101
|
Design, synthesis, and biological evaluation of compounds with a new scaffold as anti-neuroinflammatory agents for the treatment of Alzheimer's disease. Eur J Med Chem 2018; 149:129-138. [DOI: 10.1016/j.ejmech.2018.02.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/18/2018] [Accepted: 02/20/2018] [Indexed: 01/18/2023]
|
102
|
Vion E, Page G, Bourdeaud E, Paccalin M, Guillard J, Rioux Bilan A. Trans ε-viniferin is an amyloid-β disaggregating and anti-inflammatory drug in a mouse primary cellular model of Alzheimer's disease. Mol Cell Neurosci 2018; 88:1-6. [DOI: 10.1016/j.mcn.2017.12.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 12/01/2017] [Accepted: 12/03/2017] [Indexed: 12/31/2022] Open
|
103
|
Gerszon J, Serafin E, Buczkowski A, Michlewska S, Bielnicki JA, Rodacka A. Functional consequences of piceatannol binding to glyceraldehyde-3-phosphate dehydrogenase. PLoS One 2018; 13:e0190656. [PMID: 29298351 PMCID: PMC5752021 DOI: 10.1371/journal.pone.0190656] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/18/2017] [Indexed: 11/24/2022] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is one of the key redox-sensitive proteins whose activity is largely affected by oxidative modifications at its highly reactive cysteine residue in the enzyme’s active site (Cys149). Prolonged exposure to oxidative stress may cause, inter alia, the formation of intermolecular disulfide bonds leading to accumulation of GAPDH aggregates and ultimately to cell death. Recently these anomalies have been linked with the pathogenesis of Alzheimer’s disease. Novel evidences indicate that low molecular compounds may be effective inhibitors potentially preventing the GAPDH translocation to the nucleus, and inhibiting or slowing down its aggregation and oligomerization. Therefore, we decided to establish the ability of naturally occurring compound, piceatannol, to interact with GAPDH and to reveal its effect on functional properties and selected parameters of the dehydrogenase structure. The obtained data revealed that piceatannol binds to GAPDH. The ITC analysis indicated that one molecule of the tetrameric enzyme may bind up to 8 molecules of polyphenol (7.3 ± 0.9). Potential binding sites of piceatannol to the GAPDH molecule were analyzed using the Ligand Fit algorithm. Conducted analysis detected 11 ligand binding positions. We indicated that piceatannol decreases GAPDH activity. Detailed analysis allowed us to presume that this effect is due to piceatannol ability to assemble a covalent binding with nucleophilic cysteine residue (Cys149) which is directly involved in the catalytic reaction. Consequently, our studies strongly indicate that piceatannol would be an exceptional inhibitor thanks to its ability to break the aforementioned pathologic disulfide linkage, and therefore to inhibit GAPDH aggregation. We demonstrated that by binding with GAPDH piceatannol blocks cysteine residue and counteracts its oxidative modifications, that induce oligomerization and GAPDH aggregation.
Collapse
Affiliation(s)
- Joanna Gerszon
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Bionanopark Ltd., Lodz, Poland
- * E-mail:
| | - Eligiusz Serafin
- Laboratory of Computer and Analytical Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Adam Buczkowski
- Unit of Biophysical Chemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Lodz, Poland
| | - Sylwia Michlewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | | | - Aleksandra Rodacka
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
104
|
Zhang LF, Yu XL, Ji M, Liu SY, Wu XL, Wang YJ, Liu RT. Resveratrol alleviates motor and cognitive deficits and neuropathology in the A53T α-synuclein mouse model of Parkinson's disease. Food Funct 2018; 9:6414-6426. [DOI: 10.1039/c8fo00964c] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Resveratrol exerts neuroprotective effects on the A53T α-synuclein mouse model of Parkinson's disease.
