101
|
Structural analyses of the Slm1-PH domain demonstrate ligand binding in the non-canonical site. PLoS One 2012; 7:e36526. [PMID: 22574179 PMCID: PMC3344901 DOI: 10.1371/journal.pone.0036526] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Accepted: 04/02/2012] [Indexed: 11/28/2022] Open
Abstract
Background Pleckstrin homology (PH) domains are common membrane-targeting modules and their best characterized ligands are a set of important signaling lipids that include phosphatidylinositol phosphates (PtdInsPs). PH domains recognize PtdInsPs through two distinct mechanisms that use different binding pockets on opposite sides of the β-strands 1 and 2: i) a canonical binding site delimited by the β1-β2 and β3-β4loops and ii) a non-canonical binding site bordered by the β1-β2 and β5-β6loops. The PH domain-containing protein Slm1 from budding yeast Saccharomyces cerevisiae is required for actin cytoskeleton polarization and cell growth. We recently reported that this PH domain binds PtdInsPs and phosphorylated sphingolipids in a cooperative manner. Principal Findings To study the structural basis for the Slm1-PH domain (Slm1-PH) specificity, we co-crystallized this domain with different soluble compounds that have structures analogous to anionic lipid head groups of reported Slm1 ligands: inositol 4-phosphate, which mimics phosphatidylinositol-4-phosphate (PtdIns(4)P), and phosphoserine as a surrogate for dihydrosphingosine 1-phosphate (DHS1-P). We found electron densities for the ligands within the so-called non-canonical binding site. An additional positively charged surface that contacts a phosphate group was identified next to the canonical binding site. Conclusions Our results suggest that Slm1-PH utilizes a non-canonical binding site to bind PtdInsPs, similar to that described for the PH domains of β-spectrin, Tiam1 and ArhGAP9. Additionally, Slm1-PH may have retained an active canonical site. We propose that the presence of both a canonical and a non-canonical binding pocket in Slm1-PH may account for the cooperative binding to PtdInsPs and DHS-1P.
Collapse
|
102
|
Lee IJ, Wu JQ. Characterization of Mid1 domains for targeting and scaffolding in fission yeast cytokinesis. J Cell Sci 2012; 125:2973-85. [PMID: 22427686 DOI: 10.1242/jcs.102574] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Division-site selection and contractile-ring assembly are two crucial steps in cytokinesis. In fission yeast, the anillin-like Mid1 protein specifies the division site at the cell equator by assembling cortical nodes, the precursors of the contractile ring. Thus, Mid1 is essential for linking the positional cues for the cleavage site to contractile-ring formation. However, how Mid1 domains cooperate to regulate cytokinesis is poorly understood. Here we unravel the functions of different Mid1 domains (motifs) by a series of truncations. We report that the conserved PH domain stabilizes Mid1 in nodes by binding to lipids and is required for Mid1 cortical localization during interphase in the absence of Cdr2 kinase. Mid1 lacking an internal region that is approximately one third of the full-length protein has higher nuclear and cortical concentration and suppresses the division-site positioning defects in cells with a deletion of the dual-specificity tyrosine-regulated kinase Pom1. The N-terminus of Mid1 physically interacts with cytokinesis node proteins. When fused to cortical node protein Cdr2, Mid1(1-100) is sufficient to assemble cytokinesis nodes and the contractile ring. Collectively, our study recognizes domains regulating Mid1 cortical localization and reveals domains sufficient for contractile-ring assembly.
Collapse
Affiliation(s)
- I-Ju Lee
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
103
|
Rupwate SD, Rajasekharan R. C2 domain is responsible for targeting rice phosphoinositide specific phospholipase C. PLANT MOLECULAR BIOLOGY 2012; 78:247-58. [PMID: 22124893 DOI: 10.1007/s11103-011-9862-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 11/18/2011] [Indexed: 05/10/2023]
Abstract
Phosphoinositide-specific phospholipase C (PLC) is involved in Ca²⁺ mediated signalling events that lead to altered cellular status. Using various sequence-analysis methods, we identified two conserved motifs in known PLC sequences. The identified motifs are located in the C2 domain of plant PLCs and are not found in any other protein. These motifs are specifically found in the Ca²⁺ binding loops and form adjoining beta strands. Further, we identified certain conserved residues that are highly distinct from corresponding residues of animal PLCs. The motifs reported here could be used to annotate plant-specific phospholipase C sequences. Furthermore, we demonstrated that the C2 domain alone is capable of targeting PLC to the membrane in response to a Ca²⁺ signal. We also showed that the binding event results from a change in the hydrophobicity of the C2 domain upon Ca²⁺ binding. Bioinformatic analyses revealed that all PLCs from Arabidopsis and rice lack a transmembrane domain, myristoylation and GPI-anchor protein modifications. Our bioinformatic study indicates that plant PLCs are located in the cytoplasm, the nucleus and the mitochondria. Our results suggest that there are no distinct isoforms of plant PLCs, as have been proposed to exist in the soluble and membrane associated fractions. The same isoform could potentially be present in both subcellular fractions, depending on the calcium level of the cytosol. Overall, these data suggest that the C2 domain of PLC plays a vital role in calcium signalling.
Collapse
Affiliation(s)
- Sunny D Rupwate
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
104
|
Lin C, Ear J, Pavlova Y, Mittal Y, Kufareva I, Ghassemian M, Abagyan R, Garcia-Marcos M, Ghosh P. Tyrosine phosphorylation of the Gα-interacting protein GIV promotes activation of phosphoinositide 3-kinase during cell migration. Sci Signal 2012; 4:ra64. [PMID: 21954290 DOI: 10.1126/scisignal.2002049] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
GIV (Gα-interacting vesicle-associated protein; also known as Girdin) enhances Akt activation downstream of multiple growth factor- and G protein (heterotrimeric guanosine 5'-triphosphate-binding protein)-coupled receptors to trigger cell migration and cancer invasion. We demonstrate that GIV is a tyrosine phosphoprotein that directly binds to and activates phosphoinositide 3-kinase (PI3K). Upon ligand stimulation of various receptors, GIV was phosphorylated at tyrosine-1764 and tyrosine-1798 by both receptor and non-receptor tyrosine kinases. These phosphorylation events enabled direct binding of GIV to the amino- and carboxyl-terminal Src homology 2 domains of p85α, a regulatory subunit of PI3K; stabilized receptor association with PI3K; and enhanced PI3K activity at the plasma membrane to trigger cell migration. Tyrosine phosphorylation of GIV and its association with p85α increased during metastatic progression of a breast carcinoma. These results suggest a mechanism by which multiple receptors activate PI3K through tyrosine phosphorylation of GIV, thereby making the GIV-PI3K interaction a potential therapeutic target within the PI3K-Akt pathway.
Collapse
Affiliation(s)
- Changsheng Lin
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Abstract
Phosphoinositides are important regulators of cellular homoeostasis and numerous signal-transduction pathways. One of their major features is their ability to recruit signalling proteins to membranes by direct interaction with phosphoinositide-binding modules. The distribution and dynamics of membrane phosphoinositides are therefore major determinants in the spatiotemporal control of cell signalling and membrane trafficking. However, standard biochemical approaches cannot reveal the dynamics of phosphoinositides at the single-cell level. A major technical advance has been the development of genetically encoded fluorescent phosphoinositide probes on the basis of the phosphoinositide-binding domains found in signalling proteins, such as the PH (pleckstrin homology) domain. This review describes the diverse fluorescent phosphoinositide probes available for imaging specific phosphoinositide species and how their use has improved the understanding of phosphoinositide signalling at the single-cell level.
Collapse
Affiliation(s)
- Guillaume Halet
- Department of Physiology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
106
|
Rosen SAJ, Gaffney PRJ, Spiess B, Gould IR. Understanding the relative affinity and specificity of the pleckstrin homology domain of protein kinase B for inositol phosphates. Phys Chem Chem Phys 2012; 14:929-36. [DOI: 10.1039/c1cp22240f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
107
|
Leslie NR, Dixon MJ, Schenning M, Gray A, Batty IH. Distinct inactivation of PI3K signalling by PTEN and 5-phosphatases. Adv Biol Regul 2012; 52:205-213. [PMID: 21930147 DOI: 10.1016/j.advenzreg.2011.09.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 09/06/2011] [Indexed: 05/31/2023]
Affiliation(s)
- Nick R Leslie
- Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | | | | | | | | |
Collapse
|
108
|
Abstract
Phosphatidylinositol lipids generated through the action of phosphinositide 3-kinase (PI3K) are key mediators of a wide array of biological responses. In particular, their role in the regulation of cell migration has been extensively studied and extends to amoeboid as well as mesenchymal migration. Through the emergence of fluorescent probes that target PI3K products as well as the use of specific inhibitors and knockout technologies, the spatio-temporal distribution of PI3K products in chemotaxing cells has been shown to represent a key anterior polarity signal that targets downstream effectors to actin polymerization. In addition, through intricate cross-talk networks PI3K products have been shown to regulate signals that control posterior effectors. Yet, in more complex environments or in conditions where chemoattractant gradients are steep, a variety of cell types can still chemotax in the absence of PI3K signals. Indeed, parallel signal transduction pathways have been shown to coordinately regulate cell polarity and directed movement. In this chapter, we will review the current role PI3K products play in the regulation of directed cell migration in various cell types, highlight the importance of mathematical modeling in the study of chemotaxis, and end with a brief overview of other signaling cascades known to also regulate chemotaxis.
