101
|
Zhao LY, Liu J, Sidhu GS, Niu Y, Liu Y, Wang R, Liao D. Negative regulation of p53 functions by Daxx and the involvement of MDM2. J Biol Chem 2004; 279:50566-79. [PMID: 15364927 DOI: 10.1074/jbc.m406743200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In normal cells p53 activity is tightly controlled and MDM2 is a known negative regulator. Here we show that via its acidic domain, Daxx binds to the COOH-terminal domain of p53, whose positive charges are critical for this interaction, as Lys to Arg mutations preserved, but Lys to Ala or Ser to Glu mutations abolished Daxx-p53 interaction. These results thus implicate acetylation and phosphorylation of p53 in regulating its binding to Daxx. Interestingly, whereas Daxx did not bind to p53 in cells as assessed by immunoprecipitation, MDM2 expression restored p53-Daxx interaction, and this correlated with deacetylation of p53. In p53/MDM2-null mouse embryonic fibroblasts (DKO MEF), Daxx repressed p53 target promoters whose p53-binding elements were required for the repression. Coexpression of Daxx and MDM2 led to further repression. p53 expression in DKO MEF induced apoptosis and Daxx expression relieved this effect. Similarly, in HCT116 cells, Daxx conferred striking resistance to 5-fluorouracil-induced apoptosis. As p53 is required for 5-fluorouracil-induced cell death, our data show that Daxx can suppress cell death induced by p53 overexpression and p53-dependent stress response. Collectively, our data reveal Daxx as a novel negative regulator of p53. Importantly, posttranslational modifications of p53 inhibit Daxx-p53 interaction, thereby relieving negative regulation of p53 by Daxx.
Collapse
Affiliation(s)
- Lisa Y Zhao
- Department of Anatomy and Cell Biology, and Shands Cancer Center, University of Florida College of Medicine, Gainesville, Florida 32610-0235
| | | | | | | | | | | | | |
Collapse
|
102
|
Jin Y, Zeng SX, Lee H, Lu H. MDM2 Mediates p300/CREB-binding Protein-associated Factor Ubiquitination and Degradation. J Biol Chem 2004; 279:20035-43. [PMID: 14769800 DOI: 10.1074/jbc.m309916200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We recently reported that MDM2, a negative feedback regulator of the tumor suppressor p53, inhibits p300/CREB-binding protein-associated factor (PCAF)-mediated p53 acetylation. Our further study showed that MDM2 also regulates the stability of PCAF. MDM2 ubiquitinated PCAF in vitro and in cells. PCAF ubiquitination occurred at the N terminus and in the nucleus, as the nuclear localization signal sequence-deletion mutant of MDM2, which localized in the cytoplasm and degraded p53, was unable to degrade nuclear PCAF. Restriction of PCAF in the nucleus by leptomycin B did not affect MDM2-mediated PCAF degradation. Consistently, overexpression of MDM2 in p53 null cells caused the reduction of the protein level of PCAF, but not the mRNA level. Conversely, PCAF levels were higher in MDM2-deficient mouse p53(-/-)/mdm2(-/-) embryonic fibroblast (MEF) cells than that in MDM2-containing MEF cells. Furthermore, MDM2 reduced the half-life of PCAF by 50%. These results demonstrate that MDM2 regulates the stability of PCAF by ubiquitinating and degrading this protein.
Collapse
Affiliation(s)
- Yetao Jin
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
103
|
Stommel JM, Wahl GM. Accelerated MDM2 auto-degradation induced by DNA-damage kinases is required for p53 activation. EMBO J 2004; 23:1547-56. [PMID: 15029243 PMCID: PMC391059 DOI: 10.1038/sj.emboj.7600145] [Citation(s) in RCA: 291] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Accepted: 02/04/2004] [Indexed: 12/22/2022] Open
Abstract
p53 activation prevents the proliferation of genetically unstable cells. Conversely, p53 antagonism by its transcriptional target, the E3 ubiquitin ligase MDM2, is critical for the viability of unstressed, cycling cells. We demonstrate that MDM2 induces the degradation of p53 in both the nucleus and the cytoplasm. As p53 and MDM2 accumulate in the nuclei of stressed cells, we investigated mechanisms enabling p53 activation despite the high MDM2 levels generated during a DNA-damage response. We show that DNA damage destabilized MDM2 by a mechanism involving damage-activated kinases and MDM2 auto-ubiquitination. p53 was stable and transcriptionally active when MDM2 was unstable, but became unstable and inactive as the damage response waned and MDM2 stabilized. Importantly, blocking MDM2 destabilization in DNA-damaged cells prevented p53 target gene activation. Our data reveal that controlled MDM2 degradation is an important new step in p53 regulation.
Collapse
Affiliation(s)
- Jayne M Stommel
- Department of Biology, University of California, San Diego
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Geoffrey M Wahl
- The Salk Institute for Biological Studies, La Jolla, CA, USA
- The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA. Tel.: +1 858 453 4100 ext. 1255; Fax: +1 858 535 1871; E-mail:
| |
Collapse
|
104
|
Wang X, Taplick J, Geva N, Oren M. Inhibition of p53 degradation by Mdm2 acetylation. FEBS Lett 2004; 561:195-201. [PMID: 15013777 DOI: 10.1016/s0014-5793(04)00168-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Accepted: 01/30/2004] [Indexed: 12/18/2022]
Abstract
Mdm2 is a RING finger E3 ubiquitin ligase, which promotes ubiquitination and proteasomal degradation of the p53 tumor suppressor protein. Acetylation of p53 regulates p53's transcriptional activity and inhibits Mdm2-mediated p53 ubiquitination and degradation. We now report that Mdm2 is also a target for acetylation. Mdm2 is acetylated in vitro by CREB-binding protein (CBP) and to a lesser extent by p300, but not by p300/CPB-associated factor. Acetylation occurs primarily within the RING finger domain of Mdm2. In vivo acetylation of Mdm2 was detected easily with CBP but not p300. Efficient in vivo acetylation required the preservation of the RING finger. An Mdm2 mutant (K466/467Q) mimicking acetylation is impaired in its ability to promote p53 ubiquitination, as well as Mdm2 autoubiquitination. Moreover, K466/467Q is defective in promoting p53 degradation in living cells. We thus suggest that acetyltransferases may modulate cellular p53 activity not only by modifying p53, but also by inactivating Mdm2.