Collapse
Affiliation(s)
- Li-fan Zhang
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Xiao-lin Yu
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Mei Ji
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Shu-ying Liu
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Xiao-ling Wu
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Sources in Western China
- Ningxia University
- Yinchuan 750021
- China
| | - Yu-jiong Wang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Sources in Western China
- Ningxia University
- Yinchuan 750021
- China
| | - Rui-tian Liu
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|
105
|
Kamal Zaidi F, Bhat R. Resveratrol Interferes with an Early Step in the Fibrillization Pathway of Human Lysozyme and Modulates it towards Less-Toxic, Off-Pathway Aggregates. Chembiochem 2017; 19:159-170. [DOI: 10.1002/cbic.201700207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 10/31/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Fatima Kamal Zaidi
- School of Biotechnology; Jawaharlal Nehru University; New Mehrauli road New Delhi 110067 India
| | - Rajiv Bhat
- School of Biotechnology; Jawaharlal Nehru University; New Mehrauli road New Delhi 110067 India
| |
Collapse
|
106
|
Wang Y, Latshaw DC, Hall CK. Aggregation of Aβ(17–36) in the Presence of Naturally Occurring Phenolic Inhibitors Using Coarse-Grained Simulations. J Mol Biol 2017; 429:3893-3908. [DOI: 10.1016/j.jmb.2017.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/13/2017] [Accepted: 10/06/2017] [Indexed: 01/09/2023]
|
107
|
Kumar S, Henning-Knechtel A, Chehade I, Magzoub M, Hamilton AD. Foldamer-Mediated Structural Rearrangement Attenuates Aβ Oligomerization and Cytotoxicity. J Am Chem Soc 2017; 139:17098-17108. [PMID: 29058422 DOI: 10.1021/jacs.7b08259] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The conversion of the native random coil amyloid beta (Aβ) into amyloid fibers is thought to be a key event in the progression of Alzheimer's disease (AD). A significant body of evidence suggests that the highly dynamic Aβ oligomers are the main causal agent associated with the onset of AD. Among many potential therapeutic approaches, one is the modulation of Aβ conformation into off-pathway structures to avoid the formation of the putative neurotoxic Aβ oligomers. A library of oligoquinolines was screened to identify antagonists of Aβ oligomerization, amyloid formation, and cytotoxicity. A dianionic tetraquinoline, denoted as 5, was one of the most potent antagonists of Aβ fibrillation. Biophysical assays including amyloid kinetics, dot blot, ELISA, and TEM show that 5 effectively inhibits both Aβ oligomerization and fibrillation. The antagonist activity of 5 toward Aβ aggregation diminishes with sequence and positional changes in the surface functionalities. 5 binds to the central discordant α-helical region and induces a unique α-helical conformation in Aβ. Interestingly, 5 adjusts its conformation to optimize the antagonist activity against Aβ. 5 effectively rescues neuroblastoma cells from Aβ-mediated cytotoxicity and antagonizes fibrillation and cytotoxicity pathways of secondary nucleation induced by seeding. 5 is also equally effective in inhibiting preformed oligomer-mediated processes. Collectively, 5 induces strong secondary structure in Aβ and inhibits its functions including oligomerization, fibrillation, and cytotoxicity.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry, New York University , New York, New York 10003, United States
| | - Anja Henning-Knechtel
- Biology Program, Division of Science, New York University Abu Dhabi , Abu Dhabi, United Arab Emirates
| | - Ibrahim Chehade
- Biology Program, Division of Science, New York University Abu Dhabi , Abu Dhabi, United Arab Emirates
| | - Mazin Magzoub
- Biology Program, Division of Science, New York University Abu Dhabi , Abu Dhabi, United Arab Emirates
| | - Andrew D Hamilton
- Department of Chemistry, New York University , New York, New York 10003, United States
| |
Collapse
|
108
|
Manfredi C, Trifuoggi M, Amoresano A, Vasca E, Pepe C, Volino S, Annetta M. On Trans-Resveratrol in Aqueous Solutions. J SOLUTION CHEM 2017. [DOI: 10.1007/s10953-017-0693-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
109
|
Ke PC, Sani MA, Ding F, Kakinen A, Javed I, Separovic F, Davis TP, Mezzenga R. Implications of peptide assemblies in amyloid diseases. Chem Soc Rev 2017; 46:6492-6531. [PMID: 28702523 PMCID: PMC5902192 DOI: 10.1039/c7cs00372b] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neurodegenerative disorders and type 2 diabetes are global epidemics compromising the quality of life of millions worldwide, with profound social and economic implications. Despite the significant differences in pathology - much of which are poorly understood - these diseases are commonly characterized by the presence of cross-β amyloid fibrils as well as the loss of neuronal or pancreatic β-cells. In this review, we document research progress on the molecular and mesoscopic self-assembly of amyloid-beta, alpha synuclein, human islet amyloid polypeptide and prions, the peptides and proteins associated with Alzheimer's, Parkinson's, type 2 diabetes and prion diseases. In addition, we discuss the toxicities of these amyloid proteins based on their self-assembly as well as their interactions with membranes, metal ions, small molecules and engineered nanoparticles. Through this presentation we show the remarkable similarities and differences in the structural transitions of the amyloid proteins through primary and secondary nucleation, the common evolution from disordered monomers to alpha-helices and then to β-sheets when the proteins encounter the cell membrane, and, the consensus (with a few exceptions) that off-pathway oligomers, rather than amyloid fibrils, are the toxic species regardless of the pathogenic protein sequence or physicochemical properties. In addition, we highlight the crucial role of molecular self-assembly in eliciting the biological and pathological consequences of the amyloid proteins within the context of their cellular environments and their spreading between cells and organs. Exploiting such structure-function-toxicity relationship may prove pivotal for the detection and mitigation of amyloid diseases.
