101
|
Ho J, Benchimol S. Transcriptional repression mediated by the p53 tumour suppressor. Cell Death Differ 2003; 10:404-8. [PMID: 12719716 DOI: 10.1038/sj.cdd.4401191] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- J Ho
- Department of Medical Biophysics, Ontario Cancer Institute, Princess Margaret Hospital, University of Toronto, 610 University Avenue, Toronto, Ontario, Canada M5G 2M9
| | | |
Collapse
|
102
|
Salsi V, Caretti G, Wasner M, Reinhard W, Haugwitz U, Engeland K, Mantovani R. Interactions between p300 and multiple NF-Y trimers govern cyclin B2 promoter function. J Biol Chem 2003; 278:6642-50. [PMID: 12482752 DOI: 10.1074/jbc.m210065200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CCAAT box is one of the most common elements in eukaryotic promoters and is activated by NF-Y, a conserved trimeric transcription factor with histone-like subunits. Usually one CCAAT element is present in promoters at positions between -60 and -100, but an emerging class of promoters harbor multiple NF-Y sites. In the triple CCAAT-containing cyclin B2 cell-cycle promoter, all CCAAT boxes, independently from their NF-Y affinities, are important for function. We investigated the relationships between NF-Y and p300. Chromatin immunoprecipitation analysis found that NF-Y and p300 are bound to the cyclin B2 promoter in vivo and that their binding is regulated during the cell cycle, positively correlating with promoter function. Cotransfection experiments determined that the coactivator acts on all CCAAT boxes and requires a precise spacing between the three elements. We established the order of in vitro binding of the three NF-Y complexes and find decreasing affinities from the most distal Y1 to the proximal Y3 site. Binding of two or three NF-Y trimers with or without p300 is not cooperative, but association with the Y1 and Y2 sites is extremely stable. p300 favors the binding of NF-Y to the weak Y3 proximal site, provided that a correct distance between the three CCAAT is respected. Our data indicate that the precise spacing of multiple CCAAT boxes is crucial for coactivator function. Transient association to a weak site might be a point of regulation during the cell cycle and a general theme of multiple CCAAT box promoters.
Collapse
Affiliation(s)
- Valentina Salsi
- Dipartimento di Biologia Animale, Università di Modena e Reggio, Via Campi 213/d, 41100 Modena, Italy
| | | | | | | | | | | | | |
Collapse
|
103
|
Joshi AA, Wu Z, Reed RF, Suttle DP. Nuclear factor-Y binding to the topoisomerase IIalpha promoter is inhibited by both the p53 tumor suppressor and anticancer drugs. Mol Pharmacol 2003; 63:359-67. [PMID: 12527807 DOI: 10.1124/mol.63.2.359] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Expression of the human DNA topoisomerase IIalpha (topo IIalpha) gene is positively regulated by the binding of the nuclear factor Y (NF-Y) transcription factor to four of five inverted CCAAT boxes (ICBs) located in its promoter. We have demonstrated previously that expression of the p53 tumor suppressor inhibits human topo IIalpha promoter activity in murine (10)1 cells. In this report, we demonstrate that the inhibition of topo IIalpha gene expression by wild-type p53 correlates with the decreased binding of the transcription factor NF-Y to the first four ICBs of the topo IIalpha promoter. The expression of mutant p53 does not affect the binding of NF-Y. In NIH3T3 cells, we show that topo II-targeted drugs inhibit the binding of NF-Y to ICB sites in the topo IIalpha promoter. This effect is seen not only with drugs that result in DNA strand breaks but also with drugs that inhibit the catalytic activity of topo II, and even with the mitotic spindle inhibitor, vinblastine. Further experiments with p53-null (10)1 cells treated with these same drugs also demonstrate decreased NF-Y binding to the topo IIalpha ICBs. The data presented points to the existence of both p53-dependent and -independent mechanisms for regulating NF-Y binding to ICBs in the topo IIalpha promoter and thus the modulation of topo IIalpha gene expression.
Collapse
Affiliation(s)
- Ashish A Joshi
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|
104
|
Yoon HS, Chen X, Yang VW. Kruppel-like factor 4 mediates p53-dependent G1/S cell cycle arrest in response to DNA damage. J Biol Chem 2003; 278:2101-5. [PMID: 12427745 PMCID: PMC2229830 DOI: 10.1074/jbc.m211027200] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The tumor suppressor p53 is required for the maintenance of genomic integrity following DNA damage. One mechanism by which p53 functions is to induce a block in the transition between the G(1) and S phase of the cell cycle. Previous studies indicate that the Krüppel-like factor 4 (KLF4) gene is activated following DNA damage and that such activation depends on p53. In addition, enforced expression of KLF4 causes G(1)/S arrest. The present study examines the requirement of KLF4 in mediating the p53-dependent cell cycle arrest process in response to DNA damage. We show that the G(1) population of a colon cancer cell line, HCT116, that is null for the p53 alleles (-/-) was abolished following gamma irradiation compared with cells with wild-type p53 (+/+). Conditional expression of KLF4 in irradiated HCT116 p53-/- cells restored the G(1) cell population to a level similar to that seen in irradiated HCT116 p53+/+ cells. Conversely, treatment of HCT116 p53+/+ cells with small interfering RNA (siRNA) specific for KLF4 significantly reduced the number of cells in the G(1) phase following gamma irradiation compared with the untreated control or those treated with a nonspecific siRNA. In each case the increase or decrease in KLF4 level because of conditional induction or siRNA inhibition, respectively, was accompanied by an increase or decrease in the level of p21(WAF1/CIP1). Results of our study indicate that KLF4 is an essential mediator of p53 in controlling G(1)/S progression of the cell cycle following DNA damage.
