101
|
Stanton H, Melrose J, Little CB, Fosang AJ. Proteoglycan degradation by the ADAMTS family of proteinases. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1616-29. [PMID: 21914474 DOI: 10.1016/j.bbadis.2011.08.009] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 08/20/2011] [Accepted: 08/23/2011] [Indexed: 10/17/2022]
Abstract
Proteoglycans are key components of extracellular matrices, providing structural support as well as influencing cellular behaviour in physiological and pathological processes. The diversity of proteoglycan function reported in the literature is equally matched by diversity in proteoglycan structure. Members of the ADAMTS (A Disintegrin And Metalloproteinase with ThromboSpondin motifs) family of enzymes degrade proteoglycans and thereby have the potential to alter tissue architecture and regulate cellular function. In this review, we focus on ADAMTS enzymes that degrade the lectican and small leucine-rich repeat families of proteoglycans. We discuss the known ADAMTS cleavage sites and the consequences of cleavage at these sites. We illustrate our discussion with examples from the literature in which ADAMTS proteolysis of proteoglycans makes profound changes to tissue function.
Collapse
Affiliation(s)
- Heather Stanton
- University of Melbourne, Department of Paediatrics, Australia.
| | | | | | | |
Collapse
|
102
|
Haylock-Jacobs S, Keough MB, Lau L, Yong VW. Chondroitin sulphate proteoglycans: extracellular matrix proteins that regulate immunity of the central nervous system. Autoimmun Rev 2011; 10:766-72. [PMID: 21664302 DOI: 10.1016/j.autrev.2011.05.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 05/24/2011] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) is a complex network of scaffolding molecules that also plays an important role in cell signalling, migration and tissue structure. In the central nervous system (CNS), the ECM is integral to the efficient development/guidance and survival of neurons and axons. However, changes in distribution of the ECM in the CNS may significantly enhance pathology in CNS disease or following injury. One group of ECM proteins that is important for CNS homeostasis is the chondroitin sulphate proteoglycans (CSPGs). Up-regulation of these molecules has been demonstrated to be both desirable and detrimental following CNS injury. Taking cues from arthritis, where there is a strong anti-CSPG immune response, there is evidence that suggests that CSPGs may influence immunity during CNS pathological conditions. This review focuses on the role of CSPGs in CNS pathologies as well as in immunity, both from a viewpoint of how they may inhibit repair and exacerbate damage in the CNS, and how they are involved in activation and function of peripheral immune cells, particularly in multiple sclerosis. Lastly, we address how CSPGs may be manipulated to improve disease outcomes.
Collapse
Affiliation(s)
- Sarah Haylock-Jacobs
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta Canada
| | | | | | | |
Collapse
|
103
|
Belmiro CLR, Gonçalves RG, Kozlowski EO, Werneck AF, Takyia CM, Leite M, Pavão MSG. Dermatan sulfate reduces monocyte chemoattractant protein 1 and TGF-β production, as well as macrophage recruitment and myofibroblast accumulation in mice with unilateral ureteral obstruction. Braz J Med Biol Res 2011; 44:624-33. [PMID: 21833458 DOI: 10.1590/s0100-879x2011007500077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 06/06/2011] [Indexed: 12/16/2022] Open
Abstract
Selectins play an essential role in most inflammatory reactions, mediating the initial leukocyte-rolling event on activated endothelium. Heparin and dermatan sulfate (DS) bind and block P- and L-selectin function in vitro. Recently, we reported that subcutaneous administration of DS inhibits colon inflammation in rats by reducing macrophage and T-cell recruitment and macrophage activation. In the present study, we examined the effect of porcine intestinal mucosa DS on renal inflammation and fibrosis in mice after unilateral ureteral obstruction (UUO). Twenty-four adult male Swiss mice weighing 20-25 g were divided into 4 groups: group C (N = 6) was not subjected to any surgical manipulation; group SH (N = 6) was subjected to surgical manipulation but without ureter ligation; group UUO (N = 6) was subjected to unilateral ureteral obstruction and received no treatment; group UUO plus DS (N = 6) was subjected to UUO and received DS (4 mg/kg) subcutaneously daily for 14 days. An immunoblot study was also performed for TGF-β. Collagen (stained area ~3700 µm(2)), MCP-1 (stained area ~1700 µm(2)), TGF-β (stained area ~13% of total area), macrophage (number of cells ~40), and myofibroblast (stained area ~1900 µm(2)) levels were significantly (P < 0.05) higher in the UUO group compared to control. DS treatment significantly (P < 0.05) reduced the content of collagen (stained area ~700 µm(2)), MCP-1 (stained area ~160 µm(2)) and TGF-β (stained area ~5% of total area), in addition to myofibroblast (stained area ~190 µm(2)) and macrophage (number of cells ~32) accumulation in the obstructed kidney. Overall, these results indicate that DS attenuates kidney inflammation by reducing macrophage recruitment, myofibroblast population and fibrosis in mice submitted to UUO.
Collapse
Affiliation(s)
- C L R Belmiro
- Laboratório de Bioquímica e Biologia Celular de Glicoconjugados, Programa de Glicobiologia, Instituto de Bioquímica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Brasil
| | | | | | | | | | | | | |
Collapse
|
104
|
Carthy JM, Boroomand S, McManus BM. Versican and CD44 in in vitro valvular interstitial cell injury and repair. Cardiovasc Pathol 2011; 21:74-82. [PMID: 21546273 DOI: 10.1016/j.carpath.2011.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 03/14/2011] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Versican is one of the key components of the extracellular matrix (ECM) that is expressed during injury, inflammatory, and repair processes. The current study evaluated the relationship between versican and the membrane receptor CD44 during in vitro valvular interstitial cell (VIC) injury and repair. METHODS Subconfluent, confluent, and wounded cultures of human VICs were fixed and immunostained to detect versican and the membrane receptor CD44. To examine the relationship between versican and CD44, a blocking antibody to CD44 was added to cultured VICs, and in vitro wound repair along with pericellular versican organization and stress fiber formation were examined. RESULTS Immunohistochemistry demonstrated that versican is prominent intracellularly, as well as extracellularly, in actively proliferating VICs. In contrast, versican was only localized to fibrils in the extracellular space in between cells in confluent (quiescent) cultures. Following wounding, versican expression was up-regulated, and it was secreted as ECM at the trailing edge of migrating cells. The staining for CD44 was similarly localized to the trailing edge of migrating VICs in wounded cultures. Treatment of VICs with a CD44-blocking antibody disrupted the organization of versican in the pericellular matrix and inhibited stress fiber formation in these cells. Functionally, blocking CD44 significantly inhibited VIC-mediated contraction of type I collagen gels (35.7%±0.7% vs. 23.3%±1.4% of initial gel area, P<.01). CONCLUSIONS Versican is a key component of the provisional wound repair ECM that is expressed following injury to VICs. The receptor CD44 plays an important role in organizing the provisional ECM. SUMMARY Our data suggests VICs synthesize and secrete versican following injury. These cells also up-regulate CD44, a receptor that binds versican. Blocking CD44 disrupted the organization of versican and inhibited stress fiber formation. Functionally, blocking CD44 inhibited cell-mediated contraction of a collagen matrix. Collectively, these data suggest versican expression and organization are important to valve cell injury and repair.
Collapse
Affiliation(s)
- Jon M Carthy
- UBC James Hogg Research Centre, Institute for Heart + Lung Health, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
105
|
Lim JJ, Hammoudi TM, Bratt-Leal AM, Hamilton SK, Kepple KL, Bloodworth NC, McDevitt TC, Temenoff JS. Development of nano- and microscale chondroitin sulfate particles for controlled growth factor delivery. Acta Biomater 2011; 7:986-95. [PMID: 20965281 DOI: 10.1016/j.actbio.2010.10.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 10/13/2010] [Accepted: 10/14/2010] [Indexed: 01/08/2023]
Abstract
Size scale plays an important role in the release properties and cellular presentation of drug delivery vehicles. Because negatively charged chondroitin sulfate (CS) is capable of electrostatically sequestering positively charged growth factors, CS-derived nanoscale micelles and microscale spheroids were synthesized as potential growth factor carriers to enhance differentiation of stem cells. Particles were characterized for morphology, size distribution, surface charge and cytocompatibility, as well as release of transforming growth factor-β1 (TGF-β1) and tumor necrosis factor-α (TNF-α). CS micelles were spherical and negatively charged with a bimodal distribution of 324.1±8.5 and 73.2±4.4 nm diameters, and CS microspheres possessed a rounded morphology and a diameter of 4.3±0.93 μm. Positively charged TGF-β1 demonstrated minimal release after loading in CS microspheres, while negatively charged TNF-α exhibited substantial release over the first 15 h, suggesting that TGF-β1 electrostatically complexed with CS. The micelles and microparticles were found to be cytocompatible at moderate concentrations with marrow stromal cell monolayers and within embryonic stem cell embryoid bodies. These synthesis techniques, which allow the formation of CS-based carriers over a variety of nano- and microscale sizes, offer versatility for tailored release of positively charged growth factors and controlled CS presentation for a variety of stem cell-based applications in tissue engineering and regenerative medicine.
Collapse
|
106
|
Du WW, Yang BB, Shatseva TA, Yang BL, Deng Z, Shan SW, Lee DY, Seth A, Yee AJ. Versican G3 promotes mouse mammary tumor cell growth, migration, and metastasis by influencing EGF receptor signaling. PLoS One 2010; 5:e13828. [PMID: 21079779 PMCID: PMC2974650 DOI: 10.1371/journal.pone.0013828] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 10/04/2010] [Indexed: 01/08/2023] Open
Abstract
Increased versican expression in breast tumors is predictive of relapse and has negative impact on survival rates. The C-terminal G3 domain of versican influences local and systemic tumor invasiveness in pre-clinical murine models. However, the mechanism(s) by which G3 influences breast tumor growth and metastasis is not well characterized. Here we evaluated the expression of versican in mouse mammary tumor cell lines observing that 4T1 cells expressed highest levels while 66c14 cells expressed low levels. We exogenously expressed a G3 construct in 66c14 cells and analyzed its effects on cell proliferation, migration, cell cycle progression, and EGFR signaling. Experiments in a syngeneic orthotopic animal model demonstrated that G3 promoted tumor growth and systemic metastasis in vivo. Activation of pERK correlated with high levels of G3 expression. In vitro, G3 enhanced breast cancer cell proliferation and migration by up-regulating EGFR signaling, and enhanced cell motility through chemotactic mechanisms to bone stromal cells, which was prevented by inhibitor AG 1478. G3 expressing cells demonstrated increased CDK2 and GSK-3β (S9P) expression, which were related to cell growth. The activity of G3 on mouse mammary tumor cell growth, migration and its effect on spontaneous metastasis to bone in an orthotopic model was modulated by up-regulating the EGFR-mediated signaling pathway. Taken together, EGFR-signaling appears to be an important pathway in versican G3-mediated breast cancer tumor invasiveness and metastasis.