Collapse
Affiliation(s)
- Pu Chun Ke
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Marc-Antonie Sani
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Rd, Parkville, VIC 3010, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Aleksandr Kakinen
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Ibrahim Javed
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Rd, Parkville, VIC 3010, Australia
| | - Thomas P. Davis
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, United Kingdom
| | - Raffaele Mezzenga
- ETH Zurich, Department of Health Science & Technology, Schmelzbergstrasse 9, LFO, E23, 8092 Zurich, Switzerland
| |
Collapse
|
110
|
Schweiger S, Matthes F, Posey K, Kickstein E, Weber S, Hettich MM, Pfurtscheller S, Ehninger D, Schneider R, Krauß S. Resveratrol induces dephosphorylation of Tau by interfering with the MID1-PP2A complex. Sci Rep 2017; 7:13753. [PMID: 29062069 PMCID: PMC5653760 DOI: 10.1038/s41598-017-12974-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 09/18/2017] [Indexed: 12/24/2022] Open
Abstract
The formation of paired helical filaments (PHF), which are composed of hyperphosphorylated Tau protein dissociating from microtubules, is one of the pathological hallmarks of Alzheimer's disease (AD) and other tauopathies. The most important phosphatase that is capable of dephosphorylating Tau at AD specific phospho-sites is protein phosphatase 2 A (PP2A). Here we show that resveratrol, a polyphenol, significantly induces PP2A activity and reduces Tau phosphorylation at PP2A-dependent epitopes. The increase in PP2A activity is caused by decreased expression of the MID1 ubiquitin ligase that mediates ubiquitin-specific modification and degradation of the catalytic subunit of PP2A when bound to microtubules. Interestingly, we further show that MID1 expression is elevated in AD tissue. Our data suggest a key role of MID1 in the pathology of AD and related tauopathies. Together with previous studies showing that resveratrol reduces β-amyloid toxicity they also give evidence of a promising role for resveratrol in the prophylaxis and therapy of AD.
Collapse
Affiliation(s)
- Susann Schweiger
- Institute for Human Genetics, University of Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Frank Matthes
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str.27, 53127, Bonn, Germany
| | - Karen Posey
- McGovern Medical School at University of Texas in Houston, Department of Pediatrics, 6431 Fannin Street, Houston, Texas, 77030, USA
| | - Eva Kickstein
- Max-Planck Institute for Molecular Genetics, Department of Human Molecular Genetics, Ihnestr. 73, 14195, Berlin, Germany
| | - Stephanie Weber
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str.27, 53127, Bonn, Germany
| | - Moritz M Hettich
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str.27, 53127, Bonn, Germany
| | - Sandra Pfurtscheller
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck (CMBI), Innrain 80/82, 6020, Innsbruck, Austria
| | - Dan Ehninger
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str.27, 53127, Bonn, Germany
| | - Rainer Schneider
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck (CMBI), Innrain 80/82, 6020, Innsbruck, Austria
| | - Sybille Krauß
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str.27, 53127, Bonn, Germany.
| |
Collapse
|
111
|
Hoffmann F, Adler J, Chandra B, Mote KR, Bekçioğlu-Neff G, Sebastiani D, Huster D. Perturbation of the F19-L34 Contact in Amyloid β (1-40) Fibrils Induces Only Local Structural Changes but Abolishes Cytotoxicity. J Phys Chem Lett 2017; 8:4740-4745. [PMID: 28910107 DOI: 10.1021/acs.jpclett.7b02317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We explored structural details of fibrils formed by a mutated amyloid β (Aβ(1-40)) peptide carrying a Phe19 to Lys19 mutation, which was shown to completely abolish the toxicity of the molecule. Computer models suggest that the positively charged Lys19 side chain is expelled from the hydrophobic fibril interior upon fibrillation. This can be accommodated by either a 180° flip of the entire lower β-strand (model M1) or local perturbations of the secondary structure in the direct vicinity of the mutated site (model M2). This is accompanied by the formation of a new salt bridge between Glu22 and Lys28 in model M1. Experimentally, a novel contact between Phe20 and Leu34 as well as the significant structural perturbation of residues 20-23 could be confirmed. However, the mutated fibrils do not show the formation of any salt bridges. This demonstrates that although morphologically very robust, local perturbations of the Aβ(1-40) sequence lead to moderate structural alterations with tremendous impact on the physiological importance of these aggregates, which may suggest alternative strategies for the development of a remedy against Alzheimer's disease.