Collapse
Affiliation(s)
- Hong S. Yoon
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Xinming Chen
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Vincent W. Yang
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
- ¶ Recipient of a Georgia Cancer Coalition Distinguished Cancer Clinician Scientist award. To whom correspondence should be addressed: 201 Whitehead Biomedical Research Bldg., Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322. Tel.: 404-727-5638; Fax: 404-727-5767; E-mail:
| |
Collapse
|
105
|
Zhou Y, Mehta KR, Choi AP, Scolavino S, Zhang X. DNA damage-induced inhibition of securin expression is mediated by p53. J Biol Chem 2003; 278:462-70. [PMID: 12403781 DOI: 10.1074/jbc.m203793200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tumor suppressor p53 induces the cellular response to DNA damage mainly by regulating expression of its downstream target genes. The human securin is an anaphase inhibitor, preventing premature chromosome separation through inhibition of separase activity. It is also known as the product of the human pituitary tumor-transforming gene, pttg, a proto-oncogene. Here we report that the expression of human securin is suppressed in cells treated with the DNA-damaging drugs doxorubicin and bleomycin. This suppression requires functional p53. Analysis of the human securin promoter reveals that DNA-binding sites for Sp1 and NF-Y are both required for activation of securin expression; however, only the NF-Y site is essential for the suppression by p53. Our study indicates that securin is a p53 target gene and may play a role in p53-mediated cellular response to DNA damage.
Collapse
Affiliation(s)
- Yunli Zhou
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
106
|
Castedo M, Perfettini JL, Roumier T, Kroemer G. Cyclin-dependent kinase-1: linking apoptosis to cell cycle and mitotic catastrophe. Cell Death Differ 2002; 9:1287-93. [PMID: 12478465 DOI: 10.1038/sj.cdd.4401130] [Citation(s) in RCA: 276] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2002] [Accepted: 08/09/2002] [Indexed: 11/08/2022] Open
Abstract
The cyclin-dependent kinase 1 (Cdk1), formerly called Cdc2 (or p34(Cdc2)), interacts with cyclin B1 to form an active heterodimer. The activity of Cdk1 is subjected to a complex spatiotemporary regulation, required to guarantee its scheduled contribution to the mitotic prophase and metaphase. Moreover, the activation of Cdk1 may be required for apoptosis induction in some particular pathways of cell killing. This applies to several clinically important settings, for instance to paclitaxel-induced killing of breast cancer cells, in which the ErbB2 receptor kinase can mediate apoptosis inhibition through inactivation of Cdk1. The activation of Cdk1 participates also in HIV-1-induced apoptosis, upstream of the p53-dependent mitochondrial permeabilization step. An unscheduled Cdk1 activation may contribute to neuronal apoptosis occurring in neurodegenerative diseases. Finally, the premature activation of Cdk1 can lead to mitotic catastrophe, for instance after irradiation-induced DNA damage. Thus, a cell type-specific modulation of Cdk1 might be taken advantage of for the therapeutic correction of pathogenic imbalances in apoptosis control.
Collapse
Affiliation(s)
- M Castedo
- Centre National de la Recherche Scientifique, UMR1599, Institut Gustave Roussy, 39 rue Camille-Desmoulins, F-94805 Villejuif, France
| | | | | | | |
Collapse
|
107
|
Abstract
Studies on the replicative senescence and premature senescence induced by various stresses in normal somatic cells have provided important clues on the role of telomere shortening and mechanisms involved in aging processes and carcinogenesis. Recent work revealed that cancer cells also are induced to undergo replicative senescence state via telomere shortening as well as to enter a senescence-like state by the activation of cell cycle inhibitory pathways. Although less relevant in terms of aging physiology, studies on these phenomena in cancer cells have yielded important information on telomerase regulation and the roles of tumor suppressors in senescence and immortalization, and are expected to generate valuable anti-cancer strategies. Several features of the phenotypes specific for the senescent and senescence-like states induced in cancer cells are discussed.
Collapse
Affiliation(s)
- Eun Seong Hwang
- Department of Life Science, University of Seoul, Jeonnongdong 90, Dongdaemungu, Seoul 130-743, South Korea.
| |
Collapse
|
108
|
Kim EJ, Park JS, Um SJ. Identification and characterization of HIPK2 interacting with p73 and modulating functions of the p53 family in vivo. J Biol Chem 2002; 277:32020-8. [PMID: 11925430 DOI: 10.1074/jbc.m200153200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To study the biological role of p73 alpha, a member of the p53 tumor suppressor family, we performed a yeast two-hybrid screen of a human cDNA library. Using a p73 alpha fragment consisting of amino acids 49-636 as bait, we found that p73 alpha is functionally associated with the human homologue of mouse and hamster homeodomain-interacting protein kinase 2 (HIPK2). The hamster homologue, also known as haHIPK2 or PKM, was used for further characterization of interactions between HIPK2 and members of the p53 protein family. Systematic yeast two-hybrid assays indicated a physical interaction between the oligomerization domains of p73 alpha and p53 (amino acid regions 345-380 and 319-360, respectively) and amino acid region 812-907 of haHIPK2. This region of haHIPK2 includes a PEST sequence, an Ubc9-binding domain, and a partial speckle retention sequence and is identical to amino acid residues 846-941 of human HIPK2 (hHIPK2). The interaction was confirmed by glutathione S-transferase pull-down assays in vitro and immunoprecipitation assays in vivo. HIPK2 colocalized with p73 and p53 in nuclear bodies, as shown by confocal microscopy. Overexpression of HIPK2 stabilized the p53 protein and greatly increased the p73- and p53-induced transcriptional repression of multidrug-resistant and collagenase promoters in Saos2 cells but had little effect on the p73- or p53-mediated transcriptional activation of synthetic p53-responsive and p21WAF1 promoters. Stable expression of HIPK2 in U2OS cells enhanced the cisplatin response of sub-G(1) and G(2)/M populations, and it also increased the apoptotic response to cisplatin and adriamycin as demonstrated by fluorescence-activated cell sorter and 4',6-diamidino-2-phenylindole-staining analyses. HIPK2 potentiated the inhibition of colony formation by p73 and p53. These results suggest that physical interactions between HIPK2 and members of the p53 family may determine the roles of these proteins in cell cycle regulation and apoptosis.
