101
|
Lee H, Woodman SE, Engelman JA, Volonté D, Galbiati F, Kaufman HL, Lublin DM, Lisanti MP. Palmitoylation of caveolin-1 at a single site (Cys-156) controls its coupling to the c-Src tyrosine kinase: targeting of dually acylated molecules (GPI-linked, transmembrane, or cytoplasmic) to caveolae effectively uncouples c-Src and caveolin-1 (TYR-14). J Biol Chem 2001; 276:35150-8. [PMID: 11451957 DOI: 10.1074/jbc.m104530200] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caveolin-1 was initially identified as a phosphoprotein in Rous sarcoma virus-transformed cells. Previous studies have shown that caveolin-1 is phosphorylated on tyrosine 14 by c-Src and that lipid modification of c-Src is required for this phosphorylation event to occur in vivo. Phosphocaveolin-1 (Tyr(P)-14) localizes within caveolae near focal adhesions and, through its interaction with Grb7, augments anchorage-independent growth and epidermal growth factor-stimulated cell migration. However, the cellular factors that govern the coupling of caveolin-1 to the c-Src tyrosine kinase remain largely unknown. Here, we show that palmitoylation of caveolin-1 at a single site (Cys-156) is required for coupling caveolin-1 to the c-Src tyrosine kinase. Furthermore, upon evaluating a battery of nonreceptor and receptor tyrosine kinases, we demonstrate that the tyrosine phosphorylation of caveolin-1 by c-Src is a highly selective event. We show that Src-induced tyrosine phosphorylation of caveolin-1 can be inhibited or uncoupled by targeting dually acylated proteins (namely carcinoembryonic antigen (CEA), CD36, and the NH(2)-terminal domain of Galpha(i1)) to the exoplasmic, transmembrane, and cytoplasmic regions of the caveolae membrane, respectively. Conversely, when these proteins are not properly targeted or lipid-modified, the ability of c-Src to phosphorylate caveolin-1 remains unaffected. In addition, when purified caveolae preparations are preincubated with a myristoylated peptide derived from the extreme N terminus of c-Src, the tyrosine phosphorylation of caveolin-1 is abrogated; the same peptide lacking myristoylation has no inhibitory activity. However, an analogous myristoylated peptide derived from c-Yes also has no inhibitory activity. Thus, the inhibitory effects of the myristoylated c-Src peptide are both myristoylation-dependent and sequence-specific. Finally, we investigated whether phosphocaveolin-1 (Tyr(P)-14) interacts with the Src homology 2 and/or phosphotyrosine binding domains of Grb7, the only characterized downstream mediator of its function. Taken together, our data identify a series of novel lipid-lipid-based interactions as important regulatory factors for coupling caveolin-1 to the c-Src tyrosine kinase in vivo.
Collapse
Affiliation(s)
- H Lee
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Abstract
Caveolae, free cholesterol (FC)-rich microdomains of the plasma membrane, are both a terminus for the intracellular transit of newly synthesized and recycling cellular FC, and a site for FC efflux to the extracellular medium. The same domains play key roles as locations for the assembly of signaling complexes and for the endocytosis of selected ligands. Caveolin, the major structural protein of caveolae, plays a regulatory role in growth, the cell cycle, and cell adhesion. Each of these functions is FC-dependent. Caveolae appear to act as both sensors and regulators of cellular FC content, and in this way mediate an array of membrane-dependent cell functions.
Collapse
Affiliation(s)
- C J Fielding
- Cardiovascular Research Institute, University of California, San Francisco, CA 94193, USA.
| | | |
Collapse
|
103
|
Abstract
Originally described in the 1950s caveolae are morphologically identifiable as small omega-shaped plasma membrane invaginations present in most cell types. Caveolae are particularly abundant in adipocytes, fibroblasts, type 1 pneumocytes, endothelial and epithelial cells as well as in smooth and striated muscle cells. The first proposed function for caveolae was that of mediating the internalisation and transendothelial trafficking of solutes. Caveolae have been the object of intense research since the discovery of a biochemical marker protein, caveolin, in the early 1990s. Three genes encoding for caveolins have been characterised in mammals. Caveolins (18-24 kDa) are integral membrane proteins that constitute the major protein component of caveolar membrane in vivo. In addition to a structural role of caveolins in the formation of caveolae, caveolin protein interacts directly, and in a regulated manner, with a number of signalling molecules. We present here a general overview of the current knowledge on the structural role of caveolin in caveolae formation, and implication of caveolin in the control of cell signalling.
