin gene--as a fusion with the GFP gene--targeted to the apoplasm can increase resistance to blue mold disease in a susceptible host tobacco.
Collapse
Affiliation(s)
- Antoaneta B M Kroumova
- Kentucky Tobacco Research and Development Center, College of Agriculture, University of Kentucky, Lexington, KY, 40546, USA
| | | | | | | | | | | |
Collapse
|
102
|
Balderas-Hernández VE, Alvarado-Rodríguez M, Fraire-Velázquez S. Conserved versatile master regulators in signalling pathways in response to stress in plants. AOB PLANTS 2013; 5:plt033. [PMID: 24147216 PMCID: PMC3800984 DOI: 10.1093/aobpla/plt033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/06/2013] [Indexed: 05/06/2023]
Abstract
From the first land plants to the complex gymnosperms and angiosperms of today, environmental conditions have forced plants to develop molecular strategies to surpass natural obstacles to growth and proliferation, and these genetic gains have been transmitted to the following generations. In this long natural process, novel and elaborate mechanisms have evolved to enable plants to cope with environmental limitations. Elements in many signalling cascades enable plants to sense different, multiple and simultaneous ambient cues. A group of versatile master regulators of gene expression control plant responses to stressing conditions. For crop breeding purposes, the task is to determine how to activate these key regulators to enable accurate and optimal reactions to common stresses. In this review, we discuss how plants sense biotic and abiotic stresses, how and which master regulators are implied in the responses to these stresses, their evolution in the life kingdoms, and the domains in these proteins that interact with other factors to lead to a proper and efficient plant response.
Collapse
Affiliation(s)
- Victor E. Balderas-Hernández
- Laboratorio de Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria s/n, Col. Agronómica, CP 98066, Zacatecas, México
| | - Miguel Alvarado-Rodríguez
- Laboratorio de Cultivo de Tejidos Vegetales, Unidad de Agronomía, Universidad Autónoma de Zacatecas, Carr. Zacatecas-Jerez km 17, CP 98000, Zacatecas, México
| | - Saúl Fraire-Velázquez
- Laboratorio de Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria s/n, Col. Agronómica, CP 98066, Zacatecas, México
| |
Collapse
|
103
|
De Vleesschauwer D, Gheysen G, Höfte M. Hormone defense networking in rice: tales from a different world. TRENDS IN PLANT SCIENCE 2013; 18:555-65. [PMID: 23910453 DOI: 10.1016/j.tplants.2013.07.002] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/17/2013] [Accepted: 07/01/2013] [Indexed: 05/08/2023]
Abstract
Recent advances in plant immunity research underpin the pivotal role of small-molecule hormones in regulating the plant defense signaling network. Although most of our understanding comes from studies of dicot plants such as Arabidopsis thaliana, new studies in monocots are providing additional insights into the defense-regulatory role of phytohormones. Here, we review the roles of both classical and more recently identified stress hormones in regulating immunity in the model monocot rice (Oryza sativa) and highlight the importance of hormone crosstalk in shaping the outcome of rice-pathogen interactions. We also propose a defense model for rice that does not support a dichotomy between the pathogen lifestyle and the effectiveness of the archetypal defense hormones salicylic acid (SA) and jasmonic acid (JA).
Collapse
Affiliation(s)
- David De Vleesschauwer
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | | | | |
Collapse
|
104
|
Ali F, Pan Q, Chen G, Zahid KR, Yan J. Evidence of Multiple Disease Resistance (MDR) and implication of meta-analysis in marker assisted selection. PLoS One 2013; 8:e68150. [PMID: 23874526 PMCID: PMC3707948 DOI: 10.1371/journal.pone.0068150] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 05/26/2013] [Indexed: 11/30/2022] Open
Abstract
Meta-analysis was performed for three major foliar diseases with the aim to find out the total number of QTL responsible for these diseases and depict some real QTL for molecular breeding and marker assisted selection (MAS) in maize. Furthermore, we confirmed our results with some major known disease resistance genes and most well-known gene family of nucleotide binding site (NBS) encoding genes. Our analysis revealed that disease resistance QTL were randomly distributed in maize genome, but were clustered at different regions of the chromosomes. Totally 389 QTL were observed for these three major diseases in diverse maize germplasm, out of which 63 QTL were controlling more than one disease revealing the presence of multiple disease resistance (MDR). 44 real-QTLs were observed based on 4 QTL as standard in a specific region of genome. We also confirmed the Ht1 and Ht2 genes within the region of real QTL and 14 NBS-encoding genes. On chromosome 8 two NBS genes in one QTL were observed and on chromosome 3, several cluster and maximum MDR QTL were observed indicating that the apparent clustering could be due to genes exhibiting pleiotropic effect. Significant relationship was observed between the number of disease QTL and total genes per chromosome based on the reference genome B73. Therefore, we concluded that disease resistance genes are abundant in maize genome and these results can unleash the phenomenon of MDR. Furthermore, these results could be very handy to focus on hot spot on different chromosome for fine mapping of disease resistance genes and MAS.
Collapse
Affiliation(s)
- Farhan Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Cereal Crops Research Institute (CCRI) Pirsabak Nowshera, Khyber Pakhtunkhwa, Pakistan
| | - Qingchun Pan
- National Maize Improvement Center of China, China Agricultural University, Beijing, China
| | - Genshen Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Kashif Rafiq Zahid
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
105
|
Jeandet P, Clément C, Courot E, Cordelier S. Modulation of phytoalexin biosynthesis in engineered plants for disease resistance. Int J Mol Sci 2013; 14:14136-70. [PMID: 23880860 PMCID: PMC3742236 DOI: 10.3390/ijms140714136] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/19/2013] [Accepted: 06/25/2013] [Indexed: 01/16/2023] Open
Abstract
Phytoalexins are antimicrobial substances of low molecular weight produced by plants in response to infection or stress, which form part of their active defense mechanisms. Starting in the 1950's, research on phytoalexins has begun with biochemistry and bio-organic chemistry, resulting in the determination of their structure, their biological activity as well as mechanisms of their synthesis and their catabolism by microorganisms. Elucidation of the biosynthesis of numerous phytoalexins has permitted the use of molecular biology tools for the exploration of the genes encoding enzymes of their synthesis pathways and their regulators. Genetic manipulation of phytoalexins has been investigated to increase the disease resistance of plants. The first example of a disease resistance resulting from foreign phytoalexin expression in a novel plant has concerned a phytoalexin from grapevine which was transferred to tobacco. Transformations were then operated to investigate the potential of other phytoalexin biosynthetic genes to confer resistance to pathogens. Unexpectedly, engineering phytoalexins for disease resistance in plants seem to have been limited to exploiting only a few phytoalexin biosynthetic genes, especially those encoding stilbenes and some isoflavonoids. Research has rather focused on indirect approaches which allow modulation of the accumulation of phytoalexin employing transcriptional regulators or components of upstream regulatory pathways. Genetic approaches using gain- or less-of functions in phytoalexin engineering together with modulation of phytoalexin accumulation through molecular engineering of plant hormones and defense-related marker and elicitor genes have been reviewed.
Collapse
Affiliation(s)
- Philippe Jeandet
- Laboratory of Stress, Defenses and Plant Reproduction, Research Unit “Vines and Wines of Champagne”, UPRES EA 4707, Faculty of Sciences, University of Reims, P.O. Box 1039, Reims 51687, France; E-Mails: (C.C.); (E.C.); (S.C.)
| | - Christophe Clément
- Laboratory of Stress, Defenses and Plant Reproduction, Research Unit “Vines and Wines of Champagne”, UPRES EA 4707, Faculty of Sciences, University of Reims, P.O. Box 1039, Reims 51687, France; E-Mails: (C.C.); (E.C.); (S.C.)
| | - Eric Courot
- Laboratory of Stress, Defenses and Plant Reproduction, Research Unit “Vines and Wines of Champagne”, UPRES EA 4707, Faculty of Sciences, University of Reims, P.O. Box 1039, Reims 51687, France; E-Mails: (C.C.); (E.C.); (S.C.)
| | - Sylvain Cordelier
- Laboratory of Stress, Defenses and Plant Reproduction, Research Unit “Vines and Wines of Champagne”, UPRES EA 4707, Faculty of Sciences, University of Reims, P.O. Box 1039, Reims 51687, France; E-Mails: (C.C.); (E.C.); (S.C.)
| |
Collapse
|
106
|
Sadumpati V, Kalambur M, Vudem DR, Kirti PB, Khareedu VR. Transgenic indica rice lines, expressing Brassica juncea Nonexpressor of pathogenesis-related genes 1 (BjNPR1), exhibit enhanced resistance to major pathogens. J Biotechnol 2013; 166:114-21. [PMID: 23664883 DOI: 10.1016/j.jbiotec.2013.04.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/03/2013] [Accepted: 04/21/2013] [Indexed: 11/26/2022]
Abstract
Brassica juncea Nonexpressor of pathogenesis-related genes 1 (BjNPR1) has been introduced into commercial indica rice varieties by Agrobacterium-mediated genetic transformation. Transgenic rice plants were regenerated from the phosphinothricin-resistant calli obtained after co-cultivation with Agrobacterium strain LBA4404 harbouring Ti plasmid pSB111-bar-BjNPR1. Molecular analyses confirmed the stable integration and expression of BjNPR1 in various transgenic rice lines. Transgenes NPR1 and bar were stably inherited and disclosed co-segregation in subsequent generations in a Mendelian fashion. Homozygous transgenic rice lines expressing BjNPR1 protein displayed enhanced resistance to rice blast, sheath blight and bacterial leaf blight diseases. Rice transformants with higher levels of NPR1 revealed notable increases in plant height, panicle length, flag-leaf length, number of seeds/panicle and seed yield/plant as compared to the untransformed plants. The overall results amply demonstrate the profound impact of BjNPR1 in imparting resistance against major pathogens of rice. The multipotent BjNPR1, as such, seems promising as a prime candidate gene to fortify crop plants with durable resistance against various pathogens.
Collapse
|
107
|
Hermann M, Maier F, Masroor A, Hirth S, Pfitzner AJP, Pfitzner UM. The Arabidopsis NIMIN proteins affect NPR1 differentially. FRONTIERS IN PLANT SCIENCE 2013; 4:88. [PMID: 23630533 PMCID: PMC3624081 DOI: 10.3389/fpls.2013.00088] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 03/22/2013] [Indexed: 05/20/2023]
Abstract
NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) is the central regulator of the pathogen defense reaction systemic acquired resistance (SAR). NPR1 acts by sensing the SAR signal molecule salicylic acid (SA) to induce expression of PATHOGENESIS-RELATED (PR) genes. Mechanistically, NPR1 is the core of a transcription complex interacting with TGA transcription factors and NIM1-INTERACTING (NIMIN) proteins. Arabidopsis NIMIN1 has been shown to suppress NPR1 activity in transgenic plants. The Arabidopsis NIMIN family comprises four structurally related, yet distinct members. Here, we show that NIMIN1, NIMIN2, and NIMIN3 are expressed differentially, and that the encoded proteins affect expression of the SAR marker PR-1 differentially. NIMIN3 is expressed constitutively at a low level, but NIMIN2 and NIMIN1 are both responsive to SA. While NIMIN2 is an immediate early SA-induced and NPR1-independent gene, NIMIN1 is activated after NIMIN2, but clearly before PR-1. Notably, NIMIN1, like PR-1, depends on NPR1. In a transient assay system, NIMIN3 suppresses SA-induced PR-1 expression, albeit to a lesser extent than NIMIN1, whereas NIMIN2 does not negatively affect PR-1 gene activation. Furthermore, although binding to the same domain in the C-terminus, NIMIN1 and NIMIN2 interact differentially with NPR1, thus providing a molecular basis for their opposing effects on NPR1. Together, our data suggest that the Arabidopsis NIMIN proteins are regulators of the SAR response. We propose that NIMINs act in a strictly consecutive and SA-regulated manner on the SA sensor protein NPR1, enabling NPR1 to monitor progressing threat by pathogens and to promote appropriate defense gene activation at distinct stages of SAR. In this scenario, the defense gene PR-1 is repressed at the onset of SAR by SA-induced, yet instable NIMIN1.
