101
|
Wilson HL, Wilkinson SR, Rajagopalan KV. The G473D mutation impairs dimerization and catalysis in human sulfite oxidase. Biochemistry 2006; 45:2149-60. [PMID: 16475804 DOI: 10.1021/bi051609l] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Among the mutations identified in patients with isolated sulfite oxidase deficiency, the G473D variant is of particular interest since sedimentation analysis reveals that this variant is a monomer, and the importance of the wild-type dimeric state of mammalian sulfite oxidase is not yet well understood. Analysis of recombinant G473D sulfite oxidase indicated that it is severely impaired both in the ability to bind sulfite and in catalysis, with a second-order rate constant 5 orders of magnitude lower than that of the wild type. To elucidate the specific reasons for the severe effects seen in the G473D variant, several other variants were created, including G473A, G473W, and the double mutant R212A/G473D. Despite the inability to form a stable dimer, the G473W variant had 5-fold higher activity than G473D and nearly wild-type activity at pH 7.0 when ferricyanide was the electron acceptor. In contrast, the R212A/G473D variant demonstrated some ability to oligomerize but had undetectable activity. The G473A variant retained the ability to dimerize and had steady-state activity that was comparable to that of the wild type. Furthermore, stopped-flow analysis of the reductive half-reaction of this variant yielded a rate constant nearly 3 times higher than that of the wild type. Examination of the secondary structures of the variants by CD spectroscopy indicated significant random-coil formation in G473D, G473W, and R212A/G473D. These results demonstrate that both the charge and the large size of an Asp residue in this position contribute to the severe effects seen in a patient with the G473D mutation, by causing partial misfolding and monomerization of sulfite oxidase and attenuating both substrate binding and catalytic efficiency during the reaction cycle.
Collapse
Affiliation(s)
- Heather L Wilson
- Department of Biochemistry, Box 3711, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
102
|
Feng C, Wilson HL, Tollin G, Astashkin AV, Hazzard JT, Rajagopalan KV, Enemark JH. The pathogenic human sulfite oxidase mutants G473D and A208D are defective in intramolecular electron transfer. Biochemistry 2006; 44:13734-43. [PMID: 16229463 DOI: 10.1021/bi050907f] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mutations G473D and A208D were identified in patients with isolated sulfite oxidase (SO) deficiency, and the equivalent amino acids (G451 and A186, respectively) have been localized to the vicinity of the molybdopterin active site in the X-ray structure of chicken SO [Kisker, C., Schindelin, H., Pacheco, A., Wehbi, W., Garrett, R. M., Rajagopalan, K. V., Enemark, J. H., and Rees, D. C. (1997) Cell 91, 973-983]. To assess the effects of these mutations in human SO, steady-state kinetic studies of enzyme turnover and laser flash photolysis measurements of intramolecular electron transfer (IET) rate constants between the reduced heme [Fe(II)] and Mo(VI) centers were carried out in the recombinant G473D, G473A, G473W, G473D/R212A, and A208D human SO mutants. In the G473D and A208D mutants, the IET rate constants at pH 6.0 are decreased by 3 orders of magnitude relative to that of the wild type. Steady-state kinetic measurements indicate that the IET process is the rate-limiting step in the catalytic cycle of these two mutants. Thus, the large decreases in the IET rate constants and the kcat values, and the large increases in the Km(sulfite) values, rationalize the fatal impact of these mutations. Far-UV CD spectra of G473D indicate that the protein backbone conformation is remarkably changed, and the sedimentation equilibrium indicates that the protein is monomeric. Furthermore, EPR studies also suggest that the active site structure of the Mo(V) form of A208D is different from that of the wild type. In contrast, similar studies on G473A show that it is dimeric, that its Mo(V) active site structure is similar to that of the wild type, and that its IET rate constant is only 2.6-fold smaller than that of the wild type. IET in G473W is severely impaired, and no IET is observed for G473D/R212A. In chicken SO, the equivalent residues (G451 and A186) are both buried inside the protein. Thus, for human SO, the mutations to charged residues at the equivalent sites most likely cause crucial global or localized structural changes, and expose an alternative docking site that may compete with the Mo domain for docking of the heme, thereby retarding IET and efficient catalytic turnover of the sulfite oxidation reaction.
Collapse
Affiliation(s)
- Changjian Feng
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | | | |
Collapse
|
103
|
Abstract
BACKGROUND AND AIMS Sulfate assimilation is a pathway used by prokaryotes, fungi and photosynthetic organisms to convert inorganic sulfate to sulfide, which is further incorporated into carbon skeletons of amino acids to form cysteine or homocysteine. The pathway is highly regulated in a demand-driven manner; however, this regulation is not necessarily identical in various plant species. Therefore, our knowledge of the regulation of sulfate assimilation is reviewed here in detail with emphasis on different plant species. SCOPE Although demand-driven control plays an essential role in regulation of sulfate assimilation in all plants, the molecular mechanisms of the regulation and the effects of various treatments on the individual enzymes and metabolites are often different. This review summarizes (1) the molecular regulation of sulfate assimilation in Arabidopsis thaliana, especially recent data derived from platform technologies and functional genomics, (2) the co-ordination of sulfate, nitrate and carbon assimilations in Lemna minor, (3) the role of sulfate assimilation and glutathione in plant-Rhizobia symbiosis, (4) the cell-specific distribution of sulfate reduction and glutathione synthesis in C(4) plants, (5) the regulation of glutathione biosynthesis in poplar, (6) the knock-out of the adenosine 5'phosphosulfate reductase gene in Physcomitrella patens and identification of 3'-phosphoadenosyl 5'-phosphosulfate reductase in plants, and (7) the sulfur sensing mechanism in green algae. CONCLUSIONS As the molecular mechanisms of regulation of the sulfate assimilation pathway are not known, the role of Arabidopsis as a model plant will be further strengthened. However, this review demonstrates that investigations of other plant species will still be necessary to address specific questions of regulation of sulfur nutrition.