Collapse
Affiliation(s)
- Michael C Weiger
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bldg.37/Rm2066, 20892-4256, Bethesda, MD, USA
| | | |
Collapse
|
109
|
Shears SB, Ganapathi SB, Gokhale NA, Schenk TMH, Wang H, Weaver JD, Zaremba A, Zhou Y. Defining signal transduction by inositol phosphates. Subcell Biochem 2012; 59:389-412. [PMID: 22374098 PMCID: PMC3925325 DOI: 10.1007/978-94-007-3015-1_13] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ins(1,4,5)P(3) is a classical intracellular messenger: stimulus-dependent changes in its levels elicits biological effects through its release of intracellular Ca(2+) stores. The Ins(1,4,5)P(3) response is "switched off" by its metabolism to a range of additional inositol phosphates. These metabolites have themselves come to be collectively described as a signaling "family". The validity of that latter definition is critically examined in this review. That is, we assess the strength of the hypothesis that Ins(1,4,5)P(3) metabolites are themselves "classical" signals. Put another way, what is the evidence that the biological function of a particular inositol phosphate depends upon stimulus dependent changes in its levels? In this assessment, examples of an inositol phosphate acting as a cofactor (i.e. its function is not stimulus-dependent) do not satisfy our signaling criteria. We conclude that Ins(3,4,5,6)P(4) is, to date, the only Ins(1,4,5)P(3) metabolite that has been validated to act as a second messenger.
Collapse
Key Words
- adenosine deaminase
- akt
- β-cells
- calcium
- camp
- camkii
- chloride channel
- clc3
- compartmentalization
- dna repair
- endosomes
- erk
- frizzled receptor
- gap1ip4bp
- mrna export
- ins(1,4,5)p3
- ins(1,4,5)p4 receptor
- ins(1,3,4)p3
- ins(1,3,4,5)p4
- ins(1,3,4,5)p4 receptor
- ins(1,4,5,6)p4
- ins(3,4,5,6)p4
- ins(1,3,4,5,6)p5
- insp6
- insulin
- ipmk
- ipk2
- ip5k
- itp
- itpk1
- itpkb
- lymphocytes
- ku
- neutrophils
- protein phosphatase
- ptdins(4,5)p2
- ptdins(3,4,5)p3
- ph domain
- pten
- rasa3
- transcription
- wnt ligand
Collapse
Affiliation(s)
- Stephen B Shears
- Inositol Signaling Section, Laboratory of Signal Transduction, NIEHS, NIH, DHHS, Research Triangle Park, 27709, NC, USA, USA,
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Abstract
We have previously reported the development of small molecule phosphatidylinositol-3,4,5-trisphosphate (PIP3) antagonists (PITs) that block pleckstrin homology (PH) domain interaction, including activation of Akt, and show anti-tumor potential. Here we show that the same molecules inhibit growth factor-induced actin remodeling, lamellipodia formation and, ultimately, cell migration and invasion, consistent with an important role of PIP3 in these processes. In vivo, a PIT-1 analog displays significant inhibition on tumor angiogenesis and metastasis. ADP ribosylation factor 6 (ARF6) was recently identified as an important mediator of cytoskeleton and cell motility, which is regulated by PIP3-dependent membrane translocation of the guanine nucleotide exchange factors (GEFs) such as ADP-ribosylation factor nucleotide binding-site opener (ARNO) and general receptor for 3-phosphoinositides (GRP1). We demonstrate that PITs inhibit PIP3/ARNO or GRP1 PH domain binding and membrane localization, resulting in the inhibition of ARF6 activation. Importantly, we show that expression of the constitutively active mutant of Arf6 attenuates inhibition of lamellipodia formation and cell migration by PITs, confirming that inhibition of Arf6 contributes to inhibition of these processes by PITs. Overall, our studies demonstrate the feasibility of developing specific small molecule targeting PIP3 binding by PH domains as potential anti-cancer agents that can simultaneously interfere with cancer development at multiple points.
Collapse
|
111
|
Rowland MM, Gong D, Bostic HE, Lucas N, Cho W, Best MD. Microarray analysis of Akt PH domain binding employing synthetic biotinylated analogs of all seven phosphoinositide headgroup isomers. Chem Phys Lipids 2011; 165:207-15. [PMID: 22178158 DOI: 10.1016/j.chemphyslip.2011.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/29/2011] [Accepted: 12/02/2011] [Indexed: 12/19/2022]
Abstract
Signaling lipids control many of the most important biological pathways, typically by recruiting cognate protein binding targets to cell surfaces, thereby regulating both their function and subcellular localization. A critical family of signaling lipids is that of the phosphatidylinositol polyphosphates (PIP(n)s), which is composed of seven isomers that vary based on phosphorylation pattern. A key protein that is activated upon PIP(n) binding is Akt, which then plays important roles in regulating the cell cycle, and is thus aberrant in disease. Characterization of protein-PIP(n) binding interactions is hindered by the complexity of the membrane environment and of the PIP(n) structures. Herein, we describe two rapid assays of use for characterizing protein-PIP(n) binding interactions. First, a microplate-based binding assay was devised to characterize the binding of effectors to immobilized synthetic PIP(n) headgroup-biotin conjugates corresponding to all seven isomers. The assay was implemented for simultaneous analysis of Akt-PH domain, indicating PI(3,4,5)P(3) and PI(3,4)P(2) as the primary ligands. In addition, density-dependant studies indicated that the amount of ligand immobilized on the surface affected the amplitude of protein binding, but not the affinity, for Akt-PH. Since the PIP(n) ligand motifs used in this analysis lack the membrane environment and glycerolipid backbone, yet still exhibit high-affinity protein binding, these results narrow down the structural requirements for Akt recognition. Additionally, binding detection was also achieved through microarray analysis via the robotic pin printing of ligands onto glass slides in a miniaturized format. Here, fluorescence-based detection provided sensitive detection of binding using minimal amounts of materials. Due to their high-throughput and versatile attributes, these assays provide invaluable tools for probing and perturbing protein-membrane binding interactions.
Collapse
Affiliation(s)
- Meng M Rowland
- Department of Chemistry, The University of Tennessee, Knoxville, TN 37996, United States
| | | | | | | | | | | |
Collapse
|
112
|
Rowland MM, Bostic HE, Gong D, Speers AE, Lucas N, Cho W, Cravatt BF, Best MD. Phosphatidylinositol 3,4,5-trisphosphate activity probes for the labeling and proteomic characterization of protein binding partners. Biochemistry 2011; 50:11143-61. [PMID: 22074223 DOI: 10.1021/bi201636s] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Phosphatidylinositol polyphosphate lipids, such as phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P₃], regulate critical biological processes, many of which are aberrant in disease. These lipids often act as site-specific ligands in interactions that enforce membrane association of protein binding partners. Herein, we describe the development of bifunctional activity probes corresponding to the headgroup of PI(3,4,5)P₃ that are effective for identifying and characterizing protein binding partners from complex samples, namely cancer cell extracts. These probes contain both a photoaffinity tag for covalent labeling of target proteins and a secondary handle for subsequent detection or manipulation of labeled proteins. Probes bearing different secondary tags were exploited, either by direct attachment of a fluorescent dye for optical detection or by using an alkyne that can be derivatized after protein labeling via click chemistry. First, we describe the design and modular synthetic strategy used to generate multiple probes with different reporter tags of use for characterizing probe-labeled proteins. Next, we report initial labeling studies using purified protein, the PH domain of Akt, in which probes were found to label this target, as judged by in-gel detection. Furthermore, protein labeling was abrogated by controls including competition with an unlabeled PI(3,4,5)P₃ headgroup analogue as well as through protein denaturation, indicating specific labeling. In addition, probes featuring linkers of different lengths between the PI(3,4,5)P₃ headgroup and photoaffinity tag led to variations in protein labeling, indicating that a shorter linker was more effective in this case. Finally, proteomic labeling studies were performed using cell extracts; labeled proteins were observed by in-gel detection and characterized using postlabeling with biotin, affinity chromatography, and identification via tandem mass spectrometry. These studies yielded a total of 265 proteins, including both known and novel candidate PI(3,4,5)P₃-binding proteins.
Collapse
Affiliation(s)
- Meng M Rowland
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Lumb C, He J, Xue Y, Stansfeld P, Stahelin R, Kutateladze T, Sansom M. Biophysical and computational studies of membrane penetration by the GRP1 pleckstrin homology domain. Structure 2011; 19:1338-46. [PMID: 21893292 PMCID: PMC3173609 DOI: 10.1016/j.str.2011.04.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 04/26/2011] [Accepted: 04/28/2011] [Indexed: 11/20/2022]
Abstract
The pleckstrin homology (PH) domain of the general receptor for phosphoinositides 1 (GRP1) exhibits specific, high-affinity, reversible binding to phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P(3)) at the plasma membrane, but the nature and extent of the interaction between this bound complex and the surrounding membrane environment remains unclear. Combining equilibrium and nonequilibrium molecular dynamics (MD) simulations, NMR spectroscopy, and monolayer penetration experiments, we characterize the membrane-associated state of GRP1-PH. MD simulations show loops flanking the binding site supplement the interaction with PI(3,4,5)P(3) through multiple contacts with the lipid bilayer. NMR data show large perturbations in chemical shift for these loop regions on binding to PI(3,4,5)P(3)-containing DPC micelles. Monolayer penetration experiments and further MD simulations demonstrate that mutating hydrophobic residues to polar residues in the flanking loops reduces membrane penetration. This supports a "dual-recognition" model of binding, with specific GRP1-PH-PI(3,4,5)P(3) interactions supplemented by interactions of loop regions with the lipid bilayer.