Collapse
Affiliation(s)
- Eun-Joo Kim
- Department of Bioscience and Biotechnology, Institute of Bioscience, Sejong University, Seoul, 143-747 Korea
| | | | | |
Collapse
|
109
|
Dietz S, Rother K, Bamberger C, Schmale H, Mössner J, Engeland K. Differential regulation of transcription and induction of programmed cell death by human p53-family members p63 and p73. FEBS Lett 2002; 525:93-9. [PMID: 12163168 DOI: 10.1016/s0014-5793(02)03093-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The p53 tumor suppressor acts as a transcription factor and has a central function in controlling apoptosis. With p63 and p73 two genes coding for proteins homologous to p53 have been identified. We describe the properties of seven human p63 and p73 proteins as transcriptional activators of p21WAF1/CIP1 expression and apoptotic inducers in direct comparison to p53 in the same assay systems employing DLD-1-tet-off colon cells. Programmed cell death is detected in cells expressing high levels of p53 and p73alpha. Cells overexpressing TAp63alpha, TAp63gamma, TA*p63alpha, TA*p63gamma, DeltaNp63alpha, and DeltaNp63gamma display low or no detectable apoptosis.
Collapse
Affiliation(s)
- Sebastian Dietz
- Medizinische Klinik und Poliklinik II, Max Bürger Forschungszentrum, Universität Leipzig, Johannisallee 30, D-04103, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
110
|
Ichimiya S, Kojima T, Momota H, Kondo N, Ozaki T, Nakagawara A, Toribio ML, Imamura M, Sato N. p73 is expressed in human thymic epithelial cells. J Histochem Cytochem 2002; 50:455-62. [PMID: 11897798 DOI: 10.1177/002215540205000402] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The thymus is a heterogeneous immune organ in which immature T-cells develop and eventually specialize to make certain immune responses of their own. Among various types of stromal cells in the thymus, thymic epithelial cells (TECs) have a crucially important function for presenting self-antigens and secreting cytokines to thymocytes for their maturation into T-cells. In this study we show that the p73 gene, a homologue of the tumor suppressor gene p53, was expressed in the nucleus of the human TEC in vivo and in TEC lines in vitro. Because p73 has the capacity to be a transactivator like p53, it may contribute to T-cell development in the context of TEC biology as regulated in the cell cycle and apoptosis.
Collapse
Affiliation(s)
- Shingo Ichimiya
- Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-ku, Sapporo 060-8556, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Abstract
OBJECTIVE To review the literature published in the past 6 years concerning the role of p53 tumor-suppressor protein in rheumatoid arthritis (RA). METHODS A MEDLINE search was performed to identify all publications that covered the role of p53 in RA. In addition, selected articles related to proto-oncogenes and matrix metalloproteinases were included in this review. RESULTS p53 protein is expressed in RA fibroblast-like synoviocytes (FLSs), and its overexpression is a characteristic feature of RA. The overexpression of p53 is probably induced by DNA strand breaks caused by the genotoxic environment of RA joints, in some cases because of p53 mutations. Independent studies from 3 groups indicated that p53 mutations can and do occur in RA synovial tissue samples derived from a subset of RA patients. Inactivation of p53 may contribute to the invasiveness of FLSs and to the high-level expression of cartilage degradation enzymes as well. Gene transfer or gene knockout studies using a collagen-II-induced RA animal model to examine the role of p53 in RA have been reported. Initial results are positive and indicate that gene transfer of p53 may be clinically useful for the management of RA. CONCLUSIONS p53 protein is expressed in RA FLSs, and its overexpression is a characteristic feature of RA. p53 mutations occur in the synovial tissues derived from a subset of RA patients. The clinical implications of p53 expression and the functional importance of somatic mutations in RA, however, are still unclear. Further research is needed to fully understand the implications of these findings and develop corresponding new therapeutic strategies.