Collapse
|
104
|
Hemann C, Hood BL, Fulton M, Hänsch R, Schwarz G, Mendel RR, Kirk ML, Hille R. Spectroscopic and kinetic studies of Arabidopsis thaliana sulfite oxidase: nature of the redox-active orbital and electronic structure contributions to catalysis. J Am Chem Soc 2006; 127:16567-77. [PMID: 16305246 DOI: 10.1021/ja0530873] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plant sulfite oxidase from Arabidopsis thaliana has been characterized both spectroscopically and kinetically. The enzyme is unusual in lacking the heme domain that is present in the otherwise highly homologous enzyme from vertebrate sources. In steady-state assays, the enzyme exhibits a pH maximum of 8.5 and is also found to function as a selenite oxidase. Sulfite at the lowest experimentally feasible concentrations reduces the enzyme within the dead-time of a stopped-flow instrument at 5 degrees C, indicating that the A. thaliana enzyme has a limiting rate constant for reduction, k(red), at least 10 times greater than that of the chicken enzyme (190 s(-1)). The EPR parameters for the high- and low-pH forms of the A. thaliana enzyme have been determined, and the g-values are found to resemble those previously reported for the vertebrate enzymes. Finally, the A. thaliana enzyme has been probed by resonance Raman spectroscopy. A detailed analysis of the vibrational spectrum in the region where Mo=O stretching modes are anticipated to occur has been performed with the help of density functional theory calculations, evaluated in the context of the Raman data. Calculated frequencies obtained for two model systems have been compared to experimental resonance Raman spectra of oxidized A. thaliana sulfite oxidase catalytically cycled in both H2(16)O and H2(18)O. The vibrational frequency shifts observed upon (18)O-labeling of the enzyme are consistent with theoretical models in which either the equatorial oxygen or both equatorial and axial atoms of the dioxomolybdenum center are labeled. Importantly, the vibrational mode description is consistent with the active site possessing geometrically inequivalent oxo ligands and a Mo d(xy) redox-active molecular orbital oriented in the equatorial plane forming a pi-bonding interaction solely with the equatorial oxo, O(eq). Electron occupancy of this Mo=O(eq) pi* redox orbital upon interaction with substrates would effectively labilize the Mo=O(eq) bond, providing the dominant contribution to lowering the activation energy for oxygen atom transfer.
Collapse
Affiliation(s)
- Craig Hemann
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
105
|
D'Errico G, Di Salle A, La Cara F, Rossi M, Cannio R. Identification and characterization of a novel bacterial sulfite oxidase with no heme binding domain from Deinococcus radiodurans. J Bacteriol 2006; 188:694-701. [PMID: 16385059 PMCID: PMC1347283 DOI: 10.1128/jb.188.2.694-701.2006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An open reading frame (draSO) encoding a putative sulfite oxidase (SO) was identified in the sequence of chromosome II of Deinococcus radiodurans; the predicted gene product showed significant amino acid sequence homology to several bacterial and eukaryotic SOs, such as the biochemically and structurally characterized enzyme from Arabidopsis thaliana. Cloning of the Deinococcus SO gene was performed by PCR amplification from the bacterial genomic DNA, and heterologous gene expression of a histidine-tagged polypeptide was obtained in a molybdopterin-overproducing strain of Escherichia coli. The recombinant protein was purified to homogeneity by nickel chelating affinity chromatography, and its main kinetic and chemical physical parameters were determined. Northern blot and enzyme activity analyses indicated that draSO gene expression is constitutive in D. radiodurans and that there is no increase upon exposure to thiosulfate and/or molybdenum(II).
Collapse
Affiliation(s)
- Giovanni D'Errico
- Istituto di Biochimica delle Proteine, CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | | | | | | | | |
Collapse
|
106
|
Hänsch R, Lang C, Riebeseel E, Lindigkeit R, Gessler A, Rennenberg H, Mendel RR. Plant sulfite oxidase as novel producer of H2O2: combination of enzyme catalysis with a subsequent non-enzymatic reaction step. J Biol Chem 2006; 281:6884-8. [PMID: 16407262 DOI: 10.1074/jbc.m513054200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sulfite oxidase (EC 1.8.3.1) from the plant Arabidopsis thaliana is the smallest eukaryotic molybdenum enzyme consisting of a molybdenum cofactor-binding domain but lacking the heme domain that is known from vertebrate sulfite oxidase. While vertebrate sulfite oxidase is a mitochondrial enzyme with cytochrome c as the physiological electron acceptor, plant sulfite oxidase is localized in peroxisomes and does not react with cytochrome c. Here we describe results that identified oxygen as the terminal electron acceptor for plant sulfite oxidase and hydrogen peroxide as the product of this reaction in addition to sulfate. The latter finding might explain the peroxisomal localization of plant sulfite oxidase. 18O labeling experiments and the use of catalase provided evidence that plant sulfite oxidase combines its catalytic reaction with a subsequent non-enzymatic step where its reaction product hydrogen peroxide oxidizes another molecule of sulfite. In vitro, for each catalytic cycle plant SO will bring about the oxidation of two molecules of sulfite by one molecule of oxygen. In the plant, sulfite oxidase could be responsible for removing sulfite as a toxic metabolite, which might represent a means to protect the cell against excess of sulfite derived from SO2 gas in the atmosphere (acid rain) or during the decomposition of sulfur-containing amino acids. Finally we present a model for the metabolic interaction between sulfite and catalase in the peroxisome.
Collapse
Affiliation(s)
- Robert Hänsch
- Department of Plant Biology, Technical University of Braunschweig, 38023 Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
107
|
Astashkin AV, Hood BL, Feng C, Hille R, Mendel RR, Raitsimring AM, Enemark JH. Structures of the Mo(V) forms of sulfite oxidase from Arabidopsis thaliana by pulsed EPR spectroscopy. Biochemistry 2006; 44:13274-81. [PMID: 16201753 DOI: 10.1021/bi051220y] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Mo(V) center of plant sulfite oxidase from Arabidopsis thaliana (At-SO) has been studied by continuous wave and pulsed EPR methods. Three different Mo(V) EPR signals have been observed, depending on pH and the technique used to generate the Mo(V) oxidation state. At pH 6, reduction by sulfite followed by partial reoxidation with ferricyanide generates an EPR spectrum with g-values similar to the low-pH (lpH) form of vertebrate SOs, but no nearby exchangeable protons can be detected. On the other hand, reduction of At-SO with Ti(III) citrate at pH 6 generates a Mo(V) signal with large hyperfine splittings from a single exchangeable proton, as is typically observed for lpH SO from vertebrates. Reduction of At-SO with sulfite at high pH generates the well-known high-pH (hpH) signal common to all sulfite oxidizing enzymes. It is proposed that, depending on the conformation of Arg374, the active site of At-SO may be in "closed" or "open" forms that differ in the degree of accessibility of the Mo center to substrate and water molecules. It is suggested that at low pH the sulfite-reduced At-SO has coordinated sulfate and is in the "closed form". Reoxidation to Mo(V) by ferricyanide leaves bound sulfate trapped at the active site, and consequently, there are no ligands with exchangeable protons. Reduction with Ti(III) citrate injects an electron directly into the active site to generate the [Mo(V)[triple bond]O(OH)]2+ unit that is well-known from model chemistry and which has a single exchangeable proton with a large isotropic hyperfine interaction. At high pH, the active site is in the "open form", and water can readily exchange into the site to generate the hpH SO.