Collapse
Affiliation(s)
- William Weidong Du
- Department of Surgery, Sunnybrook Health Sciences Centre and Centre for the Study of Bone Metastasis, Odette Cancer Centre, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Burton B. Yang
- Sunnybrook Research Institute, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Tatiana A. Shatseva
- Sunnybrook Research Institute, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Bing L. Yang
- Department of Surgery, Sunnybrook Health Sciences Centre and Centre for the Study of Bone Metastasis, Odette Cancer Centre, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Zhaoqun Deng
- Sunnybrook Research Institute, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Sze Wan Shan
- Sunnybrook Research Institute, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Y. Lee
- Sunnybrook Research Institute, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Arun Seth
- Sunnybrook Research Institute, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Albert J. Yee
- Department of Surgery, Sunnybrook Health Sciences Centre and Centre for the Study of Bone Metastasis, Odette Cancer Centre, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
107
|
Carrino DA, Calabro A, Darr AB, Dours-Zimmermann MT, Sandy JD, Zimmermann DR, Sorrell JM, Hascall VC, Caplan AI. Age-related differences in human skin proteoglycans. Glycobiology 2010; 21:257-68. [PMID: 20947661 DOI: 10.1093/glycob/cwq162] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Previous work has shown that versican, decorin and a catabolic fragment of decorin, termed decorunt, are the most abundant proteoglycans in human skin. Further analysis of versican indicates that four major core protein species are present in human skin at all ages examined from fetal to adult. Two of these are identified as the V0 and V1 isoforms, with the latter predominating. The other two species are catabolic fragments of V0 and V1, which have the amino acid sequence DPEAAE as their carboxyl terminus. Although the core proteins of human skin versican show no major age-related differences, the glycosaminoglycans (GAGs) of adult skin versican are smaller in size and show differences in their sulfation pattern relative to those in fetal skin versican. In contrast to human skin versican, human skin decorin shows minimal age-related differences in its sulfation pattern, although, like versican, the GAGs of adult skin decorin are smaller than those of fetal skin decorin. Analysis of the catabolic fragments of decorin from adult skin reveals the presence of other fragments in addition to decorunt, although the core proteins of these additional decorin catabolic fragments have not been identified. Thus, versican and decorin of human skin show age-related differences, versican primarily in the size and the sulfation pattern of its GAGs and decorin in the size of its GAGs. The catabolic fragments of versican are detected at all ages examined, but appear to be in lower abundance in adult skin compared with fetal skin. In contrast, the catabolic fragments of decorin are present in adult skin, but are virtually absent from fetal skin. Taken together, these data suggest that there are age-related differences in the catabolism of proteoglycans in human skin. These age-related differences in proteoglycan patterns and catabolism may play a role in the age-related changes in the physical properties and injury response of human skin.
Collapse
Affiliation(s)
- David A Carrino
- Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Feng M, Yang G, Wu J. Versican targeting by RNA interference suppresses aggregative growth of dermal papilla cells. Clin Exp Dermatol 2010; 36:77-84. [PMID: 20804505 DOI: 10.1111/j.1365-2230.2010.03917.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Dermal papilla cells (DPCs) are specialized fibroblasts found in the hair follicle papilla, which are associated with the development and cycle regulation of hair follicles (HFs). DPCs exhibit a multilayer aggregative growth character, which is closely related to induction of HF formation. Versican, a large chondroitin sulphate proteoglycan and one of the major components of the extracellular matrix, is involved in the formation of HF. METHODS To confirm the relationship between versican and the aggregative growth of DPCs, we first induced and established an aggregative cell model in DPCs in vitro, with cells taken to passage 8. Simultaneously, aggregative passage 2 DPCs and nonaggregative passage 8 DPCs were selected as parallel controls. RNA interference (RNAi) targeted to versican was used in passage 2 DPCs using a lentiviral vector. Reverse transcriptase (RT)-PCR and western blotting were used to assay the expression of versican in DPCs. RESULTS RNAi targeted to versican efficiently suppressed the aggregative growth of passage 2 DPCs, and the inhibitory effect was significant 3 days after RNAi treatment. The mRNA and protein levels of versican were also downregulated in passage 2 DPCs, and were lower than levels in nonaggregative passage 8 DPCs. Notably, the aggregative growth of nonaggregative passage 8 DPCs was restored after induction in a 1 : 1 v/v mixture of fresh DMEM and medium recycled from a previous passage. CONCLUSION Versican is a key gene for the aggregative growth of DPCs, and might be significant in the regeneration of HF.
Collapse
Affiliation(s)
- M Feng
- Department of Dermatology, Research Institute of Wound Healing and Tissue Engineering of Chongqing, Daping Hospital, Third Military Medical University, Chongqing, China
| | | | | |
Collapse
|
109
|
Salter RC, Ashlin TG, Kwan APL, Ramji DP. ADAMTS proteases: key roles in atherosclerosis? J Mol Med (Berl) 2010; 88:1203-11. [PMID: 20652528 DOI: 10.1007/s00109-010-0654-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/07/2010] [Accepted: 07/01/2010] [Indexed: 12/13/2022]
Abstract
The ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) proteases are secreted enzymes that regulate extracellular matrix turnover by degrading specific matrix components. Roles for the proteases in inflammation and atherosclerosis have been suggested by a number of recent studies, and the role of ADAMTS-4 and -5 in the breakdown of aggrecan and subsequent degradation of cartilage during osteoarthritis has also been established. The ability of the ADAMTS proteases to degrade versican, the primary proteoglycan in the vasculature, is thought to be central to any hypothesized role for the proteases in atherosclerosis. In this review, we introduce the structure and function of the ADAMTS family of proteases and review the literature that links them with inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Rebecca C Salter
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, UK CF10 3AX.
| | | | | | | |
Collapse
|
110
|
Vallières M, du Souich P. Modulation of inflammation by chondroitin sulfate. Osteoarthritis Cartilage 2010; 18 Suppl 1:S1-6. [PMID: 20399900 DOI: 10.1016/j.joca.2010.02.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 02/16/2010] [Accepted: 02/18/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE AND METHODS To evaluate the immune-modulator effect of chondroitin sulfate (CS) by means of the review of the literature. RESULTS Inflammatory reactions are primarily originated by infectious agents, immune reactions and by sterile tissue lesions that activate membrane receptors by means of pathogen-associated molecular patterns, tissue breakdown products and cytokines. The activation of membrane receptors triggers the phosphorylation of mitogen activated protein kinases and of the nuclear factor kappaB (NF-kappaB). The binding of NF-kappaB to the promoter of target genes enhances the expression of pro-inflammatory cytokines, inducible nitric oxide synthase, cyclooxygenase 2, phospholipase A2, and matrix metalloproteases, proteins that contribute to tissue damage and to the inflammatory reaction. The activation of NF-kappaB has a key role in the immune homeostasis and the inflammatory response and therefore, in the pathogenesis of numerous diseases. Chondroitin sulfate (CS) is able to diminish NF-kappaB activation and nuclear translocation in chondrocytes and synovial membrane, effects that may explain the benefits of CS in osteoarthritis. In addition, systemic CS reduces NF-kappaB nuclear translocation in macrophages and hepatocytes, raising the hypothesis that CS might be of benefit to treat other diseases with a strong inflammatory component. There is preliminary evidence in humans that CS improves moderate to severe psoriasis. Moreover, experimental and clinical data suggest that CS might be a useful therapeutic agent in diseases such as inflammatory bowel diseases, atherosclerosis, Parkinson's and Alzheimer's diseases, multiple sclerosis, amyotrophic lateral sclerosis, rheumatoid arthritis and systemic lupus erythematosus. DISCUSSION These results urge for double blinded placebo-controlled trials to confirm the utility of CS in diseases with immune and inflammatory components.
Collapse
Affiliation(s)
- M Vallières
- Department of Pharmacology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada H3C 3J7
| | | |
Collapse
|
111
|
Numakura M, Kusakabe N, Ishige K, Ohtake-Niimi S, Habuchi H, Habuchi O. Preparation of chondroitin sulfate libraries containing disulfated disaccharide units and inhibition of thrombin by these chondroitin sulfates. Glycoconj J 2010; 27:479-89. [DOI: 10.1007/s10719-010-9293-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 04/26/2010] [Accepted: 04/28/2010] [Indexed: 10/19/2022]
|
112
|
Ohtake-Niimi S, Kondo S, Ito T, Kakehi S, Ohta T, Habuchi H, Kimata K, Habuchi O. Mice deficient in N-acetylgalactosamine 4-sulfate 6-o-sulfotransferase are unable to synthesize chondroitin/dermatan sulfate containing N-acetylgalactosamine 4,6-bissulfate residues and exhibit decreased protease activity in bone marrow-derived mast cells. J Biol Chem 2010; 285:20793-805. [PMID: 20439988 DOI: 10.1074/jbc.m109.084749] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chondroitin sulfate (CS) and dermatan sulfate (DS) containing N-acetylgalactosamine 4,6-bissulfate (GalNAc(4,6-SO(4))) show various physiological activities through interacting with numerous functional proteins. N-Acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) transfers sulfate from 3'-phosphoadenosine 5'-phosphosulfate to position 6 of N-acetylgalactosamine 4-sulfate in CS or DS to yield GalNAc(4,6-SO(4)) residues. We here report generation of transgenic mice that lack GalNAc4S-6ST. GalNAc4S-6ST-null mice were born normally and fertile. In GalNAc4S-6ST-null mice, GalNAc(4,6-SO(4)) residues in CS and DS disappeared completely, indicating that GalNAc4S-6ST should be a sole enzyme responsible for the synthesis of GalNAc(4,6-SO(4)) residues in both CS and DS. IdoA-GalNAc(4,6-SO(4)) units that account for approximately 40% of total disaccharide units of DS in the liver of the wild-type mice disappeared in the liver DS of GalNAc4S-6ST-null mice without reduction of IdoA content. Bone marrow-derived mast cells (BMMCs) derived from GalNAc4S-6ST-null mice contained CS without GlcA-GalNAc(4,6-SO(4)) units. Tryptase and carboxypeptidase A activities of BMMCs derived from GalNAc4S-6ST-null mice were lower than those activities of BMMCs derived from wild-type mice, although mRNA expression of these mast cell proteases was not altered. Disaccharide compositions of heparan sulfate/heparin contained in the mast cells derived from BMMCs in the presence of stem cell factor were much different from those of heparan sulfate/heparin in BMMCs but did not differ significantly between wild-type mice and GalNAc4S-6ST-null mice. These observations suggest that CS containing GalNAc(4,6-SO(4)) residues in BMMCs may contribute to retain the active proteases in the granules of BMMCs but not for the maturation of BMMCs into connective tissue-type mast cells.