Collapse
Affiliation(s)
- Yubo Sun
- Department of Medicine, University of Miami School of Medicine, FL, USA
| | | |
Collapse
|
112
|
Nakamura S, Gomyo Y, Roth JA, Mukhopadhyay T. C-terminus of p53 is required for G(2) arrest. Oncogene 2002; 21:2102-7. [PMID: 11960383 DOI: 10.1038/sj.onc.1205251] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2001] [Revised: 12/12/2001] [Accepted: 12/12/2001] [Indexed: 11/08/2022]
Abstract
Mutation of four lysine residues in the p53 C-terminal domain inhibits MDM2-dependent ubiquitination of p53 and alters its subcellular distribution. This implies that modification (such as acetylation and phosphorylation) of amino acid residues in p53 C-terminal domain, regulate the biological functions of p53. In this study, we demonstrated that p53 with lysine residues 372, 373, 381, and 382 mutated to alanine (the A4 mutant) retained the transactivation activity of wild-type p53, although the transactivation activity of p21 promoter by the A4 mutant was slightly reduced. The inducible expression of wild-type p53 and the A4 mutant in H1299 cells caused growth inhibition due to cell-cycle arrest. Consistent with previous studies, the expression of wild-type p53 elicited G(1) and G(2) arrests. However, the cells expressing the A4 mutant underwent G(1) arrest but not G(2) arrest. Cyclin B1-associated kinase activity was reduced in cells expressing wild-type p53 but not A4, when the cells underwent G(2) arrest. This suggests that modification of the p53 C-terminal domain might inhibit p53-mediated G(2) arrest. In other words, p53 requires an intact C-terminus to induce G(2) arrest.
Collapse
Affiliation(s)
- Seiichi Nakamura
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, Box 109, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas, TX 77030, USA
| | | | | | | |
Collapse
|
113
|
Lee S, Tarn C, Wang WH, Chen S, Hullinger RL, Andrisani OM. Hepatitis B virus X protein differentially regulates cell cycle progression in X-transforming versus nontransforming hepatocyte (AML12) cell lines. J Biol Chem 2002; 277:8730-40. [PMID: 11756437 DOI: 10.1074/jbc.m108025200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hepatitis B virus (HBV) X protein (pX) is implicated in hepatocarcinogenesis of chronically infected HBV patients. To understand mechanism(s) of pX-mediated cellular transformation, we employed two tetracycline-regulated, pX-expressing cell lines, constructed in AML12 immortalized hepatocytes: one a differentiated (3pX-1) and the other a de-differentiated (4pX-1) hepatocyte cell line. Only 3pX-1 cells undergo pX-mediated transformation, via sustained Ras-Raf-mitogen-activated protein kinase pathway activation. pX-nontransforming 4pX-1 cells display sustained, pX-dependent JNK pathway activation. To understand how pX mediates different growth characteristics in 3pX-1 and 4pX-1 cells, we report, herein, comparative cell cycle analyses. pX-transforming 3pX-1 cells display pX-dependent G(1), S, and G(2)/M progression evidenced by cyclin D(1), A, and B(1) induction, and Cdc2 kinase activation. pX-nontransforming 4pX-1 cells display pX-dependent G(1) and S phase entry, followed by S phase pause and absence of Cdc2 kinase activation. Interestingly, 4pX-1 cells exhibit selective pX-induced expression of cyclin-dependent kinase inhibitor p21(Cip1), tumor suppressor p19(ARF), and proapoptotic genes bax and IGFBP-3. Despite the pX-mediated induction of growth arrest and apoptotic genes and the absence of pX-dependent Cdc2 activation, 4pX-1 cells do not undergo pX-dependent G(2)/M arrest or apoptosis. Nocodazole-treated, G(2)/M-arrested 4pX-1 cells exhibit pX-dependent formation of multinucleated cells, similar to human T-cell lymphotropic virus type I Tax-expressing cells. We propose that in 4pX-1 cells, pX deregulates the G(2)/M checkpoint, thus rescuing cells from pX-mediated apoptosis.
Collapse
Affiliation(s)
- Sook Lee
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana 47907-1246, USA
| | | | | | | | | | | |
Collapse
|
114
|
Hoffman WH, Biade S, Zilfou JT, Chen J, Murphy M. Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J Biol Chem 2002; 277:3247-57. [PMID: 11714700 DOI: 10.1074/jbc.m106643200] [Citation(s) in RCA: 608] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Survivin is a member of the inhibitor of apoptosis family. This apoptosis inhibitor also has an evolutionarily conserved role as a mitotic spindle checkpoint protein. Previous studies on p53-repressed genes have implicated several genes involved in the G(2)/M transition of the cell cycle as targets of negative regulation by p53. However, few targets of p53 repression that are anti-apoptotic have been identified. This study identifies the anti-apoptotic survivin gene as a p53-repressed gene. Notably, Survivin repression by p53 is shown to be distinct from p53-dependent growth arrest. Chromatin immunoprecipitations indicate that p53 binds the survivin promoter in vivo; immunobinding studies indicate that this site overlaps with a binding site for E2F transcription factors and is subtly distinct from a canonical p53-transactivating element. The survivin-binding site contains a 3-nucleotide spacer between the two decamer "half-sites" of the p53 consensus element; deletion of this spacer is sufficient to convert the survivin site into a transactivating element. Finally, we show that overexpression of Survivin in cells sensitive to p53-dependent cell death markedly inhibits apoptosis induced by ultraviolet light. The identification of survivin as a p53 repressed gene should aid in the elucidation of the contribution of transcriptional repression to p53-dependent apoptosis.