Collapse
Affiliation(s)
- Xinjiang Wang
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
105
|
Yang XJ. The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res 2004; 32:959-76. [PMID: 14960713 PMCID: PMC384351 DOI: 10.1093/nar/gkh252] [Citation(s) in RCA: 392] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Revised: 12/22/2003] [Accepted: 01/06/2004] [Indexed: 11/12/2022] Open
Abstract
Acetylation of the epsilon-amino group of lysine residues, or N(epsilon)-lysine acetylation, is an important post-translational modification known to occur in histones, transcription factors and other proteins. Since 1995, dozens of proteins have been discovered to possess intrinsic lysine acetyltransferase activity. Although most of these enzymes were first identified as histone acetyltransferases and then tested for activities towards other proteins, acetyltransferases only modifying non-histone proteins have also been identified. Lysine acetyltransferases form different groups, three of which are Gcn5/PCAF, p300/CBP and MYST proteins. While members of the former two groups mainly function as transcriptional co-activators, emerging evidence suggests that MYST proteins, such as Esa1, Sas2, MOF, TIP60, MOZ and MORF, have diverse roles in various nuclear processes. Aberrant lysine acetylation has been implicated in oncogenesis. The genes for p300, CBP, MOZ and MORF are rearranged in recurrent leukemia-associated chromosomal abnormalities. Consistent with their roles in leukemogenesis, these acetyltransferases interact with Runx1 (or AML1), one of the most frequent targets of chromosomal translocations in leukemia. Therefore, the diverse superfamily of lysine acetyltransferases executes an acetylation program that is important for different cellular processes and perturbation of such a program may cause the development of cancer and other diseases.
Collapse
Affiliation(s)
- Xiang-Jiao Yang
- Molecular Oncology Group, Department of Medicine, McGill University Health Center, Montréal, Quebec H3A 1A1, Canada.
| |
Collapse
|
106
|
Abstract
The tumor suppressor p53-related p73 shares significant amino-acid sequence identity with p53. Like p53, p73 recognizes canonical p53 DNA-binding sites and activates p53-responsive target genes and induces apoptosis. Moreover, transcription coactivator p300/CBP binds to and coactivates with both p53 and p73 in stimulating the expression of their target genes. Here, we report that coactivator PCAF binds to p73. The N-terminal transactivation domain (TAD) and the conserved oligomerization domain (OD) of p73 are both required for its interaction with PCAF. Conversely, PCAF's HAT-domain is required for and both the N-terminal region and Bromo domain enhance binding of PCAF to p73. Significantly, PCAF stimulates p73-mediated transactivation, and binding of PCAF to p73 is necessary for p73's transactivation activity. PCAF-specific siRNA dramatically reduces p73-mediated transactivation. Stimulation of p73-mediated transactivation by PCAF requires the HAT domain of PCAF and the p53-binding site within the p21 promoter. In vivo, coexpression of wild-type, but not HAT-deficient PCAF with p73beta markedly increases p21 expression. Furthermore, cotransfection of PCAF and p73 leads to increased apoptosis and reduced colony formation. Collectively, these data suggest that p73 recruit PCAF to specific promoters to activate the transcription of p73 target genes.
Collapse
Affiliation(s)
- Lisa Y Zhao
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610-0235, USA
| | | | | | | | | |
Collapse
|
107
|
Abstract
The interplay between Mdm2 and p53 represents one of the better-known paradigms of the relationship between an oncogene and a tumor suppressor gene. The Mdm2 protein is a key regulator of cell growth and death and plays a pivotal role in the transformation of normal cells into tumor cells, the hallmark of an oncogene. The primary role of Mdm2 under nonstressed conditions is to target the degradation ofthe tumor suppressor protein p53. In response to stress, however, p53 is not affected by Mdm2 and functions as a transcription factor that induces the transcription of Mdm2 as well as of genes involved in growth control or apoptosis. The effect of Mdm2 on the regulation of cell growth and death depends on p53 but also on a growing number of p53-independent targets. This overview summarizes our current understanding of Mdm2 and p53 regulation, function, and interaction in normal and tumor states.
Collapse
Affiliation(s)
- Dania Alarcon Vargas
- Ruttenberg Cancer Center, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
108
|
Knights CD, Liu Y, Appella E, Kulesz-Martin M. Defective p53 Post-translational Modification Required for Wild Type p53 Inactivation in Malignant Epithelial Cells with mdm2 Gene Amplification. J Biol Chem 2003; 278:52890-900. [PMID: 14555661 DOI: 10.1074/jbc.m300279200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mdm2 gene amplification occurs in benign and chemotherapy-responsive malignant tumors with wtp53 genes as well as in breast and epithelial cancers. Mdm2 amplification in benign tumors suggests that it is not sufficient for p53 inactivation in cancer, implying that other defects in the p53 pathway are required for malignancy. We investigated mechanisms of wtp53 protein inactivation in malignant conversion of epithelial cells by comparing clonally related initiated cells with their derivative cancerous cells that have mdm2 amplification. Deficiencies in p53 accumulation and activities in response to DNA damage were not due simply to Mdm2 destabilization of p53 protein, but to continued association of DNA-bound p53 with Mdm2 protein and lack of binding and acetylation by p300 protein. The aberrant interactions were not because of mdm2 amplification alone, because DNA-bound p53 protein from initiated cells failed to bind ectopically expressed Mdm2 or endogenous overexpressed Mdm2 from cancerous cells. Phosphorylations of endogenous p53 at Ser18, -23, or -37 were insufficient to dissociate Mdm2, because each was induced by UV in cancerous cells. Interestingly, phospho-mimic p53-T21E did dissociate the Mdm2 protein from DNA-bound p53 and recovered p300 binding and p21 induction in the cancerous cells. Thus wtp53 in malignant cells with mdm2 amplification can be inactivated by continued association of DNA-bound p53 protein with Mdm2 and failure of p300 binding and acetylation, coupled with a defect in p53 phosphorylation at Thr21. These findings suggest therapeutic strategies that address both p53/Mdm2 interaction and associated p53 protein defects in human tumors that have amplified mdm2 genes.