Collapse
Affiliation(s)
- Shiori Ohtake-Niimi
- Department of Chemistry, Aichi University of Education, Igaya-cho, Kariya, Aichi 448-8542, Japan
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Abstract
More than half of all human proteins are glycosylated. Glycosylation defines the adhesive properties of glycoconjugates and it is largely through glycan-protein interactions that cell-cell and cell-pathogen contacts occur. Not surprisingly, considering the central role they play in molecular encounters, glycoprotein and carbohydrate-based drugs and therapeutics represent a greater than $20 billion market. Glycomics, the study of glycan expression in biological systems, relies on effective analytical techniques for correlation of glycan structure with function. This overview summarizes techniques developed historically for glycan characterization as well as recent trends. Derivatization methods key to both traditional and modern approaches for glycoanalysis are described. Monosaccharide compositional analysis is fundamental to any effort to understand glycan structure-function relationships. Chromatographic and electrophoretic separations are key parts of any glycoanalytical workflow. Mass spectrometry and nuclear magnetic resonance are complementary instrumental techniques for glycan analysis. Finally, microarrays are emerging as powerful new tools for dynamic analysis of glycan expression.
Collapse
Affiliation(s)
- Alicia M Bielik
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
114
|
Inhibition of N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase by ß-D-4-O-sulfo-N-acetylgalactosaminides bearing various hydrophobic aglycons. Glycoconj J 2009; 27:237-48. [DOI: 10.1007/s10719-009-9272-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 11/06/2009] [Accepted: 11/12/2009] [Indexed: 10/20/2022]
|
115
|
Potapenko IO, Haakensen VD, Lüders T, Helland A, Bukholm I, Sørlie T, Kristensen VN, Lingjaerde OC, Børresen-Dale AL. Glycan gene expression signatures in normal and malignant breast tissue; possible role in diagnosis and progression. Mol Oncol 2009; 4:98-118. [PMID: 20060370 DOI: 10.1016/j.molonc.2009.12.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 12/02/2009] [Accepted: 12/02/2009] [Indexed: 01/24/2023] Open
Abstract
Glycosylation is the stepwise procedure of covalent attachment of oligosaccharide chains to proteins or lipids, and alterations in this process have been associated with malignant transformation. Simultaneous analysis of the expression of all glycan-related genes clearly gives the advantage of enabling a comprehensive view of the genetic background of the glycobiological changes in cancer cells. Studies focusing on the expression of the whole glycome have now become possible, which prompted us to review the present knowledge on glycosylation in relation to breast cancer diagnosis and progression, in the light of available expression data from tumors and breast tissue of healthy individuals. We used various data resources to select a set of 419 functionally relevant genes involved in synthesis, degradation and binding of N-linked and O-linked glycans, Lewis antigens, glycosaminoglycans (chondroitin, heparin and keratan sulfate in addition to hyaluronan) and glycosphingolipids. Such glycans are involved in a number of processes relevant to carcinogenesis, including regulation of growth factors/growth factor receptors, cell-cell adhesion and motility as well as immune system modulation. Expression analysis of these glycan-related genes revealed that mRNA levels for many of them differ significantly between normal and malignant breast tissue. An associative analysis of these genes in the context of current knowledge of their function in protein glycosylation and connection(s) to cancer indicated that synthesis, degradation and adhesion mediated by glycans may be altered drastically in mammary carcinomas. Although further analysis is needed to assess how changes in mRNA levels of glycan genes influence a cell's glycome and the precise role that such altered glycan structures play in the pathogenesis of the disease, lessons drawn from this study may help in determining directions for future research in the rapidly-developing field of glycobiology.
Collapse
Affiliation(s)
- Ivan O Potapenko
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0310 Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Marson A, Robinson DE, Brookes PN, Mulloy B, Wiles M, Clark SJ, Fielder HL, Collison LJ, Cain SA, Kielty CM, McArthur S, Buttle DJ, Short RD, Whittle JD, Day AJ. Development of a microtiter plate-based glycosaminoglycan array for the investigation of glycosaminoglycan-protein interactions. Glycobiology 2009; 19:1537-46. [PMID: 19729381 PMCID: PMC3428902 DOI: 10.1093/glycob/cwp132] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The interactions of glycosaminoglycans (GAGs) with proteins underlie a wide range of important biological processes. However, the study of such binding reactions has been hampered by the lack of a simple frontline analysis technique. Previously, we have reported that cold plasma polymerization can be used to coat microtiter plate surfaces with allyl amine to which GAGs (e.g., heparin) can be noncovalently immobilized retaining their ability to interact with proteins. Here, we have assessed the capabilities of surface coats derived from different ratios of allyl amine and octadiene (100:0 to 0:100) to support the binding of diverse GAGs (e.g., chondroitin-4-sulfate, dermatan sulfate, heparin preparations, and hyaluronan) in a functionally active state. The Link module from TSG-6 was used as a probe to determine the level of functional binding because of its broad (and unique) specificity for both sulfated and nonsulfated GAGs. All of the GAGs tested could bind this domain following their immobilization, although there were clear differences in their protein-binding activities depending on the surface chemistry to which they were adsorbed. On the basis of these experiments, 100% allyl amine was chosen for the generation of a microtiter plate-based "sugar array"; X-ray photoelectron spectroscopy revealed that similar relative amounts of chondroitin-4-sulfate, dermatan sulfate, and heparin (including two selectively de-sulfated derivatives) were immobilized onto this surface. Analysis of four unrelated proteins (i.e., TSG-6, complement factor H, fibrillin-1, and versican) illustrated the utility of this array to determine the GAG-binding profile and specificity for a particular target protein.
Collapse
Affiliation(s)
- Andrew Marson
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - David E. Robinson
- Academic Unit of Molecular Medicine and Rheumatology, School of Medicine and Biomedical Science, University of Sheffield, Sheffield, S10 2RX, United Kingdom
- Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Patrick N. Brookes
- BD Biosciences - Discovery Labware, The Innovation Centre, Sheffield S1 4DP, United Kingdom
| | - Barbara Mulloy
- National Institute for Biological Standards and Control, Blanche Lane South Mimms, Potters Bar EN6 3QG, United Kingdom
| | - Michelle Wiles
- BD Biosciences - Discovery Labware, The Innovation Centre, Sheffield S1 4DP, United Kingdom
| | - Simon J. Clark
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Helen L. Fielder
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Lisa J. Collison
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Stuart A. Cain
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Catherine M. Kielty
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Sally McArthur
- Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - David J. Buttle
- Academic Unit of Molecular Medicine and Rheumatology, School of Medicine and Biomedical Science, University of Sheffield, Sheffield, S10 2RX, United Kingdom
| | - Robert D. Short
- Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Jason D. Whittle
- BD Biosciences - Discovery Labware, The Innovation Centre, Sheffield S1 4DP, United Kingdom
| | - Anthony J. Day
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
117
|
Selectin-mediated activation of endothelial cells induces expression of CCL5 and promotes metastasis through recruitment of monocytes. Blood 2009; 114:4583-91. [PMID: 19779041 DOI: 10.1182/blood-2008-10-186585] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hematogenous metastasis is promoted by interactions of tumor cells with leukocytes, platelets, and the endothelium in the local intravascular microenvironment. Here we show that the activation of the microvascular endothelium results in recruitment of monocytes to metastatic tumor cells and promotes the establishment of the metastatic microenvironment. This inflammatory-like endothelial response was observed in microvascular endothelial cells only. Microarray analysis of microvascular endothelial cells cocultured with tumor cells in the presence of leukocytes and platelets revealed a specific gene expression profile. Selectin-mediated interactions of tumor cells with platelets and leukocytes activated endothelial cells and induced production of C-C chemokine ligand 5 (CCL5). Inhibition of CCL5-dependent monocyte recruitment during the early phase of metastasis by a CCL5 receptor antagonist strongly reduced tumor cell survival and attenuated metastasis. Collectively, these findings demonstrate that the endothelial expression of CCL5 contributes to the formation of a permissive metastatic microenvironment.
Collapse
|
118
|
Norian JM, Malik M, Parker CY, Joseph D, Leppert PC, Segars JH, Catherino WH. Transforming growth factor beta3 regulates the versican variants in the extracellular matrix-rich uterine leiomyomas. Reprod Sci 2009; 16:1153-64. [PMID: 19700613 DOI: 10.1177/1933719109343310] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Uterine leiomyoma are common, benign tumors that are enriched in extracellular matrix. The tumors are characterized by a disoriented and loosely packed collagen fibril structure similar to other diseases with disrupted Transforming growth factor beta (TGF-beta) signaling. Here we characterized TGF-beta3 signaling and the expression patterns of the critical extracellular matrix component versican in leiomyoma and myometrial tissue and cell culture. We also demonstrate the regulation of the versican variants by TGF-beta3. Using leiomyoma and matched myometrium from 15 patients, messenger RNA (mRNA) from leiomyoma and myometrium was analyzed by semiquantitative real time reverse transcription-polymerase chain reaction (RT-PCR), while protein analysis was done by western blot. Transforming growth factor beta3 transcripts were increased 4-fold in leiomyoma versus matched myometrium. Phosphorylated-TGF-beta RII and phosphorylated-Smad 2/3 complex were greater in leiomyoma as documented by Western blot. The inhibitor Smad7 transcripts were decreased 0.44-fold. The glycosaminoglycan (GAG)-rich versican variants were elevated in leiomyoma versus myometrial tissue: specifically V0 (4.27 +/- 1.12) and V1 (2.01 +/- 0.27). Treatment of leiomyoma and myometrial cells with TGF-beta3 increased GAG-rich versican variant expression 7 to 12 fold. Neutralizing TGF-beta3 antibody decreased the expression of the GAG-rich versican variants 2 to 8 fold in leiomyoma cells. Taken together, the aberrant production of excessive and disorganized extracellular matrix that defines the leiomyoma phenotype involves the activation of the TGF-beta signaling pathway and excessive production of GAG-rich versican variants.