Collapse
Affiliation(s)
- William H Hoffman
- Department of Pharmacology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | |
Collapse
|
115
|
Liberati C, Cera MR, Secco P, Santoro C, Mantovani R, Ottolenghi S, Ronchi A. Cooperation and competition between the binding of COUP-TFII and NF-Y on human epsilon- and gamma-globin gene promoters. J Biol Chem 2001; 276:41700-9. [PMID: 11544252 DOI: 10.1074/jbc.m102987200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The nuclear receptor COUP-TFII was recently shown to bind to the promoter of the epsilon- and gamma-globin genes and was identified as the nuclear factor NF-E3. Transgenic experiments and genetic evidence from humans affected with hereditary persistence of fetal hemoglobin suggest that NF-E3 may be a repressor of adult epsilon and gamma expression. We show that, on the epsilon-promoter, recombinant COUP-TFII binds to two sites, the more downstream of which overlaps with an NF-Y binding CCAAT box. Binding occurs efficiently to either the 5' or the 3' COUP-TFII site but not to both sites simultaneously. However, adding recombinant NF-Y induces the formation of a stable COUP-TFII.NF-Y-promoter complex at concentrations of COUP-TFII that would not give significant binding in the absence of NF-Y. Mutations of the promoter indicate that COUP-TFII cooperates with NF-Y when bound to the 5' site, whereas binding at the 3' site is mutually exclusive. Likewise, in the gamma-promoter, COUP-TFII binds to a site overlapping the distal member of a duplicated CCAAT box, competing with NF-Y binding. Transfections in K562 cells show that both the mutation of the 5' COUP-TFII or of the NF-Y site on the epsilon-promoter decrease the activity of a luciferase reporter; the mutation of the 3' COUP-TFII site has little effect. These results, together with transgenic experiments suggesting a repressive activity of COUP-TFII on the epsilon-promoter and the observation that, on the 3' site, COUP-TFII and NF-Y binding is mutually exclusive, suggest that COUP-TFII may exert different effects on epsilon transcription depending on whether it binds to the 5' or to the 3' site. At the 5' site, COUP-TFII might cooperate with NF-Y, forming a stable complex, and stimulate transcription; at the 3' site, COUP-TFII might compete for binding with NF-Y and, directly or indirectly, decrease gene activity.
Collapse
Affiliation(s)
- C Liberati
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, 20126 Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
116
|
Jung MS, Yun J, Chae HD, Kim JM, Kim SC, Choi TS, Shin DY. p53 and its homologues, p63 and p73, induce a replicative senescence through inactivation of NF-Y transcription factor. Oncogene 2001; 20:5818-25. [PMID: 11593387 DOI: 10.1038/sj.onc.1204748] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2001] [Revised: 06/18/2001] [Accepted: 06/26/2001] [Indexed: 12/31/2022]
Abstract
Recent studies have identified two p53 homologues, p63 and p73. They activate p53-responsive promoters and induce apoptosis when overexpressed in certain human tumors. Here, we report that p63, like p53 and p73, induces replicative senescence when expressed in a tetracycline-regulated manner in EJ cells lacking a functional p53. In addition to transcription activation of p53-responsive genes, we found that p63 and p73 repress transcription of the cdk1 and cyclin B genes, both of which are irreversibly repressed in senescent human fibroblast. In transient transfection assay, p63 and p73 repress the cdk1 promoter regardless of the presence of a dominant negative mutant form of p53. Furthermore, we found that DNA binding activity of NF-Y transcription factor, which is essential for transcription of the cdk1 and cyclin B genes and inactivated in senescent fibroblast, is significantly decreased by expression of either of p53, p63, or p73. Since NF-Y binds to many promoters besides the cdk1 and cyclin B promoters, inactivation of NF-Y by p53 family genes may be a general mechanism for transcription repression in replicative senescence.
Collapse
Affiliation(s)
- M S Jung
- National Research Laboratory for Cell Cycle Regulation, Department of Microbiology, Dankook University College of Medicine, Chonan, 330-714, Korea
| | | | | | | | | | | | | |
Collapse
|
117
|
Krause K, Haugwitz U, Wasner M, Wiedmann M, Mössner J, Engeland K. Expression of the cell cycle phosphatase cdc25C is down-regulated by the tumor suppressor protein p53 but not by p73. Biochem Biophys Res Commun 2001; 284:743-50. [PMID: 11396965 DOI: 10.1006/bbrc.2001.5040] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cdc25C phosphatase dephosphorylates cdc2 kinase which then in complex with cyclin B can catalyse transition from the G(2) phase to mitosis. We demonstrate that transcription of cdc25C is repressed by p53 in a dose-dependent manner. In stably transfected DLD-1 colorectal adenocarcinoma cells, cdc25C expression is down-regulated when p53 is induced from a (tet)-off-regulated system. In contrast to p53, its homologue p73 is not able to down-modulate cdc25C expression. A previously identified site in the cdc25C promoter can bind p53 in vitro and, when placed in a heterologous construct, is able to activate transcription. However, transcriptional repression by p53 is not mediated through this site but is dependent on a segment containing three CCAAT-boxes. In general down-regulation of cdc25C transcription by reducing the levels of active cdc2 kinase contributes to G(2) arrest and G(2)/M checkpoint control. This reveals functional differences between p73 and p53 in regulating cell division.