Collapse
Affiliation(s)
- Andrei V Astashkin
- Department of Chemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721-0041, USA
| | | | | | | | | | | | | |
Collapse
|
108
|
Suzuki M, Settles AM, Tseung CW, Li QB, Latshaw S, Wu S, Porch TG, Schmelz EA, James MG, McCarty DR. The maize viviparous15 locus encodes the molybdopterin synthase small subunit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:264-74. [PMID: 16367969 DOI: 10.1111/j.1365-313x.2005.02620.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A new Zea mays viviparous seed mutant, viviparous15 (vp15), was isolated from the UniformMu transposon-tagging population. In addition to precocious germination, vp15 has an early seedling lethal phenotype. Biochemical analysis showed reduced activities of several enzymes that require molybdenum cofactor (MoCo) in vp15 mutant seedlings. Because MoCo is required for abscisic acid (ABA) biosynthesis, the viviparous phenotype is probably caused by ABA deficiency. We cloned the vp15 mutant using a novel high-throughput strategy for analysis of high-copy Mu lines: We used MuTAIL PCR to extract genomic sequences flanking the Mu transposons in the vp15 line. The Mu insertions specific to the vp15 line were identified by in silico subtraction using a database of MuTAIL sequences from 90 UniformMu lines. Annotation of the vp15-specific sequences revealed a Mu insertion in a gene homologous to human MOCS2A, the small subunit of molybdopterin (MPT) synthase. Molecular analysis of two allelic mutations confirmed that Vp15 encodes a plant MPT synthase small subunit (ZmCNX7). Our results, and a related paper reporting the cloning of maize viviparous10, demonstrate robust cloning strategies based on MuTAIL-PCR. The Vp15/CNX7, together with other CNX genes, is expressed in both embryo and endosperm during seed maturation. Expression of Vp15 appears to be regulated independently of MoCo biosynthesis. Comparisons of Vp15 loci in genomes of three cereals and Arabidopsis thaliana identified a conserved sequence element in the 5' untranslated region as well as a micro-synteny among the cereals.
Collapse
Affiliation(s)
- Masaharu Suzuki
- Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Abstract
The molybdenum cofactor (Moco) forms the active site of all eukaryotic molybdenum (Mo) enzymes. Moco consists of molybdenum covalently bound to two sulfur atoms of a unique tricyclic pterin moiety referred to as molybdopterin. Moco is synthesized from GTP by an ancient and conserved biosynthetic pathway that can be divided into four steps involving the biosynthetic intermediates cyclic pyranopterin monophosphate, molybdopterin, and adenylated molybdopterin. In a fifth step, sulfuration or bond formation between Mo and a protein cysteine result in two different catalytic Mo centers. There are four Mo enzymes in plants: (1) nitrate reductase catalyzes the first and rate-limiting step in nitrate assimilation and is structurally similar to the recently identified, (2) peroxisomal sulfite oxidase that detoxifies excessive sulfite. (3) Aldehyde oxidase catalyzes the last step of abscisic acid biosynthesis, and (4) xanthine dehydrogenase is essential for purine degradation and stress response.
Collapse
Affiliation(s)
- Günter Schwarz
- Institute of Plant Biology, Technical University Braunschweig, 38023 Braunschweig, Germany.
| | | |
Collapse
|
110
|
Porch TG, Tseung CW, Schmelz EA, Settles AM. The maize Viviparous10/Viviparous13 locus encodes the Cnx1 gene required for molybdenum cofactor biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:250-63. [PMID: 16367968 DOI: 10.1111/j.1365-313x.2005.02621.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Abscisic acid (ABA), auxin and nitrate are important signaling molecules that affect plant growth responses to the environment. The synthesis or metabolism of these compounds depends on the molybdenum cofactor (MoCo). We show that maize (Zea mays) viviparous10 (vp10) mutants have strong precocious germination and seedling lethal phenotypes that cannot be rescued with tissue culture. We devised a novel PCR-based method to clone a transposon-tagged allele of vp10, and show that Vp10 encodes the ortholog of Cnx1, which catalyzes the final common step of MoCo synthesis. The seedling phenotype of vp10 mutants is consistent with disruptions in ABA and auxin biosynthesis, as well as a disruption in nitrate metabolism. Levels of ABA and auxin are reduced in vp10 mutants, and vp10 seedlings lack MoCo-dependent enzyme activities that are repairable with exogenous molybdenum. vp10 and an Arabidopsis cnx1 mutant, chlorate6 (chl6), have similar defects in aldehyde oxidase (AO) enzyme activity, which is required for ABA synthesis. Surprisingly, chl6 mutants do not show defects in abiotic stress responses. These observations confirm an orthologous function for Cnx1 and Vp10, as well as defining a characteristic viviparous phenotype to identify other maize cnx mutants. Finally, the vp10 mutant phenotype suggests that cnx mutants can have auxin- as well as ABA-biosynthesis defects, while the chl6 mutant phenotype suggests that low levels of AO activity are sufficient for normal abiotic stress responses.
Collapse
Affiliation(s)
- Timothy G Porch
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611-0690, USA
| | | | | | | |
Collapse
|
111
|
Hänsch R, Mendel RR. Sulfite oxidation in plant peroxisomes. PHOTOSYNTHESIS RESEARCH 2005; 86:337-43. [PMID: 16307306 DOI: 10.1007/s11120-005-5221-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Accepted: 04/10/2005] [Indexed: 05/05/2023]
Abstract
For a long time, occurrence and nature of sulfite oxidase activity in higher plants were controversially discussed. During primary sulfate assimilation in the chloroplast, sulfate is reduced via sulfite to organic sulfide, which is essential for cysteine biosynthesis. However, it has also been reported that sulfite can be oxidized back to sulfate, e.g. when plants were subjected to SO2 gas. Recently, work from our laboratory has identified the sulfite oxidase as the fourth member of molybdenum-enzymes in plants. Here we discuss how nature separates the two counteracting pathways--sulfate assimilation and sulfite detoxification--into two different cell organelles and we will also discuss how these two processes are coregulated.