Collapse
Affiliation(s)
- Craig N. Lumb
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Ju He
- Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Yi Xue
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine–South Bend, South Bend, IN 46617, USA
| | | | - Robert V. Stahelin
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine–South Bend, South Bend, IN 46617, USA
- Department of Chemistry and Biochemistry and The Walther Center for Cancer Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Tatiana G. Kutateladze
- Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Mark S.P. Sansom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
114
|
Thompson JL, Shuttleworth TJ. Orai channel-dependent activation of phospholipase C-δ: a novel mechanism for the effects of calcium entry on calcium oscillations. J Physiol 2011; 589:5057-69. [PMID: 21878525 DOI: 10.1113/jphysiol.2011.214437] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The frequency of oscillatory Ca(2+) signals is a major determinant in the selective activation of discrete downstream responses in non-excitable cells. An important modulator of this oscillation frequency is known to be the rate of agonist-activated Ca(2+) entry. However precisely how this is achieved and the respective roles of store-operated versus store-independent Ca(2+) entry pathways in achieving this are unclear. Here, we examine the possibility that a direct stimulation of a phospholipase C (PLC) by the entering Ca(2+) can induce a modulation of Ca(2+) oscillation frequency, and examine the roles of the endogenous store-operated and store-independent Orai channels (CRAC and ARC channels, respectively) in such a mechanism. Using the decline in the magnitude of currents through expressed PIP(2)-dependent Kir2.1 channels as a sensitive assay for PLC activity, we show that simple global increases in Ca(2+) concentrations over the physiological range do not significantly affect PLC activity. Similarly, maximal activation of endogenous CRAC channels also fails to affect PLC activity. In contrast, equivalent activation of endogenous ARC channels resulted in a 10-fold increase in the measured rate of PIP(2) depletion. Further experiments show that this effect is strictly dependent on the Ca(2+) entering via these channels, rather than the gating of the channels or the arachidonic acid used to activate them, and that it reflects the activation of a PLCδ by local Ca(2+) concentrations immediately adjacent to the active channels. Finally, based on the effects of expression of either a dominant-negative mutant Orai3 that is an essential component of the ARC channel, or a catalytically compromised mutant PLCδ, it was shown that this specific action of the store-independent ARC channel-mediated Ca(2+) entry on PLCδ has a significant impact on the oscillation frequency of the Ca(2+) signals activated by low concentrations of agonist.
Collapse
Affiliation(s)
- Jill L Thompson
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
115
|
Baumann MK, Swann MJ, Textor M, Reimhult E. Pleckstrin Homology-Phospholipase C-δ1 Interaction with Phosphatidylinositol 4,5-Bisphosphate Containing Supported Lipid Bilayers Monitored in Situ with Dual Polarization Interferometry. Anal Chem 2011; 83:6267-74. [DOI: 10.1021/ac2009178] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Martina K. Baumann
- Department of Materials, Laboratory for Surface Science and Technology (LSST), ETH Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | - Marcus J. Swann
- Farfield Group, Farfield House, Southmere Court, Electra Way, Crewe Business Park, Crewe CW1 6GU, United Kingdom
| | - Marcus Textor
- Department of Materials, Laboratory for Surface Science and Technology (LSST), ETH Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | - Erik Reimhult
- Department of Materials, Laboratory for Surface Science and Technology (LSST), ETH Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Vienna, Austria
| |
Collapse
|
116
|
Kukkonen JP. A ménage à trois made in heaven: G-protein-coupled receptors, lipids and TRP channels. Cell Calcium 2011; 50:9-26. [DOI: 10.1016/j.ceca.2011.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/21/2011] [Accepted: 04/22/2011] [Indexed: 12/15/2022]
|
117
|
Jackson S, Sugiman-Marangos S, Cheung K, Junop M. Crystallization and preliminary diffraction analysis of truncated human pleckstrin. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:412-6. [PMID: 21393855 DOI: 10.1107/s174430911005092x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 12/04/2010] [Indexed: 01/11/2023]
Abstract
Pleckstrin is a major substrate of protein kinase C in platelets and leukocytes and appears to play an important role in exocytosis through a currently unknown mechanism. Pleckstrin function is regulated by phosphorylation, which is thought to cause dissociation of pleckstrin dimers, thereby facilitating phosphoinositide interactions and membrane localization. Evidence also exists suggesting that phosphorylation causes a subtle conformational change in pleckstrin. Structural studies of pleckstrin have been initiated in order to characterize these structural changes and ultimately advance understanding of pleckstrin function. Here, the crystallization and preliminary X-ray diffraction analysis of a truncated version of pleckstrin consisting of the N-terminal PH domain, the protein kinase C phosphorylation sites and the DEP domain (NPHDEP) are reported. In addition, the oligomeric state and phospholipid-binding properties of NPHDEP were analyzed. This work demonstrates that NPHDEP behaves as a monomer in solution and suggests that all three pleckstrin domains contribute to the dimerization interface. Furthermore, based on the binding properties of NPHDEP, the C-terminal PH domain appears to increase the specificity of pleckstrin for phosphoinositides. This work represents a significant step towards determining the structure of pleckstrin.
Collapse
Affiliation(s)
- Sean Jackson
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | |
Collapse
|
118
|
Jackson SG, Al-Saigh S, Schultz C, Junop MS. Inositol pentakisphosphate isomers bind PH domains with varying specificity and inhibit phosphoinositide interactions. BMC STRUCTURAL BIOLOGY 2011; 11:11. [PMID: 21310079 PMCID: PMC3042905 DOI: 10.1186/1472-6807-11-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 02/10/2011] [Indexed: 01/07/2023]
Abstract
BACKGROUND PH domains represent one of the most common domains in the human proteome. These domains are recognized as important mediators of protein-phosphoinositide and protein-protein interactions. Phosphoinositides are lipid components of the membrane that function as signaling molecules by targeting proteins to their sites of action. Phosphoinositide based signaling pathways govern a diverse range of important cellular processes including membrane remodeling, differentiation, proliferation and survival. Myo-Inositol phosphates are soluble signaling molecules that are structurally similar to the head groups of phosphoinositides. These molecules have been proposed to function, at least in part, by regulating PH domain-phosphoinositide interactions. Given the structural similarity of inositol phosphates we were interested in examining the specificity of PH domains towards the family of myo-inositol pentakisphosphate isomers. RESULTS In work reported here we demonstrate that the C-terminal PH domain of pleckstrin possesses the specificity required to discriminate between different myo-inositol pentakisphosphate isomers. The structural basis for this specificity was determined using high-resolution crystal structures. Moreover, we show that while the PH domain of Grp1 does not possess this high degree of specificity, the PH domain of protein kinase B does. CONCLUSIONS These results demonstrate that some PH domains possess enough specificity to discriminate between myo-inositol pentakisphosphate isomers allowing for these molecules to differentially regulate interactions with phosphoinositides. Furthermore, this work contributes to the growing body of evidence supporting myo-inositol phosphates as regulators of important PH domain-phosphoinositide interactions. Finally, in addition to expanding our knowledge of cellular signaling, these results provide a basis for developing tools to probe biological pathways.
Collapse
Affiliation(s)
- Sean G Jackson
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, ON, L8N 3Z5, Canada
| | - Sarra Al-Saigh
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, ON, L8N 3Z5, Canada
| | - Carsten Schultz
- Cell Biology and Cell Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Murray S Junop
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, ON, L8N 3Z5, Canada
| |
Collapse
|
119
|
Jesch SA, Gaspar ML, Stefan CJ, Aregullin MA, Henry SA. Interruption of inositol sphingolipid synthesis triggers Stt4p-dependent protein kinase C signaling. J Biol Chem 2010; 285:41947-60. [PMID: 20972263 PMCID: PMC3009921 DOI: 10.1074/jbc.m110.188607] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 10/22/2010] [Indexed: 11/06/2022] Open
Abstract
The protein kinase C (PKC)-MAPK signaling cascade is activated and is essential for viability when cells are starved for the phospholipid precursor inositol. In this study, we report that inhibiting inositol-containing sphingolipid metabolism, either by inositol starvation or treatment with agents that block sphingolipid synthesis, triggers PKC signaling independent of sphingoid base accumulation. Under these same growth conditions, a fluorescent biosensor that detects the necessary PKC signaling intermediate, phosphatidylinositol (PI)-4-phosphate (PI4P), is enriched on the plasma membrane. The appearance of the PI4P biosensor on the plasma membrane correlates with PKC activation and requires the PI 4-kinase Stt4p. Like other mutations in the PKC-MAPK pathway, mutants defective in Stt4p and the PI4P 5-kinase Mss4p, which generates phosphatidylinositol 4,5-bisphosphate, exhibit inositol auxotrophy, yet fully derepress INO1, encoding inositol-3-phosphate synthase. These observations suggest that inositol-containing sphingolipid metabolism controls PKC signaling by regulating access of the signaling lipids PI4P and phosphatidylinositol 4,5-bisphosphate to effector proteins on the plasma membrane.
Collapse
Affiliation(s)
| | | | - Christopher J. Stefan
- From the Department of Molecular Biology and Genetics and
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853
| | | | - Susan A. Henry
- From the Department of Molecular Biology and Genetics and
| |
Collapse
|
120
|
Moravcevic K, Mendrola JM, Schmitz KR, Wang YH, Slochower D, Janmey PA, Lemmon MA. Kinase associated-1 domains drive MARK/PAR1 kinases to membrane targets by binding acidic phospholipids. Cell 2010; 143:966-77. [PMID: 21145462 PMCID: PMC3031122 DOI: 10.1016/j.cell.2010.11.028] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 08/03/2010] [Accepted: 11/01/2010] [Indexed: 12/26/2022]
Abstract
Phospholipid-binding modules such as PH, C1, and C2 domains play crucial roles in location-dependent regulation of many protein kinases. Here, we identify the KA1 domain (kinase associated-1 domain), found at the C terminus of yeast septin-associated kinases (Kcc4p, Gin4p, and Hsl1p) and human MARK/PAR1 kinases, as a membrane association domain that binds acidic phospholipids. Membrane localization of isolated KA1 domains depends on phosphatidylserine. Using X-ray crystallography, we identified a structurally conserved binding site for anionic phospholipids in KA1 domains from Kcc4p and MARK1. Mutating this site impairs membrane association of both KA1 domains and intact proteins and reveals the importance of phosphatidylserine for bud neck localization of yeast Kcc4p. Our data suggest that KA1 domains contribute to "coincidence detection," allowing kinases to bind other regulators (such as septins) only at the membrane surface. These findings have important implications for understanding MARK/PAR1 kinases, which are implicated in Alzheimer's disease, cancer, and autism.