Collapse
Affiliation(s)
- K Krause
- Department of Internal Medicine II, University of Leipzig, Max Bürger Research Centre, Johannisallee 30, D-04103 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
118
|
Johnson RA, Ince TA, Scotto KW. Transcriptional repression by p53 through direct binding to a novel DNA element. J Biol Chem 2001; 276:27716-20. [PMID: 11350951 DOI: 10.1074/jbc.c100121200] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tumor suppressor protein p53 has been well documented as a transcriptional activator involved in the regulation of a number of critical genes involved in the cell cycle, response to DNA damage, and apoptosis. Activation by p53 requires the interaction of the protein with a consensus binding site consisting of two half-sites, each comprising two copies of the sequence PuPuPuC(A/T) arranged head-to-head and separated by 0-13 base pairs. In addition to activation, p53 has been shown to be a potent repressor of transcription. However, the basis for p53-mediated repression is not well understood and has been proposed to occur indirectly through interactions with other promoter-bound transcription factors. In the present study, we show that p53 can repress transcription directly by binding to a novel head-to-tail (HT) site within the MDR1 promoter. A mutation that disrupted p53 binding to the MDR1 HT site blocked p53-mediated repression of the MDR1 promoter in transfection assays. Replacement of the HT site with a head-to-head (HH) site converted the activity of p53 from repression to activation, indicating that simple recruitment of p53 to the promoter is not sufficient for repression and that the orientation of the binding element determines the fate of p53-regulated promoters.
Collapse
Affiliation(s)
- R A Johnson
- Program in Molecular Pharmacology and Therapeutics, Memorial Sloan-Kettering Cancer Center, New York, New York 1002, USA
| | | | | |
Collapse
|
119
|
Ababneh M, Götz C, Montenarh M. Downregulation of the cdc2/cyclin B protein kinase activity by binding of p53 to p34(cdc2). Biochem Biophys Res Commun 2001; 283:507-12. [PMID: 11327730 DOI: 10.1006/bbrc.2001.4792] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously found that p53 binds to the catalytic subunit of the p34(cdc2)/cyclin B1-kinase. In the present study we analyzed the functional consequences of this interaction. Binding of wild-type p53 to p34(cdc2)/cyclin B1 results in a significant decrease of its histone H1 kinase activity. Binding of p53 to the kinase is a prerequisite for the inhibition because a mutant p53 which lacks the binding region fails to influence the enzymatic activity. Furthermore, by using C-terminal fragments of p53 it became obvious that also some other structural elements in the N-terminal region are necessary for the inhibitory effect. Our present study provides evidence that p53 might regulate cell-cycle checkpoints not only on the transcriptional level but also by binding to the cell-cycle regulating kinase p34(cdc2).
Collapse
Affiliation(s)
- M Ababneh
- Medizinische Biochemie und Molekularbiologie, Universität des Saarlandes, Gebäude 44, Homburg, 66421, Germany
| | | | | |
Collapse
|
120
|
Taylor WR, Stark GR. Regulation of the G2/M transition by p53. Oncogene 2001; 20:1803-15. [PMID: 11313928 DOI: 10.1038/sj.onc.1204252] [Citation(s) in RCA: 1194] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2000] [Revised: 12/28/2000] [Accepted: 01/08/2001] [Indexed: 12/14/2022]
Abstract
p53 protects mammals from neoplasia by inducing apoptosis, DNA repair and cell cycle arrest in response to a variety of stresses. p53-dependent arrest of cells in the G1 phase of the cell cycle is an important component of the cellular response to stress. Here we review recent evidence that implicates p53 in controlling entry into mitosis when cells enter G2 with damaged DNA or when they are arrested in S phase due to depletion of the substrates required for DNA synthesis. Part of the mechanism by which p53 blocks cells at the G2 checkpoint involves inhibition of Cdc2, the cyclin-dependent kinase required to enter mitosis. Cdc2 is inhibited simultaneously by three transcriptional targets of p53, Gadd45, p21, and 14-3-3 sigma. Binding of Cdc2 to Cyclin B1 is required for its activity, and repression of the cyclin B1 gene by p53 also contributes to blocking entry into mitosis. p53 also represses the cdc2 gene, to help ensure that cells do not escape the initial block. Genotoxic stress also activates p53-independent pathways that inhibit Cdc2 activity, activation of the protein kinases Chk1 and Chk2 by the protein kinases Atm and Atr. Chk1 and Chk2 inhibit Cdc2 by inactivating Cdc25, the phosphatase that normally activates Cdc2. Chk1, Chk2, Atm and Atr also contribute to the activation of p53 in response to genotoxic stress and therefore play multiple roles. p53 induces transcription of the reprimo, B99, and mcg10 genes, all of which contribute to the arrest of cells in G2, but the mechanisms of cell cycle arrest by these genes is not known. Repression of the topoisomerase II gene by p53 helps to block entry into mitosis and strengthens the G2 arrest. In summary, multiple overlapping p53-dependent and p53-independent pathways regulate the G2/M transition in response to genotoxic stress.
Collapse
Affiliation(s)
- W R Taylor
- Department of Molecular Biology, Lerner Research Insititute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
121
|
Yang X, Taylor L, Polgar P. p53 down-regulates human bradykinin B1 receptor gene expression. J Cell Biochem 2001; 82:38-45. [PMID: 11400161 DOI: 10.1002/jcb.1117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The tumor suppressor, p53, has been shown to transcriptionally activate or silence a number of target genes. As an activator, p53 relies on its specific consensus sequence within the promoter. It is not clear whether p53 requires a specific DNA binding site in its action as a gene repressor. This report demonstrates that the human BKB1R gene is a p53 target. Expression of p53 in transiently transfected SV40-transformed IMR90 cells strongly suppressed luciferase reporter activity driven by a 1.8 kb BKB1R promoter as well as its minigene. These down-regulations were p53 dose-dependent. p53 reduced both basal and induced promoter activities of the minigene. Expression of p53 abolished the inducibility of the minigene. Induction of endogenous p53 expression by etoposide also inhibited promoter activity and minigene inducibility. Replacing the region containing both the putative p53 binding site and the TATA-box with a basal adenovirus promoter in the 1.8 kb promoter construct did not prevent p53 from inhibiting BKB1R promoter activity. Thus suppression by p53 is not mediated by competition with the TATA-binding protein and is not through interaction with the putative p53-binding site. p53 also does not appear to suppress BKB1R gene expression through interaction with c-Jun which functions in the inducibility of this gene [Yang et al., 2001].