Collapse
Affiliation(s)
- Chad D Knights
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | | | |
Collapse
|
109
|
Abstract
The p53 tumor suppressor is regulated by MDM2-mediated ubiquitination and degradation. Ubiquitination of p53 is regulated by ARF, which binds to MDM2 and inhibits its E3 ligase function. P53 is also subjected to modification by conjugation of SUMO-1. We found that a p53 mutant deficient for MDM2 binding (p53(14Q19S)) is poorly sumoylated in vivo compared to wild-type p53. Overexpression of MDM2 increases the level of p53 sumoylation, which is further stimulated by expression of ARF. Stimulation of p53 sumoylation requires a highly conserved region (102-116) encoded by exon 2 of ARF and correlates with the ability of ARF to target p53 to the nucleolus. An MDM2 deletion mutant (MDM2(Delta222-437)) with activated cryptic nucleolar localization signal also targets p53 to the nucleolus and efficiently promotes p53 sumoylation in the absence of ARF. Direct targeting of p53 to the nucleolus enhances its sumoylation in an MDM2- and ARF-dependent fashion. These results show that p53 sumoylation is regulated by MDM2- and ARF-mediated nucleolar targeting.
Collapse
Affiliation(s)
- Lihong Chen
- Molecular Oncology Program, H Lee Moffitt Comprehensive Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | | |
Collapse
|
110
|
Brooks CL, Gu W. Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 2003; 15:164-71. [PMID: 12648672 DOI: 10.1016/s0955-0674(03)00003-6] [Citation(s) in RCA: 589] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The p53 tumor suppressor exerts anti-proliferative effects, including growth arrest, apoptosis and cell senescence, in response to various types of stress. Tight regulation of p53 activation is imperative for preventing tumorigenesis and maintaining normal cell growth; p53 stabilization and transcriptional activation are crucial early events in a cell's battle against genotoxic stress. Ubiquitination, phosphorylation and acetylation are post-translational modifications to p53 that affect its overall appearance and activity. Recent findings suggest that these modifications have a profound affect on p53 stability and function. Defining the precise roles of these modifications in p53 function may show not only that they are markers of the stress response but also that they serve as the focal point in the regulation of p53.
Collapse
Affiliation(s)
- Christopher L Brooks
- Institute for Cancer Genetics and Department of Pathology College of Physicians and Surgeons, Columbia University, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | | |
Collapse
|
111
|
Affiliation(s)
- Yang Xu
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, USA.
| |
Collapse
|
112
|
Zeng SX, Jin Y, Kuninger DT, Rotwein P, Lu H. The acetylase activity of p300 is dispensable for MDM2 stabilization. J Biol Chem 2003; 278:7453-8. [PMID: 12493762 DOI: 10.1074/jbc.m209030200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been shown that p300 binds to MDM2 and leads to down-regulation of the p53 function. However, it remains unclear whether the acetylase activity of p300 is necessary for regulating MDM2 stability. In this study, we address this issue. First, p300 did not acetylate MDM2 in solution and in cells. Second, overexpression of p300 in cells increased the level of the MDM2 protein but not its mRNA. Similarly, the acetylase-defective p300 AT2 mutant stabilized the MDM2 protein as well. Consistently, the deacetylase inhibitor, trichostatin A, did not significantly affect the half-life of the endogenous MDM2 protein, whereas p300 enhanced the half-life of MDM2. Finally, both wild type and acetylase-defective mutant p300 proteins associated with MDM2 in nuclear body-like structures where MDM2 might be protected from proteasomal degradation. Thus, these results suggest that p300 appears to stabilize MDM2 by retaining this protein in a specific nuclear structure rather than by acetylating it.
Collapse
Affiliation(s)
- Shelya X Zeng
- Department of Biochemistry and Molecular Biology and the Molecular Medicine Division, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
113
|
Bartl S, Ban J, Weninger H, Jug G, Kovar H. A small nuclear RNA, hdm365, is the major processing product of the human mdm2 gene. Nucleic Acids Res 2003; 31:1136-47. [PMID: 12582232 PMCID: PMC150226 DOI: 10.1093/nar/gkg207] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
mdm2 encodes for an E3 ubiquitin ligase targeting constitutively expressed p53 for proteasomal degradation. Several protein isoforms have been described for human MDM2 (HDM2), some of which may correspond to splicing variants detectable by RT-PCR in many tumors. Upon cellular stress, p53 becomes resistant to MDM2 and, in a feedback loop, up-regulates mdm2 transcription. The physiological relevance of stress-induced mdm2 gene activity is not well understood. We describe a small nuclear RNA of 365 bases comprised of the first five hdm2 exons and lacking polyadenylation. hdm365 precedes full-length hdm2 RNA expression after induction by p53 and accumulates to significant levels in the nucleus, detectable at the site of hdm2 transcription and processing only. Considering a 10-fold lower stability and high steady-state levels of the novel RNA species, hdm365 appears to be the major processing product of hdm2 transcripts. hdm365 induction was observed after ectopic expression of p53 and after DNA damaging treatment of tumor cell lines, primary fibroblasts and lymphocytes, and was not related to apoptosis. Corresponding truncated transcripts were observed in hdm2 amplified cells. High stress-inducible expression levels, absence of a corresponding protein, and nuclear localisation of hdm365 suggest a novel RNA-based function for hdm2.