Collapse
Affiliation(s)
| | | | | | | | | | - Ursula M. Pfitzner
- FG Allgemeine Virologie, Institut für Genetik, Universität HohenheimStuttgart, Germany
| |
Collapse
|
108
|
Sharma R, De Vleesschauwer D, Sharma MK, Ronald PC. Recent advances in dissecting stress-regulatory crosstalk in rice. MOLECULAR PLANT 2013; 6:250-60. [PMID: 23292878 DOI: 10.1093/mp/sss147] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Biotic and abiotic stresses impose a serious limitation on crop productivity worldwide. Prior or simultaneous exposure to one type of stress often affects the plant response to other stresses, indicating extensive overlap and crosstalk between stress-response signaling pathways. Systems biology approaches that integrate large genomic and proteomic data sets have facilitated identification of candidate genes that govern this stress-regulatory crosstalk. Recently, we constructed a yeast two-hybrid map around three rice proteins that control the response to biotic and abiotic stresses, namely the immune receptor XA21, which confers resistance to the Gram-negative bacterium, Xanthomonas oryzae pv. oryzae; NH1, the rice ortholog of NPR1, a key regulator of systemic acquired resistance; and the ethylene-responsive transcription factor, SUB1A, which confers tolerance to submergence stress. These studies coupled with transcriptional profiling and co-expression analyses identified a suite of proteins that are positioned at the interface of biotic and abiotic stress responses, including mitogen-activated protein kinase 5 (OsMPK5), wall-associated kinase 25 (WAK25), sucrose non-fermenting-1-related protein kinase-1 (SnRK1), SUB1A binding protein 23 (SAB23), and several WRKY family transcription factors. Emerging evidence suggests that these genes orchestrate crosstalk between biotic and abiotic stresses through a variety of mechanisms, including regulation of cellular energy homeostasis and modification of synergistic and/or antagonistic interactions between the stress hormones salicylic acid, ethylene, jasmonic acid, and abscisic acid.
Collapse
Affiliation(s)
- Rita Sharma
- Department of Plant Pathology and Genome Center, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
109
|
Li R, Afsheen S, Xin Z, Han X, Lou Y. OsNPR1 negatively regulates herbivore-induced JA and ethylene signaling and plant resistance to a chewing herbivore in rice. PHYSIOLOGIA PLANTARUM 2013; 147:340-51. [PMID: 22694163 DOI: 10.1111/j.1399-3054.2012.01666.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 05/26/2012] [Accepted: 05/29/2012] [Indexed: 05/23/2023]
Abstract
NPR1 (a non-expressor of pathogenesis-related genes1) has been reported to play an important role in plant defense by regulating signaling pathways. However, little to nothing is known about its function in herbivore-induced defense in monocot plants. Here, using suppressive substrate hybridization, we identified a NPR1 gene from rice, OsNPR1, and found that its expression levels were upregulated in response to infestation by the rice striped stem borer (SSB) Chilo suppressalis and rice leaf folder (LF) Cnaphalocrocis medinalis, and to mechanical wounding and treatment with jasmonic acid (JA) and salicylic acid (SA). Moreover, mechanical wounding induced the expression of OsNPR1 quickly, whereas herbivore infestation induced the gene more slowly. The antisense expression of OsNPR1 (as-npr1), which reduced the expression of the gene by 50%, increased elicited levels of JA and ethylene (ET) as well as of expression of a lipoxygenase gene OsHI-LOX and an ACC synthase gene OsACS2. The enhanced JA and ET signaling in as-npr1 plants increased the levels of herbivore-induced trypsin proteinase inhibitors (TrypPIs) and volatiles, and reduced the performance of SSB. Our results suggest that OsNPR1 is an early responding gene in herbivore-induced defense and that plants can use it to activate a specific and appropriate defense response against invaders by modulating signaling pathways.
Collapse
Affiliation(s)
- Ran Li
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | | | | | | | | |
Collapse
|
110
|
Wang Y, An C, Zhang X, Yao J, Zhang Y, Sun Y, Yu F, Amador DM, Mou Z. The Arabidopsis elongator complex subunit2 epigenetically regulates plant immune responses. THE PLANT CELL 2013; 25:762-76. [PMID: 23435660 PMCID: PMC3608791 DOI: 10.1105/tpc.113.109116] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 01/29/2013] [Accepted: 02/04/2013] [Indexed: 05/17/2023]
Abstract
The Arabidopsis thaliana Elongator complex subunit2 (ELP2) genetically interacts with NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1), a key transcription coactivator of plant immunity, and regulates the induction kinetics of defense genes. However, the mechanistic relationship between ELP2 and NPR1 and how ELP2 regulates the kinetics of defense gene induction are unclear. Here, we demonstrate that ELP2 is an epigenetic regulator required for pathogen-induced rapid transcriptome reprogramming. We show that ELP2 functions in a transcriptional feed-forward loop regulating both NPR1 and its target genes. An elp2 mutation increases the total methylcytosine number, reduces the average methylation levels of methylcytosines, and alters (increases or decreases) methylation levels of specific methylcytosines. Interestingly, infection of plants with the avirulent bacterial pathogen Pseudomonas syringae pv tomato DC3000/avrRpt2 induces biphasic changes in DNA methylation levels of NPR1 and PHYTOALEXIN DEFICIENT4 (PAD4), which encodes another key regulator of plant immunity. These dynamic changes are blocked by the elp2 mutation, which is correlated with delayed induction of NPR1 and PAD4. The elp2 mutation also reduces basal histone acetylation levels in the coding regions of several defense genes. Together, our data demonstrate a new role for Elongator in somatic DNA demethylation/methylation and suggest a function for Elongator-mediated chromatin regulation in pathogen-induced transcriptome reprogramming.
Collapse
Affiliation(s)
- Yongsheng Wang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Chuanfu An
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Xudong Zhang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Jiqiang Yao
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610
| | - Yanping Zhang
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610
| | - Yijun Sun
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610
| | - Fahong Yu
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610
| | - David Moraga Amador
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
- Address correspondence to
| |
Collapse
|
111
|
Du J, Tian Z, Liu J, Vleeshouwers VGAA, Shi X, Xie C. Functional analysis of potato genes involved in quantitative resistance to Phytophthora infestans. Mol Biol Rep 2013; 40:957-67. [PMID: 23224656 DOI: 10.1007/s11033-012-2137-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/03/2012] [Indexed: 11/28/2022]
Abstract
The most significant threat to potato production worldwide is the late blight disease, which is caused by the oomycete pathogen Phytophthora infestans. Based on previous cDNA microarrays and cDNA-amplified fragment length polymorphism analysis, 63 candidate genes that are expected to contribute to developing a durable resistance to late blight were selected for further functional analysis. We performed virus-induced gene silencing (VIGS) to these candidate genes on both Nicotiana benthamiana and potato, subsequently inoculated detached leaves and assessed the resistance level. Ten genes decreased the resistance to P. infestans after VIGS treatment. Among those, a lipoxygenase (LOX; EC 1.13.11.12) and a suberization-associated anionic peroxidase affected the resistance in both N. benthamiana and potato. Our results identify genes that may play a role in quantitative resistance mechanisms to late blight.
Collapse
Affiliation(s)
- Juan Du
- Key Laboratory of Horticultural Plant Biology (Huazhong Agricultural University), Ministry of Education, National Center for Vegetable Improvement (Central China), Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | | | | | | | | | | |
Collapse
|
112
|
Shi J, Liu A, Li X, Chen W. Control of Phytophthora nicotianae disease, induction of defense responses and genes expression of papaya fruits treated with Pseudomonas putida MGP1. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:568-574. [PMID: 22936430 DOI: 10.1002/jsfa.5831] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 05/31/2012] [Accepted: 07/01/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Biological control is a potential strategy to reduce post-harvest decay in several fruits. Little research has been carried out on the effects of endophytic bacterium on post-harvest blight caused by Phytophthora nicotianae in papaya. In this work, the biocontrol activity of Pseudomonas putida MGP1 on this disease and its possible mechanisms, including changes of defensive enzyme activities, total phenolic content and mRNA levels of two important genes, were investigated. RESULTS Fruits treated with MGP1 showed a significant lower disease index and demonstrated increases in chitinase, β-1,3-glucanase, phenylalanine ammonia-lyase, peroxidase, polyphenol oxidase and catalase activities and total phenolic content. In addition, the expression levels of pathogenesis related protein 1 gene (PR1) and non-expressor of PR1 gene (NPR1) in papaya fruits were elevated by MGP1 treatment. CONCLUSION The results indicated that papaya fruits were responsive to the endophytic bacterium Ps. putida, which could activate defensive enzymes and genes and thereby induce host disease resistance.
Collapse
Affiliation(s)
- Jingying Shi
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, People's Republic of China
| | | | | | | |
Collapse
|
113
|
Miao W, Wang J. Genetic transformation of cotton with a harpin-encoding gene hpaXoo confers an enhanced defense response against Verticillium dahliae Kleb. Methods Mol Biol 2013; 958:223-46. [PMID: 23143497 DOI: 10.1007/978-1-62703-212-4_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The soil-borne fungal pathogen Verticillium dahliae Kleb causes Verticillium wilt in a wide range of crops including cotton (Gossypium hirsutum). To date, most upland cotton varieties are susceptible to V. dahliae and the breeding for cotton varieties with the resistance to Verticillium wilt has not been successful. Hpa1Xoo is a harpin protein from Xanthomonas oryzae pv. oryzae which induces the hypersensitive cell death in plants. When hpa1Xoo was transformed into the susceptible cotton line Z35 through Agrobacterium-mediated transformation, the transgenic cotton line (T-34) with an improved resistance to Verticillium dahliae was obtained. Here, we describe the related research approach, such as Western blot, Southern blot, immuno-gold labeling, evaluation of resistance to Verticillium dahliae, and how to detect the micro-hypersensitive response and oxidative burst elicited by harpin(Xoo) in plant tissue.