Collapse
Affiliation(s)
- John M Norian
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
119
|
Ricciardelli C, Sakko AJ, Ween MP, Russell DL, Horsfall DJ. The biological role and regulation of versican levels in cancer. Cancer Metastasis Rev 2009; 28:233-45. [PMID: 19160015 DOI: 10.1007/s10555-009-9182-y] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Increased expression of the proteoglycan, versican is strongly associated with poor outcome for many different cancers. Depending on the cancer type, versican is expressed by either the cancer cells themselves or by stromal cells surrounding the tumor. Versican plays diverse roles in cell adhesion, proliferation, migration and angiogenesis, all features of invasion and metastasis. These wide ranging functions have been attributed to the central glycosaminoglycan-binding region of versican, and to the N-(G1) and C-(G3) terminal globular domains which collectively interact with a large number of extracellular matrix and cell surface structural components. Here we review the recently identified mechanisms responsible for the regulation of versican expression and the biological roles that versican plays in cancer invasion and metastasis. The regulation of versican expression may represent one mechanism whereby cancer cells alter their surrounding microenvironment to facilitate the malignant growth and invasion of several tumor types. A greater understanding of the regulation of versican expression may contribute to the development of therapeutic methods to inhibit versican function and tumor invasion.
Collapse
Affiliation(s)
- Carmela Ricciardelli
- Research Centre for Reproductive Health, Discipline of Obstetrics and Gynaecology, University of Adelaide, Adelaide, SA, 5005, Australia.
| | | | | | | | | |
Collapse
|
120
|
Eto Y, Yoshioka Y, Asavatanabodee R, Kida S, Maeda M, Mukai Y, Mizuguchi H, Kawasaki K, Okada N, Nakagawa S. Transduction of adenovirus vectors modified with cell-penetrating peptides. Peptides 2009; 30:1548-52. [PMID: 19467282 DOI: 10.1016/j.peptides.2009.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 05/15/2009] [Accepted: 05/15/2009] [Indexed: 01/25/2023]
Abstract
Adenovirus vectors (Advs) are widely used for basic and clinical research because of their high transduction efficiency. However, they are poorly transduced into cells lacking the primary adenovirus receptor, the coxsackievirus and adenovirus receptor (CAR). Here, we generated Adv conjugated with cell-penetrating peptides (CPPs), such as Tat, octaarginine (R8) or proline-rich (Pro) peptides, and compared the transduction properties of these constructs. We constructed the Advs conjugated to the CPPs (CPP-Adv) by chemical conjugation. The CPP-conjugated Advs created with optimal modification ratios led to gene expression 1-2log orders higher than unmodified Adv in CAR-negative cells. Tat-Adv and R8-Adv were taken up into the cells mainly through macropinocytosis, independently of the CAR. In addition, the cellular uptake of Tat-Adv was highly dependent on heparan sulfate on the cell surface, whereas that of R8-Adv was dependent on chondroitin sulfate B. These data suggest that the use of CPP-Advs with different cellular uptake pathways might create new methods for the delivery of Adv. The results obtained in this research encourage the use of CPP-peptide-modified Advs as an attractive tool for transducing cells and as useful platform vectors for gene therapy and basic research.
Collapse
Affiliation(s)
- Yusuke Eto
- Department of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Abstract
Carbohydrates are the most abundant natural products. Besides their role in metabolism and as structural building blocks, they are fundamental constituents of every cell surface, where they are involved in vital cellular recognition processes. Carbohydrates are a relatively untapped source of new drugs and therefore offer exciting new therapeutic opportunities. Advances in the functional understanding of carbohydrate-protein interactions have enabled the development of a new class of small-molecule drugs, known as glycomimetics. These compounds mimic the bioactive function of carbohydrates and address the drawbacks of carbohydrate leads, namely their low activity and insufficient drug-like properties. Here, we examine examples of approved carbohydrate-derived drugs, discuss the potential of carbohydrate-binding proteins as new drug targets (focusing on the lectin families) and consider ways to overcome the challenges of developing this unique class of novel therapeutics.
Collapse
Affiliation(s)
- Beat Ernst
- Institute of Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, Basel, Switzerland.
| | | |
Collapse
|
122
|
Hitchcock AM, Bowman MJ, Staples GO, Zaia J. Improved workup for glycosaminoglycan disaccharide analysis using CE with LIF detection. Electrophoresis 2009; 29:4538-48. [PMID: 19035406 DOI: 10.1002/elps.200800335] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This work describes improved workup and instrumental conditions to enable robust, sensitive glycosaminoglycan (GAG) disaccharide analysis from complex biological samples. In the process of applying CE with LIF to GAG disaccharide analysis in biological samples, we have made improvements to existing methods. These include (i) optimization of reductive amination conditions, (ii) improvement in sensitivity through the use of a cellulose cleanup procedure for the derivatization, and (iii) optimization of separation conditions for robustness and reproducibility. The improved method enables analysis of disaccharide quantities as low as 1 pmol prior to derivatization. Biological GAG samples were exhaustively digested using lyase enzymes, the disaccharide products and standards were derivatized with the fluorophore 2-aminoacridone and subjected to reversed polarity CE-LIF detection. These conditions resolved all known chondroitin sulfate (CS) disaccharides or 11 of 12 standard heparin/heparan sulfate disaccharides, using 50 mM phosphate buffer, pH 3.5, and reversed polarity at 30 kV with 0.3 psi pressure. Relative standard deviation in migration times of CS ranged from 0.1 to 2.0% over 60 days, and the relative standard deviations of peak areas were less than 3.2%, suggesting that the method is reproducible and precise. The CS disaccharide compositions are similar to those obtained by our group using tandem MS. The reversed polarity CE-LIF disaccharide analysis protocol yields baseline resolution and quantification of heparin/heparan sulfate and CS/dermatan sulfate disaccharides from both standard preparations and biologically relevant proteoglycan samples. The improved CE-LIF method enables disaccharide quantification of biologically relevant proteoglycans from small samples of intact tissue.
Collapse
Affiliation(s)
- Alicia M Hitchcock
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
123
|
Bogen O, Dina OA, Gear RW, Levine JD. Dependence of monocyte chemoattractant protein 1 induced hyperalgesia on the isolectin B4-binding protein versican. Neuroscience 2009; 159:780-6. [PMID: 19167466 DOI: 10.1016/j.neuroscience.2008.12.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Revised: 12/19/2008] [Accepted: 12/26/2008] [Indexed: 01/08/2023]
Abstract
The type 1 chemokine monocyte chemoattractant protein (MCP-1) has been implicated in the generation of inflammatory and neuropathic pain, but the underlying mechanism remains poorly understood. Here we show that mechanical hyperalgesia induced by intradermal injection of MCP-1 in the rat is blocked by the intrathecal administration of isolectin B4 (IB4)-saporin, a selective neurotoxin for IB4(+)/Ret(+)-nociceptors. MCP-1-induced hyperalgesia is also attenuated by intrathecal antisense oligodeoxynucleotides targeting mRNA for versican, a molecule that binds MCP-1 and that also renders the Ret-expressing nociceptors IB4-positive (+). Finally, peripheral administration of ADAMTS-4 or chondroitinase ABC, two enzymes that disrupt versican integrity by the degradation of the versican core-protein or its chondroitin sulfate glycosaminoglycan side chains, respectively, also attenuated MCP-1 hyperalgesia at the site of nociceptive testing. We suggest that versican's glycosaminoglycan side chains present MCP-1 to a CCR2 expressing cell type in the skin that, in turn, selectively activates IB4(+)/Ret(+) nociceptors, thereby contributing to enhanced mechanical sensitivity under inflammatory conditions.
Collapse
Affiliation(s)
- O Bogen
- Department of Medicine, Division of Neuroscience, University of California at San Francisco, 521 Parnassus Avenue, San Francisco, CA 94143-0440, USA
| | | | | | | |
Collapse
|
124
|
Kitaya K, Yasuo T. Dermatan sulfate proteoglycan biglycan as a potential selectin L/CD44 ligand involved in selective recruitment of peripheral blood CD16(-) natural killer cells into human endometrium. J Leukoc Biol 2008; 85:391-400. [PMID: 19088176 DOI: 10.1189/jlb.0908535] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Unique CD16(-) NK cells acutely increase in the human uterine endometrium after ovulation. The origin of these NK cells remains unknown, but they may be recruited selectively from the circulation. Proteoglycans and their glycosaminoglycan side-chains expressed on endometrial microvascular endothelial cells play a key role in lymphocyte tethering/rolling, the initial step of lymphocyte extravasation. In this study, we sought for the potential proteoglycans involved in tethering/rolling of peripheral blood CD16(-) NK cells on endometrial microvascular endothelial cells. As compared with CD16(+) NK cells and non-NK cells, enriched peripheral blood CD16(-) NK cells bound preferably to immobilized glycosaminoglycans except for keratan sulfate. CD16(-) NK cells bound maximally to dermatan sulfate (DS), which was diminished by enzymatic pretreatment with dermatanase and chondroitinase ABC, but not with chondroitinase ACII. The binding capacity of CD16(-) NK cells to DS was attenuated by blocking antibodies against selectin L and CD44 or pretreatment of CD16(-) NK cells with IL-15. Of three known DS proteoglycans, biglycan and decorin but not epiphycan were expressed in the human cycling endometrium. In the endometrial microvessels, the immunoreactivity for biglycan was greater in the secretory phase than in the proliferative phase, and there was little, if any, immunoreactivity for decorin throughout the menstrual cycle. The ovarian steroid progesterone enhanced biglycan expression in cultured human uterine microvascular endothelial cells. These findings demonstrated that DS proteoglycan biglycan is a potential selectin L/CD44 ligand involved in tethering/rolling of peripheral blood CD16(-) NK cells on endometrial microvascular endothelial cells.