Collapse
Affiliation(s)
- Robert Hänsch
- Department of Plant Biology, Technical University of Braunschweig, Humboldtstrasse 1, 38106, Braunschweig, Germany
| | | |
Collapse
|
112
|
Martin MN, Tarczynski MC, Shen B, Leustek T. The role of 5'-adenylylsulfate reductase in controlling sulfate reduction in plants. PHOTOSYNTHESIS RESEARCH 2005; 86:309-23. [PMID: 16328785 DOI: 10.1007/s11120-005-9006-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 06/27/2005] [Indexed: 05/05/2023]
Abstract
Cysteine is the first organic product of sulfate assimilation and as such is the precursor of all molecules containing reduced sulfur including methionine, glutathione, and their many metabolites. In plants, 5'-adenylylsulfate (APS) reductase is hypothesized to be a key regulatory point in sulfate assimilation and reduction. APS reductase catalyzes the two-electron reduction of APS to sulfite using glutathione as an electron donor. This paper reviews the experimental basis for this hypothesis. In addition, the results of an experiment designed to test the hypothesis by bypassing the endogenous APS reductase and its regulatory mechanisms are described. Two different bacterial assimilatory reductases were expressed in transgenic Zea mays, the thioredoxin-dependent APS reductase from Pseudomonas aeruginosa and the thioredoxin-dependent 3'-phosphoadenylylsulfate reductase from Escherichia coli. Each of them was placed under transcriptional control of the ubiquitin promoter and the protein products were targeted to chloroplasts. The leaves of transgenic Z. mays lines showed significant accumulation of reduced organic thiol compounds including cysteine, gamma-glutamylcysteine, and glutathione; and reduced inorganic forms of sulfur including sulfite and thiosulfate. Both bacterial enzymes appeared to be equally capable of deregulating the assimilative sulfate reduction pathway. The reduced sulfur compounds accumulated to such high levels that the transgenic plants showed evidence of toxicity. The results provide additional evidence that APS reductase is a major control point for sulfate reduction in Z. mays.
Collapse
Affiliation(s)
- Melinda N Martin
- Department of Plant Biology and Pathology, Biotechnology Center for Agriculture and the Environment, Rutgers University, New Brunswick, NJ 08901-8520, USA
| | | | | | | |
Collapse
|
113
|
Brokx SJ, Rothery RA, Zhang G, Ng DP, Weiner JH. Characterization of an Escherichia coli sulfite oxidase homologue reveals the role of a conserved active site cysteine in assembly and function. Biochemistry 2005; 44:10339-48. [PMID: 16042411 DOI: 10.1021/bi050621a] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the biochemical and biophysical characterization of YedYZ, a sulfite oxidase homologue from Escherichia coli. YedY is a soluble catalytic subunit with a twin arginine leader sequence for export to the periplasm by the Tat translocation system. YedY is the only molybdoenzyme so far isolated from E. coli with the Mo-MPT form of the molybdenum cofactor. The electron paramagnetic resonance (EPR) signal of the YedY molybdenum is similar to that of known Mo-MPT containing enzymes, with the exception that only the Mo(IV) --> Mo(V) transition is observed, with a midpoint potential of 132 mV. YedZ is a membrane-intrinsic cytochrome b with six putative transmembrane helices. The single heme b of YedZ has a midpoint potential of -8 mV, determined by EPR spectroscopy of YedZ-enriched membrane preparations. YedY does not associate strongly with YedZ on the cytoplasmic membrane. However, mutation of the YedY active site Cys102 to Ser results in very efficient targeting of YedY to YedZ in the membrane, demonstrating a clear role for YedZ as the membrane anchor for YedY. Together, YedYZ comprise a well-conserved bacterial heme-molybdoenzyme found in a variety of bacteria that can be assigned to the sulfite oxidase class of enzyme.
Collapse
Affiliation(s)
- Stephen J Brokx
- Membrane Protein Research Group, Department of Biochemistry, 474 Medical Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
114
|
Kappler U, Bailey S. Molecular Basis of Intramolecular Electron Transfer in Sulfite-oxidizing Enzymes Is Revealed by High Resolution Structure of a Heterodimeric Complex of the Catalytic Molybdopterin Subunit and a c-Type Cytochrome Subunit. J Biol Chem 2005; 280:24999-5007. [PMID: 15863498 DOI: 10.1074/jbc.m503237200] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sulfite-oxidizing molybdoenzymes convert the highly reactive and therefore toxic sulfite to sulfate and have been identified in insects, animals, plants, and bacteria. Although the well studied enzymes from higher animals serve to detoxify sulfite that arises from the catabolism of sulfur-containing amino acids, the bacterial enzymes have a central role in converting sulfite formed during dissimilatory oxidation of reduced sulfur compounds. Here we describe the structure of the Starkeya novella sulfite dehydrogenase, a heterodimeric complex of the catalytic molybdopterin subunit and a c-type cytochrome subunit, that reveals the molecular mechanism of intramolecular electron transfer in sulfite-oxidizing enzymes. The close approach of the two redox centers in the protein complex (Mo-Fe distance 16.6 A) allows for rapid electron transfer via tunnelling or aided by the protein environment. The high resolution structure of the complex has allowed the identification of potential through-bond pathways for electron transfer including a direct link via Arg-55A and/or an aromatic-mediated pathway. A potential site of electron transfer to an external acceptor cytochrome c was also identified on the SorB subunit on the opposite side to the interaction with the catalytic SorA subunit.
Collapse
Affiliation(s)
- Ulrike Kappler
- Centre for Metals in Biology, University of Queensland, St. Lucia, Queensland 4072, Australia
| | | |
Collapse
|
115
|
Yesbergenova Z, Yang G, Oron E, Soffer D, Fluhr R, Sagi M. The plant Mo-hydroxylases aldehyde oxidase and xanthine dehydrogenase have distinct reactive oxygen species signatures and are induced by drought and abscisic acid. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 42:862-76. [PMID: 15941399 DOI: 10.1111/j.1365-313x.2005.02422.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The plant molybdenum-cofactor (Moco) and flavin-containing enzymes, xanthine dehydrogenase (XDH; EC 1.2.1.37) and aldehyde oxidase (AO; EC 1.2.3.1) are thought to play important metabolic roles in purine metabolism and hormone biosynthesis, respectively. Their animal counterparts contribute to reactive oxygen species (ROS) production in numerous pathologies and here we examined these enzymes as potential sources of ROS in plants. Novel in-gel assay techniques and Moco sulfurase mutants, lacking a sulfur ligand in their Moco active center, were employed to demonstrate that the native tomato and Arabidopsis XDHs are capable of producing O, but not H2O2, while the animal counterpart was shown to produce both, O and H2O2. Superoxide production was dependent on Moco sulfuration when using hypoxanthine/xanthine but not NADH as substrates. The activity was inhibited by diphenylene iodonium (DPI), a suicide inhibitor of FAD containing enzymes. Analysis of XDH in an Arabidopsis Atxdh1 T-DNA insertion mutant and RNA interference lines revealed loss of O activity, providing direct molecular evidence that plant XDH generates superoxides. Contrary to XDH, AO activity produced only H2O2 dissimilar to native animal AO, that can produce O as well. Surprisingly, H2O2 accumulation was not sensitive to DPI. Plant ROS production and transcript levels of AO and XDH were rapidly upregulated by application of abscisic acid and in water-stressed leaves and roots. These results, supported by in vivo measurement of ROS accumulation, indicate that plant AO and XDH are possible novel sources for ROS increase during water stress.