Collapse
Affiliation(s)
- Weiguo Miao
- College of Environment and Plant Protection, Hainan University, Haikou, People's Republic of China.
| | | |
Collapse
|
114
|
Beneduzi A, Ambrosini A, Passaglia LM. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genet Mol Biol 2012; 35:1044-51. [PMID: 23411488 PMCID: PMC3571425 DOI: 10.1590/s1415-47572012000600020] [Citation(s) in RCA: 504] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Bacteria that colonize plant roots and promote plant growth are referred to as plant growth-promoting rhizobacteria (PGPR). PGPR are highly diverse and in this review we focus on rhizobacteria as biocontrol agents. Their effects can occur via local antagonism to soil-borne pathogens or by induction of systemic resistance against pathogens throughout the entire plant. Several substances produced by antagonistic rhizobacteria have been related to pathogen control and indirect promotion of growth in many plants, such as siderophores and antibiotics. Induced systemic resistance (ISR) in plants resembles pathogen-induced systemic acquired resistance (SAR) under conditions where the inducing bacteria and the challenging pathogen remain spatially separated. Both types of induced resistance render uninfected plant parts more resistant to pathogens in several plant species. Rhizobacteria induce resistance through the salicylic acid-dependent SAR pathway, or require jasmonic acid and ethylene perception from the plant for ISR. Rhizobacteria belonging to the genera Pseudomonas and Bacillus are well known for their antagonistic effects and their ability to trigger ISR. Resistance-inducing and antagonistic rhizobacteria might be useful in formulating new inoculants with combinations of different mechanisms of action, leading to a more efficient use for biocontrol strategies to improve cropping systems.
Collapse
Affiliation(s)
- Anelise Beneduzi
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Porto Alegre, RS, Brazil
| | - Adriana Ambrosini
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Porto Alegre, RS, Brazil
| | - Luciane M.P. Passaglia
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Porto Alegre, RS, Brazil
| |
Collapse
|
115
|
Hassler S, Lemke L, Jung B, Möhlmann T, Krüger F, Schumacher K, Espen L, Martinoia E, Neuhaus HE. Lack of the Golgi phosphate transporter PHT4;6 causes strong developmental defects, constitutively activated disease resistance mechanisms and altered intracellular phosphate compartmentation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:732-44. [PMID: 22788523 DOI: 10.1111/j.1365-313x.2012.05106.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The Golgi-located phosphate exporter PHT4;6 has been described as involved in salt tolerance but further analysis on the physiological impact of PHT4;6 remained elusive. Here we show that PHT4;6-GFP is targeted to the trans-Golgi compartment and that loss of function of this carrier protein has a dramatic impact on plant growth and development. Knockout mutants of pht4;6 exhibit a dwarf phenotype that is complemented by the homologous gene from rice (Oryza sativa). Interestingly, pht4;6 mutants show altered characteristics of several Golgi-related functions, such as an altered abundance of certain N-glycosylated proteins, altered composition of cell-wall hemicelluose, and higher sensitivity to the Golgi α-mannosidase and the retrograde transport inhibitors kifunensine and brefeldin A, respectively. Moreover, pht4;6 mutants exhibit a 'mimic disease' phenotype accompanied by constitutively activated pathogen defense mechanisms and increased resistance against the virulent Pseudomonas syringae strain DC3000. Surprisingly, pht4;6 mutants also exhibit phosphate starvation symptoms, as revealed at the morphological and molecular level, although total Pi levels in wild-type and pht4;6 plants are similar. This suggested that subcellular Pi compartmentation was impaired. By use of nuclear magnetic resonance (NMR), increased Pi concentration was detected in acidic compartments of pht4;6 mutants. We propose that impaired Pi efflux from the trans-Golgi lumen results in accumulation of inorganic phosphate in other internal compartments, leading to low cytoplasmic phosphate levels with detrimental effects on plant performance.
Collapse
Affiliation(s)
- Sebastian Hassler
- Plant Physiology, University of Kaiserslautern, Erwin Schrödinger Straße, D-67653 Kaiserslautern, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Canet JV, Dobón A, Tornero P. Non-recognition-of-BTH4, an Arabidopsis mediator subunit homolog, is necessary for development and response to salicylic acid. THE PLANT CELL 2012; 24:4220-35. [PMID: 23064321 PMCID: PMC3517246 DOI: 10.1105/tpc.112.103028] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/07/2010] [Accepted: 09/20/2012] [Indexed: 05/20/2023]
Abstract
Salicylic acid (SA) signaling acts in defense and plant development. The only gene demonstrated to be required for the response to SA is Arabidopsis thaliana non-expresser of pathogenesis-related gene 1 (NPR1), and npr1 mutants are insensitive to SA. By focusing on the effect of analogs of SA on plant development, we identified mutants in additional genes acting in the SA response. In this work, we describe a gene necessary for the SA Non-Recognition-of-BTH4 (NRB4). Three nrb4 alleles recovered from the screen cause phenotypes similar to the wild type in the tested conditions, except for SA-related phenotypes. Plants with NRB4 null alleles express profound insensitivity to SA, even more than npr1. NRB4 null mutants are also sterile and their growth is compromised. Plants carrying weaker nrb4 alleles are also insensitive to SA, with some quantitative differences in some phenotypes, like systemic acquired resistance or pathogen growth restriction. When weak alleles are used, NPR1 and NRB4 mutations produce an additive phenotype, but we did not find evidence of a genetic interaction in F1 nor biochemical interaction in yeast or in planta. NRB4 is predicted to be a subunit of Mediator, the ortholog of MED15 in Arabidopsis. Mechanistically, NRB4 functions downstream of NPR1 to regulate the SA response.
Collapse
|
117
|
Kumar V, Joshi SG, Bell AA, Rathore KS. Enhanced resistance against Thielaviopsis basicola in transgenic cotton plants expressing Arabidopsis NPR1 gene. Transgenic Res 2012; 22:359-68. [PMID: 23001518 DOI: 10.1007/s11248-012-9652-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/05/2012] [Indexed: 11/25/2022]
Abstract
Black root rot, caused by Thielaviopsis basicola, is an important disease in several crops including cotton. We studied the response of Arabidopsis NPR1 (AtNPR1)-expressing cotton lines, previously shown to be highly resistant to a diverse set of pathogens, to a challenge from T. basicola. In four different experiments, we found significant degree of tolerance in the transgenic lines to black root rot. Although transformants showed the typical root discoloration symptoms similar to the wild-type control plants following infection, their roots tended to recover faster and resumed normal growth. Better performance of transgenic plants is reflected by the fact that they have significantly higher shoot and root mass, longer shoot length, and greater number of boll-set. Transcriptional analysis of the defense response showed that the roots of AtNPR1-overexpressing transgenic plants exhibited stronger and faster induction of most of these defense-related genes, particularly PR1, thaumatin, glucanase, LOX1, and chitinase. The results obtained in this investigation provide further support for a broad-spectrum nature of the resistance conferred by overexpression of AtNPR1 gene in cotton.
Collapse
Affiliation(s)
- Vinod Kumar
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843-2123, USA
| | | | | | | |
Collapse
|
118
|
Wu X, Niu J, Huang A, Xu M, Wang G. SELECTION OF INTERNAL CONTROL GENE FOR EXPRESSION STUDIES IN PORPHYRA HAITANENSIS (RHODOPHYTA) AT DIFFERENT LIFE-HISTORY STAGES(1). JOURNAL OF PHYCOLOGY 2012; 48:1040-1044. [PMID: 27009014 DOI: 10.1111/j.1529-8817.2012.01188.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Accurate gene quantification depends on the use of an appropriate internal control gene, which should be verified before its use for normalizing data. Housekeeping genes, which are expressed at relatively constant levels, are generally regarded as candidate internal control genes. To determine the ideal internal control for gene expression profiles for Porphyra haitanensis T. J. Chang et B. F. Zheng (Bangiales, Rhodophyta) at different life-history stages, we used absolute quantification to assess the expression levels of six housekeeping genes (18S ribosomal RNA, 30S ribosomal protein, glyceraldehyde-3-phosphate dehydrogenase, elongation factor 3, alpha-tubulin, and beta-tubulin) at the sporophyte and gametophyte stages. Housekeeping genes were selected by comparing the differences of observed copy numbers in sporophytes and in gametophytes. TubB (beta-tubulin) was found to be the optimal internal control gene, because it showed the smallest difference of gene expression. Compared with TubB, other housekeeping genes had greater variation of expression to different degrees.
Collapse
Affiliation(s)
- Xiaojie Wu
- College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, ChinaKey Laboratory of Experimental Marine Biology, Institute of Oceanology, The Chinese Academy of Sciences (IOCAS), Qingdao 266071, China Key Laboratory of Experimental Marine Biology, Institute of Oceanology, The Chinese Academy of Sciences (IOCAS), Qingdao 266071, China Graduate University of the Chinese Academy of Sciences, Beijing 100049, ChinaCollege of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China Key Laboratory of Experimental Marine Biology, Institute of Oceanology, the Chinese Academy of Sciences (IOCAS), Qingdao 266071, China College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jianfeng Niu
- College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, ChinaKey Laboratory of Experimental Marine Biology, Institute of Oceanology, The Chinese Academy of Sciences (IOCAS), Qingdao 266071, China Key Laboratory of Experimental Marine Biology, Institute of Oceanology, The Chinese Academy of Sciences (IOCAS), Qingdao 266071, China Graduate University of the Chinese Academy of Sciences, Beijing 100049, ChinaCollege of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China Key Laboratory of Experimental Marine Biology, Institute of Oceanology, the Chinese Academy of Sciences (IOCAS), Qingdao 266071, China College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Aiyou Huang
- College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, ChinaKey Laboratory of Experimental Marine Biology, Institute of Oceanology, The Chinese Academy of Sciences (IOCAS), Qingdao 266071, China Key Laboratory of Experimental Marine Biology, Institute of Oceanology, The Chinese Academy of Sciences (IOCAS), Qingdao 266071, China Graduate University of the Chinese Academy of Sciences, Beijing 100049, ChinaCollege of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China Key Laboratory of Experimental Marine Biology, Institute of Oceanology, the Chinese Academy of Sciences (IOCAS), Qingdao 266071, China College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Meiling Xu
- College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, ChinaKey Laboratory of Experimental Marine Biology, Institute of Oceanology, The Chinese Academy of Sciences (IOCAS), Qingdao 266071, China Key Laboratory of Experimental Marine Biology, Institute of Oceanology, The Chinese Academy of Sciences (IOCAS), Qingdao 266071, China Graduate University of the Chinese Academy of Sciences, Beijing 100049, ChinaCollege of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China Key Laboratory of Experimental Marine Biology, Institute of Oceanology, the Chinese Academy of Sciences (IOCAS), Qingdao 266071, China College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Guangce Wang
- College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, ChinaKey Laboratory of Experimental Marine Biology, Institute of Oceanology, The Chinese Academy of Sciences (IOCAS), Qingdao 266071, China Key Laboratory of Experimental Marine Biology, Institute of Oceanology, The Chinese Academy of Sciences (IOCAS), Qingdao 266071, China Graduate University of the Chinese Academy of Sciences, Beijing 100049, ChinaCollege of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China Key Laboratory of Experimental Marine Biology, Institute of Oceanology, the Chinese Academy of Sciences (IOCAS), Qingdao 266071, China College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
119
|
Peraza-Echeverria S, Santamaría JM, Fuentes G, de los Ángeles Menéndez-Cerón M, Vallejo-Reyna MÁ, Herrera-Valencia VA. The NPR1 family of transcription cofactors in papaya: insights into its structure, phylogeny and expression. Genes Genomics 2012. [DOI: 10.1007/s13258-011-0218-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
120
|
Sukhwinder-Singh, Hernandez MV, Crossa J, Singh PK, Bains NS, Singh K, Sharma I. Multi-trait and multi-environment QTL analyses for resistance to wheat diseases. PLoS One 2012; 7:e38008. [PMID: 22679489 PMCID: PMC3367963 DOI: 10.1371/journal.pone.0038008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 04/30/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Stripe rust, leaf rust, tan spot, and Karnal bunt are economically significant diseases impacting wheat production. The objectives of this study were to identify quantitative trait loci for resistance to these diseases in a recombinant inbred line (RIL) from a cross HD29/WH542, and to evaluate the evidence for the presence loci on chromosome region conferring multiple disease resistance. METHODOLOGY/PRINCIPAL FINDINGS The RIL population was evaluated for four diseases and genotyped with DNA markers. Multi-trait (MT) analysis revealed thirteen QTLs on nine chromosomes, significantly associated with resistance. Phenotypic variation explained by all significant QTLs for KB, TS, Yr, Lr diseases were 57%, 55%, 38% and 22%, respectively. Marginal trait analysis identified the most significant QTLs for resistance to KB on chromosomes 1BS, 2DS, 3BS, 4BL, 5BL, and 5DL. Chromosomes 3AS and 4BL showed significant association with TS resistance. Significant QTLs for Yr resistance were identified on chromosomes 2AS, 4BL and 5BL, while Lr was significant on 6DS. MT analysis revealed that all the QTLs except 3BL significantly reduce KB and was contributed from parent HD29 while all resistant QTLs for TS except on chromosomes 2DS.1, 2DS.2 and 3BL came from WH542. Five resistant QTLs for Yr and six for Lr were contributed from parents WH542 and HD29 respectively. Chromosome region on 4BL showed significant association to KB, TS, and Yr in the population. The multi environment analysis for KB identified three putative QTLs of which two new QTLs, mapped on chromosomes 3BS and 5DL explained 10 and 20% of the phenotypic variation, respectively. CONCLUSIONS/SIGNIFICANCE This study revealed that MT analysis is an effective tool for detection of multi-trait QTLs for disease resistance. This approach is a more effective and practical than individual QTL mapping analyses. MT analysis identified RILs that combine resistance to multiple diseases from parents WH542 and/or HD29.