Collapse
Affiliation(s)
- Felix Hoffmann
- Department of Chemistry, Martin-Luther Universität Halle-Wittenberg , von-Danckelmann-Platz 4, 06120 Halle/Saale, Germany
| | - Juliane Adler
- Institute for Medical Physics and Biophysics, Leipzig University , Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Bappaditya Chandra
- Tata Institute of Fundamental Research , Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | - Kaustubh R Mote
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research , 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| | - Gül Bekçioğlu-Neff
- Department of Chemistry, Martin-Luther Universität Halle-Wittenberg , von-Danckelmann-Platz 4, 06120 Halle/Saale, Germany
| | - Daniel Sebastiani
- Department of Chemistry, Martin-Luther Universität Halle-Wittenberg , von-Danckelmann-Platz 4, 06120 Halle/Saale, Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University , Härtelstr. 16-18, 04107 Leipzig, Germany
| |
Collapse
|
112
|
Jackson MP, Hewitt EW. Why are Functional Amyloids Non-Toxic in Humans? Biomolecules 2017; 7:biom7040071. [PMID: 28937655 PMCID: PMC5745454 DOI: 10.3390/biom7040071] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 12/26/2022] Open
Abstract
Amyloids were first identified in association with amyloidoses, human diseases in which proteins and peptides misfold into amyloid fibrils. Subsequent studies have identified an array of functional amyloid fibrils that perform physiological roles in humans. Given the potential for the production of toxic species in amyloid assembly reactions, it is remarkable that cells can produce these functional amyloids without suffering any obvious ill effect. Although the precise mechanisms are unclear, there are a number of ways in which amyloid toxicity may be prevented. These include regulating the level of the amyloidogenic peptides and proteins, minimising the production of prefibrillar oligomers in amyloid assembly reactions, sequestrating amyloids within membrane bound organelles, controlling amyloid assembly by other molecules, and disassembling the fibrils under physiological conditions. Crucially, a better understanding of how toxicity is avoided in the production of functional amyloids may provide insights into the prevention of amyloid toxicity in amyloidoses.
Collapse
Affiliation(s)
- Matthew P Jackson
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Eric W Hewitt
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
113
|
Chakraborty S, Das P. Emergence of Alternative Structures in Amyloid Beta 1-42 Monomeric Landscape by N-terminal Hexapeptide Amyloid Inhibitors. Sci Rep 2017; 7:9941. [PMID: 28855598 PMCID: PMC5577341 DOI: 10.1038/s41598-017-10212-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/04/2017] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease (AD) is characterized by deposition of amyloid beta (Aβ) peptides into senile plaques in the brain. While most familial mutations are associated with early-onset AD, recent studies report the AD-protective nature of two genetic human Aβ variants, i.e. A2T and A2V, in the heterozygous state. The mixture of A2V Aβ1-6 (Aβ6) hexapeptide and WT Aβ1–42 (Αβ42) is also found neuroprotective. Motivated by these findings, in this study we investigate the effects of WT, A2V, and A2T Aβ6 hexapeptide binding on the monomeric WT Aβ42 landscape. For this purpose, we have performed extensive atomistic Replica Exchange Molecular Dynamics simulations, elucidating preferential binding of Aβ42 with the A2V and A2T hexapeptides compared to WT Aβ6. A notable reorganization of the Aβ42 landscape is revealed due to hexapeptide association, as manifested by lowering of transient interactions between the central and C-terminal hydrophobic patches. Concurrently, Aβ6-bound Aβ42 monomer exhibits alternative structural features that are strongly dependent on the hexapeptide sequence. For example, a central helix is more frequently populated within the A2T-bound monomer, while A2V-bound Aβ42 is often enhanced in overall disorder. Taken together, the present simulations offer novel molecular insights onto the effect of the N-terminal hexapeptide binding on the Aβ42 monomer structure, which might help in explaining their reported amyloid inhibition properties.