Collapse
Affiliation(s)
- S Bartl
- Children's Cancer Research Institute, St Anna Kinderspital, Kinderspitalgasse 6, Vienna A-1090, Austria
| | | | | | | | | |
Collapse
|
114
|
Abstract
Loss of tumour suppressor function is a common mechanistic step in deregulated cell growth and neoplasia. The p53 tumour suppressor gene is the most frequently mutated gene in cancer, and is inactivated in approximately 50% of human tumours. Mutation of p53 is also the predominant molecular basis of the Li-Fraumeni familial cancer susceptibility syndrome. p53 is a transcription factor that functions to regulate the integrity of the genome in response to DNA damage by inducing genes that promote cell cycle arrest, cell death, or repair of damaged DNA. These various effects exerted by p53 ensure that mutations do not pass on to subsequent generations, thus avoiding the presence of cells with multiple genetic hits that predispose the cell to neoplastic growth. Analysis of p53 functions using genetically-modified mice has complimented studies performed with human cancer tissue or cultured cells, and has greatly expanded knowledge about the role of p53 in tumour suppression. This finer understanding of p53 function has greatly facilitated research into small-molecule and other drug modifications of p53 activity as treatment modalities for the many human cancers bearing altered p53 function. This review will examine mouse models containing p53 modifications, and access the contribution of these studies to the understanding of p53-mediated tumour suppression.
Collapse
Affiliation(s)
- Hayla K Sluss
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue, Worcester, Massachusetts 01541, USA.
| | | |
Collapse
|
115
|
Chaudhry S, Freebern WJ, Smith JL, Butscher WG, Haggerty CM, Gardner K. Cross-regulation of T cell growth factor expression by p53 and the Tax oncogene. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:6767-78. [PMID: 12471108 DOI: 10.4049/jimmunol.169.12.6767] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this study, we demonstrate that p53 directly inhibits expression of the T cell growth factor (IL-2) in activated T cells. This repression is independent of the intrinsic transcriptional activity of p53 and is mediated by the Tax-responsive CD28RE-3'-12-O-tetradecanoylphorbol-13-acetate response element (AP1) element of the IL-2 promoter. Coexpression of the Tax oncogene causes full reversal of this repression through coordinate targeting of p300, CREB, and the NF-kappaB pathways. Paradoxically, IL-2 repression by p53 is not reversed by mdm2. Instead, mdm2 represses the IL-2 promoter by a mechanism that is synergistic with p53 and resistant to Tax reversal. The p300 structure-function studies show that these effects are linked to competitive associations among p53, Tax, and mdm2 with multiple domains of p300. The functional outcome of these antagonistic associations is revealed further by the observation that Tax and p53 induce apoptosis in activated T cells through separate and mutually exclusive pathways. Interestingly, both pathways are abrogated by mdm2. These results provide evidence that a dynamic interplay, between Tax and specific elements of the p53 network, mediates growth factor expression and programmed cell death in activated T cells.
Collapse
Affiliation(s)
- Sohail Chaudhry
- Laboratory of Receptor Biology and Gene Expression, Advanced Technology Center, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4605, USA
| | | | | | | | | | | |
Collapse
|
116
|
Ito A, Kawaguchi Y, Lai CH, Kovacs JJ, Higashimoto Y, Appella E, Yao TP. MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J 2002; 21:6236-45. [PMID: 12426395 PMCID: PMC137207 DOI: 10.1093/emboj/cdf616] [Citation(s) in RCA: 437] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2002] [Revised: 09/30/2002] [Accepted: 09/30/2002] [Indexed: 12/20/2022] Open
Abstract
The tumor suppressor p53 is stabilized and activated in response to cellular stress through post-translational modifications including acetylation. p300/CBP-mediated acetylation of p53 is negatively regulated by MDM2. Here we show that MDM2 can promote p53 deacetylation by recruiting a complex containing HDAC1. The HDAC1 complex binds MDM2 in a p53-independent manner and deacetylates p53 at all known acetylated lysines in vivo. Ectopic expression of a dominant-negative HDAC1 mutant restores p53 acetylation in the presence of MDM2, whereas wild-type HDAC1 and MDM2 deacetylate p53 synergistically. Fibroblasts overexpressing a dominant negative HDAC1 mutant display enhanced DNA damage-induced p53 acetylation, increased levels of p53 and a more pronounced induction of p21 and MDM2. These results indicate that acetylation promotes p53 stability and function. As the acetylated p53 lysine residues overlap with those that are ubiquitylated, our results suggest that one major function of p53 acetylation is to promote p53 stability by preventing MDM2-dependent ubiquitylation, while recruitment of HDAC1 by MDM2 promotes p53 degradation by removing these acetyl groups.