Collapse
Affiliation(s)
- Sukhwinder-Singh
- International Maize and Wheat Improvement Center, CIMMYT, Mexico Distrito Federal, Mexico.
| | | | | | | | | | | | | |
Collapse
|
121
|
Massoud K, Barchietto T, Le Rudulier T, Pallandre L, Didierlaurent L, Garmier M, Ambard-Bretteville F, Seng JM, Saindrenan P. Dissecting phosphite-induced priming in Arabidopsis infected with Hyaloperonospora arabidopsidis. PLANT PHYSIOLOGY 2012; 159:286-98. [PMID: 22408091 PMCID: PMC3375965 DOI: 10.1104/pp.112.194647] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Phosphite (Phi), a phloem-mobile oxyanion of phosphorous acid (H(3)PO(3)), protects plants against diseases caused by oomycetes. Its mode of action is unclear, as evidence indicates both direct antibiotic effects on pathogens as well as inhibition through enhanced plant defense responses, and its target(s) in the plants is unknown. Here, we demonstrate that the biotrophic oomycete Hyaloperonospora arabidopsidis (Hpa) exhibits an unusual biphasic dose-dependent response to Phi after inoculation of Arabidopsis (Arabidopsis thaliana), with characteristics of indirect activity at low doses (10 mm or less) and direct inhibition at high doses (50 mm or greater). The effect of low doses of Phi on Hpa infection was nullified in salicylic acid (SA)-defective plants (sid2-1, NahG) and in a mutant impaired in SA signaling (npr1-1). Compromised jasmonate (jar1-1) and ethylene (ein2-1) signaling or abscisic acid (aba1-5) biosynthesis, reactive oxygen generation (atrbohD), or accumulation of the phytoalexins camalexin (pad3-1) and scopoletin (f6'h1-1) did not affect Phi activity. Low doses of Phi primed the accumulation of SA and Pathogenesis-Related protein1 transcripts and mobilized two essential components of basal resistance, Enhanced Disease Susceptibility1 and Phytoalexin Deficient4, following pathogen challenge. Compared with inoculated, Phi-untreated plants, the gene expression, accumulation, and phosphorylation of the mitogen-activated protein kinase MPK4, a negative regulator of SA-dependent defenses, were reduced in plants treated with low doses of Phi. We propose that Phi negatively regulates MPK4, thus priming SA-dependent defense responses following Hpa infection.
Collapse
|
122
|
Kingston-Smith AH, Davies TE, Edwards J, Gay A, Mur LA. Evidence of a role for foliar salicylic acid in regulating the rate of post-ingestive protein breakdown in ruminants and contributing to landscape pollution. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3243-55. [PMID: 22378947 PMCID: PMC3350934 DOI: 10.1093/jxb/ers048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 01/30/2012] [Accepted: 01/31/2012] [Indexed: 05/31/2023]
Abstract
Ruminant farming is important to global food security, but excessive proteolysis in the rumen causes inefficient use of nitrogenous plant constituents and environmental pollution. While both plant and microbial proteases contribute to ruminal proteolysis, little is known about post-ingestion regulation of plant proteases except that activity in the first few hours after ingestion of fresh forage can result in significant degradation of foliar protein. As the signal salicylic acid (SA) influences cell death during both biotic and abiotic stresses, Arabidopsis wild-type and mutants were used to test the effect of SA on proteolysis induced by rumen conditions (39 °C and anaerobic in a neutral pH). In leaves of Col-0, SA accumulation was induced by exposure to a rumen microbial inoculum. Use of Arabidopsis mutants with altered endogenous SA concentrations revealed a clear correlation with the rate of stress-induced proteolysis; rapid proteolysis occurred in leaves of SA-accumulating mutants cpr5-1 and dnd1-1 whereas there was little or no proteolysis in sid2-1 which is unable to synthesize SA. Reduced proteolysis in npr1-1 (Non-expressor of Pathogenesis Related genes) demonstrated a dependence on SA signalling. Slowed proteolysis in sid2-1 and npr1-1 was associated with the absence of a 34.6 kDa cysteine protease. These data suggest that proteolysis in leaves ingested by ruminants is modulated by SA. It is therefore suggested that influencing SA effects in planta could enable the development of forage crops with lower environmental impact and increased production potential.
Collapse
Affiliation(s)
- Alison H. Kingston-Smith
- Institute for Biological, Environmental and Rural Science, Aberystwyth University, Aberystwyth, Ceredigion SY23 3EB, UK
| | | | | | | | | |
Collapse
|
123
|
Chen XK, Zhang JY, Zhang Z, Du XL, Du BB, Qu SC. Overexpressing MhNPR1 in transgenic Fuji apples enhances resistance to apple powdery mildew. Mol Biol Rep 2012; 39:8083-9. [PMID: 22539187 DOI: 10.1007/s11033-012-1655-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 04/16/2012] [Indexed: 11/27/2022]
Abstract
Fuji is susceptible to fungal diseases like apple powdery mildew. Non-expressor of pathogenesis-related gene 1 (NPR1) plays a key role in regulating salicylic acid (SA)-mediated systemic acquired resistance (SAR). Previous studies show that overexpressing the Malus hupehensis-derived NPR1 (MhNPR1) gene in tobacco induces the transcript expression of pathogenesis-related genes (PRs) and resistance to the fungus Botrytis cinerea. In this study we introduced the MhNPR1 gene into the 'Fuji' apple via Agrobacterium-mediated transformation. Four transgenic apple lines were verified by PCR and RT-PCR. The semi-quantitative RT-PCR results showed that transcript overexpression of the MhNPR1 gene induced the expression of MdPRs and MdMLO genes known to interact with powdery mildew. Furthermore, the transgenic apple plants resisted infection by apple powdery mildew better than the wild-type plants. As a result, transcript overexpression of the MhNPR1 gene induced SAR and enhanced the Fuji apple's resistance to fungal disease.
Collapse
Affiliation(s)
- Xiu-Kong Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | |
Collapse
|
124
|
Ali F, Yan J. Disease resistance in maize and the role of molecular breeding in defending against global threat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:134-51. [PMID: 22333113 DOI: 10.1111/j.1744-7909.2012.01105.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Diseases are a potential threat to global food security but plants have evolved an extensive array of methodologies to cope with the invading pathogens. Non-host resistance and quantitative resistance are broad spectrum forms of resistance, and all kinds of resistances are controlled by extremely diverse genes called "R-genes". R-genes follow different mechanisms to defend plants and PAMP-induced defenses in susceptible host plants are referred to as basal resistance. Genetic and phenotypic diversity are vital in maize (Zea mays L.); as such, genome wide association study (GWAS) along with certain other methodologies can explore the maximum means of genetic diversity. Exploring the complete genetic architecture to manipulate maize genetically reduces the losses from hazardous diseases. Genomic studies can reveal the interaction between different genes and their pathways. By confirming the specific role of these genes and protein-protein interaction (proteomics) via advanced molecular and bioinformatics tools, we can shed a light on the most complicated and abstruse phenomena of resistance.
Collapse
Affiliation(s)
- Farhan Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | | |
Collapse
|
125
|
Zhang JY, Qiao YS, Lv D, Gao ZH, Qu SC, Zhang Z. Malus hupehensis NPR1 induces pathogenesis-related protein gene expression in transgenic tobacco. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14 Suppl 1:46-56. [PMID: 21973266 DOI: 10.1111/j.1438-8677.2011.00483.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Most commercially grown apple cultivars are susceptible to fungal diseases. Malus hupehensis has high resistance to many diseases affecting apple cultivars. Understanding innate defence mechanisms would help to develop disease-resistant apple crops. Non-expressor of pathogenesis-related genes 1 (NPR1) plays a key role in regulating salicylic acid (SA)-mediated systemic acquired resistance (SAR). MhNPR1 cDNA, corresponding to genomic DNA and its 5' flanking sequences, was isolated from M. hupehensis. Sequence analysis showed that the regulatory mechanism for oligomer-monomer transition of the MhNPR1 protein in apple might be similar to that of GmNPR1 in soybean, but different from that of AtNPR1 in Arabidopsis. No significant differences in MhNPR1 expression were found in M. hupehensis after infection with Botryosphaeria berengeriana, showing that MhNPR1 might be regulated by pathogens at the protein level, as described for Arabidopsis and grapevine. SA treatment significantly induced MhNPR1 expression in leaves, stems and roots, while methyl jasmonate (MeJA) treatment induced MhNPR1 expression in roots, but not in leaves or stems. The expression of MhNPR1 was highly increased in roots, moderately in leaves, and did not change in stems after treatment with 1-aminocyclopropane-1-carboxylic acid (ACC). SAR marker genes (MhPR1 and MhPR5) were induced by SA, MeJA and ACC in leaves, stems and roots. Overexpression of MhNPR1 significantly induced the expression of pathogenesis-related genes (NtPR1, NtPR3 and NtPR5) in transgenic tobacco plants and resistance to the fungus Botrytis cinerea, suggesting that MhNPR1 orthologues are a component of the SA defence signalling pathway and SAR is induced in M. hupehensis.