Collapse
Affiliation(s)
- Katarina Moravcevic
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Jeannine M. Mendrola
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Karl R. Schmitz
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Yu-Hsiu Wang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - David Slochower
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - Paul A. Janmey
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Mark A. Lemmon
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
121
|
Wang JTH, Kerr MC, Karunaratne S, Jeanes A, Yap AS, Teasdale RD. The SNX-PX-BAR family in macropinocytosis: the regulation of macropinosome formation by SNX-PX-BAR proteins. PLoS One 2010; 5:e13763. [PMID: 21048941 PMCID: PMC2966440 DOI: 10.1371/journal.pone.0013763] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 10/08/2010] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Macropinocytosis is an actin-driven endocytic process, whereby membrane ruffles fold back onto the plasma membrane to form large (>0.2 µm in diameter) endocytic organelles called macropinosomes. Relative to other endocytic pathways, little is known about the molecular mechanisms involved in macropinocytosis. Recently, members of the Sorting Nexin (SNX) family have been localized to the cell surface and early macropinosomes, and implicated in macropinosome formation. SNX-PX-BAR proteins form a subset of the SNX family and their lipid-binding (PX) and membrane-curvature sensing (BAR) domain architecture further implicates their functional involvement in macropinosome formation. METHODOLOGY/PRINCIPAL FINDINGS We exploited the tractability of macropinosomes through image-based screening and systematic overexpression of SNX-PX-BAR proteins to quantitate their effect on macropinosome formation. SNX1 (40.9+/-3.19 macropinosomes), SNX5 (36.99+/-4.48 macropinosomes), SNX9 (37.55+/-2.4 macropinosomes), SNX18 (88.2+/-8 macropinosomes), SNX33 (65.25+/-6.95 macropinosomes) all exhibited statistically significant (p<0.05) increases in average macropinosome numbers per 100 transfected cells as compared to control cells (24.44+/-1.81 macropinosomes). SNX1, SNX5, SNX9, and SNX18 were also found to associate with early-stage macropinosomes within 5 minutes following organelle formation. The modulation of intracellular PI(3,4,5)P(3) levels through overexpression of PTEN or a lipid phosphatase-deficient mutant PTEN(G129E) was also observed to significantly reduce or elevate macropinosome formation respectively; coexpression of PTEN(G129E) with SNX9 or SNX18 synergistically elevated macropinosome formation to 119.4+/-7.13 and 91.4+/-6.37 macropinosomes respectively (p<0.05). CONCLUSIONS/SIGNIFICANCE SNX1, SNX5, SNX9, SNX18, and SNX33 were all found to elevate macropinosome formation and (with the exception of SNX33) associate with early-stage macropinosomes. Moreover the effects of SNX9 and SNX18 overexpression in elevating macropinocytosis is likely to be synergistic with the increase in PI(3,4,5)P(3) levels, which is known to accumulate on the cell surface and early-stage macropinocytic cups. Together these findings represent the first systematic functional study into the impact of the SNX-PX-BAR family on macropinocytosis.
Collapse
Affiliation(s)
- Jack T. H. Wang
- Institute for Molecular Bioscience and Australia Research Council (ARC) Centre of Excellence in Bioinformatics, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Markus C. Kerr
- Institute for Molecular Bioscience and Australia Research Council (ARC) Centre of Excellence in Bioinformatics, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Seetha Karunaratne
- Institute for Molecular Bioscience and Australia Research Council (ARC) Centre of Excellence in Bioinformatics, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Angela Jeanes
- Institute for Molecular Bioscience and Australia Research Council (ARC) Centre of Excellence in Bioinformatics, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Alpha S. Yap
- Institute for Molecular Bioscience and Australia Research Council (ARC) Centre of Excellence in Bioinformatics, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Rohan D. Teasdale
- Institute for Molecular Bioscience and Australia Research Council (ARC) Centre of Excellence in Bioinformatics, The University of Queensland, St. Lucia, Brisbane, Australia
- * E-mail:
| |
Collapse
|
122
|
Chung SH, Kim SK, Kim JK, Yang YR, Suh PG, Chang JS. A double point mutation in PCL-gamma1 (Y509A/F510A) enhances Y783 phosphorylation and inositol phospholipid-hydrolyzing activity upon EGF stimulation. Exp Mol Med 2010; 42:216-27. [PMID: 20164676 DOI: 10.3858/emm.2010.42.3.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Growth factor stimulation induces Y783 phosphorylation of phosphoinositide-specific PLC-gamma1, and the subsequent activation of this enzyme in a cellular signaling cascade. Previously, we showed that a double point mutation, Y509A/F510A, of PLC-gamma1, abolished interactions with translational elongation factor 1-alpha. Here, we report that the Y509A/F510A mutant PLC-gamma1 displayed extremely high levels of Y783 phosphorylation and enhanced catalytic activity, compared to wild-type PLC-gamma1, upon treatment of COS7 cells with EGF. In quiescent COS7 cells, the Y509A/F510A mutant PLC-gamma1 exhibited a constitutive hydrolytic activity, whereas the wild-type counterpart displayed a basal level of activity. Upon treatment of COS7 cells with EGF, the Y783F mutation in Y509A/F510A PLC-gamma1 (Y509A/F510A/Y783F triple mutant) cells also led to an enhanced catalytic activity, whereas Y783F mutation alone displayed a basal level of activity. Our results collectively suggest that the Y509A/F510A mutant is more susceptible to receptor tyrosine kinase-induced Y783 phosphorylation than is wild-type PLC-gamma1, but no longer requires Y783 phosphorylation step for the Y509A/F510A mutant PLC-gamma1 activation in vivo.
Collapse
Affiliation(s)
- Sang Hee Chung
- Department of Life Science, College of Natural Science, Daejin University, Pocheon 487-711, Korea
| | | | | | | | | | | |
Collapse
|
123
|
DiNitto JP, Lee MT, Malaby AW, Lambright DG. Specificity and membrane partitioning of Grsp1 signaling complexes with Grp1 family Arf exchange factors. Biochemistry 2010; 49:6083-92. [PMID: 20527794 PMCID: PMC2912425 DOI: 10.1021/bi1000454] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Arf exchange factor Grp1 selectively binds phosphatidylinositol 3,4,5-triphosphate [PtdIns(3,4,5)P(3)], which is required for recruitment to the plasma membrane in stimulated cells. The mechanisms for phosphoinositide recognition by the PH domain, catalysis of nucleotide exchange by the Sec7 domain, and autoinhibition by elements proximal to the PH domain are well-characterized. The N-terminal heptad repeats in Grp1 have also been shown to mediate homodimerization in vitro as well as heteromeric interactions with heptad repeats in the FERM domain-containing protein Grsp1 both in vitro and in cells [Klarlund, J. K., et al. (2001) J. Biol. Chem. 276, 40065-40070]. Here, we have characterized the oligomeric state of Grsp1 and Grp1 family proteins (Grp1, ARNO, and Cytohesin-1) as well as the oligomeric state, stoichiometry, and specificity of Grsp1 complexes with Grp1, ARNO, and Cytohesin-1. At low micromolar concentrations, Grp1 and ARNO are homodimeric whereas Cytohesin-1 and Grsp1 are monomeric. When mixed with Grsp1, Grp1 homodimers and Cytohesin-1 monomers spontaneously re-equilibrate to form heterodimers, whereas approximately 50% of ARNO remains homodimeric under the same conditions. Fluorescence resonance energy transfer experiments suggest that the Grsp1 heterodimers with Grp1 and Cytohesin-1 adopt a largely antiparallel orientation. Finally, formation of Grsp1-Grp1 heterodimers does not substantially influence the binding of Grp1 to the headgroups of PtdIns(3,4,5)P(3) or PtdIns(4,5)P(2), nor does it influence partitioning with liposomes containing PtdIns(3,4,5)P(3), PtdIns(4,5)P(2), and/or phosphatidylserine.
Collapse
Affiliation(s)
| | - Meng-Tse Lee
- Program in Molecular Medicine and Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Andrew W. Malaby
- Program in Molecular Medicine and Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - David G. Lambright
- Program in Molecular Medicine and Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
124
|
Logothetis DE, Petrou VI, Adney SK, Mahajan R. Channelopathies linked to plasma membrane phosphoinositides. Pflugers Arch 2010; 460:321-41. [PMID: 20396900 PMCID: PMC4040125 DOI: 10.1007/s00424-010-0828-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 03/11/2010] [Accepted: 03/13/2010] [Indexed: 02/07/2023]
Abstract
The plasma membrane phosphoinositide phosphatidylinositol 4,5-bisphosphate (PIP2) controls the activity of most ion channels tested thus far through direct electrostatic interactions. Mutations in channel proteins that change their apparent affinity to PIP2 can lead to channelopathies. Given the fundamental role that membrane phosphoinositides play in regulating channel activity, it is surprising that only a small number of channelopathies have been linked to phosphoinositides. This review proposes that for channels whose activity is PIP2-dependent and for which mutations can lead to channelopathies, the possibility that the mutations alter channel-PIP2 interactions ought to be tested. Similarly, diseases that are linked to disorders of the phosphoinositide pathway result in altered PIP2 levels. In such cases, it is proposed that the possibility for a concomitant dysregulation of channel activity also ought to be tested. The ever-growing list of ion channels whose activity depends on interactions with PIP2 promises to provide a mechanism by which defects on either the channel protein or the phosphoinositide levels can lead to disease.