Collapse
Affiliation(s)
- J Couet
- Institut universitaire de cardiologie et de pneumologie de l'Université Laval, Centre de recherche Hôpital Laval, 2725 Chemin Sainte-Foy, Sainte-Foy, Quebec G1V 4G5 Canada.
| | | | | | | |
Collapse
|
104
|
Spisni E, Griffoni C, Santi S, Riccio M, Marulli R, Bartolini G, Toni M, Ullrich V, Tomasi V. Colocalization prostacyclin (PGI2) synthase--caveolin-1 in endothelial cells and new roles for PGI2 in angiogenesis. Exp Cell Res 2001; 266:31-43. [PMID: 11339822 DOI: 10.1006/excr.2001.5198] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In vascular cells, prostacyclin (PGI2) synthase (PGI2s) has been localized in the endoplasmic reticulum of endothelial cells and in the nuclear and plasma membrane of smooth muscle cells. In human umbilical vein endothelial (HUVE) cells, we detected the enzyme in abundant cytoplasmic vesicles apparently originating from the plasma membrane and similar to those stained by gold-albumin, which interacts with a caveolar receptor. This prompted us to try a direct confocal microscopy approach aimed at colocalizing gold-albumin, caveolin-1, and PGI2 synthase. Moreover, the staining of HUVE cells with an anti-BiP7Grp78 antibody (a marker of endoplasmic reticulum) shows a perinuclear localization, sharply separated from PGI2 synthase localization. The results indicate that more than 80% of the enzyme resides in cellular sites costaining with caveolin-1 antibody and gold-albumin. This evidence was confirmed by the demonstration that PGI2 synthase and caveolin-1 coimmunoprecipitate in HUVE cell lysates and that they are associated to detergent-insoluble membrane domains in the same low-density fractions of a sucrose gradient. In addition, depletion of cellular cholesterol by mevalonate and methyl-beta-cyclodextrin leads to the shift of PGI2 synthase and caveolin-1 to higher density fractions of the gradient. Biochemical evidence about colocalization was supported by the use of a fusion protein glutathione S-transferase (GST)/caveolin-1, which retained either PGI2s purified from ram seminal vesicles or PGI2s present in HUVE cell lysates. Binding of PGI2s to caveolin "scaffolding domain" and to C-terminal region was deduced by using full-length GST--Cav-1, GST--Cav 61--101, and GST C- and N-terminal fusion proteins. A double approach based on the usage of filipin as a specific caveolae-disrupting agent and antisense oligonucleotides targeting PGI2 synthase mRNA suggests that the production of PGI2 in caveolae is likely to be connected to the regulation of angiogenesis, at least in vitro.
Collapse
Affiliation(s)
- E Spisni
- Department of Experimental Biology, University of Bologna, 40126 Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Razani B, Zhang XL, Bitzer M, von Gersdorff G, Böttinger EP, Lisanti MP. Caveolin-1 regulates transforming growth factor (TGF)-beta/SMAD signaling through an interaction with the TGF-beta type I receptor. J Biol Chem 2001; 276:6727-38. [PMID: 11102446 DOI: 10.1074/jbc.m008340200] [Citation(s) in RCA: 502] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) signaling proceeds from the cell membrane to the nucleus through the cooperation of the type I and II serine/threonine kinase receptors and their downstream SMAD effectors. Although various regulatory proteins affecting TGF-beta-mediated events have been described, relatively little is known about receptor interactions at the level of the plasma membrane. Caveolae are cholesterol-rich membrane microdomains that, along with their marker protein caveolin-1 (Cav-1), have been implicated in the compartmentalization and regulation of certain signaling events. Here, we demonstrate that specific components of the TGF-beta cascade are associated with caveolin-1 in caveolae and that Cav-1 interacts with the Type I TGF-beta receptor. Additionally, Cav-1 is able to suppress TGF-beta-mediated phosphorylation of Smad-2 and subsequent downstream events. We localize the Type I TGF-beta receptor interaction to the scaffolding domain of Cav-1 and show that it occurs in a physiologically relevant time frame, acting to rapidly dampen signaling initiated by the TGF-beta receptor complex.