Collapse
Affiliation(s)
| | - Payel Das
- IBM Thomas J. Watson Research Center, Yorktown Heights, NY, 10598, USA.
| |
Collapse
|
114
|
Aβ truncated species: Implications for brain clearance mechanisms and amyloid plaque deposition. Biochim Biophys Acta Mol Basis Dis 2017; 1864:208-225. [PMID: 28711595 DOI: 10.1016/j.bbadis.2017.07.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/24/2017] [Accepted: 07/11/2017] [Indexed: 12/14/2022]
Abstract
Extensive parenchymal and vascular Aβ deposits are pathological hallmarks of Alzheimer's disease (AD). Besides classic full-length peptides, biochemical analyses of brain deposits have revealed high degree of Aβ heterogeneity likely resulting from the action of multiple proteolytic enzymes. In spite of the numerous studies focusing in Aβ, the relevance of N- and C-terminal truncated species for AD pathogenesis remains largely understudied. In the present work, using novel antibodies specifically recognizing Aβ species N-terminally truncated at position 4 or C-terminally truncated at position 34, we provide a clear assessment of the differential topographic localization of these species in AD brains and transgenic models. Based on their distinct solubility, brain N- and C-terminal truncated species were extracted by differential fractionation and identified via immunoprecipitation coupled to mass spectrometry analysis. Biochemical/biophysical studies with synthetic homologues further confirmed the different solubility properties and contrasting fibrillogenic characteristics of the truncated species composing the brain Aβ peptidome. Aβ C-terminal degradation leads to the production of more soluble fragments likely to be more easily eliminated from the brain. On the contrary, N-terminal truncation at position 4 favors the formation of poorly soluble, aggregation prone peptides with high amyloidogenic propensity and the potential to exacerbate the fibrillar deposits, self-perpetuating the amyloidogenic loop. Detailed assessment of the molecular diversity of Aβ species composing interstitial fluid and amyloid deposits at different disease stages, as well as the evaluation of the truncation profile during various pharmacologic approaches will provide a comprehensive understanding of the still undefined contribution of Aβ truncations to the disease pathogenesis and their potential as novel therapeutic targets.
Collapse
|
115
|
Omar SH. Biophenols pharmacology against the amyloidogenic activity in Alzheimer’s disease. Biomed Pharmacother 2017; 89:396-413. [DOI: 10.1016/j.biopha.2017.02.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 02/01/2023] Open
|
116
|
Navarro G, Martínez-Pinilla E, Sánchez-Melgar A, Ortiz R, Noé V, Martín M, Ciudad C, Franco R. A genomics approach identifies selective effects of trans-resveratrol in cerebral cortex neuron and glia gene expression. PLoS One 2017; 12:e0176067. [PMID: 28441400 PMCID: PMC5404873 DOI: 10.1371/journal.pone.0176067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/05/2017] [Indexed: 01/28/2023] Open
Abstract
The mode of action of trans-resveratrol, a promising lead compound for the development of neuroprotective drugs, is unknown. Data from a functional genomics study were retrieved with the aim to find differentially expressed genes that may be involved in the benefits provided by trans-resveratrol. Genes that showed a significantly different expression (p<0.05, cut-off of a two-fold change) in mice fed with a control diet or a control diet containing trans-resveratrol were different in cortex, heart and skeletal muscle. In neocortex, we identified 4 up-regulated (Strap, Pkp4, Rab2a, Cpne3) and 22 down-regulated (Actn1, Arf3, Atp6v01, Atp1a3, Atp1b2, Cacng7, Crtc1, Dbn1, Dnm1, Epn1, Gfap, Hap, Mark41, Rab5b, Nrxn2, Ogt, Palm, Ptprn2, Ptprs, Syn2, Timp2, Vamp2) genes upon trans-resveratrol consumption. Network analysis of gene products provided evidence of plakophilin 4 up-regulation as a triggering factor for down-regulation of events related to synaptic vesicle transport and neurotransmitter release via underexpression of dynamin1 and Vamp2 (synaptobrevin 2) as node-gene drivers. Analysis by RT-qPCR of some of the selected genes in a glioma cell line showed that dynamin 1 mRNA was down-regulated even in acute trans-resveratrol treatments. Taken all together, these results give insight on the glial-neuronal networks involved in the neuroprotective role of trans-resveratrol.