Collapse
Affiliation(s)
- Kotaro Kitaya
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan.
| | | |
Collapse
|
125
|
Seidelmann SB, Kuo C, Pleskac N, Molina J, Sayers S, Li R, Zhou J, Johnson P, Braun K, Chan C, Teupser D, Breslow JL, Wight TN, Tall AR, Welch CL. Athsq1 is an atherosclerosis modifier locus with dramatic effects on lesion area and prominent accumulation of versican. Arterioscler Thromb Vasc Biol 2008; 28:2180-6. [PMID: 18818413 DOI: 10.1161/atvbaha.108.176800] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Susceptibility to atherosclerosis is genetically complex, and modifier genes that do not operate via traditional risk factors are largely unknown. A mouse genetics approach can simplify the genetic analysis and provide tools for mechanistic studies. METHODS AND RESULTS We previously identified atherosclerosis susceptibility QTL (Athsq1) on chromosome 4 acting independently of systemic risk factors. We now report confirmation of this locus in congenic strains carrying the MOLF-derived susceptibility allele in the C57BL/6J-Ldlr(-/-) genetic background. Homozygous congenic mice exhibited up to 4.5-fold greater lesion area compared to noncongenic littermates (P<0.0001). Analysis of extracellular matrix composition revealed prominent accumulation of versican, a presumed proatherogenic matrix component abundant in human lesions but almost absent in the widely-used C57BL/6 murine atherosclerosis model. The results of a bone marrow transplantation experiment suggested that both accelerated lesion development and versican accumulation are mediated, at least in part, by macrophages. Interestingly, comparative mapping revealed that the Athsq1 congenic interval contains the mouse region homologous to a widely-replicated CHD locus on human chromosome 9p21. CONCLUSIONS These studies confirm the proatherogenic activity of a novel gene(s) in the MOLF-derived Athsq1 locus and provide in vivo evidence for a causative role of versican in lesion development.
Collapse
|
126
|
An L-selectin ligand distinct from P-selectin glycoprotein ligand-1 is expressed on endothelial cells and promotes neutrophil rolling in inflammation. Blood 2008; 112:4915-23. [PMID: 18818390 DOI: 10.1182/blood-2008-04-153866] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neutrophils recruited from the blood are key players in the innate immune response. Selectins play critical roles in neutrophil recruitment by mediating their tethering and rolling in inflamed venules. While the roles of P- and E-selectin in this process are well established, the mechanisms of L-selectin-mediated neutrophil recruitment remain elusive. One proposal is that tethering is mediated by L-selectin on flowing neutrophils interacting with P-selectin glycoprotein ligand-1 (PSGL-1) on adherent neutrophils. To clarify whether L-selectin-mediated neutrophil recruitment depends entirely on PSGL-1, we examined the impact of L-selectin deficiency in mice with a PSGL-1-deficient background. L-selectin and PSGL-1 double-knockout mice exhibited a higher increase in their peripheral blood neutrophil count and a worse defect in neutrophil recruitment into the inflamed peritoneum than PSGL-1-deficient mice. Intravital microscopy of inflamed cremaster muscle venules showed that L-selectindeficiency or antibody blockade of L-selectin reduced the residual leukocyte rolling in PSGL-1-deficient mice. Flow cytometric analyses showed that the endothelial cells from the cremaster muscle bound L-selectin in a PSGL-1-independent manner. These results provide evidence for the existence of an L-selectin ligand distinct from PSGL-1 in inflammation and indicate that such a ligand is expressed on endothelial cells, promoting neutrophil rolling in vivo.
Collapse
|
127
|
Chondroitin Sulfate E Fragments Enhance CD44 Cleavage and CD44-Dependent Motility in Tumor Cells. Cancer Res 2008; 68:7191-9. [DOI: 10.1158/0008-5472.can-07-6198] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
128
|
Hodgkinson GN, Tresco PA, Hlady V. The influence of sub-micron inhibitory clusters on growth cone substratum attachments and CD44 expression. Biomaterials 2008; 29:4227-35. [PMID: 18694596 DOI: 10.1016/j.biomaterials.2008.07.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 07/18/2008] [Indexed: 10/21/2022]
Abstract
Proteoglycan expression patterns in the central nervous system guide neuronal pathfinding during development, but also disrupt regeneration after injuries. To deepen our understanding of the molecular level effects of proteoglycan spatial arrangements on neuronal pathfinding, we designed micropatterning stamps for the precise placement of near single molecule chondroitin sulfate proteoglycan (CSPG) clusters into regularly spaced arrays. Actin ultrastructural analysis in dorsal root ganglion neurons grown on laminin-coated substrata patterned with aggrecan cluster arrays revealed filopodial and lamellapodial edge contact avoidance of individual clusters, while growth cone lamellapodia and central domains were able to span multiple clusters over a range of cluster densities. Total internal reflection fluorescence microscopy interrogation of growth cone substratum morphology further revealed persistence of integrin mediated substratum adhesion and local out-of-plane membrane bending over clusters on the height scale of aggrecan glycosaminoglycan side chains. Direct imaging of cell adhesion molecule CD44 expression in growth cones revealed an aggrecan dose dependent upregulation in CD44 molecules. Evidence of CD44 clustering coinciding with underlying aggrecan molecules implies CSPG-CD44 interactions. The results reveal the limited local repulsive effect of CSPGs on neuronal structures and provide evidence that CD44 upregulation in neurons is affected by local CSPG expression.
Collapse
Affiliation(s)
- Gerald N Hodgkinson
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
129
|
Bogen O, Joseph EK, Chen X, Levine JD. GDNF hyperalgesia is mediated by PLCgamma, MAPK/ERK, PI3K, CDK5 and Src family kinase signaling and dependent on the IB4-binding protein versican. Eur J Neurosci 2008; 28:12-9. [PMID: 18616564 DOI: 10.1111/j.1460-9568.2008.06308.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The function of the isolectin B4 (IB4+)-binding and GDNF-dependent Ret (Ret+)-expressing non-peptidergic subpopulation of nociceptors remain poorly understood. We demonstrate that acute administration of GDNF sensitizes nociceptors and produces mechanical hyperalgesia in the rat. Intrathecal IB4-saporin, a selective toxin for IB4+/Ret+-nociceptors, attenuates GDNF but not NGF hyperalgesia. Conversely, intrathecal antisense to Trk A attenuated NGF but not GDNF hyperalgesia. Intrathecal administration of antisense oligodeoxynucleotides targeting mRNA for versican, the molecule that renders the Ret-expressing nociceptors IB4-positive (+), also attenuated GDNF but not NGF hyperalgesia, as did ADAMTS-4, a matrix metalloprotease known to degrade versican. Finally, inhibitors for all five signaling pathways known to be activated by GDNF at GFRa1/Ret: PLCc, CDK5, PI3K,MAPK/ERK and Src family kinases, attenuated GDNF hyperalgesia. Our results demonstrate a role of the non-peptidergic nociceptors in pain produced by the neurotrophin GDNF and suggest that the IB4-binding protein versican functions in the expression of this phenotype.
Collapse
Affiliation(s)
- Oliver Bogen
- Division of Neuroscience, Department of Medicine, University of California at San Francisco, San Francisco, CA 94143-0440, USA
| | | | | | | |
Collapse
|
130
|
Yasuo T, Kitaya K, Yamaguchi T, Fushiki S, Honjo H. Possible role of hematopoietic CD44/chondroitin sulfate interaction in extravasation of peripheral blood CD16(−) natural killer cells into human endometrium. J Reprod Immunol 2008; 78:1-10. [DOI: 10.1016/j.jri.2007.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 08/14/2007] [Accepted: 09/12/2007] [Indexed: 11/30/2022]
|
131
|
Yee AJM, Akens M, Yang BL, Finkelstein J, Zheng PS, Deng Z, Yang B. The effect of versican G3 domain on local breast cancer invasiveness and bony metastasis. Breast Cancer Res 2008; 9:R47. [PMID: 17662123 PMCID: PMC2206723 DOI: 10.1186/bcr1751] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 07/12/2007] [Accepted: 07/27/2007] [Indexed: 12/13/2022] Open
Abstract
Introduction Increased versican expression has been associated with local breast cancer invasiveness and a more aggressive tumor phenotype. The cellular mechanisms are not fully understood and this study evaluated versican G3 domain with its EGF-like motifs in influencing tumor invasion and metastasis. Methods One recombinant construct was synthesized (a signal peptide for product secretion and the versican G3 domain). The construct was stably transfected into human breast carcinoma MT-1 cells. Cell viability in vitro was evaluated in low serum and serum starvation conditions. In vivo study of tumor growth was evaluated in a nude mouse model. G3 effects on rodent vascular endothelial cells were evaluated in vitro on cell survival, apoptosis, migration, and vascular formation. The effects of VEGF, fibronectin, and G3 on vascular formation were examined. An intracardiac injection model of metastatic human breast carcinoma tested the effect of G3 on distant bony and soft tissue metastasis. Analysis of metastatic burden included histology, radiographs, and micro-CT quantification of osteolysis. Results A greater viability of cancer cells was observed in low serum and serum-free conditions in the presence of versican G3. Larger subcutaneous tumors were obtained in the G3 group following tumor cell injection into CD1 mice. G3 induced a greater degree of rodent vascular endothelial cell proliferation and migration in vitro. Simultaneous presence of fibronectin, VEGF, and G3 promoted endothelial cell migration in wound-healing assays as compared to the treatments containing none, one or two of these molecules. Systemic tumor burden to distant bony and soft tissue metastatic sites was greater in the G3 group using the intracardiac injection metastatic model Conclusion Versican G3 domain appears to be important in local and systemic tumor invasiveness of human breast cancer. Effects include enhancing cell viability, proliferation, migration and enhancing local tumor growth. Potential effects on angiogenesis include enhancing vascular endothelial proliferation, migration, and vessel formation. The interactions between tumor cells, surrounding stromal components and neo-vascularization in breast cancer may include interactions with VEGF and fibronectin. The propensity of versican G3 to influence tumor invasion to bone and the mechanisms of G3 mediated osteolysis warrants ongoing studies.