Collapse
Affiliation(s)
- B Razani
- Department of Molecular Pharmacology and The Albert Einstein Cancer Center and the Departments of Medicine and Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | | | | | | | |
Collapse
|
106
|
Schlegel A, Arvan P, Lisanti MP. Caveolin-1 binding to endoplasmic reticulum membranes and entry into the regulated secretory pathway are regulated by serine phosphorylation. Protein sorting at the level of the endoplasmic reticulum. J Biol Chem 2001; 276:4398-408. [PMID: 11078729 DOI: 10.1074/jbc.m005448200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caveolin-1 serves as the main coat protein of caveolae membranes, as an intracellular cholesterol shuttle, and as a regulator of diverse signaling molecules. Of the 12 residues conserved across all caveolin isoforms from all species examined to date, only Ser(80) and Ser(168) could serve as phosphorylation sites. We show here that mimicking chronic phosphorylation of Ser(80) by mutation to Glu (i.e. Cav-1(S80E)), blocks phosphate incorporation. However, Cav-1(S168E) is phosphorylated to the same extent as wild-type caveolin-1. Cav-1(S80E) targets to the endoplasmic reticulum membrane, remains oligomeric, and maintains normal membrane topology. In contrast, Cav-1(S80A), which cannot be phosphorylated, targets to caveolae membranes. Some exocrine cells secrete caveolin-1 in a regulated manner. Cav-1(S80A) is not secreted by AR42J pancreatic adenocarcinoma cells even in the presence of dexamethasone, an agent that induces the secretory phenotype. Conversely, Cav-1(S80E) is secreted to a greater extent than wild-type caveolin-1 following dexamethasone treatment. We conclude that caveolin-1 phosphorylation on invariant serine residue 80 is required for endoplasmic reticulum retention and entry into the regulated secretory pathway.
Collapse
Affiliation(s)
- A Schlegel
- Department of Molecular Pharmacology, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
107
|
Fielding CJ, Fielding PE. Cholesterol and caveolae: structural and functional relationships. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1529:210-22. [PMID: 11111090 DOI: 10.1016/s1388-1981(00)00150-5] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Caveolae are free cholesterol (FC)- and sphingolipid-rich surface microdomains abundant in most peripheral cells. Caveolin, a FC binding protein, is a major structural element of these domains. Caveolae serve as portals to regulate cellular FC homeostasis, possibly via their association with ancillary proteins including scavenger receptor B1. The FC content of caveolae regulates the transmission of both extracellular receptor-mediated and endogenous signal transduction via changes in the composition of caveolin-associated complexes of signaling intermediates. By controlling surface FC content, reporting membrane changes by signal transduction to the nucleus, and regulating signal traffic in response to extracellular stimuli, caveolae exert a multifaceted influence on cell physiology including growth and cell division, adhesion, and hormonal response. Cell surface lipid 'rafts' may assume many of the functions of caveolae in cells with low levels of caveolin.
Collapse
Affiliation(s)
- C J Fielding
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, CA 94143, USA.
| | | |
Collapse
|
108
|
Sotgia F, Lee JK, Das K, Bedford M, Petrucci TC, Macioce P, Sargiacomo M, Bricarelli FD, Minetti C, Sudol M, Lisanti MP. Caveolin-3 directly interacts with the C-terminal tail of beta -dystroglycan. Identification of a central WW-like domain within caveolin family members. J Biol Chem 2000; 275:38048-58. [PMID: 10988290 DOI: 10.1074/jbc.m005321200] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caveolin-3, the most recently recognized member of the caveolin gene family, is muscle-specific and is found in both cardiac and skeletal muscle, as well as smooth muscle cells. Several independent lines of evidence indicate that caveolin-3 is localized to the sarcolemma, where it associates with the dystrophin-glycoprotein complex. However, it remains unknown which component of the dystrophin complex interacts with caveolin-3. Here, we demonstrate that caveolin-3 directly interacts with beta-dystroglycan, an integral membrane component of the dystrophin complex. Our results indicate that caveolin-3 co-localizes, co-fractionates, and co-immunoprecipitates with a fusion protein containing the cytoplasmic tail of beta-dystroglycan. In addition, we show that a novel WW-like domain within caveolin-3 directly recognizes the extreme C terminus of beta-dystroglycan that contains a PPXY motif. As the WW domain of dystrophin recognizes the same site within beta-dystroglycan, we also demonstrate that caveolin-3 can effectively block the interaction of dystrophin with beta-dystroglycan. In this regard, interaction of caveolin-3 with beta-dystroglycan may competitively regulate the recruitment of dystrophin to the sarcolemma. We discuss the possible implications of our findings in the context of Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- F Sotgia