Collapse
Affiliation(s)
- Gemma Navarro
- CIBERNED. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas. Instituto de Salud Carlos III, Madrid, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Eva Martínez-Pinilla
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
- * E-mail:
| | - Alejandro Sánchez-Melgar
- Facultad de Ciencias y Tecnologías Químicas & Facultad de Medicina. Departamento de Química Inorgánica, Orgánica y Bioquímica, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Raquel Ortiz
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Véronique Noé
- Department of Biochemistry and Physiology, School of Pharmacy, University of Barcelona, Barcelona, Spain
- Institute of Nanotechnology of the University of Barcelona (IN2UB), Barcelona, Spain
| | - Mairena Martín
- Facultad de Ciencias y Tecnologías Químicas & Facultad de Medicina. Departamento de Química Inorgánica, Orgánica y Bioquímica, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Carlos Ciudad
- Department of Biochemistry and Physiology, School of Pharmacy, University of Barcelona, Barcelona, Spain
- Institute of Nanotechnology of the University of Barcelona (IN2UB), Barcelona, Spain
| | - Rafael Franco
- CIBERNED. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas. Instituto de Salud Carlos III, Madrid, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
117
|
de Matos AM, de Macedo MP, Rauter AP. Bridging Type 2 Diabetes and Alzheimer's Disease: Assembling the Puzzle Pieces in the Quest for the Molecules With Therapeutic and Preventive Potential. Med Res Rev 2017; 38:261-324. [PMID: 28422298 DOI: 10.1002/med.21440] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/18/2017] [Accepted: 02/14/2017] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes (T2D) and Alzheimer's disease (AD) are two age-related amyloid diseases that affect millions of people worldwide. Broadly supported by epidemiological data, the higher incidence of AD among type 2 diabetic patients led to the recognition of T2D as a tangible risk factor for the development of AD. Indeed, there is now growing evidence on brain structural and functional abnormalities arising from brain insulin resistance and deficiency, ultimately highlighting the need for new approaches capable of preventing the development of AD in type 2 diabetic patients. This review provides an update on overlapping pathophysiological mechanisms and pathways in T2D and AD, such as amyloidogenic events, oxidative stress, endothelial dysfunction, aberrant enzymatic activity, and even shared genetic background. These events will be presented as puzzle pieces put together, thus establishing potential therapeutic targets for drug discovery and development against T2D and diabetes-induced cognitive decline-a heavyweight contributor to the increasing incidence of dementia in developed countries. Hoping to pave the way in this direction, we will present some of the most promising and well-studied drug leads with potential against both pathologies, including their respective bioactivity reports, mechanisms of action, and structure-activity relationships.
Collapse
Affiliation(s)
- Ana Marta de Matos
- Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016, Lisbon, Portugal.,CEDOC Chronic Diseases, Nova Medical School, Rua Câmara Pestana n 6, 6-A, Ed. CEDOC II, 1150-082, Lisbon, Portugal
| | - Maria Paula de Macedo
- CEDOC Chronic Diseases, Nova Medical School, Rua Câmara Pestana n 6, 6-A, Ed. CEDOC II, 1150-082, Lisbon, Portugal
| | - Amélia Pilar Rauter
- Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016, Lisbon, Portugal
| |
Collapse
|
118
|
Malishev R, Shaham-Niv S, Nandi S, Kolusheva S, Gazit E, Jelinek R. Bacoside-A, an Indian Traditional-Medicine Substance, Inhibits β-Amyloid Cytotoxicity, Fibrillation, and Membrane Interactions. ACS Chem Neurosci 2017; 8:884-891. [PMID: 28094495 DOI: 10.1021/acschemneuro.6b00438] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bacoside-A, a family of compounds extracted from the Bacopa monniera plant, is a folk-medicinal substance believed to exhibit therapeutic properties, particularly enhancing cognitive functions and improving memory. We show that bacoside-A exerted significant inhibitory effects upon cytotoxicity, fibrillation, and particularly membrane interactions of amyloid-beta (1-42) (Aβ42), the peptide playing a prominent role in Alzeheimer's disease progression and toxicity. Specifically, preincubation of bacoside-A with Aβ42 significantly reduced cell toxicity and inhibited fibril formation both in buffer solution and, more significantly, in the presence of membrane vesicles. In parallel, spectroscopic and microscopic analyses reveal that bacoside-A blocked membrane interactions of Aβ42, while formation of Aβ42 oligomers was not disrupted. These interesting phenomena suggest that inhibition of Aβ42 oligomer assembly into mature fibrils, and blocking membrane interactions of the oligomers are likely the underlying factors for ameliorating amyloid toxicity by bacoside-A and its putative physiological benefits.
Collapse
Affiliation(s)
- Ravit Malishev
- Department of Chemistry, and §Ilse Katz Institute for Nanotechnology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
- Department of Molecular Microbiology
and Biotechnology, George S.
Wise Faculty of Life Sciences, and ∥Department of Materials Science and Engineering,
Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shira Shaham-Niv
- Department of Chemistry, and §Ilse Katz Institute for Nanotechnology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
- Department of Molecular Microbiology
and Biotechnology, George S.
Wise Faculty of Life Sciences, and ∥Department of Materials Science and Engineering,
Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sukhendu Nandi
- Department of Chemistry, and §Ilse Katz Institute for Nanotechnology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
- Department of Molecular Microbiology
and Biotechnology, George S.