Collapse
Affiliation(s)
- Diomedes E Logothetis
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA.
| | | | | | | |
Collapse
|
125
|
Sakaguchi R, Tainaka K, Shimada N, Nakano S, Inoue M, Kiyonaka S, Mori Y, Morii T. An in vivo fluorescent sensor reveals intracellular ins(1,3,4,5)P4 dynamics in single cells. Angew Chem Int Ed Engl 2010; 49:2150-3. [PMID: 19899175 DOI: 10.1002/anie.200903951] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Reiko Sakaguchi
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Zhang TT, Li H, Cheung SM, Costantini JL, Hou S, Al-Alwan M, Marshall AJ. Phosphoinositide 3-kinase-regulated adapters in lymphocyte activation. Immunol Rev 2010; 232:255-72. [PMID: 19909369 DOI: 10.1111/j.1600-065x.2009.00838.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Signaling via phosphoinositide 3-kinases (PI3Ks) has emerged as a central component of lymphocyte activation via immunoreceptors, costimulatory receptors, cytokine receptors, and chemokine receptors. The discovery of phosphoinositide-binding pleckstrin homology (PH) domains has substantially increased understanding of how PI3Ks activate cellular responses. Accumulating evidence indicates that PH-domain containing adapter molecules provide important links between PI3K and lymphocyte function. Here, we review data on PI3K-regulated adapter proteins of the Grb-associated binder (GAB), Src kinase-associated phosphoprotein (SKAP), and B-lymphocyte adapter molecule of 32 kDa (Bam32)/ dual-adapter for phosphotyrosine and 3-phosphoinositides (DAPP)/TAPP families, with a focus on the latter group. Current data support the model that recruitment of these adapters to the plasma membrane of activated lymphocytes is driven by the phosphoinositides phosphatidylinositol-3,4,5-tris-phosphate and phosphatidylinositol-3,4-bisphosphate, generated through the action of PI3Ks and under the regulatory control of lipid phosphatases Src homology 2 domain-containing inositol phosphatase (SHIP), phosphatase and tensin homolog, and inositol polyphosphate 4-phosphatase. At the plasma membrane, these adapters serve to assemble distinct protein complexes. Bam32/DAPP1 and SKAPs function to promote activation of monomeric guanosine triphosphatases, including Rac and Rap, and promote integrin activation, lymphocyte adhesion to matrix proteins, and cell:cell interactions between B and T lymphocytes. GABs can provide feedforward amplification or feedback inhibition of PI3K signaling. Current work is further defining the molecular interactions driven by these molecules and identifying the functions of TAPP adapters, which also appear to be involved in lymphocyte adhesion and are specific effectors downstream of the SHIP product phosphatidylinositol-3,4-bisphosphate.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | | | | | |
Collapse
|
127
|
Tang QY, Zhang Z, Xia J, Ren D, Logothetis DE. Phosphatidylinositol 4,5-bisphosphate activates Slo3 currents and its hydrolysis underlies the epidermal growth factor-induced current inhibition. J Biol Chem 2010; 285:19259-66. [PMID: 20392696 PMCID: PMC2885204 DOI: 10.1074/jbc.m109.100156] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 03/20/2010] [Indexed: 11/06/2022] Open
Abstract
The Slo3 gene encodes a high conductance potassium channel, which is activated by both voltage and intracellular alkalinization. Slo3 is specifically expressed in mammalian sperm cells, where it gives rise to pH-dependent outwardly rectifying K(+) currents. Sperm Slo3 is the main current responsible for the capacitation-induced hyperpolarization, which is required for the ensuing acrosome reaction, an exocytotic process essential for fertilization. Here we show that in intact spermatozoa and in a heterologous expression system, the activation of Slo3 currents is regulated by phosphatidylinositol 4,5-bisphosphate (PIP(2)). Depletion of endogenous PIP(2) in inside-out macropatches from Xenopus oocytes inhibited heterologously expressed Slo3 currents. Whole-cell recordings of sperm Slo3 currents or of Slo3 channels co-expressed in Xenopus oocytes with epidermal growth factor receptor, demonstrated that stimulation by epidermal growth factor (EGF) could inhibit channel activity in a PIP(2)-dependent manner. High concentrations of PIP(2) in the patch pipette not only resulted in a strong increase in sperm Slo3 current density but also prevented the EGF-induced inhibition of this current. Mutation of positively charged residues involved in channel-PIP(2) interactions enhanced the EGF-induced inhibition of Slo3 currents. Overall, our results suggest that PIP(2) is an important regulator for Slo3 activation and that receptor-mediated hydrolysis of PIP(2) leads to inhibition of Slo3 currents both in native and heterologous expression systems.
Collapse
Affiliation(s)
- Qiong-Yao Tang
- From the Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298-0551 and
| | - Zhe Zhang
- From the Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298-0551 and
| | - Jingsheng Xia
- the Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Dejian Ren
- the Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Diomedes E. Logothetis
- From the Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298-0551 and
| |
Collapse
|
128
|
Anraku K, Fukuda R, Takamune N, Misumi S, Okamoto Y, Otsuka M, Fujita M. Highly Sensitive Analysis of the Interaction between HIV-1 Gag and Phosphoinositide Derivatives Based on Surface Plasmon Resonance. Biochemistry 2010; 49:5109-16. [DOI: 10.1021/bi9019274] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kensaku Anraku
- Institute of Health Sciences, Kumamoto Health Science University, 325 Izumi-machi, Kumamoto 861-5598, Japan
| | - Ryota Fukuda
- Department of Bioorganic Medicinal Chemistry, Faculty of Life Sciences
| | | | - Shogo Misumi
- Department of Pharmaceutical Biochemistry, Faculty of Life Sciences
| | - Yoshinari Okamoto
- Department of Bioorganic Medicinal Chemistry, Faculty of Life Sciences
| | - Masami Otsuka
- Department of Bioorganic Medicinal Chemistry, Faculty of Life Sciences
| | - Mikako Fujita
- Research Institute for Drug Discovery, School of Pharmacy
| |
Collapse
|
129
|
Inhibition of the PtdIns(5) kinase PIKfyve disrupts intracellular replication of Salmonella. EMBO J 2010; 29:1331-47. [PMID: 20300065 DOI: 10.1038/emboj.2010.28] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 02/10/2010] [Indexed: 01/15/2023] Open
Abstract
3-phosphorylated phosphoinositides (3-PtdIns) orchestrate endocytic trafficking pathways exploited by intracellular pathogens such as Salmonella to gain entry into the cell. To infect the host, Salmonellae subvert its normal macropinocytic activity, manipulating the process to generate an intracellular replicative niche. Disruption of the PtdIns(5) kinase, PIKfyve, be it by interfering mutant, siRNA-mediated knockdown or pharmacological means, inhibits the intracellular replication of Salmonella enterica serovar typhimurium in epithelial cells. Monitoring the dynamics of macropinocytosis by time-lapse 3D (4D) videomicroscopy revealed a new and essential role for PI(3,5)P(2) in macropinosome-late endosome/lysosome fusion, which is distinct from that of the small GTPase Rab7. This PI(3,5)P(2)-dependent step is required for the proper maturation of the Salmonella-containing vacuole (SCV) through the formation of Salmonella-induced filaments (SIFs) and for the engagement of the Salmonella pathogenicity island 2-encoded type 3 secretion system (SPI2-T3SS). Finally, although inhibition of PIKfyve in macrophages did inhibit Salmonella replication, it also appears to disrupt the macrophage's bactericidal response.
Collapse
|
130
|
Sakaguchi R, Tainaka K, Shimada N, Nakano S, Inoue M, Kiyonaka S, Mori Y, Morii T. An In Vivo Fluorescent Sensor Reveals Intracellular Ins(1,3,4,5)P4Dynamics in Single Cells. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200903951] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
131
|
He B, Yu X, Margolis M, Liu X, Leng X, Etzion Y, Zheng F, Lu N, Quiocho FA, Danino D, Zhou Z. Live-cell imaging in Caenorhabditis elegans reveals the distinct roles of dynamin self-assembly and guanosine triphosphate hydrolysis in the removal of apoptotic cells. Mol Biol Cell 2010; 21:610-29. [PMID: 20016007 PMCID: PMC2820425 DOI: 10.1091/mbc.e09-05-0440] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 11/16/2009] [Accepted: 12/04/2009] [Indexed: 12/20/2022] Open
Abstract
Dynamins are large GTPases that oligomerize along membranes. Dynamin's membrane fission activity is believed to underlie many of its physiological functions in membrane trafficking. Previously, we reported that DYN-1 (Caenorhabditis elegans dynamin) drove the engulfment and degradation of apoptotic cells through promoting the recruitment and fusion of intracellular vesicles to phagocytic cups and phagosomes, an activity distinct from dynamin's well-known membrane fission activity. Here, we have detected the oligomerization of DYN-1 in living C. elegans embryos and identified DYN-1 mutations that abolish DYN-1's oligomerization or GTPase activities. Specifically, abolishing self-assembly destroys DYN-1's association with the surfaces of extending pseudopods and maturing phagosomes, whereas inactivating guanosine triphosphate (GTP) binding blocks the dissociation of DYN-1 from these membranes. Abolishing the self-assembly or GTPase activities of DYN-1 leads to common as well as differential phagosomal maturation defects. Whereas both types of mutations cause delays in the transient enrichment of the RAB-5 GTPase to phagosomal surfaces, only the self-assembly mutation but not GTP binding mutation causes failure in recruiting the RAB-7 GTPase to phagosomal surfaces. We propose that during cell corpse removal, dynamin's self-assembly and GTP hydrolysis activities establish a precise dynamic control of DYN-1's transient association to its target membranes and that this control mechanism underlies the dynamic recruitment of downstream effectors to target membranes.