Collapse
MESH Headings
- Binding Sites/drug effects
- Binding Sites/genetics
- Cell Line, Transformed
- Dose-Response Relationship, Drug
- Down-Regulation/genetics
- Etoposide/pharmacology
- Gene Expression/drug effects
- Gene Expression/genetics
- Genes, jun/genetics
- Genes, p53/drug effects
- Genes, p53/genetics
- Humans
- Promoter Regions, Genetic/genetics
- Receptor, Bradykinin B1
- Receptors, Bradykinin/drug effects
- Receptors, Bradykinin/genetics
- Receptors, Bradykinin/physiology
- TATA Box/drug effects
- TATA Box/genetics
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Tumor Suppressor Protein p53/pharmacology
- Up-Regulation
Collapse
Affiliation(s)
- X Yang
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
122
|
Tolner B, Hartley JA, Hochhauser D. Transcriptional regulation of topoisomerase II alpha at confluence and pharmacological modulation of expression by bis-benzimidazole drugs. Mol Pharmacol 2001; 59:699-706. [PMID: 11259613 DOI: 10.1124/mol.59.4.699] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Topoisomerase II alpha is a critical gene involved in DNA replication and maintenance of genomic stability. Several chemotherapeutic agents target topoisomerase II and levels of expression are an important factor in chemosensitivity. Transcriptional regulation has been demonstrated to regulate topoisomerase II alpha levels under several circumstances, including cellular confluence, heat shock, and expression of oncogenes including ras and myb. Expression of topoisomerase II alpha is regulated by cellular proliferation; transcriptional down-regulation in confluent cells is modulated through sequences within the promoter. In this study, we examined DNA-protein interactions within the topoisomerase II alpha promoter in exponential and confluent phase NIH3T3 cells. Using electrophoretic mobility shift assay and in vitro DNase I footprint experiments, the involvement of NF-Y in transcriptional regulation was established. Incubation of the DNA minor groove-binding agents Hoechst 33342 and Hoechst 33258 with nuclear extracts revealed drug binding to regions surrounding the inverted CCAAT boxes within the topoisomerase II alpha promoter and displacement of proteins binding to these elements. Addition of both Hoechst 33342 and Hoechst 33258 to NIH3T3 cells at confluence resulted in increased expression of topoisomerase II alpha. In addition, MTT cytotoxicity assays in confluent cells showed an additive effect of incubation with Hoechst 33342 and the topoisomerase II alpha poison etoposide. Therefore, DNA binding drugs which block transcription factor activation of the promoter may deregulate topoisomerase II alpha and this strategy may be of value in modifying gene expression and modulating chemosensitivity.
Collapse
Affiliation(s)
- B Tolner
- Department of Oncology, Royal Free and University College Medical School, University College London, Gower Street Campus, London, United Kingdom
| | | | | |
Collapse
|
123
|
Manni I, Mazzaro G, Gurtner A, Mantovani R, Haugwitz U, Krause K, Engeland K, Sacchi A, Soddu S, Piaggio G. NF-Y mediates the transcriptional inhibition of the cyclin B1, cyclin B2, and cdc25C promoters upon induced G2 arrest. J Biol Chem 2001; 276:5570-6. [PMID: 11096075 DOI: 10.1074/jbc.m006052200] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During normal cell cycles, the function of mitotic cyclin-cdk1 complexes, as well as of cdc25C phosphatase, is required for G2 phase progression. Accordingly, the G2 arrest induced by DNA damage is associated with a down-regulation of mitotic cyclins, cdk1, and cdc25C phosphatase expression. We found that the promoter activity of these genes is repressed in the G2 arrest induced by DNA damage. We asked whether the CCAAT-binding NF-Y modulates mitotic cyclins, cdk1, and cdc25C gene transcription during this type of G2 arrest. In our experimental conditions, the integrity of the CCAAT boxes of cyclin B1, cyclin B2, and cdc25C promoters, as well as the presence of a functional NF-Y complex, is strictly required for the transcriptional inhibition of these promoters. Furthermore, a dominant-negative p53 protein, impairing doxorubicin-induced G2 arrest, prevents transcriptional down-regulation of the mitotic cyclins, cdk1, and cdc25C genes. We conclude that, as already demonstrated for cdk1, NF-Y mediates the transcriptional inhibition of the mitotic cyclins and the cdc25C genes during p53-dependent G2 arrest induced by DNA damage. These data suggest a transcriptional regulatory role of NF-Y in the G2 checkpoint after DNA damage.