Collapse
Affiliation(s)
- Albert JM Yee
- Department of Surgery, University of Toronto, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Rm MG 371-B, Toronto, Ontario, M4N 3M5, Canada
| | - Margarete Akens
- Department of Surgery, University of Toronto, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Rm MG 371-B, Toronto, Ontario, M4N 3M5, Canada
| | - Bing L Yang
- Department of Surgery, University of Toronto, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Rm MG 371-B, Toronto, Ontario, M4N 3M5, Canada
| | - Joel Finkelstein
- Department of Surgery, University of Toronto, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Rm MG 371-B, Toronto, Ontario, M4N 3M5, Canada
| | - Peng-Sheng Zheng
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Rm S-110, Toronto, Ontario, M4N 3M5, Canada
| | - Zhaoqiong Deng
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Rm S-110, Toronto, Ontario, M4N 3M5, Canada
| | - Burton Yang
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Rm S-110, Toronto, Ontario, M4N 3M5, Canada
| |
Collapse
|
132
|
Differentiation of murine B cells induced by chondroitin sulfate B. Cell Immunol 2008; 250:14-23. [PMID: 18206137 DOI: 10.1016/j.cellimm.2007.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 11/19/2007] [Accepted: 12/10/2007] [Indexed: 11/23/2022]
Abstract
A two-step culture system was used to investigate the role of chondroitin sulfate (CS) B, which is mitogenic to B cells, in differentiation of B cells. Mouse spleen B cells were incubated for 3 days with CSB in the presence of interleukin (IL)-4 and IL-5. After washing, the cells were replated at 10(5) viable cells/well and recultured without CSB in the presence of IL-4 and IL-5. CSB dose-dependently increased IgM production, the greatest enhancement being 450%. Dextran sulfate had a similar effect, whereas other glycosaminoglycans, CSA, CSC, heparin and hyaluronic acid, were marginally effective. Treatment of B cells with CSB resulted in increases in the number of IgM-secreting cells and numbers of CD138-positive cells and CD45R/B220-negative cells. CSB-induced IgM production was inhibited by the protein kinase C (PKC) inhibitor GF109203X but not by the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin. These results demonstrated that CSB promoted differentiation of B cells in the presence of IL-4 and IL-5 and suggested that PKC but not PI3K is crucial for CSB-induced IgM production.
Collapse
|
133
|
Lv H, Yu G, Sun L, Zhang Z, Zhao X, Chai W. Elevate level of glycosaminoglycans and altered sulfation pattern of chondroitin sulfate are associated with differentiation status and histological type of human primary hepatic carcinoma. Oncology 2008; 72:347-56. [PMID: 18187957 DOI: 10.1159/000113145] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 08/09/2007] [Indexed: 01/13/2023]
Abstract
OBJECTIVES The characteristics of glycosaminoglycans (GAGs) in many carcinomas have been reported to be different from those in normal tissues, which can be used as prognostic indices in some cancers. However, the difference in GAG characteristics among various differentiation status or histological types of the same cancer has not been described. The aim of this study was to investigate the relationship between GAG characteristics and human primary hepatic carcinomas of divers differentiation status or histological type. METHODS GAGs from intrahepatic cholangiocarcinomas and differently differentiated hepatocellular carcinomas were extracted, purified and enzymatically digested. Their content, relative molecular size distribution and disaccharide composition were analyzed and compared using electrophoresis and high-performance liquid chromatography. RESULTS A progressive increase in the content of chondroitin sulfate, low molecular size GAGs, and nonsulfated and disulfated chondroitin sulfate disaccharide units, together with a gradual decrease in heparan sulfate, have been found as the differentiation status of hepatocellular carcinoma became poorer. A significant increase in hyaluronic acid, which only slightly increased in hepatocellular carcinoma, was found in intrahepatic cholangiocarcinomas. CONCLUSION The alterations in GAG characteristics in primary hepatic carcinoma were associated with both the differentiation status and the histological type of the tumor.
Collapse
Affiliation(s)
- Huizhong Lv
- College of Medicine and Pharmacy, Glycoscience and Glycoengineering Laboratory, Ocean University of China, Qingdao, China
| | | | | | | | | | | |
Collapse
|
134
|
Celie JWAM, Reijmers RM, Slot EM, Beelen RHJ, Spaargaren M, Ter Wee PM, Florquin S, van den Born J. Tubulointerstitial heparan sulfate proteoglycan changes in human renal diseases correlate with leukocyte influx and proteinuria. Am J Physiol Renal Physiol 2007; 294:F253-63. [PMID: 18032547 DOI: 10.1152/ajprenal.00429.2007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are well known for their proposed role in glomerular filtration. In addition, HSPGs can bind the leukocyte adhesion molecule l-selectin and chemokines, suggesting a role in inflammation. We examined a panel of biopsies representing different human primary kidney diseases for l-selectin and monocyte chemoattractant protein-1 (MCP-1) binding. In various renal diseases, l-selectin and MCP-1 binding to interstitial perivascular matrix HSPGs is increased, which is significantly associated with leukocyte influx. In proteinuric diseases, including membranous glomerulopathy, minimal change disease, but also IgA nephropathy and lupus nephritis, increased binding of l-selectin and MCP-1 to tubular epithelial cell (TEC) HSPGs is observed, which colocalizes with increased basolateral syndecan-1 and anti-heparan sulfate 10E4 staining. Short-hairpin RNA-mediated silencing demonstrates that syndecan-1 on TECs indeed mediates l-Selectin binding. Increased TEC expression of IL-8 in biopsies of proteinuric patients suggests that the increase in luminal protein may activate TECs to increase expression of l-selectin and MCP-1 binding syndecan-1. Strikingly, urinary syndecan-1 from proteinuric patients is less capable of binding l-selectin compared with urinary syndecan-1 from healthy controls, although syndecan-1 concentrations are similar in both groups. Together, our data show pronounced tubulointerstitial HSPG alterations in primary kidney disease, which may affect the inflammatory response.
Collapse
Affiliation(s)
- J W A M Celie
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Wiranowska M, Ladd S, Smith SR, Gottschall PE. CD44 adhesion molecule and neuro-glial proteoglycan NG2 as invasive markers of glioma. ACTA ACUST UNITED AC 2007; 35:159-72. [DOI: 10.1007/s11068-007-9009-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Revised: 01/12/2007] [Accepted: 02/13/2007] [Indexed: 11/25/2022]
|
136
|
Shepard JB, Krug HA, LaFoon BA, Hoffman S, Capehart AA. Versican expression during synovial joint morphogenesis. Int J Biol Sci 2007; 3:380-4. [PMID: 17848983 PMCID: PMC1975773 DOI: 10.7150/ijbs.3.380] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 09/05/2007] [Indexed: 11/05/2022] Open
Abstract
The extracellular matrix (ECM) plays a critical role in governing cell behavior and phenotype during limb skeletogenesis. Chondroitin sulfate proteoglycans (Cspgs) are highly expressed in the ECM of precartilage mesenchymal condensations and are important to limb chondrogenesis and cartilage structure, but little is known regarding their involvement in formation of synovial joints in the embryonic limb. Matrix versican Cspg expression has previously been reported in the epiphysis of developing long bones and presumptive joint; however, detailed analysis has not yet been conducted. In the present study we immunolocalized versican and aggrecan Cspgs during chick elbow joint morphogenesis between HH st25-41 of development. In this study we show that versican and aggrecan expression initially overlapped in the incipient cartilage model of long bones in the wing, but versican was also highly expressed in the perichondrium and presumptive joint interzone during early stages of morphogenesis (HH st25-34). By HH st36-41 versican localization was restricted to the future articular surfaces of the developing joint and surrounding joint capsule while aggrecan localized in an immediately adjacent and predominately non-overlapping region of chondrogenic cells at the epiphyses. These results suggest a potential role for versican proteoglycan in development and maintenance of the synovial joint interzone.
Collapse
Affiliation(s)
- John B. Shepard
- 1. Department of Biology, East Carolina University, Greenville NC 27858, USA
| | - Heidi A. Krug
- 1. Department of Biology, East Carolina University, Greenville NC 27858, USA
| | - Brooklynn A. LaFoon
- 1. Department of Biology, East Carolina University, Greenville NC 27858, USA
| | - Stanley Hoffman
- 2. Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Anthony A. Capehart
- 1. Department of Biology, East Carolina University, Greenville NC 27858, USA
| |
Collapse
|
137
|
Theocharis AD, Tsolakis I, Tzanakakis GN, Karamanos NK. Chondroitin sulfate as a key molecule in the development of atherosclerosis and cancer progression. ADVANCES IN PHARMACOLOGY 2007; 53:281-95. [PMID: 17239771 DOI: 10.1016/s1054-3589(05)53013-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- A D Theocharis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | | | | | | |
Collapse
|
138
|
Shinmyouzu K, Takahashi T, Ariyoshi W, Ichimiya H, Kanzaki S, Nishihara T. Dermatan sulfate inhibits osteoclast formation by binding to receptor activator of NF-κB ligand. Biochem Biophys Res Commun 2007; 354:447-52. [PMID: 17239341 DOI: 10.1016/j.bbrc.2006.12.221] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 12/31/2006] [Indexed: 11/26/2022]
Abstract
Dermatan sulfate (DS) is a major component of extracellular matrices in mammalian tissues. In the present study, DS demonstrated a high level of binding activity to receptor activator of NF-kappaB ligand (RANKL) and obstructed the binding of RANK to RANKL, determined using a quartz-crystal microbalance (QCM) technique. Further, when mouse bone marrow cells were cultured with RANKL and macrophage colony-stimulating factor, DS suppressed tartrate-resistant acid phosphatase-positive multinucleated cell formation in a dose-dependent manner. In addition, immunoblot analyses revealed that DS reduced the levels of phosphorylation of p38 mitogen-activated protein kinase and extracellular signal-regulated kinase protein in mouse osteoclast progenitor cells stimulated with RANKL. Together, these results indicate that DS regulates osteoclast formation through binding to RANKL and inhibition of signal transduction in osteoclast progenitor cells, suggesting that it has an important role in bone metabolism in pathological conditions.
Collapse
Affiliation(s)
- Kouhei Shinmyouzu
- Division of Oral and Maxillofacial Reconstructive Surgery, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580, Japan
| | | | | | | | | | | |
Collapse
|
139
|
Deepa SS, Yamada S, Fukui S, Sugahara K. Structural determination of novel sulfated octasaccharides isolated from chondroitin sulfate of shark cartilage and their application for characterizing monoclonal antibody epitopes. Glycobiology 2007; 17:631-45. [PMID: 17317718 DOI: 10.1093/glycob/cwm021] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Twelve octasaccharide fractions were obtained from chondroitin sulfate C derived from shark cartilage after hyaluronidase digestion. Their sugar and sulfate composition was assigned by matrix-assisted laser desorption ionization time of flight mass spectrometry. The sequences were determined at low picomole amounts by a combination of enzymatic digestions with high-performance liquid chromatography, and were composed of disaccharide building units including O [GlcUAbeta1-3GalNAc], C [GlcUAbeta1-3GalNAc(6S)], A [GlcUAbeta1-3GalNAc(4S)], and/or D [GlcUA(2S)beta1-3GalNAc(6S)], where 2S, 4S, and 6S represent 2-O-, 4-O-, and 6-O-sulfate, respectively. As many as 24 different sequences including minor ones were revealed, exhibiting a high degree of structural diversity reflecting the enormous heterogeneity of the parent polysaccharides. Nineteen of them were novel, with the other four reported previously as unsaturated counterparts obtained after digestion with chondroitinase. Microarrays of these structurally defined octasaccharide fractions were prepared using low picomole amounts of their lipid-derivatives to investigate the binding specificity of four commercial anti-chondroitin sulfate antibodies CS-56, MO-225, 2H6, and LY111. The results revealed that multiple unique sequences were recognized by each antibody, which implies that the common conformation shared by the multiple primary sequences in the intact chondroitin sulfate chains is important as an epitope for each monoclonal antibody. Comparison of the specificity of the tested antibodies indicates that CS-56 and MO-225 specifically recognize octasaccharides containing an A-D tetrasaccharide sequence, whereas 2H6 and LY111 require a hexasaccharide as a minimum size for their binding, and prefer sequences with A- and C-units such as C-C-A-C (2H6) or C-C-A-O, C-C-A-A, and C-C-A-C (LY111) for strong binding but require no D-unit.