Collapse
Affiliation(s)
- J-Y Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
126
|
Chern M, Bai W, Sze-To WH, Canlas PE, Bartley LE, Ronald PC. A rice transient assay system identifies a novel domain in NRR required for interaction with NH1/OsNPR1 and inhibition of NH1-mediated transcriptional activation. PLANT METHODS 2012; 8:6. [PMID: 22353606 PMCID: PMC3297495 DOI: 10.1186/1746-4811-8-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 02/21/2012] [Indexed: 05/17/2023]
Abstract
BACKGROUND Arabidopsis NPR1 is a master regulator of systemic acquired resistance. NPR1 binds to TGA transcription factors and functions as a transcriptional co-activator. In rice, NH1/OsNPR1 functions to enhance innate immunity. NRR disrupts NH1 function, when over-expressed. RESULTS We have established a rice transient protoplast assay to demonstrate that NH1 is a transcriptional co-activator and that NRR represses NH1-mediated activation. We identified three NRR homologues (RH1, RH2, and RH3). RH1 and RH3, but not RH2, also effectively repress NH1-mediated transcriptional activation. NRR, RH1, RH2, and RH3 share sequence similarity in a region beyond the previously identified NPR1-interacting domain. This region is required for strong interaction with NH1. A double point mutation, W66A/F70A, in this novel NH1-interacting domain severely reduces interaction with NH1. Mutation W66A/F70A also greatly reduces the ability of NRR to repress NH1-mediated activation. RH2 carries a deviation (amino acids AV) in this region as compared to consensus sequences (amino acids ED) among NRR, RH1, and RH3. A substitution (AV to ED) in RH2 results in strong binding of mutant RH2ED to NH1 and effective repression of NH1-mediated activation. CONCLUSIONS The protoplast-based transient system can be used to dissect protein domains associated with their functions. Our results demonstrate that the ability of NRR and its homologues to repress NH1-mediated transcriptional activation is tightly correlated with their ability to bind to NH1. Furthermore, a sequence is identified as a novel NH1-interacting domain. Importantly, this novel sequence is widely present in plant species, from cereals to castor bean plants, to poplar trees, to Arabidopsis, indicating its significance in plants.
Collapse
Affiliation(s)
- Mawsheng Chern
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Wei Bai
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
- College of Life Sciences, Inner Mongolia Agricultural University., Huhhot 010018, China
| | - Wing Hoi Sze-To
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Patrick E Canlas
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Laura E Bartley
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
- Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA
| | - Pamela C Ronald
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
127
|
Swain S, Roy S, Shah J, Van Wees S, Pieterse CM, Nandi AK. Arabidopsis thaliana cdd1 mutant uncouples the constitutive activation of salicylic acid signalling from growth defects. MOLECULAR PLANT PATHOLOGY 2011; 12:855-65. [PMID: 21726384 PMCID: PMC6640339 DOI: 10.1111/j.1364-3703.2011.00717.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Arabidopsis genotypes with a hyperactive salicylic acid-mediated signalling pathway exhibit enhanced disease resistance, which is often coupled with growth and developmental defects, such as dwarfing and spontaneous necrotic lesions on the leaves, resulting in reduced biomass yield. In this article, we report a novel recessive mutant of Arabidopsis, cdd1 (constitutive defence without defect in growth and development1), that exhibits enhanced disease resistance associated with constitutive salicylic acid signalling, but without any observable pleiotropic phenotype. Both NPR1 (NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1)-dependent and NPR1-independent salicylic acid-regulated defence pathways are hyperactivated in cdd1 mutant plants, conferring enhanced resistance against bacterial pathogens. However, a functional NPR1 allele is required for the cdd1-conferred heightened resistance against the oomycete pathogen Hyaloperonospora arabidopsidis. Salicylic acid accumulates at elevated levels in cdd1 and cdd1 npr1 mutant plants and is necessary for cdd1-mediated PR1 expression and disease resistance phenotypes. In addition, we provide data which indicate that the cdd1 mutation negatively regulates the npr1 mutation-induced hyperactivation of ethylene/jasmonic acid signalling.
Collapse
Affiliation(s)
- Swadhin Swain
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | | | | |
Collapse
|
128
|
Conrath U. Molecular aspects of defence priming. TRENDS IN PLANT SCIENCE 2011; 16:524-31. [PMID: 21782492 DOI: 10.1016/j.tplants.2011.06.004] [Citation(s) in RCA: 404] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/11/2011] [Accepted: 06/14/2011] [Indexed: 05/18/2023]
Abstract
Plants can be primed for more rapid and robust activation of defence to biotic or abiotic stress. Priming follows perception of molecular patterns of microbes or plants, recognition of pathogen-derived effectors or colonisation by beneficial microbes. However the process can also be induced by treatment with some natural or synthetic compounds and wounding. The primed mobilization of defence is often associated with development of immunity and stress tolerance. Although the phenomenon has been known for decades, the molecular basis of priming is poorly understood. Here, I summarize recent progress made in unravelling molecular aspects of defence priming that is the accumulation of dormant mitogen-activated protein kinases, chromatin modifications and alterations of primary metabolism.
Collapse
Affiliation(s)
- Uwe Conrath
- Plant Biochemistry & Molecular Biology Group, Department of Plant Physiology, RWTH Aachen University, D-52056 Aachen, Germany.
| |
Collapse
|
129
|
Ahmad P, Ashraf M, Younis M, Hu X, Kumar A, Akram NA, Al-Qurainy F. Role of transgenic plants in agriculture and biopharming. Biotechnol Adv 2011; 30:524-40. [PMID: 21959304 DOI: 10.1016/j.biotechadv.2011.09.006] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 08/23/2011] [Accepted: 09/12/2011] [Indexed: 11/29/2022]
Abstract
At present, environmental degradation and the consistently growing population are two main problems on the planet earth. Fulfilling the needs of this growing population is quite difficult from the limited arable land available on the globe. Although there are legal, social and political barriers to the utilization of biotechnology, advances in this field have substantially improved agriculture and human life to a great extent. One of the vital tools of biotechnology is genetic engineering (GE) which is used to modify plants, animals and microorganisms according to desired needs. In fact, genetic engineering facilitates the transfer of desired characteristics into other plants which is not possible through conventional plant breeding. A variety of crops have been engineered for enhanced resistance to a multitude of stresses such as herbicides, insecticides, viruses and a combination of biotic and abiotic stresses in different crops including rice, mustard, maize, potato, tomato, etc. Apart from the use of GE in agriculture, it is being extensively employed to modify the plants for enhanced production of vaccines, hormones, etc. Vaccines against certain diseases are certainly available in the market, but most of them are very costly. Developing countries cannot afford the disease control through such cost-intensive vaccines. Alternatively, efforts are being made to produce edible vaccines which are cheap and have many advantages over the commercialized vaccines. Transgenic plants generated for this purpose are capable of expressing recombinant proteins including viral and bacterial antigens and antibodies. Common food plants like banana, tomato, rice, carrot, etc. have been used to produce vaccines against certain diseases like hepatitis B, cholera, HIV, etc. Thus, the up- and down-regulation of desired genes which are used for the modification of plants have a marked role in the improvement of genetic crops. In this review, we have comprehensively discussed the role of genetic engineering in generating transgenic lines/cultivars of different crops with improved nutrient quality, biofuel production, enhanced production of vaccines and antibodies, increased resistance against insects, herbicides, diseases and abiotic stresses as well as the safety measures for their commercialization.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Department of Botany, A.S. College, 190008, University of Kashmir, Srinagar, India.
| | | | | | | | | | | | | |
Collapse
|
130
|
Le Henanff G, Farine S, Kieffer-Mazet F, Miclot AS, Heitz T, Mestre P, Bertsch C, Chong J. Vitis vinifera VvNPR1.1 is the functional ortholog of AtNPR1 and its overexpression in grapevine triggers constitutive activation of PR genes and enhanced resistance to powdery mildew. PLANTA 2011; 234:405-17. [PMID: 21505863 DOI: 10.1007/s00425-011-1412-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 03/31/2011] [Indexed: 05/08/2023]
Abstract
Studying grapevine (Vitis vinifera) innate defense mechanisms is a prerequisite to the development of new protection strategies, based on the stimulation of plant signaling pathways to trigger pathogen resistance. Two transcriptional coactivators (VvNPR1.1 and VvNPR1.2) with similarity to Arabidopsis thaliana NPR1 (Non-Expressor of PR genes 1), a well-characterized and key signaling element of the salicylic acid (SA) pathway, were recently isolated in Vitis vinifera. In this study, functional characterization of VvNPR1.1 and VvNPR1.2, including complementation of the Arabidopsis npr1 mutant, revealed that VvNPR1.1 is a functional ortholog of AtNPR1, whereas VvNPR1.2 likely has a different function. Ectopic overexpression of VvNPR1.1 in the Arabidopsis npr1-2 mutant restored plant growth at a high SA concentration, Pathogenesis Related 1 (PR1) gene expression after treatment with SA or bacterial inoculation, and resistance to virulent Pseudomonas syringae pv. maculicola bacteria. Moreover, stable overexpression of VvNPR1.1-GFP in V. vinifera resulted in constitutive nuclear localization of the fusion protein and enhanced PR gene expression in uninfected plants. Furthermore, grapevine plants overexpressing VvNPR1.1-GFP exhibited an enhanced resistance to powdery mildew infection. This work highlights the importance of the conserved SA/NPR1 signaling pathway for resistance to biotrophic pathogens in V. vinifera.
Collapse
Affiliation(s)
- Gaëlle Le Henanff
- Université de Haute Alsace, Laboratoire Vigne, Biotechnologies et Environnement (EA3991), 33 rue de Herrlisheim, 68000, Colmar, France
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Chung CL, Poland J, Kump K, Benson J, Longfellow J, Walsh E, Balint-Kurti P, Nelson R. Targeted discovery of quantitative trait loci for resistance to northern leaf blight and other diseases of maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:307-26. [PMID: 21526397 DOI: 10.1007/s00122-011-1585-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Accepted: 03/24/2011] [Indexed: 05/02/2023]
Abstract
To capture diverse alleles at a set of loci associated with disease resistance in maize, heterogeneous inbred family (HIF) analysis was applied for targeted QTL mapping and near-isogenic line (NIL) development. Tropical maize lines CML52 and DK888 were chosen as donors of alleles based on their known resistance to multiple diseases. Chromosomal regions ("bins"; n = 39) associated with multiple disease resistance (MDR) were targeted based on a consensus map of disease QTLs in maize. We generated HIFs segregating for the targeted loci but isogenic at ~97% of the genome. To test the hypothesis that CML52 and DK888 alleles at MDR hotspots condition broad-spectrum resistance, HIFs and derived NILs were tested for resistance to northern leaf blight (NLB), southern leaf blight (SLB), gray leaf spot (GLS), anthracnose leaf blight (ALB), anthracnose stalk rot (ASR), common rust, common smut, and Stewart's wilt. Four NLB QTLs, two ASR QTLs, and one Stewart's wilt QTL were identified. In parallel, a population of 196 recombinant inbred lines (RILs) derived from B73 × CML52 was evaluated for resistance to NLB, GLS, SLB, and ASR. The QTLs mapped (four for NLB, five for SLB, two for GLS, and two for ASR) mostly corresponded to those found using the NILs. Combining HIF- and RIL-based analyses, we discovered two disease QTLs at which CML52 alleles were favorable for more than one disease. A QTL in bin 1.06-1.07 conferred resistance to NLB and Stewart's wilt, and a QTL in 6.05 conferred resistance to NLB and ASR.