- Department of Molecular Pharmacology and The Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Stahlhut M, Sandvig K, van Deurs B. Caveolae: uniform structures with multiple functions in signaling, cell growth, and cancer. Exp Cell Res 2000; 261:111-8. [PMID: 11082281 DOI: 10.1006/excr.2000.4960] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- M Stahlhut
- Structural Cell Biology Unit, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | | | | |
Collapse
|
110
|
Zhu Y, Liao HL, Wang N, Yuan Y, Ma KS, Verna L, Stemerman MB. Lipoprotein promotes caveolin-1 and Ras translocation to caveolae: role of cholesterol in endothelial signaling. Arterioscler Thromb Vasc Biol 2000; 20:2465-70. [PMID: 11073854 DOI: 10.1161/01.atv.20.11.2465] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
To explore the role of LDL in caveolin-Ras regulation in human endothelial cells (ECs), we incubated confluent human umbilical vein endothelial cells (HUVECs) with LDL. This resulted in a high steady-state caveolin-1 (Cav-1) expression at both the mRNA and protein levels. LDL exposure appeared not to regulate the abundance of Cav-1. Immunofluorescence staining showed that Cav-1 protein migrated from the cytoplasm to the cell membrane after LDL exposure. Cav-1 protein and cholesterol partitioned mainly into the caveola fractions, and LDL increased both Cav-1 and cholesterol in these fractions. Ras protein in caveola fractions was also increased by LDL. Increased Ras was detected in Cav-1 immunoprecipitated samples, and conversely, increased Cav-1 was found in Ras-immunoprecipitated samples. We also demonstrated LDL-increased Ras activity in HUVECs by measuring the GTP/GTP+GDP ratio of Ras with [(32)P]orthophosphate labeling in the cells. Finally, we determined the binding of [(3)H]-labeled free cholesterol and recombinant H-Ras to Cav-1 fusion proteins in vitro. Both cholesterol and Ras bound to full-length GST-Cav-1, scaffolding domain (61-101), and C-terminal (135-178) Cav-1 fusion peptides. Addition of cholesterol enhanced Ras binding to the full-length and scaffolding domain of Cav-1 but not to the C-terminal Cav-1. These findings strongly suggest a role for Cav-1 in cholesterol trafficking and cholesterol-mediated intracellular signaling, which may mediate EC activation by LDL.
Collapse
Affiliation(s)
- Y Zhu
- Division of Biomedical Sciences, University of California, Riverside, USA.
| | | | | | | | | | | | | |
Collapse
|
111
|
Lee H, Volonte D, Galbiati F, Iyengar P, Lublin DM, Bregman DB, Wilson MT, Campos-Gonzalez R, Bouzahzah B, Pestell RG, Scherer PE, Lisanti MP. Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Mol Endocrinol 2000; 14:1750-75. [PMID: 11075810 DOI: 10.1210/mend.14.11.0553] [Citation(s) in RCA: 226] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Caveolin-1 was first identified as a phosphoprotein in Rous sarcoma virus (RSV)-transformed chicken embryo fibroblasts. Tyrosine 14 is now thought to be the principal site for recognition by c-Src kinase; however, little is known about this phosphorylation event. Here, we generated a monoclonal antibody (mAb) probe that recognizes only tyrosine 14-phosphorylated caveolin-1. Using this approach, we show that caveolin-1 (Y14) is a specific tyrosine kinase substrate that is constitutively phosphorylated in Src- and Abl-transformed cells and transiently phosphorylated in a regulated fashion during growth factor signaling. We also provide evidence that tyrosine-phosphorylated caveolin-1 is localized at the major sites of tyrosine-kinase signaling, i.e. focal adhesions. By analogy with other signaling events, we hypothesized that caveolin-1 could serve as a docking site for pTyr-binding molecules. In support of this hypothesis, we show that phosphorylation of caveolin-1 on tyrosine 14 confers binding to Grb7 (an SH2-domain containing protein) both in vitro and in vivo. Furthermore, we demonstrate that binding of Grb7 to tyrosine 14-phosphorylated caveolin-1 functionally augments anchorage-independent growth and epidermal growth factor (EGF)-stimulated cell migration. We discuss the possible implications of our findings in the context of signal transduction.