Collapse
Affiliation(s)
- Akihiro Ito
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
117
|
Bar JK, Harlozinska A, Kartarius S, Montenarh M, Wyrodek E, Parkitna JMR, Kochman M, Ozyhar A. Temperature-sensitive ovarian carcinoma cell line (OvBH-1). Jpn J Cancer Res 2002; 93:976-85. [PMID: 12359050 PMCID: PMC5927136 DOI: 10.1111/j.1349-7006.2002.tb02473.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
OvBH-1 cells from a patient with ovarian clear cell carcinoma were established and their biochemical status was analyzed. Cells grown at 37 degrees C exhibited normal cell cycle distribution, whereas the cells shifted to 31 degrees C were arrested in the G(2) / M phase of the cell cycle. Immunochemical analysis using anti-p53 antibodies (DO-1, PAb240, PAb421, and PAb1620) revealed that only the DO-1 antibody reacted with p53 with a high and similar percentage at both temperatures. PAb240 reacted with a low percentage of cells at 37 degrees C and no reaction was observed at 31 degrees C. PAb421 antibody stained a significantly lower percentage of cells at 37 degrees C than at 31 degrees C. Cells were not stained with PAb1620 antibody and were negative for antibodies against p21(WAF1) and MDM2 proteins independently of the temperature. Sequencing of all coding exons of the p53 gene demonstrated only a neutral genetic polymorphism, i.e. a G-to-A substitution (GAG to GAA) at nucleotide position 13 432. Thus, the observed temperature sensitivity of OvBH-1 cells cannot be ascribed to a p53 primary structure mutation. Based upon immunochemical analyses, we consider, however, that p53 in nuclei of OvBH-1 cells is in a highly unstable conformation. Furthermore, the N-terminal portion of the p53 protein at Ser20 has not been modified, and Lys373 and / or Ser378 of the C-terminus is acetylated and / or phosphorylated. The nuclear location signal of p53 is preserved. Induction of MDM2 protein is uncoupled from the cell regulatory machinery and the induction of p21(WAF1) by p53 is impaired in OvBH-1 cells.
Collapse
Affiliation(s)
- Julia K Bar
- Chair and Department of Clinical Immunology, Wrocaw Medical University, Mikulicza-Radeckiego 7, 50-368 Wrocaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Jin Y, Zeng SX, Dai MS, Yang XJ, Lu H. MDM2 inhibits PCAF (p300/CREB-binding protein-associated factor)-mediated p53 acetylation. J Biol Chem 2002; 277:30838-43. [PMID: 12068014 DOI: 10.1074/jbc.m204078200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our previous study shows that MDM2, a negative feedback regulator of the tumor suppressor p53, inhibits p300-mediated p53 acetylation. Because PCAF (p300/CREB-binding protein-associated factor) also acetylates and activates p53 after DNA damage, in this study we have examined the effect of MDM2 on PCAF-mediated p53 acetylation. We have found that MDM2 inhibited p53 acetylation by PCAF in vitro. In addition, when overexpressed, MDM2 inhibited PCAF-mediated p53 acetylation in cells. MDM2 interacted with PCAF both in vitro and in cells, as assessed using GST fusion protein interaction and immunoprecipitation assays, respectively. Consistent with the above results, MDM2 significantly repressed the activation of p53 transcriptional activity by PCAF without apparently affecting the level of p53. In addition, MDM2 co-resided with p53 at the p53-responsive mdm2 and p21(waf1/cip1) promoters, inhibiting expression of the endogenous p21(waf1/cip1). These results demonstrate that MDM2 can inhibit PCAF-mediated p53 acetylation and activation.
Collapse
Affiliation(s)
- Yetao Jin
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97201, USA
| | | | | | | | | |
Collapse
|
119
|
Abstract
The p300/CBP-mediated acetylation of p53 significantly potentiates p53-mediated transactivation and growth inhibition. MDM2 inhibits the acetylation of p53 by p300/CBP through a mechanism that requires a stable p53-MDM2 interaction and that is sensitive to the deacetylase inhibitor, TSA. MDMX is an MDM2-like protein that shares with MDM2 the ability to interact with p53 and, in turn, inhibit p53-mediated transcription. It was therefore of interest to determine if MDMX could also inhibit the acetylation of p53 by p300/CBP. We demonstrate that MDMX dramatically inhibits the acetylation of p53 induced by both endogenous and ectopically expressed p300/CBP. We also demonstrate that the p53-binding domain of MDMX is required for the MDMX-mediated inhibition of p53 acetylation. Our results indicate that MDMX shares with MDM2 the ability to regulate a potentially important post-translational modification of p53. These results may have important biologic implications with respect to the MDMX-mediated regulation of p53 activity during development.
Collapse
Affiliation(s)
- Peter Sabbatini
- Research Institute, University of California, School of Medicine, San Francisco, California 94080, USA
| | | |
Collapse
|
120
|
Ogawara Y, Kishishita S, Obata T, Isazawa Y, Suzuki T, Tanaka K, Masuyama N, Gotoh Y. Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J Biol Chem 2002; 277:21843-50. [PMID: 11923280 DOI: 10.1074/jbc.m109745200] [Citation(s) in RCA: 460] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p53 plays a key role in DNA damage-induced apoptosis. Recent studies have reported that the phosphatidylinositol 3-OH-kinase-Akt pathway inhibits p53-mediated transcription and apoptosis, although the underlying mechanisms have yet to be determined. Mdm2, a ubiquitin ligase for p53, plays a central role in regulation of the stability of p53 and serves as a good substrate for Akt. In this study, we find that expression of Akt reduces the protein levels of p53, at least in part by enhancing the degradation of p53. Both Akt expression and serum treatment induced phosphorylation of Mdm2 at Ser186. Akt-mediated phosphorylation of Mdm2 at Ser186 had little effect on the subcellular localization of Mdm2. However, both Akt expression and serum treatment increased Mdm2 ubiquitination of p53. The serum-induced increase in p53 ubiquitination was blocked by LY294002, a phosphatidylinositol 3-OH-kinase inhibitor. Moreover, when Ser186 was replaced by Ala, Mdm2 became resistant to Akt enhancement of p53 ubiquitination and degradation. Collectively, these results suggest that Akt enhances the ubiquitination-promoting function of Mdm2 by phosphorylation of Ser186, which results in reduction of p53 protein. This study may shed light on the mechanisms by which Akt promotes survival, proliferation, and tumorigenesis.