Collapse
Affiliation(s)
- Chia-Lin Chung
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Tang J, Zhu X, Wang Y, Liu L, Xu B, Li F, Fang J, Chu C. Semi-dominant mutations in the CC-NB-LRR-type R gene, NLS1, lead to constitutive activation of defense responses in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:996-1007. [PMID: 21418352 DOI: 10.1111/j.1365-313x.2011.04557.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In this study, we characterized the semi-dominant mutant nls1-1D (necrotic leaf sheath 1) of rice, which displays spontaneous lesions, specifically on leaf sheaths, with a developmental pattern. nls1-1D plants also exhibited constitutively activated defense responses, including extensive cell death, excess hydrogen peroxide and salicylic acid (SA) accumulation, up-regulated expressions of pathogenesis-related genes, and enhanced resistance to bacterial pathogens. Map-based cloning revealed that NLS1 encodes a typical CC-NB-LRR-type protein in rice. The nls1-1D mutation causes a S367N substitution in the non-conserved region close to the GLPL motif of the NB domain. An adjacent S366T substitution was found in another semi-dominant mutant, nls1-2D, which exhibited the same phenotypes as nls1-1D. Combined analyses of wild-type plants transformed with the mutant NLS1 gene (nls1-1D), NLS1 RNAi and over-expression transgenic lines showed that nls1-2D is allelic to nls1-1D, and both mutations may cause constitutive auto-activation of the NLS1 R protein. Further real-time PCR analysis revealed that NLS1 is expressed constitutively in an age-dependent manner. In addition, because the morphology and constitutive defense responses of nls1-1D were not suppressed by blocking SA or NPR1 transcript accumulation, we suggest that NLS1 mediates both SA and NPR1-independent defense signaling pathways in rice.
Collapse
Affiliation(s)
- Jiuyou Tang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Abstract
The small phenolic compound salicylic acid (SA) plays an important regulatory role in multiple physiological processes including plant immune response. Significant progress has been made during the past two decades in understanding the SA-mediated defense signaling network. Characterization of a number of genes functioning in SA biosynthesis, conjugation, accumulation, signaling, and crosstalk with other hormones such as jasmonic acid, ethylene, abscisic acid, auxin, gibberellic acid, cytokinin, brassinosteroid, and peptide hormones has sketched the finely tuned immune response network. Full understanding of the mechanism of plant immunity will need to take advantage of fast developing genomics tools and bioinformatics techniques. However, elucidating genetic components involved in these pathways by conventional genetics, biochemistry, and molecular biology approaches will continue to be a major task of the community. High-throughput method for SA quantification holds the potential for isolating additional mutants related to SA-mediated defense signaling.
Collapse
Affiliation(s)
- Chuanfu An
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
134
|
Vijayan S, Kirti PB. Mungbean plants expressing BjNPR1 exhibit enhanced resistance against the seedling rot pathogen, Rhizoctonia solani. Transgenic Res 2011; 21:193-200. [PMID: 21584838 DOI: 10.1007/s11248-011-9521-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 04/28/2011] [Indexed: 11/30/2022]
Abstract
Mungbean, Vigna radiata (L.) Wilczek is an important pulse crop that is widely cultivated in semi- arid tropics. The crop is attacked by various soil-borne pathogens like Rhizoctonia solani, which causes dry rot disease and seriously affects its productivity. Earlier we characterized the non-expressor of pathogenesis related gene-1(BjNPR1) of mustard, Brassica juncea, the counterpart of AtNPR1 of Arabidopsis thaliana. Here, we transformed mungbean with BjNPR1 via Agrobacterium tumefaciens. Because of the recalcitrant nature of mungbean, the effect of some factors like Agrobacterium tumefaciens strains (GV2260 and LBA4404), pH, L: -cysteine and tobacco leaf extract was tested in transformation. The transgenic status of 15 plants was confirmed by PCR using primers for nptII. The independent integration of T-DNA in transgenic plants was analyzed by Southern hybridization with an nptII probe and the expression of BjNPR1 was confirmed by RT-PCR. Some of the T(0) plants were selected for detached leaf anti-fungal bioassay using the fungus Rhizoctonia solani, which showed moderate to high level of resistance depending on the level of expression of BjNPR1. The seedling bioassay of transgenic T(2) plants indicated resistance against dry rot disease caused by R. solani.
Collapse
Affiliation(s)
- S Vijayan
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | | |
Collapse
|
135
|
Dubouzet JG, Maeda S, Sugano S, Ohtake M, Hayashi N, Ichikawa T, Kondou Y, Kuroda H, Horii Y, Matsui M, Oda K, Hirochika H, Takatsuji H, Mori M. Screening for resistance against Pseudomonas syringae in rice-FOX Arabidopsis lines identified a putative receptor-like cytoplasmic kinase gene that confers resistance to major bacterial and fungal pathogens in Arabidopsis and rice. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:466-85. [PMID: 20955180 PMCID: PMC3118280 DOI: 10.1111/j.1467-7652.2010.00568.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/19/2010] [Accepted: 08/22/2010] [Indexed: 05/20/2023]
Abstract
Approximately 20,000 of the rice-FOX Arabidopsis transgenic lines, which overexpress 13,000 rice full-length cDNAs at random in Arabidopsis, were screened for bacterial disease resistance by dip inoculation with Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). The identities of the overexpressed genes were determined in 72 lines that showed consistent resistance after three independent screens. Pst DC3000 resistance was verified for 19 genes by characterizing other independent Arabidopsis lines for the same genes in the original rice-FOX hunting population or obtained by reintroducing the genes into ecotype Columbia by floral dip transformation. Thirteen lines of these 72 selections were also resistant to the fungal pathogen Colletotrichum higginsianum. Eight genes that conferred resistance to Pst DC3000 in Arabidopsis have been introduced into rice for overexpression, and transformants were evaluated for resistance to the rice bacterial pathogen, Xanthomonas oryzae pv. oryzae. One of the transgenic rice lines was highly resistant to Xanthomonas oryzae pv. oryzae. Interestingly, this line also showed remarkably high resistance to Magnaporthe grisea, the fungal pathogen causing rice blast, which is the most devastating rice disease in many countries. The causal rice gene, encoding a putative receptor-like cytoplasmic kinase, was therefore designated as BROAD-SPECTRUM RESISTANCE 1. Our results demonstrate the utility of the rice-FOX Arabidopsis lines as a tool for the identification of genes involved in plant defence and suggest the presence of a defence mechanism common between monocots and dicots.
Collapse
Affiliation(s)
| | - Satoru Maeda
- National Institute of Agrobiological SciencesTsukuba, Japan
| | - Shoji Sugano
- National Institute of Agrobiological SciencesTsukuba, Japan
| | - Miki Ohtake
- National Institute of Agrobiological SciencesTsukuba, Japan
| | - Nagao Hayashi
- National Institute of Agrobiological SciencesTsukuba, Japan
| | | | | | | | - Yoko Horii
- RIKEN, Plant Science CenterYokohama, Japan
| | | | - Kenji Oda
- Research Institute for Biological Sciences, Okayama Prefectural Technology Center for Agriculture, Forestry, and FisheriesOkayama, Japan
| | | | | | - Masaki Mori
- National Institute of Agrobiological SciencesTsukuba, Japan
| |
Collapse
|
136
|
Multivariate analysis of maize disease resistances suggests a pleiotropic genetic basis and implicates a GST gene. Proc Natl Acad Sci U S A 2011; 108:7339-44. [PMID: 21490302 DOI: 10.1073/pnas.1011739108] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plants are attacked by pathogens representing diverse taxonomic groups, such that genes providing multiple disease resistance (MDR) are expected to be under positive selection pressure. To address the hypothesis that naturally occurring allelic variation conditions MDR, we extended the framework of structured association mapping to allow for the analysis of correlated complex traits and the identification of pleiotropic genes. The multivariate analytical approach used here is directly applicable to any species and set of traits exhibiting correlation. From our analysis of a diverse panel of maize inbred lines, we discovered high positive genetic correlations between resistances to three globally threatening fungal diseases. The maize panel studied exhibits rapidly decaying linkage disequilibrium that generally occurs within 1 or 2 kb, which is less than the average length of a maize gene. The positive correlations therefore suggested that functional allelic variation at specific genes for MDR exists in maize. Using a multivariate test statistic, a glutathione S-transferase (GST) gene was found to be associated with modest levels of resistance to all three diseases. Resequencing analysis pinpointed the association to a histidine (basic amino acid) for aspartic acid (acidic amino acid) substitution in the encoded protein domain that defines GST substrate specificity and biochemical activity. The known functions of GSTs suggested that variability in detoxification pathways underlie natural variation in maize MDR.
Collapse
|
137
|
Gao X, Wheeler T, Li Z, Kenerley CM, He P, Shan L. Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:293-305. [PMID: 21219508 PMCID: PMC3078967 DOI: 10.1111/j.1365-313x.2011.04491.x] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cotton is an important cash crop worldwide, and is a significant source of fiber, feed, foodstuff, oil and biofuel products. Considerable effort has been expended to increase sustainable yield and quality through molecular breeding and genetic engineering of new cotton cultivars. Given the recent availability of the whole-genome sequence of cotton, it is necessary to develop molecular tools and resources for large-scale analysis of gene functions at the genome-wide level. We have successfully developed an Agrobacterium-mediated virus-induced gene silencing (VIGS) assay in several cotton cultivars with various genetic backgrounds. The genes of interest were potently and readily silenced within 2 weeks after inoculation at the seedling stage. Importantly, we showed that silencing GhNDR1 and GhMKK2 compromised cotton resistance to the infection by Verticillium dahliae, a fungal pathogen causing Verticillium wilt. Furthermore, we developed a cotton protoplast system for transient gene expression to study gene functions by a gain-of-function approach. The viable protoplasts were isolated from green cotyledons, etiolated cotyledons and true leaves, and responded to a wide range of pathogen elicitors and phytohormones. Remarkably, cotton plants possess conserved, but also distinct, MAP kinase activation with Arabidopsis upon bacterial elicitor flagellin perception. Thus, using gene silencing assays, we have shown that GhNDR1 and GhMKK2 are required for Verticillium resistance in cotton, and have developed high throughput loss-of-function and gain-of-function assays for functional genomic studies in cotton.
Collapse
Affiliation(s)
- Xiquan Gao
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Terry Wheeler
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
- Texas Agricultural Experiment Station at Lubbock, Lubbock, TX, USA
| | - Zhaohu Li
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China 100094
| | - Charles M. Kenerley
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Ping He
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Libo Shan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
138
|
Bai W, Chern M, Ruan D, Canlas PE, Sze-To WH, Ronald PC. Enhanced disease resistance and hypersensitivity to BTH by introduction of an NH1/OsNPR1 paralog. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:205-15. [PMID: 20561248 DOI: 10.1111/j.1467-7652.2010.00544.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Non-expresser of pathogenesis-related genes 1 (NPR1) is the master regulator of salicylic acid-mediated systemic acquired resistance. Over-expression of Arabidopsis NPR1 and rice NH1 (NPR1 homolog1)/OsNPR1 in rice results in enhanced resistance. While there are four rice NPR1 paralogs in the rice genome, none have been demonstrated to function in disease resistance. To study rice NPR1 paralog 3, we introduced constructs into rice and tested for effects on resistance to infection by Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial blight. While over-expression of NH3 using the maize ubiquitin-1 promoter failed to enhance resistance, introduction of an extra copy of NH3 driven by its own promoter (nNT-NH3) resulted in clear, enhanced resistance. Progeny analysis confirms that the enhanced resistance phenotype, measured by Xoo-induced lesion length, is associated with the NH3 transgene. Bacterial growth curve analysis indicates that bacterial population levels are reduced 10-fold in nNT-NH3 lines compared to control rice lines. The transgenic plants exhibit higher sensitivity to benzothiadiazole (BTH) and 2,6-dichloroisonicotinic acid (INA) treatment as measured by increased cell death. Expression analysis of pathogenesis-related (PR) genes showed that nNT-NH3 plants display greatly enhanced induction of PR genes only after treatment with BTH. Our study demonstrates an alternative method to employ a regulatory protein to enhance plant defence. This approach avoids using undesirable constitutive, high-level expression and may prove to be more practical for engineering resistance.