Collapse
Affiliation(s)
- H Lee
- Department of Molecular Pharmacology and The Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Schlegel A, Lisanti MP. A molecular dissection of caveolin-1 membrane attachment and oligomerization. Two separate regions of the caveolin-1 C-terminal domain mediate membrane binding and oligomer/oligomer interactions in vivo. J Biol Chem 2000; 275:21605-17. [PMID: 10801850 DOI: 10.1074/jbc.m002558200] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Caveolins form interlocking networks on the cytoplasmic face of caveolae. The cytoplasmically directed N and C termini of caveolins are separated by a central hydrophobic segment, which is believed to form a hairpin within the membrane. Here, we report that the caveolin scaffolding domain (CSD, residues 82-101), and the C terminus (residues 135-178) of caveolin-1 are each sufficient to anchor green fluorescent protein (GFP) to membranes in vivo. We also show that the first 16 residues of the C terminus (i.e. residues 135-150) are necessary and sufficient to attach GFP to membranes. When fused to the caveolin-1 C terminus, GFP co-localizes with two trans-Golgi markers and is excluded from caveolae. In contrast, the CSD targets GFP to caveolae, albeit less efficiently than full-length caveolin-1. Thus, caveolin-1 contains at least two membrane attachment signals: the CSD, dictating caveolar localization, and the C terminus, driving trans-Golgi localization. Additionally, we find that caveolin-1 oligomer/oligomer interactions require the distal third of the caveolin-1 C terminus. Thus, the caveolin-1 C-terminal domain has two separate functions: (i) membrane attachment (proximal third) and (ii) protein/protein interactions (distal third).
Collapse
Affiliation(s)
- A Schlegel
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
113
|
Hulit J, Bash T, Fu M, Galbiati F, Albanese C, Sage DR, Schlegel A, Zhurinsky J, Shtutman M, Ben-Ze'ev A, Lisanti MP, Pestell RG. The cyclin D1 gene is transcriptionally repressed by caveolin-1. J Biol Chem 2000; 275:21203-9. [PMID: 10747899 DOI: 10.1074/jbc.m000321200] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cyclin D1 gene encodes the regulatory subunit of the holoenzyme that phosphorylates and inactivates the retinoblastoma pRB protein. Cyclin D1 protein levels are elevated by mitogenic and oncogenic signaling pathways, and antisense mRNA to cyclin D1 inhibits transformation by the ras, neu, and src oncogenes, thus linking cyclin D1 regulation to cellular transformation. Caveolins are the principal protein components of caveolae, vesicular plasma membrane invaginations that also function in signal transduction. We show here that caveolin-1 expression levels inversely correlate with cyclin D1 abundance levels in transformed cells. Expression of antisense caveolin-1 increased cyclin D1 levels, whereas caveolin-1 overexpression inhibited expression of the cyclin D1 gene. Cyclin D1 promoter activity was selectively repressed by caveolin-1, but not by caveolin-3, and this repression required the caveolin-1 N terminus. Maximal inhibition of the cyclin D1 gene promoter by caveolin-1 was dependent on the cyclin D1 promoter T-cell factor/lymphoid enhancer factor-1-binding site between -81 to -73. The T-cell factor/lymphoid enhancer factor sequence was sufficient for repression by caveolin-1. We suggest that transcriptional repression of the cyclin D1 gene may contribute to the inhibition of transformation by caveolin-1.
Collapse
Affiliation(s)
- J Hulit
- Albert Einstein Cancer Center, Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Park H, Go YM, Darji R, Choi JW, Lisanti MP, Maland MC, Jo H. Caveolin-1 regulates shear stress-dependent activation of extracellular signal-regulated kinase. Am J Physiol Heart Circ Physiol 2000; 278:H1285-93. [PMID: 10749726 DOI: 10.1152/ajpheart.2000.278.4.h1285] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fluid shear stress activates a member of the mitogen-activated protein (MAP) kinase family, extracellular signal-regulated kinase (ERK), by mechanisms dependent on cholesterol in the plasma membrane in bovine aortic endothelial cells (BAEC). Caveolae are microdomains of the plasma membrane that are enriched with cholesterol, caveolin, and signaling molecules. We hypothesized that caveolin-1 regulates shear activation of ERK. Because caveolin-1 is not exposed to the outside, cells were minimally permeabilized by Triton X-100 (0.01%) to deliver a neutralizing, polyclonal caveolin-1 antibody (pCav-1) inside the cells. pCav-1 then bound to caveolin-1 and inhibited shear activation of ERK but not c-Jun NH(2)-terminal kinase. Epitope mapping studies showed that pCav-1 binds to caveolin-1 at two regions (residues 1-21 and 61-101). When the recombinant proteins containing the epitopes fused to glutathione-S-transferase (GST-Cav(1-21) or GST-Cav(61-101)) were preincubated with pCav-1, only GST-Cav(61-101) reversed the inhibitory effect of the antibody on shear activation of ERK. Other antibodies, including m2234, which binds to caveolin-1 residues 1-21, had no effect on shear activation of ERK. Caveolin-1 residues 61-101 contain the scaffolding and oligomerization domains, suggesting that binding of pCav-1 to these regions likely disrupts the clustering of caveolin-1 or its interaction with signaling molecules involved in the shear-sensitive ERK pathway. We suggest that caveolae-like domains play a critical role in the mechanosensing and/or mechanosignal transduction of the ERK pathway.