Collapse
Affiliation(s)
- Bin He
- *Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030; and
| | - Xiaomeng Yu
- *Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030; and
| | - Moran Margolis
- Department of Biotechnology and Food Engineering, Technion, Haifa 32000, Israel
| | - Xianghua Liu
- *Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030; and
| | - Xiaohong Leng
- *Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030; and
| | - Yael Etzion
- Department of Biotechnology and Food Engineering, Technion, Haifa 32000, Israel
| | - Fei Zheng
- *Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030; and
| | - Nan Lu
- *Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030; and
| | - Florante A. Quiocho
- *Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030; and
| | - Dganit Danino
- Department of Biotechnology and Food Engineering, Technion, Haifa 32000, Israel
| | - Zheng Zhou
- *Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030; and
| |
Collapse
|
132
|
Bal M, Zhang J, Hernandez CC, Zaika O, Shapiro MS. Ca2+/calmodulin disrupts AKAP79/150 interactions with KCNQ (M-Type) K+ channels. J Neurosci 2010; 30:2311-23. [PMID: 20147557 PMCID: PMC2832802 DOI: 10.1523/jneurosci.5175-09.2010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/15/2009] [Accepted: 12/20/2009] [Indexed: 01/07/2023] Open
Abstract
M-type channels are localized to neuronal, cardiovascular, and epithelial tissues, where they play critical roles in control of excitability and K(+) transport, and are regulated by numerous receptors via G(q/11)-mediated signals. One pathway shown for KCNQ2 and muscarinic receptors uses PKC, recruited to the channels by A-kinase anchoring protein (AKAP)79/150. As M-type channels can be variously composed of KCNQ1-5 subunits, and M current is known to be regulated by Ca(2+)/calmodulin (CaM) and PIP(2), we probed the generality of AKAP79/150 actions among KCNQ1-5 channels, and the influence of Ca(2+)/CaM and PIP(2) on AKAP79/150 actions. We first examined which KCNQ subunits are targeted by AKAP79 in Chinese hamster ovary (CHO) cells heterologously expressing KCNQ1-5 subunits and AKAP79, using fluorescence resonance energy transfer (FRET) under total internal reflection fluorescence (TIRF) microscopy, and patch-clamp analysis. Donor-dequenching FRET between CFP-tagged KCNQ1-5 and YFP-tagged AKAP79 revealed association of KCNQ2-5, but not KCNQ1, with AKAP79. In parallel with these results, CHO cells stably expressing M(1) receptors studied under perforated patch-clamp showed cotransfection of AKAP79 to "sensitize" KCNQ2/3 heteromers and KCNQ2-5, but not KCNQ1, homomers to muscarinic inhibition, manifested by shifts in the dose-response relations to lower concentrations. The effect on KCNQ4 was abolished by the T553A mutation of the putative PKC phosphorylation site. We then probed the role of CaM and PIP(2) in these AKAP79 actions. TIRF/FRET experiments revealed cotransfection of wild-type, but not dominant-negative (DN), CaM that cannot bind Ca(2+), to disrupt the interaction of YFP-tagged AKAP79(1-153) with CFP-tagged KCNQ2-5. Tonic depletion of PIP(2) by cotransfection of a PIP(2) phosphatase had no effect, and sudden depletion of PIP(2) did not delocalize GFP-tagged AKAP79 from the membrane. Finally, patch-clamp experiments showed cotransfection of wild-type, but not DN, CaM to prevent the AKAP79-mediated sensitization of KCNQ2/3 heteromers to muscarinic inhibition. Thus, AKAP79 acts on KCNQ2-5, but not KCNQ1-containing channels, with effects disrupted by calcified CaM, but not by PIP(2) depletion.
Collapse
Affiliation(s)
- Manjot Bal
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Jie Zhang
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Ciria C. Hernandez
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Oleg Zaika
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Mark S. Shapiro
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| |
Collapse
|
133
|
Saarikangas J, Zhao H, Lappalainen P. Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Physiol Rev 2010; 90:259-89. [PMID: 20086078 DOI: 10.1152/physrev.00036.2009] [Citation(s) in RCA: 376] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The plasma membrane and the underlying cortical actin cytoskeleton undergo continuous dynamic interplay that is responsible for many essential aspects of cell physiology. Polymerization of actin filaments against cellular membranes provides the force for a number of cellular processes such as migration, morphogenesis, and endocytosis. Plasma membrane phosphoinositides (especially phosphatidylinositol bis- and trisphosphates) play a central role in regulating the organization and dynamics of the actin cytoskeleton by acting as platforms for protein recruitment, by triggering signaling cascades, and by directly regulating the activities of actin-binding proteins. Furthermore, a number of actin-associated proteins, such as BAR domain proteins, are capable of directly deforming phosphoinositide-rich membranes to induce plasma membrane protrusions or invaginations. Recent studies have also provided evidence that the actin cytoskeleton-plasma membrane interactions are misregulated in a number of pathological conditions such as cancer and during pathogen invasion. Here, we summarize the wealth of knowledge on how the cortical actin cytoskeleton is regulated by phosphoinositides during various cell biological processes. We also discuss the mechanisms by which interplay between actin dynamics and certain membrane deforming proteins regulate the morphology of the plasma membrane.
Collapse
Affiliation(s)
- Juha Saarikangas
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
134
|
Beemiller P, Zhang Y, Mohan S, Levinsohn E, Gaeta I, Hoppe AD, Swanson JA. A Cdc42 activation cycle coordinated by PI 3-kinase during Fc receptor-mediated phagocytosis. Mol Biol Cell 2010; 21:470-80. [PMID: 19955216 PMCID: PMC2814791 DOI: 10.1091/mbc.e08-05-0494] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 11/09/2008] [Accepted: 11/19/2009] [Indexed: 11/15/2022] Open
Abstract
Fcgamma Receptor (FcR)-mediated phagocytosis by macrophages requires phosphatidylinositol 3-kinase (PI3K) and activation of the Rho-family GTPases Cdc42 and Rac1. Cdc42 is activated at the advancing edge of the phagocytic cup, where actin is concentrated, and is deactivated at the base of the cup. The timing of 3' phosphoinositide (3'PI) concentration changes in cup membranes suggests a role for 3'PIs in deactivation of Cdc42. This study examined the relationships between PI3K and the patterns of Rho-family GTPase signaling during phagosome formation. Inhibition of PI3K resulted in persistently active Cdc42 and Rac1, but not Rac2, in stalled phagocytic cups. Patterns of 3'PIs and Rho-family GTPase activities during phagocytosis of 5- and 2-mum-diameter microspheres indicated similar underlying mechanisms despite particle size-dependent sensitivities to PI3K inhibition. Expression of constitutively active Cdc42(G12V) increased 3'PI concentrations in plasma membranes and small phagosomes, indicating a role for Cdc42 in PI3K activation. Cdc42(G12V) inhibited phagocytosis at a later stage than inhibition by dominant negative Cdc42(N17). Together, these studies identified a Cdc42 activation cycle organized by PI3K, in which FcR-activated Cdc42 stimulates PI3K and actin polymerization, and the subsequent increase of 3'PIs in cup membranes inactivates Cdc42 to allow actin recycling necessary for phagosome formation.
Collapse
Affiliation(s)
| | - Youxin Zhang
- Biophysics Graduate Program, University of Michigan, Ann Arbor, MI 48109-1055
| | - Suresh Mohan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620; and
| | - Erik Levinsohn
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620; and
| | - Isabella Gaeta
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620; and
| | - Adam D. Hoppe
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620; and
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007-0896
| | - Joel A. Swanson
- *Cellular and Molecular Biology Graduate Program, and
- Biophysics Graduate Program, University of Michigan, Ann Arbor, MI 48109-1055
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620; and
| |
Collapse
|
135
|
Best MD, Zhang H, Prestwich GD. Inositol polyphosphates, diphosphoinositol polyphosphates and phosphatidylinositol polyphosphate lipids: Structure, synthesis, and development of probes for studying biological activity. Nat Prod Rep 2010; 27:1403-30. [DOI: 10.1039/b923844c] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
136
|
Wood CS, Schmitz KR, Bessman NJ, Setty TG, Ferguson KM, Burd CG. PtdIns4P recognition by Vps74/GOLPH3 links PtdIns 4-kinase signaling to retrograde Golgi trafficking. J Cell Biol 2009; 187:967-75. [PMID: 20026658 PMCID: PMC2806290 DOI: 10.1083/jcb.200909063] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Targeting and retention of resident integral membrane proteins of the Golgi apparatus underly the function of the Golgi in glycoprotein and glycolipid processing and sorting. In yeast, steady-state Golgi localization of multiple mannosyltransferases requires recognition of their cytosolic domains by the peripheral Golgi membrane protein Vps74, an orthologue of human GOLPH3/GPP34/GMx33/MIDAS (mitochondrial DNA absence sensitive factor). We show that targeting of Vps74 and GOLPH3 to the Golgi apparatus requires ongoing synthesis of phosphatidylinositol (PtdIns) 4-phosphate (PtdIns4P) by the Pik1 PtdIns 4-kinase and that modulation of the levels and cellular location of PtdIns4P leads to mislocalization of these proteins. Vps74 and GOLPH3 bind specifically to PtdIns4P, and a sulfate ion in a crystal structure of GOLPH3 indicates a possible phosphoinositide-binding site that is conserved in Vps74. Alterations in this site abolish phosphoinositide binding in vitro and Vps74 function in vivo. These results implicate Pik1 signaling in retention of Golgi-resident proteins via Vps74 and show that GOLPH3 family proteins are effectors of Golgi PtdIns 4-kinases.