Collapse
Affiliation(s)
- Yoko Ogawara
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Abstract
The p53 tumor suppressor gene plays an important role in preventing cancer development, by arresting or killing potential tumor cells. Mutations within the p53 gene, leading to the loss of p53 activity, are found in about half of all human cancers, while many of the tumors that retain wild type p53 carry mutations in the pathways that allow full activation of p53. In either case, the result is a defect in the ability to induce a p53 response in cells undergoing oncogenic stress. Significant advances have been made recently in our understanding of the molecular pathways through which p53 activity is regulated, bringing with them fresh possibilities for the design of cancer therapies based on reactivation of the p53 response.
Collapse
Affiliation(s)
- Karen H Vousden
- Regulation of Cell Growth Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
122
|
Calabrò V, Mansueto G, Parisi T, Vivo M, Calogero RA, La Mantia G. The human MDM2 oncoprotein increases the transcriptional activity and the protein level of the p53 homolog p63. J Biol Chem 2002; 277:2674-81. [PMID: 11714701 DOI: 10.1074/jbc.m107173200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Genetic alteration of the p53 tumor suppressor gene, which monitors DNA damage and operates cell cycle checkpoints, is a major factor in the development of human malignancies. The p53 protein belongs to a family that also includes two structurally related proteins, p63 and p73. Although all three proteins share similar transcriptional functions and antiproliferative effects, each of them appears to play a distinct role in development and tumor suppression. One of the principal regulators of p53 activity is the MDM2 protein. The interaction of MDM2 with p53 inhibits p53 transcriptional activity and targets p53 for ubiquitin-dependent degradation. The ability of MDM2 to inhibit p53 functions is antagonized by the ARF oncosuppressor protein. We show here that like p53, the p63alpha and p63gamma isoforms are able to associate with human MDM2 (HDM2). Overexpression of HDM2 increased the steady-state level of intracellular p63 and enhanced its transcriptional activity. Both effects appeared to be counteracted by ARF coexpression. These data indicate that p63 can be activated by HDM2 under conditions in which p53 is inhibited. Therefore, HDM2 expression could support p63-specific transcriptional functions on a common set of genes, keeping interference by p53 at a minimum.
Collapse
Affiliation(s)
- Viola Calabrò
- Department of Genetics and General and Molecular Biology, University of Naples "Federico II," via Mezzocannone 8, 80134 Napoli, Italy
| | | | | | | | | | | |
Collapse
|
123
|
Abstract
Recent studies suggest that acetylation of the p53 tumor suppressor protein is not important for its DNA binding activity, as was previously thought. We discuss here a number of theories as to how this modification may serve to regulate the protein's functions.
Collapse
Affiliation(s)
- C Prives
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | | |
Collapse
|
124
|
Affiliation(s)
- E Appella
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
125
|
Abstract
The p53 tumour suppressor protein inhibits malignant progression by mediating cell cycle arrest, apoptosis or repair following cellular stress. One of the major regulators of p53 function is the MDM2 protein, and multiple forms of cellular stress activate p53 by inhibiting the MDM2-mediated degradation of p53. Mutations in p53, or disruption of the pathways that allow activation of p53, seem to be a general feature of all cancers. Here we review recent advances in our understanding of the pathways that regulate p53 and the pathways that are induced by p53, as well as their implications for cancer therapy.
Collapse
Affiliation(s)
- E Bálint E
- NCI at Frederick, National Institutes of Health, Building 560, Room 22-96, 1050 Boyles Street, Frederick, MD 21702-1201, USA
| | | |
Collapse
|
126
|
Lohrum MA, Woods DB, Ludwig RL, Bálint E, Vousden KH. C-terminal ubiquitination of p53 contributes to nuclear export. Mol Cell Biol 2001; 21:8521-32. [PMID: 11713287 PMCID: PMC100015 DOI: 10.1128/mcb.21.24.8521-8532.2001] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2001] [Accepted: 09/27/2001] [Indexed: 12/25/2022] Open
Abstract
The growth inhibitory functions of p53 are controlled in unstressed cells by rapid degradation of the p53 protein. One of the principal regulators of p53 stability is MDM2, a RING finger protein that functions as an E3 ligase to ubiquitinate p53. MDM2 promotes p53 nuclear export, and in this study, we show that ubiquitination of the C terminus of p53 by MDM2 contributes to the efficient export of p53 from the nucleus to the cytoplasm. In contrast, MDM2 did not promote nuclear export of the p53-related protein, p73. p53 nuclear export was enhanced by overexpression of the export receptor CRM1, although no significant relocalization of MDM2 was seen in response to CRM1. However, nuclear export driven by CRM1 overexpression did not result in the degradation of p53, and nuclear export was not essential for p53 degradation. These results indicate that MDM2 mediated ubiquitination of p53 contributes to both nuclear export and degradation of p53 but that these activities are not absolutely dependent on each other.
Collapse
Affiliation(s)
- M A Lohrum
- Regulation of Cell Growth Laboratory, National Cancer Institute at Frederick, Building 5460, Rm. 22-96, 1050 Boyles St., Frederick, MD 21702-1201, USA
| | | | | | | | | |
Collapse
|
127
|
Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 2001; 107:149-59. [PMID: 11672523 DOI: 10.1016/s0092-8674(01)00527-x] [Citation(s) in RCA: 2082] [Impact Index Per Article: 86.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
DNA damage-induced acetylation of p53 protein leads to its activation and either growth arrest or apoptosis. We show here that the protein product of the gene hSIR2(SIRT1), the human homolog of the S. cerevisiae Sir2 protein known to be involved in cell aging and in the response to DNA damage, binds and deacetylates the p53 protein with a specificity for its C-terminal Lys382 residue, modification of which has been implicated in the activation of p53 as a transcription factor. Expression of wild-type hSir2 in human cells reduces the transcriptional activity of p53. In contrast, expression of a catalytically inactive hSir2 protein potentiates p53-dependent apoptosis and radiosensitivity. We propose that hSir2 is involved in the regulation of p53 function via deacetylation.