Collapse
Affiliation(s)
- Wei Bai
- Department of Plant Pathology, University of California, Davis, CA, USA
| | | | | | | | | | | |
Collapse
|
139
|
Maier F, Zwicker S, Hückelhoven A, Meissner M, Funk J, Pfitzner AJP, Pfitzner UM. NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) and some NPR1-related proteins are sensitive to salicylic acid. MOLECULAR PLANT PATHOLOGY 2011; 12:73-91. [PMID: 21118350 PMCID: PMC6640455 DOI: 10.1111/j.1364-3703.2010.00653.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1; also known as NIM1) is a master regulator of systemic acquired resistance (SAR). SAR is induced by salicylic acid (SA), leading to the expression of PATHOGENESIS-RELATED (PR) genes. Current evidence suggests that NPR1 is part of a transcription complex tethered to activation sequence-1 (as-1)-like cis-acting elements in PR-1 gene promoters through TGA transcription factors, and that SA-dependent PR-1 gene expression is regulated by NIM1-INTERACTING (NIMIN) proteins. In Arabidopsis, NPR1 is active only after SA induction. Regulation of Arabidopsis NPR1 activity has been proposed to comprise cysteine-156 (Cys-156), mediating SA-induced cytoplasmic oligomer-nuclear monomer exchange, and Cys-521 and Cys-529, mediating SA-dependent transcriptional activation. Tobacco NPR1 does not harbour these residues. To understand the function of tobacco NPR1, we analysed its biochemical capabilities in a heterologous system: yeast. Tobacco NPR1 differs from Arabidopsis NPR1 in its subcellular localization and its transactivation potential. Yet, both tobacco and Arabidopsis NPR1, as well as tobacco NIM1-like1, alter some of their biochemical activities in response to SA. Whereas the addition of SA to yeast growth medium induces transcriptional activity in tobacco NPR1, its interaction with NIMIN2-type proteins is suppressed. The effects of SA are specific, sensitive and occur coordinately. They are abolished completely by mutation of the arginine residue within the invariable penta-amino acid motif LENRV, as present in the nonfunctional Arabidopsis nim1-4 allele. Furthermore, NPR1 proteins with the LENRV domain coincidently harbour a broad and strongly conserved NIMIN1/NIMIN2 binding site. Our data suggest that NPR1 and some NPR1-like proteins are sensitive to the plant hormone SA, altering some of their biochemical capabilities to enable stimulus-dependent gene expression. The sensitivity of NPR1 proteins to SA, together with their differential interaction with diverse NIMIN proteins, seems a plausible molecular basis for the timely and coordinated activation of PR genes during SAR.
Collapse
Affiliation(s)
- Felix Maier
- Institut für Genetik, Universität Hohenheim, FG Allgemeine Virologie, D-70593 Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
140
|
Shi Z, Maximova SN, Liu Y, Verica J, Guiltinan MJ. Functional analysis of the Theobroma cacao NPR1 gene in Arabidopsis. BMC PLANT BIOLOGY 2010; 10:248. [PMID: 21078185 PMCID: PMC3095330 DOI: 10.1186/1471-2229-10-248] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 11/15/2010] [Indexed: 05/05/2023]
Abstract
BACKGROUND The Arabidopsis thaliana NPR1 gene encodes a transcription coactivator (NPR1) that plays a major role in the mechanisms regulating plant defense response. After pathogen infection and in response to salicylic acid (SA) accumulation, NPR1 translocates from the cytoplasm into the nucleus where it interacts with other transcription factors resulting in increased expression of over 2000 plant defense genes contributing to a pathogen resistance response. RESULTS A putative Theobroma cacao NPR1 cDNA was isolated by RT-PCR using degenerate primers based on homologous sequences from Brassica, Arabidopsis and Carica papaya. The cDNA was used to isolate a genomic clone from Theobroma cacao containing a putative TcNPR1 gene. DNA sequencing revealed the presence of a 4.5 kb coding region containing three introns and encoding a polypeptide of 591 amino acids. The predicted TcNPR1 protein shares 55% identity and 78% similarity to Arabidopsis NPR1, and contains each of the highly conserved functional domains indicative of this class of transcription factors (BTB/POZ and ankyrin repeat protein-protein interaction domains and a nuclear localization sequence (NLS)). To functionally define the TcNPR1 gene, we transferred TcNPR1 into an Arabidopsis npr1 mutant that is highly susceptible to infection by the plant pathogen Pseudomonas syringae pv. tomato DC3000. Driven by the constitutive CaMV35S promoter, the cacao TcNPR1 gene partially complemented the npr1 mutation in transgenic Arabidopsis plants, resulting in 100 fold less bacterial growth in a leaf infection assay. Upon induction with SA, TcNPR1 was shown to translocate into the nucleus of leaf and root cells in a manner identical to Arabidopsis NPR1. Cacao NPR1 was also capable of participating in SA-JA signaling crosstalk, as evidenced by the suppression of JA responsive gene expression in TcNPR1 overexpressing transgenic plants. CONCLUSION Our data indicate that the TcNPR1 is a functional ortholog of Arabidopsis NPR1, and is likely to play a major role in defense response in cacao. This fundamental knowledge can contribute to breeding of disease resistant cacao varieties through the application of molecular markers or the use of transgenic strategies.
Collapse
Affiliation(s)
- Zi Shi
- Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Siela N Maximova
- The Department of Horticulture, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yi Liu
- Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Joseph Verica
- The Department of Horticulture, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mark J Guiltinan
- Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- The Department of Horticulture, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
141
|
Ramírez V, Van der Ent S, García-Andrade J, Coego A, Pieterse CMJ, Vera P. OCP3 is an important modulator of NPR1-mediated jasmonic acid-dependent induced defenses in Arabidopsis. BMC PLANT BIOLOGY 2010; 10:199. [PMID: 20836879 PMCID: PMC2956548 DOI: 10.1186/1471-2229-10-199] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 09/13/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND Upon appropriate stimulation, plants increase their level of resistance against future pathogen attack. This phenomenon, known as induced resistance, presents an adaptive advantage due to its reduced fitness costs and its systemic and broad-spectrum nature. In Arabidopsis, different types of induced resistance have been defined based on the signaling pathways involved, particularly those dependent on salicylic acid (SA) and/or jasmonic acid (JA). RESULTS Here, we have assessed the implication of the transcriptional regulator OCP3 in SA- and JA-dependent induced defenses. Through a series of double mutant analyses, we conclude that SA-dependent defense signaling does not require OCP3. However, we found that ocp3 plants are impaired in a Pseudomonas fluorescens WCS417r-triggered induced systemic resistance (ISR) against both Pseudomonas syrinagae DC3000 and Hyaloperonospora arabidopsidis, and we show that this impairment is not due to a defect in JA-perception. Likewise, exogenous application of JA failed to induce defenses in ocp3 plants. In addition, we provide evidence showing that the over-expression of an engineered cytosolic isoform of the disease resistance regulator NPR1 restores the impaired JA-induced disease resistance in ocp3 plants. CONCLUSIONS Our findings point to a model in which OCP3 may modulate the nucleocytosolic function of NPR1 in the regulation of JA-dependent induced defense responses.
Collapse
Affiliation(s)
- Vicente Ramírez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC). Camino de Vera s/n, Valencia, Spain
| | - Sjoerd Van der Ent
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Javier García-Andrade
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC). Camino de Vera s/n, Valencia, Spain
| | - Alberto Coego
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC). Camino de Vera s/n, Valencia, Spain
| | - Corné MJ Pieterse
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Pablo Vera
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC). Camino de Vera s/n, Valencia, Spain
| |
Collapse
|
142
|
Lee SC, Choi DS, Hwang IS, Hwang BK. The pepper oxidoreductase CaOXR1 interacts with the transcription factor CaRAV1 and is required for salt and osmotic stress tolerance. PLANT MOLECULAR BIOLOGY 2010; 73:409-24. [PMID: 20333442 DOI: 10.1007/s11103-010-9629-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 03/17/2010] [Indexed: 05/20/2023]
Abstract
RAV1 (Related to ABI3/VP1) proteins function as a transcription factor in signal transduction pathways in plants. The yeast-two-hybrid and in vivo coimmunoprecipitation assays identified the pepper (Capsicum annuum) oxidoreductase protein CaOXR1 that physically interacts with the pepper CaRAV1 transcription factor. The AP2 domain of CaRAV1 protein is essential for its direct interaction with CaOXR1. Both CaRAV1 and CaOXR1 proteins co-localize to the nuclei of plant cells. Virus-induced gene silencing of CaRAV1 and CaRAV1/CAOXR1 confers enhanced susceptibility to high salinity and osmotic stresses, which is accompanied by altered expression of the stress marker genes in pepper. Expression of CaAMP1 (pepper antimicrobial protein) and CaOSM1 (pepper osmotin) is suppressed by 1.2-6.6-fold in silenced leaves upon treatment with NaCl or mannitol. Overexpression of CaRAV1, CaOXR1 and CaOXR1/CaRAV1 in Arabidopsis also confers enhanced resistance to the biotrophic oomycete Hyaloperonospora arabidopsidis infection. In addition, CaRAV1- and CaOXR1/CaRAV1-overexpression (OX) Arabidopsis plants are highly tolerant to high salinity and osmotic stress. Together, these results suggest that CaOXR1 protein positively controls CaRAV1-mediated plant defense during biotic and abiotic stresses.
Collapse
Affiliation(s)
- Sung Chul Lee
- Department of Life Science, Chung-Ang University, Seoul 156-756, Korea
| | | | | | | |
Collapse
|
143
|
Chung CL, Jamann T, Longfellow J, Nelson R. Characterization and fine-mapping of a resistance locus for northern leaf blight in maize bin 8.06. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:205-27. [PMID: 20217383 DOI: 10.1007/s00122-010-1303-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 02/11/2010] [Indexed: 05/23/2023]
Abstract
As part of a larger effort to capture diverse alleles at a set of loci associated with disease resistance in maize, DK888, a hybrid known to possess resistance to multiple diseases, was used as a donor in constructing near-isogenic lines (NILs). A NIL pair contrasting for resistance to northern leaf blight (NLB), caused by Setosphaeria turcica, was identified and associated with bin 8.06. This region of the maize genome had been associated in previous studies with both qualitative and quantitative resistance to NLB. In addition, bins 8.05-8.06 had been associated with quantitative resistance to several other diseases, as well as resistance gene analogs and defense response gene homologs. To test the hypothesis that the DK888 allele at bin 8.06 (designated qNLB8.06 ( DK888 )) conditions the broad-spectrum quantitative resistance characteristic of the donor, the NILs were evaluated with a range of maize pathogens and different races of S. turcica. The results revealed that qNLB8.06 (DK888) confers race-specific resistance exclusively to NLB. Allelism analysis suggested that qNLB8.06 (DK888) is identical, allelic, or closely linked and functionally related to Ht2. The resistance conditioned by qNLB8.06 was incompletely dominant and varied in effectiveness depending upon allele and/or genetic background. High-resolution breakpoint analysis, using approximately 2,800 individuals in F(9)/F(10) heterogeneous inbred families and 98 F(10)/F(11) fixed lines carrying various recombinant events, delimited qNLB8.06 ( DK888 ) to a region of approximately 0.46 Mb, spanning 143.92-144.38 Mb on the B73 physical map. Three compelling candidate genes were identified in this region. Isolation of the gene(s) will contribute to better understanding of this complex locus.