Collapse
Affiliation(s)
- Christopher S. Wood
- Department of Cell and Developmental Biology, Department of Physiology, and Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Karl R. Schmitz
- Department of Cell and Developmental Biology, Department of Physiology, and Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Nicholas J. Bessman
- Department of Cell and Developmental Biology, Department of Physiology, and Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Thanuja Gangi Setty
- Department of Cell and Developmental Biology, Department of Physiology, and Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Kathryn M. Ferguson
- Department of Cell and Developmental Biology, Department of Physiology, and Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Christopher G. Burd
- Department of Cell and Developmental Biology, Department of Physiology, and Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
137
|
Influence of membrane curvature on the structure of the membrane-associated pleckstrin homology domain of phospholipase C-δ1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2575-83. [DOI: 10.1016/j.bbamem.2009.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 10/09/2009] [Accepted: 10/13/2009] [Indexed: 12/25/2022]
|
138
|
Botelho RJ. Changing phosphoinositides "on the fly": how trafficking vesicles avoid an identity crisis. Bioessays 2009; 31:1127-36. [PMID: 19708025 DOI: 10.1002/bies.200900060] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Joining an antagonistic phosphoinositide (PtdInsP) kinase and phosphatase into a single protein complex may regulate rapid and local PtdInsP changes. This may be important for processes such as membrane fission that require a specific PtdInsP and that are innately local and rapid. Such a complex could couple vesicle formation, with erasing of the identity of the donor organelle from the vesicle prior to its fusion with target organelles, thus preventing organelle identity intermixing. Coordinating signals are postulated to switch the relative activities of the kinase and phosphatase in a spatio-temporal manner that matches membrane fission events. The discovery of two such complexes supports this hypothesis. One regulates the interconversion of phosphatidylinositol and PtdIns(3)P by joining the Vps34 PtdIns 3-kinase and the myotubularin 3-phosphatases. The other regulates the interconversion between PtdIns(3)P and PtdIns(3,5)P(2) through the Fab1/PIKfyve kinase and the Fig4/mFig4 phosphatase. These lipids are essential components of the endosomal identity code.
Collapse
Affiliation(s)
- Roberto J Botelho
- Department of Chemistry and Biology, Ryerson University, ON, Canada.
| |
Collapse
|
139
|
ARAP3 binding to phosphatidylinositol-(3,4,5)-trisphosphate depends on N-terminal tandem PH domains and adjacent sequences. Cell Signal 2009; 22:257-64. [PMID: 19786092 DOI: 10.1016/j.cellsig.2009.09.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 09/14/2009] [Indexed: 11/21/2022]
Abstract
Pleckstrin homology (PH) domains are modules characterised by a conserved three-dimensional protein fold. Several PH domains bind phosphoinositides with high affinity and specificity whilst most others do not. ARAP3 is a dual GTPase activating protein for Arf6 and RhoA which was identified in a screen for phosphatidylinositol-(3,4,5)-trisphophate (PtdIns(3,4,5)P(3)) binding proteins. It is a regulator of cell shape and adhesion, and is itself regulated by PtdIns(3,4,5)P(3,) which acts to recruit ARAP3 to the plasma membrane and to catalytically activate it. We show here that ARAP3 binds to PtdIns(3,4,5)P(3) in an unusual, PH domain-dependent manner. None of the five PH domains are sufficient to bind PtdIns(3,4,5)P(3) in isolation. Instead, the minimal PtdIns(3,4,5)P(3) binding fragment comprises ARAP3's N-terminal tandem PH domains, and an N-terminal linker region. For substantial binding, the N-terminal sterile alpha motif (SAM) domain is also required. Site-directed mutagenesis of either of the two N-terminal PH domains within the fragment greatly reduces binding to PtdIns(3,4,5)P(3), however, in the context of the full-length protein, point mutations in the second PH domain have a lesser effect on binding, whilst deletion of any one of the five PH domains abolishes PtdIns(3,4,5)P(3) binding. We propose a mechanism by which basic residues from the N-terminal tandem PH domains, and from elsewhere in the protein synergise to mediate strong, specific PtdIns(3,4,5)P(3) binding.
Collapse
|
140
|
Gong D, Bostic HE, Smith MD, Best MD. Synthesis of Modular Headgroup Conjugates Corresponding to All Seven Phosphatidylinositol Polyphosphate Isomers for Convenient Probe Generation. European J Org Chem 2009. [DOI: 10.1002/ejoc.200900476] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
141
|
Fischer MA, Temmerman K, Ercan E, Nickel W, Seedorf M. Binding of Plasma Membrane Lipids Recruits the Yeast Integral Membrane Protein Ist2 to the Cortical ER. Traffic 2009; 10:1084-97. [PMID: 19453974 DOI: 10.1111/j.1600-0854.2009.00926.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Marcel André Fischer
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
142
|
Singleton KL, Roybal KT, Sun Y, Fu G, Gascoigne NRJ, van Oers NSC, Wülfing C. Spatiotemporal patterning during T cell activation is highly diverse. Sci Signal 2009; 2:ra15. [PMID: 19351954 PMCID: PMC2694444 DOI: 10.1126/scisignal.2000199] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Temporal and spatial variations in the concentrations of signaling intermediates in a living cell are important for signaling in complex networks because they modulate the probabilities that signaling intermediates will interact with each other. We have studied 30 signaling sensors, ranging from receptors to transcription factors, in the physiological activation of murine ex vivo T cells by antigen-presenting cells. Spatiotemporal patterning of these molecules was highly diverse and varied with specific T cell receptors and T cell activation conditions. The diversity and variability observed suggest that spatiotemporal patterning controls signaling interactions during T cell activation in a physiologically important and discriminating manner. In support of this, the effective clustering of a group of ligand-engaged receptors and signaling intermediates in a joint pattern consistently correlated with efficient T cell activation at the level of the whole cell.
Collapse
Affiliation(s)
- Kentner L. Singleton
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kole T. Roybal
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi Sun
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guo Fu
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicholas R. J. Gascoigne
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicolai S. C. van Oers
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christoph Wülfing
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
143
|
Gong D, Smith MD, Manna D, Bostic HE, Cho W, Best MD. Microplate-based characterization of protein-phosphoinositide binding interactions using a synthetic biotinylated headgroup analogue. Bioconjug Chem 2009; 20:310-6. [PMID: 19182890 PMCID: PMC2656446 DOI: 10.1021/bc8004107] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Membrane lipids act as important regulators of a litany of important physiological and pathophysiological events. Many of them act as site-specific ligands for cytosolic proteins in binding events that recruit receptors to the cell surface and control both protein function and subcellular localization. Phosphatidylinositol phosphates (PIP(n)s) are a family of signaling lipids that regulate numerous cellular processes by interacting with a myriad of protein binding modules. Characterization of PIP(n)-binding proteins has been hampered by the lack of a rapid and convenient quantitative assay. Herein, microplate-based detection is presented as an effective approach to characterizing protein-PIP(n) binding interactions at the molecular level. With this assay, the binding of proteins to isolated PIP(n) headgroups is detected with high sensitivity using a platform that is amenable to high-throughput screening. In the studies described herein, biotinylated PI-(4,5)-P(2) headgroup analogue 1 was designed, synthesized, and immobilized onto 96-well streptavidin-coated microplates to study receptor binding. This assay was used to characterize the binding of the PH domain of beta-spectrin to this headgroup. The high affinity interaction that was detected for surface association (K(d, surf) = 6 nM +/- 3), demonstrates that receptor binding modules can form high affinity interactions with lipid headgroups outside of a membrane environment. The results also indicate the feasibility of the assay for rapid characterization of PIP(n)-binding proteins as well as the promise for high-throughput analysis of protein-PIP(n) binding interactions. Finally, this assay was also employed to characterize the inhibition of the binding of receptors to the PIP(n)-derivatized microplates using solution phase competitors. This showcases the viability of this assay for rapid screening of inhibitors of PIP(n)-binding proteins.
Collapse
Affiliation(s)
- Denghuang Gong
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | | | | | |
Collapse
|
144
|
Brzeska H, Hwang KJ, Korn ED. Acanthamoeba myosin IC colocalizes with phosphatidylinositol 4,5-bisphosphate at the plasma membrane due to the high concentration of negative charge. J Biol Chem 2008; 283:32014-23. [PMID: 18772133 PMCID: PMC2581559 DOI: 10.1074/jbc.m804828200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 08/27/2008] [Indexed: 11/06/2022] Open
Abstract
The tail of Acanthamoeba myosin IC (AMIC) has a basic region (BR), which contains a putative pleckstrin homology (PH) domain, followed by two Gly/Pro/Ala (GPA)-rich regions separated by a Src homology 3 (SH3) domain. Cryoelectron microscopy had shown that the tail is folded back on itself at the junction of BR and GPA1, and nuclear magnetic resonance spectroscopy indicated that the SH3 domain may interact with the putative PH domain. The BR binds to acidic phospholipids, and the GPA region binds to F-actin. We now show that the folded tail does not affect the affinity of AMIC for acidic phospholipids. AMIC binds phosphatidylinositol 4,5-bisphosphate (PIP2) with high affinity (approximately 1 microm), but binding is not stereospecific. When normalized to net negative charge, AMIC binds with equal affinity to phosphatidylserine (PS) and PIP2. This and other data show that the putative PH domain of AMIC is not a typical PIP2-specific PH domain. We have identified a 13-residue sequence of basic-hydrophobic-basic amino acids within the putative PH domain that may be a major determinant of binding of AMIC to acidic phospholipids. Despite the lack of stereospecificity, AMIC binds 10 times more strongly to vesicles containing 5% PIP2 plus 25% PS than to vesicles containing only 25% PS, suggesting that AMIC may be targeted to PIP2-enriched regions of the plasma membrane. In agreement with this, AMIC colocalizes with PIP2 at dynamic, protrusive regions of the plasma membrane. We discuss the possibility that AMIC binding to PIP2 may initiate the formation of a multiprotein complex at the plasma membrane.