Collapse
Affiliation(s)
- H Vaziri
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Cadwell C, Zambetti GP. The effects of wild-type p53 tumor suppressor activity and mutant p53 gain-of-function on cell growth. Gene 2001; 277:15-30. [PMID: 11602342 DOI: 10.1016/s0378-1119(01)00696-5] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The tumor suppressor p53 plays a central role in the protection against DNA damage and other forms of physiological stress primarily by inducing cell cycle arrest or apoptosis. Mutation of p53, which is the most frequent genetic alteration detected in human cancers, inactivates these growth regulatory functions and causes a loss of tumor suppressor activity. In some cases, mutation also confers tumor-promoting functions, such as the transcriptional activation of genes involved in cell proliferation, cell survival and angiogenesis. Consequently, cells expressing some forms of mutant p53 show enhanced tumorigenic potential with increased resistance to chemotherapy and radiation. Our current understanding of these activities is summarized in this review. By dissecting out mechanistic differences between wild-type and mutant p53 activities, it may be possible to develop therapeutics that restore tumor suppressor function to mutant p53 or that selectively inactivate mutant p53 tumor-promoting functions.
Collapse
Affiliation(s)
- C Cadwell
- Department of Biochemistry, St. Jude Children's Research Hospital, 332 N. Lauderdale, Memphis, TN 38105, USA
| | | |
Collapse
|
129
|
Chernov MV, Bean LJ, Lerner N, Stark GR. Regulation of ubiquitination and degradation of p53 in unstressed cells through C-terminal phosphorylation. J Biol Chem 2001; 276:31819-24. [PMID: 11431470 DOI: 10.1074/jbc.m103170200] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Previously, we found that the protein kinase C (PKC) inhibitor H7 stimulates p53 to accumulate in a form incapable of inducing transcription from p53-dependent promoters. We concluded that H7 inhibits constitutive C-terminal phosphorylation of p53, which regulates its turnover in unstressed cells. We now show that p53 and its inhibitor MDM2 (HDM2 in human cells) are together in the nuclei of H7-treated cells and can be co-immunoprecipitated. Despite this association of p53 with the ubiquitin ligase MDM2, ubiquitinated p53 was not detected in H7-treated cells. Furthermore, co-treatment with H7 and the proteosome inhibitor LLnL prevented the accumulation of ubiquitinated p53 that was observed in cells treated solely with LLnL. In addition, treatment of cells with the PKC activator phorbol ester stimulated the ubiquitination of p53 and reduced its ability to accumulate after stress. H7 did not induce the phosphorylation of human p53 on Ser-15 (Ser-18 in mouse protein), a modification that occurs in response to DNA damage and leads to the release of MDM2 and to transactivation by p53. We conclude that phosphorylation of the C-terminal domain of p53 by PKC increases its ubiquitination and degradation in unstressed cells.
Collapse
Affiliation(s)
- M V Chernov
- Department of Molecular Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | |
Collapse
|
130
|
Appella E, Anderson CW. Post-translational modifications and activation of p53 by genotoxic stresses. ACTA ACUST UNITED AC 2001; 268:2764-72. [PMID: 11358490 DOI: 10.1046/j.1432-1327.2001.02225.x] [Citation(s) in RCA: 770] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In unstressed cells, the tumor suppressor protein p53 is present in a latent state and is maintained at low levels through targeted degradation. A variety of genotoxic stresses initiate signaling pathways that transiently stabilize the p53 protein, cause it to accumulate in the nucleus, and activate it as a transcription factor. Activation leads either to growth arrest at the G1/S or G2/M transitions of the cell cycle or to apoptosis. Recent studies point to roles for multiple post-translational modifications in mediating these events in response to genotoxic stresses through several potentially interacting but distinct pathways. The approximately 100 amino-acid N-terminal and approximately 90 amino-acid C-terminal domains are highly modified by post-translational modifications. The N-terminus is heavily phosphorylated while the C-terminus contains phosphorylated, acetylated and sumoylated residues. Antibodies that recognize p53 only when it has been modified at specific sites have been developed, and studies with these reagents show that most known post-translational modifications are induced when cells are exposed to genotoxic stresses. These recent results, coupled with biochemical and genetic studies, suggest that N-terminal phosphorylations are important for stabilizing p53 and are crucial for acetylation of C-terminal sites, which in combination lead to the full p53-mediated response to genotoxic stresses. Modifications to the C-terminus inhibit the ability of this domain to negatively regulate sequence-specific DNA binding; additionally, they modulate the stability, the oligomerization state, the nuclear import/export process and the degree of ubiquitination of p53.
Collapse
Affiliation(s)
- E Appella
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
131
|
Abstract
Loss of the p53 tumor suppressor pathway contributes to the development of most human cancers. p53 is a nuclear protein that functions as a regulator of transcription. Significant advances have been made recently in our understanding of how p53 function is regulated and the mechanisms by which p53 mediates its effects.
Collapse
Affiliation(s)
- K M Ryan
- Regulation of Cell Growth Laboratory, Building 560, Room 22-96, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | | |
Collapse
|
132
|
Grossman SR. p300/CBP/p53 interaction and regulation of the p53 response. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:2773-8. [PMID: 11358491 DOI: 10.1046/j.1432-1327.2001.02226.x] [Citation(s) in RCA: 197] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Substantial evidence points to a critical role for the p300/CREB binding protein (CBP) coactivators in p53 responses to DNA damage. p300/CBP and the associated protein P/CAF bind to and acetylate p53 during the DNA damage response, and are needed for full p53 transactivation as well as downstream p53 effects of growth arrest and/or apoptosis. Beyond this simplistic model, p300/CBP appear to be complex integrators of signals that regulate p53, and biochemically, the multipartite p53/p300/CBP interaction is equally complex. Through physical interaction with p53, p300/CBP can both positively and negatively regulate p53 transactivation, as well as p53 protein turnover depending on cellular context and environmental stimuli, such as DNA damage.