Collapse
Affiliation(s)
- H Park
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | |
Collapse
|
115
|
Machleidt T, Li WP, Liu P, Anderson RG. Multiple domains in caveolin-1 control its intracellular traffic. J Cell Biol 2000; 148:17-28. [PMID: 10629215 PMCID: PMC2156207 DOI: 10.1083/jcb.148.1.17] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/1999] [Accepted: 12/02/1999] [Indexed: 11/22/2022] Open
Abstract
Caveolin-1 is an integral membrane protein of caveolae that is thought to play an important role in both the traffic of cholesterol to caveolae and modulating the activity of multiple signaling molecules at this site. The molecule is synthesized in the endoplasmic reticulum, transported to the cell surface, and undergoes a poorly understood recycling itinerary. We have used mutagenesis to determine the parts of the molecule that control traffic of caveolin-1 from its site of synthesis to the cell surface. We identified four regions of the molecule that appear to influence caveolin-1 traffic. A region between amino acids 66 and 70, which is in the most conserved region of the molecule, is necessary for exit from the endoplasmic reticulum. The region between amino acids 71 and 80 controls incorporation of caveolin-1 oligomers into detergent-resistant regions of the Golgi apparatus. Amino acids 91-100 and 134-154 both control oligomerization and exit from the Golgi apparatus. Removal of other portions of the molecule has no effect on targeting of newly synthesized caveolin-1 to caveolae. The results suggest that movement of caveolin-1 among various endomembrane compartments is controlled at multiple steps.
Collapse
Affiliation(s)
- Thomas Machleidt
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9039
| | - Wei-Ping Li
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9039
| | - Pingsheng Liu
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9039
| | - Richard G.W. Anderson
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9039
| |
Collapse
|
116
|
Schlegel A, Wang C, Katzenellenbogen BS, Pestell RG, Lisanti MP. Caveolin-1 potentiates estrogen receptor alpha (ERalpha) signaling. caveolin-1 drives ligand-independent nuclear translocation and activation of ERalpha. J Biol Chem 1999; 274:33551-6. [PMID: 10559241 DOI: 10.1074/jbc.274.47.33551] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Estrogen receptor alpha (ERalpha) is a soluble protein that mediates the effects of the gonadal estrogens such as 17beta-estradiol. Upon ligand binding, a cytoplasmic pool of ERalpha translocates to the nucleus, where it acts as a transcription factor, driving the expression of genes that contain estrogen-response elements. The activity of ERalpha is regulated by a number of proteins, including cytosolic chaperones and nuclear cofactors. Here, we show that caveolin-1 potentiates ERalpha-mediated signal transduction. Coexpression of caveolin-1 and ERalpha resulted in ligand-independent translocation of ERalpha to the nucleus as shown by both cell fractionation and immunofluorescence microscopic studies. Similarly, caveolin-1 augmented both ligand-independent and ligand-dependent ERalpha signaling as measured using a estrogen-response element-based luciferase reporter assay. Caveolin-1-mediated activation of ERalpha was sensitive to a well known ER antagonist, 4-hydroxytamoxifen. However, much higher concentrations of tamoxifen were required to mediate inhibition in the presence of caveolin-1. Interestingly, caveolin-1 expression also synergized with a constitutively active, ligand-independent ERalpha mutant, dramatically illustrating the potent stimulatory effect of caveolin-1 in this receptor system. Taken together, our results identify caveolin-1 as a new positive regulator of ERalpha signal transduction.
Collapse
Affiliation(s)
- A Schlegel
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
117
|
Smart EJ, Graf GA, McNiven MA, Sessa WC, Engelman JA, Scherer PE, Okamoto T, Lisanti MP. Caveolins, liquid-ordered domains, and signal transduction. Mol Cell Biol 1999; 19:7289-304. [PMID: 10523618 PMCID: PMC84723 DOI: 10.1128/mcb.19.11.7289] [Citation(s) in RCA: 782] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- E J Smart
- University of Kentucky, Department of Physiology, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | | | |
Collapse
|