Collapse
Affiliation(s)
- Zhazira Yesbergenova
- The Albert Katz Department of Dryland Biotechnologies, The Jacob Blaustein Institute for Desert Research, Ben-Gurion University, PO Box 653, Beer Sheva 84105, Israel
| | | | | | | | | | | |
Collapse
|
116
|
Cobb N, Conrads T, Hille R. Mechanistic Studies of Rhodobacter sphaeroides Me2SO Reductase. J Biol Chem 2005; 280:11007-17. [PMID: 15649898 DOI: 10.1074/jbc.m412050200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies of the molybdenum-containing dimethyl sulfoxide reductase from Rhodobacter sphaeroides have yielded new insight into its catalytic mechanism. A series of reductive titrations, performed over the pH range 6-10, reveal that the absorption spectrum of reduced enzyme is highly sensitive to pH. The reaction of reduced enzyme with dimethyl sulfoxide is found to be clearly biphasic throughout the pH range 6-8 with a fast, initial substrate-binding phase and substrate-concentration independent catalytic phase. The intermediate formed at the completion of the fast phase has the characteristic absorption spectrum of the established dimethyl sulfoxide-bound species. Quantitative reductive and oxidative titrations of the enzyme demonstrate that the molybdenum center takes up only two reducing equivalents, implying that the two pyranopterin equivalents of the molybdenum center are not formally redox active. Finally, the visible spectrum associated with the catalytically relevant "high-g split" Mo(V) species has been determined. Spectral deconvolution and EPR quantitation of enzyme-monitored turnover experiments with trimethylamine N-oxide as substrate reveal that no substrate-bound intermediate accumulates and that Mo(V) content remains near unity for the duration of the reaction. Similar experiments with dimethyl sulfoxide show that significant quantities of both the Mo(V) species and the dimethyl sulfoxide-bound complex accumulate during the course of reaction. Accumulation of the substrate-bound complex in the steady-state with dimethyl sulfoxide arises from partial reversal of the physiological reaction in which the accumulating product, dimethyl sulfide, reacts with oxidized enzyme to yield the substrate-bound intermediate, a process that significantly slows turnover.
Collapse
Affiliation(s)
- Nathan Cobb
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210-1218, USA
| | | | | |
Collapse
|
117
|
Navarro MT, Mariscal V, Macías MI, Fernández E, Galván A. Chlamydomonas reinhardtii strains expressing nitrate reductase under control of the cabII-1 promoter: isolation of chlorate resistant mutants and identification of new loci for nitrate assimilation. PHOTOSYNTHESIS RESEARCH 2005; 83:151-61. [PMID: 16143849 DOI: 10.1007/s11120-004-9297-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Accepted: 04/29/2004] [Indexed: 05/04/2023]
Abstract
The Chlamydomonas reinhardtii strain Tx11-8 is a transgenic alga that bears the nitrate reductase gene (Nia1) under control of the CabII-1 gene promoter (CabII-1-Nia1). Approximately nine copies of the chimeric CabII-1-Nia1 gene were found to be integrated in this strain and to confer a phenotype of chlorate sensitivity in the presence of ammonium. We have used this strain for the isolation of spontaneous chlorate resistant mutants in the presence of ammonium that were found to be defective at loci involved in MoCo metabolism and light-dependent growth in nitrate media. Of a total of 45 mutant strains analyzed first, 44 were affected in the MoCo activity (16 Nit(-), unable to grow in nitrate, and 28 Nit(+), able to grow in nitrate). All the Nit(-) strains lacked MoCo activity. Diploid complementation of Nit(-), MoCo(-) strains with C. reinhardtii MoCo mutants and genetic analysis indicated that some strains were defective at known loci for MoCo biosynthesis, while three strains were defective at two new loci, hereafter named Nit10 and Nit11. The other 28 Nit(+) strains showed almost undetectable MoCo activity or activity was below 20% of the parental strain. Second, only one strain (named 23c(+)) showed MoCo and NR activities comparable to those in the parental strain. Strain 23c(+) seems to be affected in a locus, Nit12, required for growth in nitrate under continuous light. It is proposed that this locus is required for nitrate/chlorate transport activity. In this work, mechanisms of chlorate toxicity are reviewed in the light of our results.
Collapse
Affiliation(s)
- María Teresa Navarro
- Departamento de Ciencias Ambientales, Area de Fisiología Vegetal, Facultad de Ciencias Experimentales, Universidad Pablo de Olavide, Carretera de Utrera, Seville 41013, Spain
| | | | | | | | | |
Collapse
|
118
|
Nowak K, Luniak N, Witt C, Wüstefeld Y, Wachter A, Mendel RR, Hänsch R. Peroxisomal localization of sulfite oxidase separates it from chloroplast-based sulfur assimilation. PLANT & CELL PHYSIOLOGY 2004; 45:1889-94. [PMID: 15653809 DOI: 10.1093/pcp/pch212] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Recently, we isolated the sulfite oxidase (SO) gene from Arabidopsis thaliana and characterized the purified SO protein. The purpose of the present study was to determine the subcellular localization of this novel plant enzyme. Immunogold electron-microscopic analysis showed the gold labels nearly exclusively in the peroxisomes. To verify this finding, green fluorescent protein was fused to full-length plant SO including the putative peroxisomal targeting signal 1 (PTS1) 'SNL' and expressed in tobacco leaves. Our results showed a punctate fluorescence pattern resembling that of peroxisomes. Co-labelling with MitoTracker-Red excluded that the observed fluorescence was due to mitochondrial sorting. By investigation of deleted or mutated PTS1, no functional peroxisomal targeting signal 2 (PTS2) could be detected in plant SO. This conclusion is supported by expression studies in Pichia pastoris mutants with defined defects either in PTS1- or PTS2-mediated peroxisomal import.