Collapse
Affiliation(s)
- Sarama S Deepa
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | | | | | | |
Collapse
|
140
|
Monzavi-Karbassi B, Stanley JS, Hennings L, Jousheghany F, Artaud C, Shaaf S, Kieber-Emmons T. Chondroitin sulfate glycosaminoglycans as major P-selectin ligands on metastatic breast cancer cell lines. Int J Cancer 2007; 120:1179-91. [PMID: 17154173 DOI: 10.1002/ijc.22424] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The metastatic breast cancer cell line, 4T1, abundantly expresses the oligosaccharide sialylated Lewis x (sLe(x)). SLe(x) oligosaccharide on tumor cells can be recognized by E- and P-selectin, contributing to tumor metastatic process. We observed that both selectins reacted with this cell line. However, contrary to the E-selectin reactivity, which was sLe(x) dependent, P-selectin reactivity with this cell line was sLe(x)-independent. The sLe(x)-Neg variant of the 4T1 cell line with markedly diminished expression of sLe(x) and lack of sLe(a), provided a unique opportunity to characterize P-selectin ligands and their contribution to metastasis in the absence of overlapping selectin ligands and E-selectin binding. We observed that P-selectin binding was Ca(2+)-independent and sulfation-dependent. We found that P-selectin reacted primarily with cell surface chondroitin sulfate (CS) proteoglycans, which were abundantly and stably expressed on the surface of the 4T1 cell line. P-selectin binding to the 4T1 cells was inhibited by heparin and CS glycosaminoglycans (GAGs). Moreover, Heparin administration significantly inhibited experimental lung metastasis. In addition, the data suggest that surface CS GAG chains were involved in P-selectin mediated adhesion of the 4T1 cells to murine platelets and human umbilical vein endothelial cells. The data suggest that CS GAGs are also the major P-selectin-reactive ligands on the surface of human MDA-MET cells. The results warrant conducting clinical studies on the involvement of cell surface CS chains in breast cancer metastasis and evaluation of various CS types and their biosynthetic pathways as target for development of treatment strategies for antimetastatic therapy of this disease.
Collapse
Affiliation(s)
- Behjatolah Monzavi-Karbassi
- Arkansas Cancer Research Center and Department of Pathology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | | | | | | | | | | | | |
Collapse
|
141
|
Hirose M, Murai T, Kawashima H. Elevation of rat plasma P-selectin in acute lung injury. Biochim Biophys Acta Mol Basis Dis 2006; 1772:382-9. [PMID: 17223017 DOI: 10.1016/j.bbadis.2006.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 11/27/2006] [Accepted: 11/27/2006] [Indexed: 11/21/2022]
Abstract
Acute lung injury in the rat caused by intravenous (i.v.) infusion of cobra venom factor (CVF) or lipopolysaccharide (LPS) is mediated by P-selectin-dependent neutrophil infiltration into the lung. In these lung injury models, P-selectin expression is induced on lung vascular endothelial cells after the CVF or LPS infusion, suggesting soluble P-selectin derived from inflamed sites might also be elevated. Here we established a sensitive enzyme-linked immunosorbent assay (ELISA) to measure soluble P-selectin in plasma, a potential marker of lung injury. Nine anti-rat P-selectin monoclonal antibodies that we established previously were first classified into 5 groups based on real-time biospecific interaction analyses, and used to develop a sandwich ELISA for accurately measuring the amount of soluble P-selectin in plasma. We then used this ELISA to measure the plasma P-selectin levels in Long Evans, Wistar, and Sprague-Dawley rats after the i.v. infusion of CVF or LPS. The elevation in P-selectin levels was significantly different among the strains, but it consistently correlated with the extent of lung inflammation, measured by myeloperoxidase levels in the lung tissues. Thus, our results indicate that the soluble P-selectin in plasma could serve as a sensitive biomarker reflecting lung inflammation, which is of clinical importance for detecting and preventing severe lung injury.
Collapse
Affiliation(s)
- Mayumi Hirose
- Laboratory of Supramolecular Crystallography, Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| | | | | |
Collapse
|
142
|
Kuznetsova SA, Issa P, Perruccio EM, Zeng B, Sipes JM, Ward Y, Seyfried NT, Fielder HL, Day AJ, Wight TN, Roberts DD. Versican-thrombospondin-1 binding in vitro and colocalization in microfibrils induced by inflammation on vascular smooth muscle cells. J Cell Sci 2006; 119:4499-509. [PMID: 17046999 DOI: 10.1242/jcs.03171] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified a specific interaction between two secreted proteins, thrombospondin-1 and versican, that is induced during a toll-like receptor-3-dependent inflammatory response in vascular smooth muscle cells. Thrombospondin-1 binding to versican is modulated by divalent cations. This interaction is mediated by interaction of the G1 domain of versican with the N-module of thrombospondin-1 but only weakly with the corresponding N-terminal region of thrombospondin-2. The G1 domain of versican contains two Link modules, which are known to mediate TNFalpha-stimulated gene-6 protein binding to thrombospondin-1, and the related G1 domain of aggrecan is also recognized by thrombospondin-1. Therefore, thrombospondin-1 interacts with three members of the Link-containing hyaladherin family. On the surface of poly-I:C-stimulated vascular smooth muscle cells, versican organizes into fibrillar structures that contain elastin but are largely distinct from those formed by hyaluronan. Endogenous and exogenously added thrombospondin-1 incorporates into these structures. Binding of exogenous thrombospondin-1 to these structures, to purified versican and to its G1 domain is potently inhibited by heparin. At higher concentrations, exogenous thrombospondin-1 delays the poly-I:C induced formation of structures containing versican and elastin, suggesting that thrombospondin-1 negatively modulates this component of a vascular smooth muscle inflammatory response.
Collapse
Affiliation(s)
- Svetlana A Kuznetsova
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Garcia J, Callewaert N, Borsig L. P-selectin mediates metastatic progression through binding to sulfatides on tumor cells. Glycobiology 2006; 17:185-96. [PMID: 17043066 DOI: 10.1093/glycob/cwl059] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hematogenous carcinoma metastasis is associated with tumor cell emboli formation, which is now known to be facilitated by selectins. P-selectin-mediated interactions of platelets with cancer cells are based mostly on mucin- and glycosaminoglycan-type selectin ligands. We previously showed that mouse colon carcinoma cells (MC-38) carry P-selectin ligands of nonmucin origin, which were not identified. Here we show that P-selectin ligands recognized on MC-38 cells are sulfated glycolipids, thereby facilitating experimental metastasis in a syngeneic mouse model. Metabolic inhibition of sulfation by incubation of cells with sodium chlorate almost completely abrogated P-selectin binding. Metabolic labeling of MC-38 cells with (35)S sulfate revealed only a single band as detected by high-performance thin layer chromatography analysis of a total lipid extract. Matrix-assisted laser desorption/ionization tandem time-of-flight/time-of-flight analysis (MALDI-TOF-TOF) analysis of the purified sulfate-containing lipid fraction identified the selectin ligand to be a sulfated galactosylceramide SM4 (HSO(3)-3Galbeta-1Cer). Modulation of glycolipid biosynthesis in MC-38 cells altered P-selectin binding, thereby confirming sulfoglycolipids to be major P-selectin ligands. In addition, P-selectin was also found to recognize lactosylceramide sulfate SM3 (HSO(3)-3Galbeta-4Glcbeta-1Cer) and gangliotriaosylceramide sulfate SM2 [GalNAcbeta-4(HSO(3)-3)Galbeta-4Glcbeta-1Cer] in human hepatoma cells. Finally, the enzymatic removal of sulfation from the cell surface of MC-38 cells resulted in decreased P-selectin binding and led to attenuation of metastasis. Thus, SM4 sulfatide serves as a native ligand for P-selectin contributing to cell-cell interactions and to facilitation of metastasis.
Collapse
Affiliation(s)
- Josep Garcia
- Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | | | | |
Collapse
|
144
|
Williams DR, Presar AR, Richmond AT, Mjaatvedt CH, Hoffman S, Capehart AA. Limb chondrogenesis is compromised in the versican deficient hdf mouse. Biochem Biophys Res Commun 2006; 334:960-6. [PMID: 16039617 DOI: 10.1016/j.bbrc.2005.06.189] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Accepted: 06/30/2005] [Indexed: 10/25/2022]
Abstract
It has been suggested that the matrix proteoglycan, versican, may perform a functional role during early events of limb skeletogenesis largely by virtue of its spatiotemporal expression pattern in precartilage mesenchymal aggregations. The versican-deficient hdf transgenic mouse has provided the first model to explore the implications of a null mature versican on limb chondrogenesis. Due to lethality of hdf homozygous embryos prior to limb cartilage differentiation, high-density micromass cultures were employed to compare the chondrogenic capacity of hdf mutant limb mesenchyme to that of wild-type. In homozygous hdf mesenchyme, aggregation was severely compromised and neither cartilage-characteristic Type II collagen nor alcian blue positive foci were detected during a 6-day period of culture. Three-dimensional culture of hdf mutant mesenchyme, however, showed that in a permissive environment mutant cells also expressed Type II collagen. Results strongly suggest that mature versican proteoglycan is essential for precartilage aggregation and subsequent cartilage differentiation.