Wise Faculty of Life Sciences, and ∥Department of Materials Science and Engineering,
Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sofiya Kolusheva
- Department of Chemistry, and §Ilse Katz Institute for Nanotechnology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
- Department of Molecular Microbiology
and Biotechnology, George S.
Wise Faculty of Life Sciences, and ∥Department of Materials Science and Engineering,
Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ehud Gazit
- Department of Chemistry, and §Ilse Katz Institute for Nanotechnology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
- Department of Molecular Microbiology
and Biotechnology, George S.
Wise Faculty of Life Sciences, and ∥Department of Materials Science and Engineering,
Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Raz Jelinek
- Department of Chemistry, and §Ilse Katz Institute for Nanotechnology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
- Department of Molecular Microbiology
and Biotechnology, George S.
Wise Faculty of Life Sciences, and ∥Department of Materials Science and Engineering,
Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
119
|
Abstract
A key molecular species in Alzheimer's disease (AD) is the Aβ42 alloform of Aβ peptide, which is dominant in the amyloid plaques deposited in the brains of AD patients. Recent studies have decisively demonstrated that the prefibrillar soluble oligomers are the neurotoxic culprits and are associated with the pathology of AD. Nascent Aβ42 is predominantly disordered but samples α-helical conformations covering residues 15-24 and 29-35 in the presence of micelles and structure-inducing solvents. In this report, a focused library of oligopyridylamide based α-helical mimetics was designed to target the central α-helix subdomain of Aβ (Aβ13-26). A tripyridylamide, ADH-41, was identified as one of the most potent antagonists of Aβ fibrillation. Amyloid-assembly kinetics, transmission electron microscopy (TEM), and atomic force microscopy (AFM) show that ADH-41 wholly suppresses the aggregation of Aβ at a substoichiometric dose. Dot blot and ELISA assays demonstrate the inhibition of the putative neurotoxic Aβ oligomers. ADH-41 targets Aβ in a sequence and structure-specific manner, as it did not have any effect on the aggregation of islet amyloid polypeptide (IAPP), a peptide which shares sequence similarity with Aβ. Spectroscopic studies using NMR and CD confirm induction of α-helicity in Aβ mediated by ADH-41. Calorimetric and fluorescence titrations yielded binding affinity in the low micromolar range. ADH-41 was also effective at inhibiting the seed-catalyzed aggregation of Aβ probably by modulating the Aβ conformation into a fiber incompetent structure. Overall, we speculate that ADH-41 directs Aβ into off-pathway structures, and thereby alters various solution based functions of Aβ. Cell-based assays to assess the effect of ADH-41 on Aβ are underway and will be presented in due course.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry, New York University , New York, New York 10003, United States
| | - Andrew D Hamilton
- Department of Chemistry, New York University , New York, New York 10003, United States
| |
Collapse
|
120
|
Velander P, Wu L, Henderson F, Zhang S, Bevan DR, Xu B. Natural product-based amyloid inhibitors. Biochem Pharmacol 2017; 139:40-55. [PMID: 28390938 DOI: 10.1016/j.bcp.2017.04.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/03/2017] [Indexed: 11/26/2022]
Abstract
Many chronic human diseases, including multiple neurodegenerative diseases, are associated with deleterious protein aggregates, also called protein amyloids. One common therapeutic strategy is to develop protein aggregation inhibitors that can slow down, prevent, or remodel toxic amyloids. Natural products are a major class of amyloid inhibitors, and several dozens of natural product-based amyloid inhibitors have been identified and characterized in recent years. These plant- or microorganism-extracted compounds have shown significant therapeutic potential from in vitro studies as well as in vivo animal tests. Despite the technical challenges of intrinsic disordered or partially unfolded amyloid proteins that are less amenable to characterizations by structural biology, a significant amount of research has been performed, yielding biochemical and pharmacological insights into how inhibitors function. This review aims to summarize recent progress in natural product-based amyloid inhibitors and to analyze their mechanisms of inhibition in vitro. Major classes of natural product inhibitors and how they were identified are described. Our analyses comprehensively address the molecular interactions between the inhibitors and relevant amyloidogenic proteins. These interactions are delineated at molecular and atomic levels, which include covalent, non-covalent, and metal-mediated mechanisms. In vivo animal studies and clinical trials have been summarized as an extension. To enhance natural product bioavailability in vivo, emerging work using nanocarriers for delivery has also been described. Finally, issues and challenges as well as future development of such inhibitors are envisioned.