Collapse
Affiliation(s)
- Katharina Nowak
- Department of Plant Biology, Technical University of Braunschweig, Humboldtstrasse 1, D-38106 Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
119
|
Saito K. Sulfur assimilatory metabolism. The long and smelling road. PLANT PHYSIOLOGY 2004; 136:2443-50. [PMID: 15375200 PMCID: PMC523311 DOI: 10.1104/pp.104.046755] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Revised: 06/22/2004] [Accepted: 06/23/2004] [Indexed: 05/18/2023]
Affiliation(s)
- Kazuki Saito
- Graduate School of Pharmaceutical Sciences, Chiba University, Inage-ku, Chiba 263-8522, Japan.
| |
Collapse
|
120
|
|
121
|
Schrader N, Fischer K, Theis K, Mendel RR, Schwarz G, Kisker C. The crystal structure of plant sulfite oxidase provides insights into sulfite oxidation in plants and animals. Structure 2004; 11:1251-63. [PMID: 14527393 DOI: 10.1016/j.str.2003.09.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The molybdenum cofactor (Moco) containing sulfite oxidase (SO) from Arabidopsis thaliana has recently been identified and biochemically characterized. The enzyme is found in peroxisomes and believed to detoxify excess sulfite that is produced during sulfur assimilation, or due to air pollution. Plant SO (PSO) is homodimeric and homologous to animal SO, but contains only a single Moco domain without an additional redox center. Here, we present the first crystal structure of a plant Moco enzyme, the apo-state of Arabidopsis SO at 2.6 A resolution. The overall fold and coordination of the Moco are similar to chicken SO (CSO). Comparisons of conserved surface residues and the charge distribution in PSO and CSO reveal major differences near the entrance to both active sites reflecting different electron acceptors. Arg374 has been identified as an important substrate binding residue due to its conformational change when compared to the sulfate bound structure of CSO.
Collapse
Affiliation(s)
- Nils Schrader
- Department of Pharmacological Sciences, Center for Structural Biology, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | | | | | | | | | |
Collapse
|
122
|
Reumann S. Specification of the peroxisome targeting signals type 1 and type 2 of plant peroxisomes by bioinformatics analyses. PLANT PHYSIOLOGY 2004; 135:783-800. [PMID: 15208424 PMCID: PMC514115 DOI: 10.1104/pp.103.035584] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2003] [Revised: 01/22/2004] [Accepted: 01/22/2004] [Indexed: 05/18/2023]
Abstract
To specify the C-terminal peroxisome targeting signal type 1 (PTS1) and the N-terminal PTS2 for higher plants, a maximum number of plant cDNAs and expressed sequence tags that are homologous to PTS1- and PTS2-targeted plant proteins was retrieved from the public databases and the primary structure of their targeting domains was analyzed for conserved properties. According to their high overall frequency in the homologs and their widespread occurence in different orthologous groups, nine major PTS1 tripeptides ([SA][RK][LM]> without AKM> plus SRI> and PRL>) and two major PTS2 nonapeptides (R[LI]x5HL) were defined that are considered good indicators for peroxisomal localization if present in unknown proteins. A lower but significant number of homologs contained 1 of 11 minor PTS1 tripeptides or of 9 minor PTS2 nonapeptides, many of which have not been identified before in plant peroxisomal proteins. The region adjacent to the PTS peptides was characterized by specific conserved properties as well, such as a pronounced incidence of basic and Pro residues and a high positive net charge, which probably play an auxiliary role in peroxisomal targeting. By contrast, several peptides with assumed peroxisomal targeting properties were not found in any of the 550 homologs and hence play--if at all--only a minor role in peroxisomal targeting. Based on the definition of these major and minor PTS and on the recognition of additional conserved properties, the accuracy of predicting peroxisomal proteins can be raised and plant genomes can be screened for novel proteins of peroxisomes more successfully.
Collapse
Affiliation(s)
- Sigrun Reumann
- Albrecht-von-Haller-Institute for Plant Sciences, Department for Plant Biochemistry, D-37077 Goettingen, Germany
| |
Collapse
|
123
|
Borkovich KA, Alex LA, Yarden O, Freitag M, Turner GE, Read ND, Seiler S, Bell-Pedersen D, Paietta J, Plesofsky N, Plamann M, Goodrich-Tanrikulu M, Schulte U, Mannhaupt G, Nargang FE, Radford A, Selitrennikoff C, Galagan JE, Dunlap JC, Loros JJ, Catcheside D, Inoue H, Aramayo R, Polymenis M, Selker EU, Sachs MS, Marzluf GA, Paulsen I, Davis R, Ebbole DJ, Zelter A, Kalkman ER, O'Rourke R, Bowring F, Yeadon J, Ishii C, Suzuki K, Sakai W, Pratt R. Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev 2004; 68:1-108. [PMID: 15007097 PMCID: PMC362109 DOI: 10.1128/mmbr.68.1.1-108.2004] [Citation(s) in RCA: 434] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present an analysis of over 1,100 of the approximately 10,000 predicted proteins encoded by the genome sequence of the filamentous fungus Neurospora crassa. Seven major areas of Neurospora genomics and biology are covered. First, the basic features of the genome, including the automated assembly, gene calls, and global gene analyses are summarized. The second section covers components of the centromere and kinetochore complexes, chromatin assembly and modification, and transcription and translation initiation factors. The third area discusses genome defense mechanisms, including repeat induced point mutation, quelling and meiotic silencing, and DNA repair and recombination. In the fourth section, topics relevant to metabolism and transport include extracellular digestion; membrane transporters; aspects of carbon, sulfur, nitrogen, and lipid metabolism; the mitochondrion and energy metabolism; the proteasome; and protein glycosylation, secretion, and endocytosis. Environmental sensing is the focus of the fifth section with a treatment of two-component systems; GTP-binding proteins; mitogen-activated protein, p21-activated, and germinal center kinases; calcium signaling; protein phosphatases; photobiology; circadian rhythms; and heat shock and stress responses. The sixth area of analysis is growth and development; it encompasses cell wall synthesis, proteins important for hyphal polarity, cytoskeletal components, the cyclin/cyclin-dependent kinase machinery, macroconidiation, meiosis, and the sexual cycle. The seventh section covers topics relevant to animal and plant pathogenesis and human disease. The results demonstrate that a large proportion of Neurospora genes do not have homologues in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. The group of unshared genes includes potential new targets for antifungals as well as loci implicated in human and plant physiology and disease.