Collapse
Affiliation(s)
- Dennis R Williams
- Department of Biology, East Carolina University, Greenville, NC, USA
| | | | | | | | | | | |
Collapse
|
145
|
Pukkila M, Kosunen A, Ropponen K, Virtaniemi J, Kellokoski J, Kumpulainen E, Pirinen R, Nuutinen J, Johansson R, Kosma VM. High stromal versican expression predicts unfavourable outcome in oral squamous cell carcinoma. J Clin Pathol 2006; 60:267-72. [PMID: 16731595 PMCID: PMC1860561 DOI: 10.1136/jcp.2005.034181] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Versican, an extracellular matrix proteoglycan, has been noted to be expressed in several malignant tumours and has been suggested to play an important role in cancer development and tumour growth. AIMS To investigate whether the versican expression level in the peritumoural stromal tissue of primary oral squamous cell carcinoma (OSCC) predicts relapse-free or disease-specific survival. Also, to study the associations between versican expression and several other clinicopathological variables, as well as tumour cell proliferation. METHODS Immunohistochemistry was used to study the expression of versican and tumour cell proliferative activity in 139 OSCCs. All pertinent clinical data were collected retrospectively from the hospital records. RESULTS In this cohort, versican expression did not correlate with the clinicopathological factors or tumour cell proliferation. In univariate analyses, higher risk for disease recurrence was associated with higher stromal versican expression score (p = 0.02), positive neck node status (p = 0.02), lower Karnofsky performance status (p = 0.03) and higher tumour cell proliferation index (p = 0.04). Increased disease-specific risk of death was associated with high stromal versican expression score (p = 0.005) higher T class (p = 0.002), positive neck node status (p<0.001), higher stage (p<0.001), poorer histological differentiation (p = 0.005), worse general condition of the patient (p = 0.049) and increased tumour cell proliferative index (p = 0.02). In multivariate disease-specific survival analysis, high stromal versican expression score (p = 0.048), poorer histological differentiation (p = 0.047) and higher stage (p = 0.002) independently predicted poorer disease outcome. CONCLUSIONS In this cohort, increased stromal versican expression correlated with both increased risk for disease recurrence and shortened survival. High stromal versican expression may thus be considered an independent and adverse prognostic marker in OSCC.
Collapse
Affiliation(s)
- Matti Pukkila
- Otorhinolaryngology-Head and Neck Surgery, Institute of Clinical Medicine, University of Kuopio and Kuopio University Hospital, Kuopio, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Xiang YY, Dong H, Wan Y, Li J, Yee A, Yang BB, Lu WY. Versican G3 domain regulates neurite growth and synaptic transmission of hippocampal neurons by activation of epidermal growth factor receptor. J Biol Chem 2006; 281:19358-68. [PMID: 16648628 DOI: 10.1074/jbc.m512980200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Versican is one of the major extracellular matrix (ECM) proteins in the brain. ECM molecules and their cleavage products critically regulate the growth and arborization of neurites, hence adjusting the formation of neural networks. Recent findings have revealed that peptide fragments containing the versican C terminus (G3 domain) are present in human brain astrocytoma. The present study demonstrated that a versican G3 domain enhanced cell attachment, neurite growth, and glutamate receptor-mediated currents in cultured embryonic hippocampal neurons. In addition, the G3 domain intensified dendritic spines, increased the clustering of both synaptophysin and the glutamate receptor subunit GluR2, and augmented excitatory synaptic activity. In contrast, a mutated G3 domain lacking the epidermal growth factor (EGF)-like repeats (G3deltaEGF) had little effect on neurite growth and glutamatergic function. Treating the neurons with the G3-conditioned medium rapidly increased the levels of phosphorylated EGF receptor (pEGFR) and phosphorylated extracellular signal-regulated kinase (pERK), indicating an activation of EGFR-mediated signaling pathways. Blockade of EGFR prevented the G3-induced ERK activation and suppressed the G3-provoked enhancement of neurite growth and glutamatergic function but failed to block the G3-mediated enhancement of cell attachment. These combined results indicate that the versican G3 domain regulates neuronal attachment, neurite outgrowth, and synaptic function of hippocampal neurons via EGFR-dependent and -independent signaling pathway(s). Our findings suggest a role for ECM proteolytic products in neural development and regeneration.
Collapse
Affiliation(s)
- Yun-Yan Xiang
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | | | | | | | | | | | | |
Collapse
|
147
|
Hitchcock AM, Costello CE, Zaia J. Glycoform quantification of chondroitin/dermatan sulfate using a liquid chromatography-tandem mass spectrometry platform. Biochemistry 2006; 45:2350-61. [PMID: 16475824 PMCID: PMC2597419 DOI: 10.1021/bi052100t] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chondroitin sulfate (CS) is a glycosaminoglycan consisting of repeating uronic acid, N-acetylgalactosamine disaccharide units {[HexAbeta/alpha(1-3)GalNAcbeta(1-4)](n)()}. CS chains are polydisperse with respect to chain length, sulfate content, and glucuronic acid epimerization content, resulting in a distribution of glycoforms for a chain bound to any given serine residue. Usually, CS glycoforms exist, differing in sulfation position and uronic acid epimerization. This work introduces a novel LC-MS/MS platform for the quantification of mixtures of CS oligosaccharides. The CS polysaccharides were partially depolymerized and labeled with either the light (d(0)) or heavy (d(4)) form of 2-anthranilic acid (2-AA). Excess reagent was removed, and mixtures of the CS standard (d(0)) and unknown (d(4)) were made. The CS mixture was subjected to size exclusion chromatography (SEC) with on-line electrospray ionization mass spectrometric detection in the negative ion mode. Tandem mass spectra were acquired, and quantification of unknown samples within the mixture was made using relative ion abundances of specific diagnostic ions. The high accuracy and precision of the glycomics platform were demonstrated using glycoform mixtures made from standard CS preparations. The CS glycoform analysis method was then applied to cartilage extract, versican, and several dermatan sulfate preparations. This work presents the first application of a glycomics platform for the quantification of CS oligosaccharide mixtures for obtaining specific information about the positions of GalNAc sulfation and uronic acid epimerization.
Collapse
Affiliation(s)
| | | | - Joseph Zaia
- *To whom correspondence should be addressed: Department of Biochemistry, Boston University School of Medicine, MS Resource, 670 Albany St., Boston, MA 02118. Telephone: (617)-638-6762. Fax: (617)-638-6760.
| |
Collapse
|
148
|
Yamagata M, Sanes JR. Versican in the developing brain: lamina-specific expression in interneuronal subsets and role in presynaptic maturation. J Neurosci 2006; 25:8457-67. [PMID: 16162928 PMCID: PMC6725682 DOI: 10.1523/jneurosci.1976-05.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs) of the extracellular matrix help stabilize synaptic connections in the postnatal brain and impede regeneration after injury. Here, we show that a CSPG of the lectican family, versican, also promotes presynaptic maturation in the developing brain. In the embryonic chick optic tectum, versican is expressed selectively by subsets of interneurons confined to the retinorecipient laminae, in which retinal axons arborize and form synapses. It is a major receptor for the Vicia villosa B4 lectin (VVA), shown previously to inhibit invasion of the retinorecipient lamina by retinal axons (Inoue and Sanes, 1997). In vitro, versican promotes enlargement of presynaptic varicosities in retinal axons. Depletion of versican in ovo, by RNA interference, results in retinal arbors with smaller than normal varicosities. We propose that versican provides a lamina-specific cue for presynaptic maturation and discuss the related but distinct effects of versican depletion and VVA blockade.
Collapse
Affiliation(s)
- Masahito Yamagata
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
149
|
Nasciutti LE, Ferrari R, Berardo PT, Souza MLS, Takiya CM, Borojevic R, Abrão MS, Silva LCF. Distribution of chondroitin sulfate in human endometrium. Micron 2006; 37:544-50. [PMID: 16458524 DOI: 10.1016/j.micron.2005.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 12/07/2005] [Accepted: 12/08/2005] [Indexed: 11/26/2022]
Abstract
Sulfated glycosaminoglycan (GAG) composition was characterized in the human endometrium during proliferative and secretory phases of the menstrual cycle. Sulfated GAGs were analyzed in endometrium tissue using metachromatic staining, biochemical analysis including electrophoresis before and after specific enzymatic or chemical degradations, and immunostaining with an antibody against chondroitin sulfate (CS). Our results showed that CS was the main sulfated GAG species detected, accompanied by small amounts of heparan sulfate and dermatan sulfate. CS was distributed overall the connective stroma, around arteriole vessels and glands, and there was no important difference in the immunostaining between the proliferative and secretory endometrium phases. Our findings extend previous observations on the GAG composition in the human endometrium providing new information regarding the tissue distribution and location of endometrial CS.
Collapse
Affiliation(s)
- Luiz E Nasciutti
- Departamento de Histologia e Embriologia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária-Ilha do Fundão, 21941-590 Rio de Janeiro, RJ Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Yamaguchi T, Kitaya K, Daikoku N, Yasuo T, Fushiki S, Honjo H. Potential Selectin L Ligands Involved in Selective Recruitment of Peripheral Blood CD16(–) Natural Killer Cells into Human Endometrium1. Biol Reprod 2006; 74:35-40. [PMID: 16148216 DOI: 10.1095/biolreprod.105.045971] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Unique CD16(-) natural killer (NK) cells appear in the human cycling endometrium and acutely increase in number after ovulation. Selective recruitment from peripheral blood (PB) CD16(-) NK cells is a potential mechanism for the postovulatory increase of these NK cells. The interaction between selectin L, an adhesion molecule playing a critical role in leukocyte extravasation, and its ligands may be involved in this phenomenon. We investigated the menstrual cycle-dependent fluctuation of selectin L expression on PB CD16(-) NK cells and selectin L ligand expression in the human endometrial endothelium. The expression of selectin L on PB CD16(-) NK cells was constantly high throughout the menstrual cycle compared with other PB CD16(+) NK cells and non-NK lymphocytes. Among eight selectin L ligands examined, podocalyxin-like, mucosal addressin cell adhesion molecule-1 (MADCAM1) and chondroitin sulfate proteoglycan 2 (CSPG2) were localized in the endometrial endothelium. Semiquantitative score of immunostaining intensity in the endometrial endothelium for MADCAM1 was highest in the late secretory phase, whereas that for CSPG2 peaked throughout the secretory phase. There was a strong positive correlation between the number of endometrial NK cells and the semiquantitative score for CSPG2. Three active isoforms of CSPG2 mRNA were detected in the human endometrium. These findings support the idea that the interaction between selectin L and selectin L ligands functions in the postovulatory selective recruitment of PB CD16(-) NK cells into the human endometrium.
Collapse
Affiliation(s)
- Takeshi Yamaguchi
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | | | | | | | | | | |
Collapse
|