Collapse
Affiliation(s)
- Chia-Lin Chung
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|
144
|
Makandar R, Nalam V, Chaturvedi R, Jeannotte R, Sparks AA, Shah J. Involvement of salicylate and jasmonate signaling pathways in Arabidopsis interaction with Fusarium graminearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:861-70. [PMID: 20521949 PMCID: PMC4164197 DOI: 10.1094/mpmi-23-7-0861] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fusarium graminearum is the principal causative agent of Fusarium head blight (FHB), a devastating disease of wheat and barley. This fungus can also colonize Arabidopsis thaliana. Disease resistance was enhanced in transgenic wheat and Arabidopsis plants that constitutively overexpress the NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) gene, which regulates salicylic acid (SA) signaling and modulates the activation of jasmonic acid (JA)-dependent defenses. Here, we provide several lines of evidence that reveal an important role for SA and JA signaling in Arabidopsis defense against F. graminearum. SA level was elevated in fungus-inoculated leaves, and SA application and biologically activated systemic acquired resistance enhanced resistance. Furthermore, the disruption of SA accumulation and signaling in the sid2 mutant and NahG transgenic plant, and the npr1 and wrky18 mutants, respectively, resulted in heightened susceptibility to this fungus in leaves and inflorescence. JA signaling was activated in parallel with SA signaling in the fungus-challenged plants. However, the hyperresistance of the JA pathway mutants opr3, coi1, and jar1 indicates that this pathway contributes to susceptibility. Genetic and biochemical experiments indicate that the JA pathway promotes disease by attenuating the activation of SA signaling in fungus-inoculated plants. However, the hypersusceptibility of the jar1 npr1 double mutant compared with the npr1 mutant suggests that JAR1 also contributes to defense, signifying a dichotomous role of JA and a JAR1-dependent mechanism in this interaction.
Collapse
Affiliation(s)
- Ragiba Makandar
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
- Department of Plant Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Vamsi Nalam
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Ratnesh Chaturvedi
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Richard Jeannotte
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Alexis A. Sparks
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Jyoti Shah
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
145
|
Boyle P, Després C. Dual-function transcription factors and their entourage: unique and unifying themes governing two pathogenesis-related genes. PLANT SIGNALING & BEHAVIOR 2010; 5:629-34. [PMID: 20383056 PMCID: PMC3001550 DOI: 10.4161/psb.5.6.11570] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Much of what we, as plant molecular biologists studying gene regulation, know comes from paradigms characterized or developed in mammalian systems. Although plants, animals, and fungi have been diverging for a very long time, a great deal of the machineries and components discovered in yeast and mammals seem to have been maintained in plants. Nevertheless, despite this apparent conservation, evolutionary pressures on the mechanisms of gene regulation are likely to be different between these kingdoms, given their different environmental constraints. As such, it is imperative for plant molecular biologists to develop their own paradigms, even on seemingly conserved systems. It is with this intent that we compare and contrast the regulation of two pathogenesis-related genes, the arabidopsis PR-1 and potato PR-10a genes. The transcription factors regulating these genes present prime paradigms for the study of plant signal- and context-dependent dual-function transcription factors.
Collapse
Affiliation(s)
- Patrick Boyle
- Department of Biological Sciences, Brock University, St Catharines, ON, Canada
| | | |
Collapse
|
146
|
Vasyukova NI, Ozeretskovskaya OL, Chalenko GI, Gerasimova NG, L’vova AA, Il’ina AV, Levov AN, Varlamov VP, Tarchevsky IA. Immunomodulating activity of chitosan derivatives with salicylic acid and its fragments. APPL BIOCHEM MICRO+ 2010. [DOI: 10.1134/s0003683810030166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
147
|
Tarchevsky IA, Yakovleva VG, Egorova AM. Proteomic analysis of salicylate-induced proteins of pea (Pisum sativum L.) leaves. BIOCHEMISTRY. BIOKHIMIIA 2010; 75:590-7. [PMID: 20632938 DOI: 10.1134/s0006297910050081] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The effect of 50 microM salicylic acid on soluble proteins of pea (Pisum sativum L.) leaves was studied by proteomic analysis. Thirty-two salicylate-induced proteins were found, and 13 of these were identified using MALDI TOF MS. Salicylate-induced increased content was shown for the first time for the family 18 glycoside hydrolase, alpha-amylase, 33 kDa protein of photosystem II, lipid-desaturase-like protein, and glutamine amidotransferase. Increased content of protective proteins of direct antipathogenic action such as chitinase and beta-1,3-glucanases was also noted.
Collapse
Affiliation(s)
- I A Tarchevsky
- Kazan Institute of Biochemistry and Biophysics, Kazan Research Center, Russian Academy of Sciences, Kazan, 420111, Russia.
| | | | | |
Collapse
|
148
|
Miao W, Wang X, Li M, Song C, Wang Y, Hu D, Wang J. Genetic transformation of cotton with a harpin-encoding gene hpaXoo confers an enhanced defense response against different pathogens through a priming mechanism. BMC PLANT BIOLOGY 2010; 10:67. [PMID: 20398293 PMCID: PMC3095341 DOI: 10.1186/1471-2229-10-67] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 04/15/2010] [Indexed: 05/19/2023]
Abstract
BACKGROUND The soil-borne fungal pathogen Verticillium dahliae Kleb causes Verticillium wilt in a wide range of crops including cotton (Gossypium hirsutum). To date, most upland cotton varieties are susceptible to V. dahliae and the breeding for cotton varieties with the resistance to Verticillium wilt has not been successful. RESULTS Hpa1Xoo is a harpin protein from Xanthomonas oryzae pv. oryzae which induces the hypersensitive cell death in plants. When hpa1Xoo was transformed into the susceptible cotton line Z35 through Agrobacterium-mediated transformation, the transgenic cotton line (T-34) with an improved resistance to Verticillium dahliae was obtained. Cells of the transgenic T-34, when mixed with the conidia suspension of V. dahliae, had a higher tolerance to V. dahliae compared to cells of untransformed Z35. Cells of T-34 were more viable 12 h after mixing with V. dahliae conidia suspension. Immunocytological analysis showed that Hpa1Xoo, expressed in T-34, accumulated as clustered particles along the cell walls of T-34. In response to the infection caused by V. dahliae, the microscopic cell death and the generation of reactive oxygen intermediates were observed in leaves of T-34 and these responses were absent in leaves of Z35 inoculated with V. dahliae. Quantitative RT-PCR analysis indicated that five defense-related genes, ghAOX1, hin1, npr1, ghdhg-OMT, and hsr203J, were up-regulated in T-34 inoculated with V. dahliae. The up-regulations of these defense-relate genes were not observed or in a less extent in leaves of Z-35 after the inoculation. CONCLUSIONS Hpa1Xoo accumulates along the cell walls of the transgenic T-34, where it triggers the generation of H2O2 as an endogenous elicitor. T-34 is thus in a primed state, ready to protect the host from the pathogen. The results of this study suggest that the transformation of cotton with hpa1Xoo could be an effective approach for the development of cotton varieties with the improved resistance against soil-borne pathogens.
Collapse
Affiliation(s)
- Weiguo Miao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- College of Environment and Plant Protection, Hainan University, Haikou 570228, China
| | - Xiben Wang
- Cereal Research Centre, Agriculture and Agri-Food Canada, Winnipeg, Manitoba, R3T 2N9, Canada
| | - Ming Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Congfeng Song
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dongwei Hu
- Biotechnology Institute of Zhejiang University, Hangzhou 310029, China
| | - Jinsheng Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
149
|
Parkhi V, Kumar V, Campbell LM, Bell AA, Shah J, Rathore KS. Resistance against various fungal pathogens and reniform nematode in transgenic cotton plants expressing Arabidopsis NPR1. Transgenic Res 2010; 19:959-75. [DOI: 10.1007/s11248-010-9374-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 02/01/2010] [Indexed: 11/28/2022]
|
150
|
Bergeault K, Bertsch C, Merdinoglu D, Walter B. Low level of polymorphism in two putative NPR1 homologs in the Vitaceae family. Biol Direct 2010; 5:9. [PMID: 20137081 PMCID: PMC2832633 DOI: 10.1186/1745-6150-5-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 02/05/2010] [Indexed: 11/10/2022] Open
Abstract
Background Grapevine is subjected to numerous pests and diseases resulting in the use of phytochemicals in large quantities. The will to decrease the use of phytochemicals leads to attempts to find alternative strategies, implying knowledge of defence mechanisms. Numerous studies have led to the identification of signalling pathways and regulatory elements involved in defence in various plant species. Nonexpressor of Pathogenesis Related 1 (NPR1) is an important regulatory component of systemic acquired resistance (SAR) in Arabidopsis thaliana. Results Two putative homologs of NPR1 gene were found in the two sequenced grapevine genomes available in the Genoscope database for line 40024 and in the IASMA database for Pinot noir ENTAV 115. We named these two NPR1 genes of Vitis vinifera : VvNPR1.1 and VvNPR1.2. A PCR-based strategy with primers designed on exons was used to successfully amplify NPR1 gene fragments from different Vitaceae accessions. Sequence analyses show that NPR1.1 and NPR1.2 are highly conserved among the different accessions not only V. vinifera cultivars but also other species. We report nucleotide polymorphisms in NPR1.1 and NPR1.2 from fifteen accessions belonging to the Vitaceae family. The ratio of nonsynonymous to synonymous nucleotide substitutions determines the evolutionary pressures acting on the Vitaceae NPR1 genes. These genes appear to be experiencing purifying selection. In some of the species we have analysed one of the two alleles of NPR1.1 contains a premature stop codon. The deduced amino acid sequences share structural features with known NPR1-like proteins: ankyrin repeats, BTB/POZ domains, nuclear localization signature and cysteines. Phylogenetic analyses of deduced amino acid sequences show that VvNPR1.1 belongs to a first group of NPR1 proteins known as positive regulators of SAR and VvNPR1.2 belongs to a second group of NPR1 proteins whose principal members are AtNPR3 and AtNPR4 defined as negative regulators of SAR. Conclusion Our study shows that NPR1.1 and NPR1.2 are highly conserved among different accessions in the Vitaceae family. VvNPR1.1 and VvNPR1.2 are phylogenetically closer to the group of positive or negative SAR regulators respectively. Reviewers This article was reviewed by Fyodor Kondrashov, Purificación López-García and George V. Shpakovski.
Collapse
Affiliation(s)
- Karine Bergeault
- Laboratoire Vigne, Biotechnologies & Environnement, Université de Haute Alsace, 33 rue de Herrlisheim, 68000 Colmar, France.
| | | | | | | |
Collapse
|