Collapse
Affiliation(s)
- Katherine A Borkovich
- Department of Plant Pathology, University of California, Riverside, California 92521, USA. Katherine/
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Feng C, Kappler U, Tollin G, Enemark JH. Intramolecular electron transfer in a bacterial sulfite dehydrogenase. J Am Chem Soc 2004; 125:14696-7. [PMID: 14640631 DOI: 10.1021/ja038197t] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfite dehydrogenase (SDH) from Starkeya novella, a sulfite-oxidizing molybdenum-containing enzyme, has a novel tightly bound alphabeta-heterodimeric structure in which the Mo cofactor and the c-type heme are located on different subunits. Flash photolysis studies of intramolecular electron transfer (IET) in SDH show that the process is first-order, independent of solution viscosity, and not inhibited by sulfate, which strongly indicates that IET in SDH proceeds directly through the protein medium and does not involve substantial movement of the two subunits relative to each other. The IET results for SDH contrast with those for chicken and human sulfite oxidase (SO) in which the molybdenum domain is linked to a b-type heme domain through a flexible loop, and IET shows a remarkable dependence on sulfate concentration and viscosity that has been ascribed to interdomain docking. The results for SDH provide additional support for the interdomain docking hypothesis in animal SO and clearly demonstrate that dependence of IET on viscosity and sulfate is not an inherent property of all sulfite-oxidizing molybdenum enzymes.
Collapse
Affiliation(s)
- Changjian Feng
- Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
125
|
Yang SH, Berberich T, Miyazaki A, Sano H, Kusano T. Ntdin, a tobacco senescence-associated gene, is involved in molybdenum cofactor biosynthesis. PLANT & CELL PHYSIOLOGY 2003; 44:1037-44. [PMID: 14581628 DOI: 10.1093/pcp/pcg122] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
To date, dozens of genes have been reported to be up-regulated with senescence in higher plants. Radish din1 and its ortholog sen1 of Arabidopsis are known as such, but their function is not clear yet. Here we have isolated their counterpart cDNA from tobacco and designated it as NTDIN: Its product, Ntdin, a 185 amino acid polypeptide with 56.8% and 54.2% identity to Atsen1 and Rsdin1, respectively, is localized in chloroplasts. Transcripts of Ntdin are induced by sulfate or nitrate but not by phosphate, suggesting its involvement in sulfur and nitrogen metabolism. A database search revealed that Ntdin shows similarity with the C-terminal region of Nicotiana plumbaginifolia Cnx5, which functions in molybdenum cofactor (Moco) biosynthesis. Transgenic tobacco plants with suppressed Ntdin are more tolerant to chlorate, a substrate analog of nitrate reductase, than controls, implying low nitrate reductase activity in the transgenic plants due to a deficiency of Moco. Indeed, enzymatic activities of two molybdoenzymes, nitrate reductase and xanthine dehydrogenase, in transgenic plants are found to be significantly lower than in control plants. Direct measurement of Moco contents reveals that those transgenic plants contain about 5% Moco of those of the control plants. Abscisic acid and indole-3-acidic acid, whose biosynthetic pathways require Moco, up-regulated Ntdin expression. Taken together, it is concluded that Ntdin functions in a certain step in Moco biosynthesis.
Collapse
Affiliation(s)
- Seung Hwan Yang
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Ikoma, Nara, 630-0101 Japan
| | | | | | | | | |
Collapse
|
126
|
Feng C, Wilson HL, Hurley JK, Hazzard JT, Tollin G, Rajagopalan KV, Enemark JH. Essential Role of Conserved Arginine 160 in Intramolecular Electron Transfer in Human Sulfite Oxidase†. Biochemistry 2003; 42:12235-42. [PMID: 14567685 DOI: 10.1021/bi0350194] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arginine 160 in human sulfite oxidase (SO) is conserved in all SO species sequenced to date. Previous steady-state kinetic studies of the R160Q human SO mutant showed a remarkable decrease in k(cat)/K(m)(sulfite) of nearly 1000-fold, which suggests that Arg 160 in human SO makes an important contribution to the binding of sulfite near the molybdenum cofactor [Garrett, R. M., Johnson, J. L., Graf, T. N., Feigenbaum, A., Rajagopalan, K. V. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 6394-6398]. In the crystal structure of chicken SO, Arg 138, the equivalent of Arg 160 in human SO, is involved in the formation of a positively charged sulfite binding site [Kisker, C., Schindelin, H., Pacheco, A., Wehbi, W., Garnett, R. M., Rajagopalan, K. V., Enemark, J. H., Rees, D. C. (1997) Cell 91, 973-983]. To further assess the role of Arg 160 in human SO, intramolecular electron transfer (IET) rates between the reduced heme [Fe(II)] and oxidized molybdenum [Mo(VI)] centers in the wild type, R160Q, and R160K human SO forms were investigated by laser flash photolysis. In the R160Q mutant, the IET rate constant at pH 6.0 was decreased by nearly 3 orders of magnitude relative to wild type, which indicates that the positive charge of Arg 160 is essential for efficient IET in human SO. Furthermore, the IET rate constant for the R160K mutant is about one-fourth that of the wild type enzyme, which strongly indicates that it is the loss of charge of Arg 160, and not its precise location, that is responsible for the much larger decrease in IET rates in the R160Q mutant. Steady-state kinetic measurements indicate that IET is rate-limiting in the catalytic cycle of the R160Q mutant. Thus, the large decrease in the IET rate constant rationalizes the fatal impact of this mutation in patients with this genetic disorder.
Collapse
Affiliation(s)
- Changjian Feng
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | | | |
Collapse
|
127
|
Fukao Y, Hayashi M, Hara-Nishimura I, Nishimura M. Novel glyoxysomal protein kinase, GPK1, identified by proteomic analysis of glyoxysomes in etiolated cotyledons of Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2003; 44:1002-12. [PMID: 14581625 DOI: 10.1093/pcp/pcg145] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Glyoxysomes are present in etiolated cotyledons and contain enzymes for gluconeogenesis, which constitutes the major function of glyoxysomes. However, 281 genes seemingly related to peroxisomal functions occur in the Arabidopsis genome, implying that many unidentified proteins are present in glyoxysomes. To better understand the functions of glyoxysomes, we performed glyoxysomal proteomic analysis of etiolated Arabidopsis cotyledons. Nineteen proteins were identified as glyoxysomal proteins, including 13 novel proteins, one of which is glyoxysomal protein kinase 1 (GPK1). We cloned GPK1 cDNA by RT-PCR and characterized GPK1. The amino acid sequence deduced from GPK1 cDNA has a hydrophobic region, a putative protein kinase domain, and a possible PTS1 motif. Immunoblot analysis using fractions collected on a Percoll density gradient confirmed that GPK1 is localized in glyoxysomes. Analysis of suborganellar localization and protease sensitivity showed that GPK1 is localized on glyoxysomal membranes as a peripheral membrane protein and that the putative kinase domain is located inside the glyoxysomes. Glyoxysomal proteins are phosphorylated well in the presence of various metal ions and [g-32P]ATP, and one of them is identified as thiolase by immunoprecipitation. Immuno-inhibition of phosphorylation in glyoxysomes suggested that GPK1 phosphorylates a 40-kDa protein. These results show that protein phosphorylation systems are operating in glyoxysomes.