Collapse
Affiliation(s)
- S R Grossman
- Department of Adult Oncology and Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
133
|
Abstract
The role of histone acetylation as a key mechanism of transcriptional regulation has been well established. Recent advances suggest that histone acetyltransferases also play important roles in histone-modulated processes such as DNA replication, recombination and repair. In addition, acetylation of transcriptional cofactors and other proteins is an efficient means of regulating a diverse range of molecular interactions. As new histone acetyltransferases and substrates are rapidly emerging, it is becoming apparent that protein acetylation may rival phosphorylation as a mechanism to transduce cellular regulatory signals.
Collapse
Affiliation(s)
- H Chen
- Department of Biological Chemistry, UC Davis Cancer Center/Basic Science Program, University of California at Davis, Sacramento, California 95817, USA.
| | | | | |
Collapse
|
134
|
Argentini M, Barboule N, Wasylyk B. The contribution of the acidic domain of MDM2 to p53 and MDM2 stability. Oncogene 2001; 20:1267-75. [PMID: 11313871 DOI: 10.1038/sj.onc.1204241] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2000] [Revised: 12/22/2000] [Accepted: 01/08/2001] [Indexed: 12/29/2022]
Abstract
p53 and MDM2 are both degraded by the ubiquitin-proteasome pathway. MDM2 binds p53 and promotes its rapid degradation. MDM2 is an E3 ligase that activates self and p53 ubiquitylation. Moreover, MDM2 nuclear-cytoplasmic shuttling contributes to p53 degradation in the cytoplasm. We have identified a new region of MDM2 which regulates the stability of both p53 and MDM2. The first 50 amino-acids of the MDM2 acidic domain (222-272) contribute to MDM2 and MDM2-mediated p53 degradation by a mechanism which is independent of either MDM2 E3-ligase activity or MDM2 nucleo-cytoplasmic shuttling. The transcriptional coactivator p300 could have been involved, since it binds to the MDM2 acidic domain. However, we found that p300 stabilises MDM2, even in absence of an intact acidic domain, indicating that the MDM2 acidic region contributes to proteolysis independently of p300. We propose that the MDM2 acidic domain is required for unbiquitylated MDM2 and p53 to be degraded by cytoplasmic proteasomes.
Collapse
Affiliation(s)
- M Argentini
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 rue Laurent Fries, BP 163, 67404 Illkirch cédex, France
| | | | | |
Collapse
|
135
|
Affiliation(s)
- D B Woods
- Regulation of Cell Growth Laboratory, National Cancer Institute, 1050 Boyles Street, Frederick, Maryland 21702-1201, USA
| | | |
Collapse
|
136
|
Zeng X, Lee H, Zhang Q, Lu H. p300 does not require its acetylase activity to stimulate p73 function. J Biol Chem 2001; 276:48-52. [PMID: 11076933 DOI: 10.1074/jbc.c000722200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously reported that p73, like p53, utilizes p300 or cAMP-response element-binding protein-binding protein as its coactivator. Here, we extended this work by further examining whether the intrinsic acetylase activity of p300 is necessary for stimulating p73 function. Although p300 acetylated the C-terminal fragment of p73 (amino acids 311-636) in vitro, it was unable to efficiently acetylate the full-length p73. Consistently, p300 did not acetylate p73 in vivo when both the proteins were overexpressed in cells. Also, an acetylase-defective mutant p300 named p300AT2 was able to elevate p73-dependent transcription in cells. p300 associated with p73 when forming DNA-protein complexes and stabilized p73 proteins. These results demonstrate that p300 does not need its acetylase activity to be a coactivator of p73.
Collapse
Affiliation(s)
- X Zeng
- Department of Biochemistry and Molecular Biology, Oregon Health Science University, Portland, Oregon 97201, USA
| | | | | | | |
Collapse
|
137
|
Carafa V, Russo R, Della Torre L, Cuomo F, Dell'Aversana C, Sarno F, Sgueglia G, Di Donato M, Rotili D, Mai A, Nebbioso A, Cobellis G, Chambery A, Altucci L. Different facets of sex anxiety. Front Oncol 1981; 10:820. [PMID: 32528892 PMCID: PMC7255067 DOI: 10.3389/fonc.2020.00820] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
The involvement of sirtuins (SIRTs) in modulating metabolic and stress response pathways is attracting growing scientific interest. Some SIRT family members are located in mitochondria, dynamic organelles that perform several crucial functions essential for eukaryotic life. Mitochondrial dysfunction has emerged as having a key role in a number of human diseases, including cancer. Here, we investigated mitochondrial damage resulting from treatment with a recently characterized pan-SIRT inhibitor, MC2494. MC2494 was able to block mitochondrial biogenesis and function in terms of ATP synthesis and energy metabolism, suggesting that it might orchestrate cell response to metabolic stress and thereby interfere with cancer promotion and progression. Targeting mitochondrial function could thus be considered a potential anticancer strategy for use in clinical therapy.
Collapse
Affiliation(s)
- Vincenzo Carafa
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Rosita Russo
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Laura Della Torre
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Francesca Cuomo
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Carmela Dell'Aversana
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy
- Institute Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS)- National Research Council (CNR), Naples, Italy
| | - Federica Sarno
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giulia Sgueglia
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Marzia Di Donato
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Dante Rotili
- Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, Rome, Italy
| | - Antonello Mai
- Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, Rome, Italy
| | - Angela Nebbioso
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Gilda Cobellis
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Angela Chambery
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Lucia Altucci
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy
- *Correspondence: Lucia Altucci
| |
Collapse
|