Collapse
Affiliation(s)
- I Manni
- Laboratorio Oncogenesi Molecolare, Istituto Regina Elena, Rome 00158, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Taylor WR, Schonthal AH, Galante J, Stark GR. p130/E2F4 binds to and represses the cdc2 promoter in response to p53. J Biol Chem 2001; 276:1998-2006. [PMID: 11032828 DOI: 10.1074/jbc.m005101200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p53 represses the transcription of cdc2 and cyclin B1, causing loss of Cdc2 activity and G(2) arrest. Here we show that the region -22 to -2 of the cdc2 promoter called the R box is required for repression by p53 but not for basal promoter activity. The R box confers p53-dependent repression on heterologous promoters and binds to p130/E2F4 in response to overexpression of p53. R box-dependent repression requires p21/waf1, and overexpression of p21/waf1 also represses the cdc2 promoter. These observations suggest that p53 represses the cdc2 promoter by inducing p21/waf1, which inhibits cyclin-dependent kinase activity, enhancing the binding of p130 and E2F4, which together bind to and repress the cdc2 promoter.
Collapse
Affiliation(s)
- W R Taylor
- Department of Molecular Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | |
Collapse
|
125
|
Alexandrova A, Ivanov A, Chumakov P, Kopnin B, Vasiliev J. Changes in p53 expression in mouse fibroblasts can modify motility and extracellular matrix organization. Oncogene 2000; 19:5826-30. [PMID: 11126371 DOI: 10.1038/sj.onc.1203944] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Effects of p53 expression on cell morphology and motility were studied using the derivatives of p53-null 10(1) mouse fibroblasts with tetracycline-regulated expression of exogenous human p53. Induction of p53 expression was accompanied by significant decrease in extracellular matrix (fibronectin) and reduction of matrix fibrils, diminution of the number and size of focal contacts, decrease of cell areas, establishment of more elongated cell shape and alterations of actin cytoskeleton (actin bundles became thinner, their number and size decreased). Expression of His175 and Gln22/ Ser23 p53 mutants caused no such effects. To study the influence of p53 expression on cell motility we used wound technique and videomicroscopy observation of single living cells. It was found that induction of p53 expression led to increase of lamellar activity of cell edge. However, in spite of enhanced lamellar activity p53-expressing cells migrated to shorter distance and filled the narrow wound in longer time as compared with their p53-null counterparts. Possible mechanisms of the influence of p53 expression on cell morphology and motility are discussed.
Collapse
Affiliation(s)
- A Alexandrova
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| | | | | | | | | |
Collapse
|
126
|
Krause K, Wasner M, Reinhard W, Haugwitz U, Dohna CL, Mössner J, Engeland K. The tumour suppressor protein p53 can repress transcription of cyclin B. Nucleic Acids Res 2000; 28:4410-8. [PMID: 11071927 PMCID: PMC113869 DOI: 10.1093/nar/28.22.4410] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The tumour suppressor protein p53 has functions in controlling the G(1)/S and G(2)/M transitions. Central regulators for progression from G(2) to mitosis are B-type cyclins complexed with cdc2 kinase. In mammals two cyclin B proteins are found, cyclin B1 and B2. We show that upon treatment of HepG2 cells with 5-fluorouracil or methotrexate, p53 levels increase while concentrations of cyclin B2 mRNA, measured by RT-PCR with the LightCycler system, are reduced. In DLD-1 colorectal adenocarcinoma cells (DLD-1-tet-off-p53) cyclin B1 and B2 mRNA levels drop after expression of wild-type p53 but not after induction of a DNA binding-deficient mutant of p53. Analysis of the cyclin B2 promoter reveals specific repression of this gene by p53. Transfection of wild-type p53 into SaOS-2 cells shuts off transcription from a cyclin B2 promoter-luciferase construct whereas a p53 mutant protein does not. The cyclin B2 promoter does not contain a consensus p53 binding site. Most of the p53-dependent transcriptional responsiveness resides in its 226 bp core promoter. Taken together with earlier observations on p53-dependent transcription of cyclin B1, our results suggest that one way of regulating G(2) arrest may be a reduction in cyclin B levels through p53-dependent transcriptional repression.
Collapse
Affiliation(s)
- K Krause
- Medizinische Klinik II, Max Bürger Forschungszentrum, Universität Leipzig, Johannisallee 30, D-04103 Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
127
|
Affiliation(s)
- W C Russell
- Biomolecular Sciences Building, School of Biology, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK1
| |
Collapse
|
128
|
Abstract
The tumor suppressor protein p53 is frequently inactivated in tumors. It functions as a transcriptional activator as well as a repressor for a number of viral and cellular promoters transcribed by RNA polymerase II (Pol II) and by RNA Pol III. Moreover, it appears that p53 also suppresses RNA Pol I transcription. In this study, we examined the molecular mechanism of Pol I transcriptional inhibition by p53. We show that wild-type, but not mutant, p53 can repress Pol I transcription from a human rRNA gene promoter in cotransfection assays. Furthermore, we show that recombinant p53 inhibits rRNA transcription in a cell-free transcription system. In agreement with these results, p53-null epithelial cells display an increased Pol I transcriptional activity compared to that of epithelial cells that express p53. However, both cell lines display comparable Pol I factor protein levels. Our biochemical analysis shows that p53 prevents the interaction between SL1 and UBF. Protein-protein interaction assays indicate that p53 binds to SL1, and this interaction is mostly mediated by direct contacts with TATA-binding protein and TAF(I)110. Moreover, template commitment assays show that while the formation of a UBF-SL1 complex can partially relieve the inhibition of transcription, only the assembly of a UBF-SL1-Pol I initiation complex on the rDNA promoter confers substantial protection against p53 inhibition. In summary, our results suggest that p53 represses RNA Pol I transcription by directly interfering with the assembly of a productive transcriptional machinery on the rRNA promoter.
Collapse
Affiliation(s)
- W Zhai
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | |
Collapse
|