Collapse
Affiliation(s)
- Yoichiro Fukao
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444-8585 Japan
| | | | | | | |
Collapse
|
128
|
Feng C, Wilson HL, Hurley JK, Hazzard JT, Tollin G, Rajagopalan KV, Enemark JH. Role of conserved tyrosine 343 in intramolecular electron transfer in human sulfite oxidase. J Biol Chem 2003; 278:2913-20. [PMID: 12424234 DOI: 10.1074/jbc.m210374200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tyrosine 343 in human sulfite oxidase (SO) is conserved in all SOs sequenced to date. Intramolecular electron transfer (IET) rates between reduced heme (Fe(II)) and oxidized molybdenum (Mo(VI)) in the recombinant wild-type and Y343F human SO were measured for the first time by flash photolysis. The IET rate in wild-type human SO at pH 7.4 is about 37% of that in chicken SO with a similar decrease in k(cat). Steady-state kinetic analysis of the Y343F mutant showed an increase in K(m)(sulfite) and a decrease in k(cat) resulting in a 23-fold attenuation in the specificity constant k(cat)/K(m)(sulfite) at the optimum pH value of 8.25. This indicates that Tyr-343 is involved in the binding of the substrate and catalysis within the molybdenum active site. Furthermore, the IET rate constant in the mutant at pH 6.0 is only about one-tenth that of the wild-type enzyme, suggesting that the OH group of Tyr-343 is vital for efficient IET in SO. The pH dependences of IET rate constants in the wild-type and mutant SO are consistent with the previously proposed coupled electron-proton transfer mechanism.
Collapse
Affiliation(s)
- Changjian Feng
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | | | |
Collapse
|
129
|
Aguey-Zinsou KF, Bernhardt PV, Kappler U, McEwan AG. Direct electrochemistry of a bacterial sulfite dehydrogenase. J Am Chem Soc 2003; 125:530-5. [PMID: 12517167 DOI: 10.1021/ja028293e] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfite dehydrogenase from Starkeya novella is an alphabeta heterodimer comprising a 40.6 kDa subunit (containing the Mo cofactor) and a smaller 8.8 kDa heme c subunit. The enzyme catalyses the oxidation of sulfite to sulfate with the natural electron acceptor being cytochrome c550. Its catalytic mechanism is thought to resemble that found in eukaryotic sulfite oxidases. Using protein film voltammetry and redox potentiometry, we have identified both Mo- and heme-centered redox responses from the enzyme immobilized on a pyrolytic graphite working electrode: E m,8 (Fe III/II) +177 mV; E m,8 (Mo VI/V) +211 mV and E m,8 (Mo V/IV) -118 mV vs NHE; Upon addition of sulfite to the electrochemical cell a steady-state voltammogram is observed and an apparent Michaelis constant (Km) of 26(1) microM was determined for the enzyme immobilized on the working electrode surface, which is comparable with the value obtained from solution assays.
Collapse
|
130
|
Tsakraklides G, Martin M, Chalam R, Tarczynski MC, Schmidt A, Leustek T. Sulfate reduction is increased in transgenic Arabidopsis thaliana expressing 5'-adenylylsulfate reductase from Pseudomonas aeruginosa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 32:879-89. [PMID: 12492831 DOI: 10.1046/j.1365-313x.2002.01477.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The two-electron reduction of sulfate to sulfite in plants is mediated by 5'-adenylylsulfate (APS) reductase, an enzyme theorized to be a control point for cysteine synthesis. The hypothesis was tested by expression in Arabidopsis thaliana under transcriptional control of the CaMV 35S promoter of the APS reductase from Pseudomonas aeruginosa (PaAPR) fused with the rbcS transit peptide for localization of the protein to plastids. PaAPR was chosen for the experiment because it is a highly stable enzyme compared with the endogenous APS reductase of A. thaliana, and because PaAPR is catalytically active in combination with the plant thioredoxins m and f indicating that it would likely be catalytically active in plastids. The results indicate that sulfate reduction and O-acetylserine (OAS) production together limit cysteine synthesis. Transgenic A. thaliana lines expressing PaAPR accumulated sulfite, thiosulfate, cysteine, gamma-glutamylcysteine, and glutathione. Sulfite and thiosulfate increased more than did cysteine, gamma-glutamylcysteine and glutathione. Thiosulfate accumulation was most pronounced in flowers. Feeding of OAS to the PaAPR-expressing plants caused cysteine and glutathione to increase more rapidly than in comparably treated wild type. Both wild-type and transgenic plants accumulated sulfite and thiosulfate in response to OAS feeding. The PaAPR-expressing plants were slightly chlorotic and stunted compared with wild type. An attempt to uncover the source of thiosulfate, which is not thought to be an intermediate of sulfate reduction, revealed that purified beta-mercaptopyruvate sulfurtransferase is able to form thiosulfate from sulfite and beta-mercaptopyruvate, suggesting that this class of enzymes could form thiosulfate in vivo in the presence of excess sulfite.
Collapse
Affiliation(s)
- George Tsakraklides
- Plant Biology and Pathology Department, Biotechnology Center for Agriculture and the Environment, Rutgers University, New Brunswick, NJ 08901-8520, USA
| | | | | | | | | | | |
Collapse
|
131
|
Kappler U, McEwan AG. A system for the heterologous expression of complex redox proteins in Rhodobacter capsulatus: characterisation of recombinant sulphite:cytochrome c oxidoreductase from Starkeya novella. FEBS Lett 2002; 529:208-14. [PMID: 12372602 DOI: 10.1016/s0014-5793(02)03344-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The phototrophic purple non-sulfur bacterium Rhodobacter capsulatus expresses a wide variety of complex redox proteins in response to changing environmental conditions. Here we report the construction and evaluation of an expression system for recombinant proteins in that organism which makes use of the dor promoter from the same organism. A generic expression vector, pDorEX, was constructed and used to express sulphite:cytochrome c oxidoreductase from Starkeya novella, a heterodimeric protein containing both molybdenum and haem c. The recombinant protein was secreted to the periplasm and its biochemical properties were very similar to those of the native enzyme. The pDorEX system therefore seems to be potentially useful for heterologous expression of multi-subunit proteins containing complex redox cofactors.
Collapse
Affiliation(s)
- Ulrike Kappler
- Department of Microbiology and Parasitology, Centre for Metals in Biology, School of Molecular and Microbial Sciences, The University of Queensland, St. Lucia, Qld. 4072, Australia.
| | | |
Collapse
|