Collapse
Affiliation(s)
- Hanna Brzeska
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
145
|
Várnai P, Balla T. Live cell imaging of phosphoinositides with expressed inositide binding protein domains. Methods 2008; 46:167-76. [PMID: 18930153 PMCID: PMC2644460 DOI: 10.1016/j.ymeth.2008.09.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 09/12/2008] [Indexed: 01/26/2023] Open
Abstract
Inositol lipids and calcium signaling has been inseparable twins during the 1980s when the molecular details of phospholipase C-mediated generation of inositol 1,4,5-trisphosphate (InsP3) and its Ca2+ mobilizing action were discovered. Since then, both the Ca2+ and inositol lipid signaling fields have hugely expanded and the tools allowing dissection of the finest details of their molecular organization also followed closely. Although phosphoinositides regulate many cell functions unrelated to Ca2+ signaling there are still many open questions even in the Ca2+ field that would benefit from single cell monitoring of PtdIns(4,5)P2 or InsP3 changes during agonist stimulation. This chapter is designed to provide practical guidance as well as some theoretical background on measurements of phosphoinositides in live cells using protein domain-GFP chimeras that could be also useful for people working on calcium signaling.
Collapse
Affiliation(s)
- Péter Várnai
- Department of Physiology, Semmelweis University Faculty of Medicine, Budapest, H-1088 Budapest, Puskin utca 9, Hungary, Bethesda, MD 20892, USA.
| | | |
Collapse
|
146
|
He J, Haney RM, Vora M, Verkhusha VV, Stahelin RV, Kutateladze TG. Molecular mechanism of membrane targeting by the GRP1 PH domain. J Lipid Res 2008; 49:1807-15. [PMID: 18469301 DOI: 10.1194/jlr.m800150-jlr200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The general receptor for phosphoinositides isoform 1 (GRP1) is recruited to the plasma membrane in response to activation of phosphoinositide 3-kinases and accumulation of phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)]. GRP1's pleckstrin homology (PH) domain recognizes PtdIns(3,4,5)P(3) with high specificity and affinity, however, the precise mechanism of its association with membranes remains unclear. Here, we detail the molecular basis of membrane anchoring by the GRP1 PH domain. Our data reveal a multivalent membrane docking involving PtdIns(3,4,5)P(3) binding, regulated by pH and facilitated by electrostatic interactions with other anionic lipids. The specific recognition of PtdIns(3,4,5)P(3) triggers insertion of the GRP1 PH domain into membranes. An acidic environment enhances PtdIns(3,4,5)P(3) binding and increases membrane penetration as demonstrated by NMR and monolayer surface tension and surface plasmon resonance experiments. The GRP1 PH domain displays a 28 nM affinity for POPC/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine/PtdIns(3,4,5)P(3) vesicles at pH 6.0, but binds 22-fold weaker at pH 8.0. The pH sensitivity is attributed in part to the His355 residue, protonation of which is required for the robust interaction with PtdIns(3,4,5)P(3) and significant membrane penetration, as illustrated by mutagenesis data. The binding affinity of the GRP1 PH domain for PtdIns(3,4,5)P(3)-containing vesicles is further amplified (by approximately 6-fold) by nonspecific electrostatic interactions with phosphatidylserine/phosphatidylinositol. Together, our results provide new insight into the multivalent mechanism of the membrane targeting and regulation of the GRP1 PH domain.
Collapse
Affiliation(s)
- Ju He
- Department of Pharmacology, University of Colorado Health Sciences Center, Aurora, CO, USA
| | | | | | | | | | | |
Collapse
|
147
|
Yip SC, Eddy RJ, Branch AM, Pang H, Wu H, Yan Y, Drees BE, Neilsen PO, Condeelis J, Backer JM. Quantification of PtdIns(3,4,5)P(3) dynamics in EGF-stimulated carcinoma cells: a comparison of PH-domain-mediated methods with immunological methods. Biochem J 2008; 411:441-8. [PMID: 18215145 PMCID: PMC2915465 DOI: 10.1042/bj20071179] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Class IA PI3Ks (phosphoinositide 3-kinases) generate the secondary messenger PtdIns(3,4,5)P(3), which plays an important role in many cellular responses. The accumulation of PtdIns(3,4,5)P(3) in cell membranes is routinely measured using GFP (green fluorescent protein)-labelled PH (pleckstrin homology) domains. However, the kinetics of membrane PtdIns(3,4,5)P(3) synthesis and turnover as detected by PH domains have not been validated using an independent method. In the present study, we measured EGF (epidermal growth factor)-stimulated membrane PtdIns(3,4,5)P(3) production using a specific monoclonal anti-PtdIns(3,4,5)P(3) antibody, and compared the results with those obtained using PH-domain-dependent methods. Anti-PtdIns(3,4,5)P(3) staining rapidly accumulated at the leading edge of EGF-stimulated carcinoma cells. PtdIns(3,4,5)P(3) levels were maximal at 1 min, and returned to basal levels by 5 min. In contrast, membrane PtdIns(3,4,5)P(3) production, measured by the membrane translocation of an epitope-tagged (BTK)PH (PH domain of Bruton's tyrosine kinase), remained approx. 2-fold above basal level throughout 4-5 min of EGF stimulation. To determine the reason for this disparity, we measured the rate of PtdIns(3,4,5)P(3) hydrolysis by measuring the decay of the PtdIns(3,4,5)P(3) signal after LY294002 treatment of EGF-stimulated cells. LY294002 abolished anti-PtdIns(3,4,5)P(3) membrane staining within 10 s of treatment, suggesting that PtdIns(3,4,5)P(3) turnover occurs within seconds of synthesis. In contrast, (BTK)PH membrane recruitment, once initiated by EGF, was relatively insensitive to LY294002. These data suggest that sequestration of PtdIns(3,4,5)P(3) by PH domains may affect the apparent kinetics of PtdIns(3,4,5)P(3) accumulation and turnover; consistent with this hypothesis, we found that GRP-1 (general receptor for phosphoinositides 1) PH domains [which, like BTK, are specific for PtdIns(3,4,5)P(3)] inhibit PTEN (phosphatase and tensin homologue deleted on chromosome 10) dephosphorylation of PtdIns(3,4,5)P(3) in vitro. These data suggest that anti-PtdIns(3,4,5)P(3) antibodies are a useful tool to detect localized PtdIns(3,4,5)P(3), and illustrate the importance of using multiple approaches for the estimation of membrane phosphoinositides.
Collapse
Affiliation(s)
- Shu-Chin Yip
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Abstract
Many different globular domains bind to the surfaces of cellular membranes, or to specific phospholipid components in these membranes, and this binding is often tightly regulated. Examples include pleckstrin homology and C2 domains, which are among the largest domain families in the human proteome. Crystal structures, binding studies and analyses of subcellular localization have provided much insight into how members of this diverse group of domains bind to membranes, what features they recognize and how binding is controlled. A full appreciation of these processes is crucial for understanding how protein localization and membrane topography and trafficking are regulated in cells.
Collapse
Affiliation(s)
- Mark A Lemmon
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, 809C Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104-6059, USA.
| |
Collapse
|
149
|
Yan J, Wen W, Chan LN, Zhang M. Split pleckstrin homology domain-mediated cytoplasmic-nuclear localization of PI3-kinase enhancer GTPase. J Mol Biol 2008; 378:425-35. [PMID: 18371979 DOI: 10.1016/j.jmb.2008.02.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 02/12/2008] [Accepted: 02/25/2008] [Indexed: 11/25/2022]
Abstract
Cytoplasm-nucleus shuttling of phosphoinositol 3-kinase enhancer (PIKE) is known to correlate directly with its cellular functions. However, the molecular mechanism governing this shuttling is not known. In this work, we demonstrate that PIKE is a new member of split pleckstrin homology (PH) domain-containing proteins. The structure solved in this work reveals that the PIKE PH domain is split into halves by a positively charged nuclear localization sequence. The PIKE PH domain binds to the head groups of di- and triphosphoinositides with similar affinities. Lipid membrane binding of the PIKE PH domain is further enhanced by the positively charged nuclear localization sequence, which is juxtaposed to the phosphoinositide head group-binding pocket of the domain. We demonstrate that the cytoplasmic-nuclear shuttling of PIKE is dynamically regulated by the balancing actions of the lipid-binding property of both the split PH domain and the nuclear targeting function of its nuclear localization sequence.
Collapse
Affiliation(s)
- Jing Yan
- Department of Biochemistry, Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China
| | | | | | | |
Collapse
|
150
|
Maira SM, Voliva C, Garcia-Echeverria C. Class IA phosphatidylinositol 3-kinase: from their biologic implication in human cancers to drug discovery. Expert Opin Ther Targets 2008; 12:223-38. [DOI: 10.1517/14728222.12.2.223] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|