Collapse
Affiliation(s)
- Paul Velander
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Ling Wu
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Frances Henderson
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Shijun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - David R Bevan
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; Center for Drug Discovery, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; School of Neuroscience, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Bin Xu
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; Center for Drug Discovery, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; School of Neuroscience, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; Translational Obesity Research Center, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
121
|
Zhao J, Liang Q, Sun Q, Chen C, Xu L, Ding Y, Zhou P. (−)-Epigallocatechin-3-gallate (EGCG) inhibits fibrillation, disaggregates amyloid fibrils of α-synuclein, and protects PC12 cells against α-synuclein-induced toxicity. RSC Adv 2017. [DOI: 10.1039/c7ra03752j] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
EGCG protects transduced PC12 cells against α-Syn-induced cytotoxicity by inhibiting the overexpression and fibrillation of α-Syn in the cells.
Collapse
Affiliation(s)
- Juan Zhao
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Qingnan Liang
- Department of Physiology and Biophysics
- School of Life Sciences
- Fudan University
- Shanghai 200438
- China
| | - Qing Sun
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Congheng Chen
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Lihui Xu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Yu Ding
- Department of Physiology and Biophysics
- School of Life Sciences
- Fudan University
- Shanghai 200438
- China
| | - Ping Zhou
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
122
|
Wen G, Chen D, Qin W, Zhou B, Wang Y, Liu Z, Du J, Zhou Q, Quan J, Bu X. Stabilizing amyloid-β peptide by the N-terminus capture is capable of preventing and eliminating amyloid-β oligomers. Chem Commun (Camb) 2017. [DOI: 10.1039/c7cc03102e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel strategy to prevent and eliminate amyloid-β (Aβ) oligomers from either the early aggregation or the fibril dissolution pathway is described.
Collapse
Affiliation(s)
- Gesi Wen
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- GuangZhou 510006
- China
| | - Daoyuan Chen
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- GuangZhou 510006
- China
| | - Wenjing Qin
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- GuangZhou 510006
- China
| | - Binhua Zhou
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- GuangZhou 510006
- China
| | - Youqiao Wang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- GuangZhou 510006
- China
| | - Ziyi Liu
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- GuangZhou 510006
- China
| | - Jun Du
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- GuangZhou 510006
- China
| | - Qiang Zhou
- Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen 518055
- China
| | - Junmin Quan
- Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen 518055
- China
| | - Xianzhang Bu
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- GuangZhou 510006
- China
| |
Collapse
|
123
|
Modulation of prion polymerization and toxicity by rationally designed peptidomimetics. Biochem J 2016; 474:123-147. [DOI: 10.1042/bcj20160737] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 10/25/2016] [Accepted: 10/31/2016] [Indexed: 11/17/2022]
Abstract
Misfolding and aggregation of cellular prion protein is associated with a large array of neurological disorders commonly called the transmissible spongiform encephalopathies. Designing inhibitors against prions has remained a daunting task owing to limited information about mechanism(s) of their pathogenic self-assembly. Here, we explore the anti-prion properties of a combinatorial library of bispidine-based peptidomimetics (BPMs) that conjugate amino acids with hydrophobic and aromatic side chains. Keeping the bispidine unit unaltered, a series of structurally diverse BPMs were synthesized and tested for their prion-modulating properties. Administration of Leu- and Trp-BPMs delayed and completely inhibited the amyloidogenic conversion of human prion protein (HuPrP), respectively. We found that each BPM induced the HuPrP to form unique oligomeric nanostructures differing in their biophysical properties, cellular toxicities and response to conformation-specific antibodies. While Leu-BPMs were found to stabilize the oligomers, Trp-BPMs effected transient oligomerization, resulting in the formation of non-toxic, non-fibrillar aggregates. Yet another aromatic residue, Phe, however, accelerated the aggregation process in HuPrP. Molecular insights obtained through MD (molecular dynamics) simulations suggested that each BPM differently engages a conserved Tyr 169 residue at the α2–β2 loop of HuPrP and affects the stability of α2 and α3 helices. Our results demonstrate that this new class of molecules having chemical scaffolds conjugating hydrophobic/aromatic residues could effectively modulate prion aggregation and toxicity.
Collapse
|
124
|
Zhuang X, Zhao B, Liu S, Song F, Cui F, Liu Z, Li Y. Noncovalent Interactions between Superoxide Dismutase and Flavonoids Studied by Native Mass Spectrometry Combined with Molecular Simulations. Anal Chem 2016; 88:11720-11726. [PMID: 27760293 DOI: 10.1021/acs.analchem.6b03359] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Misfolding and aggregation of Cu, Zn superoxide dismutase (SOD1) is implicated in the etiology of amyotrophic lateral sclerosis (ALS). The use of small molecules may stabilize the spatial structure of SOD1 dimer, thus, preventing its dissociation and aggregation. In this study, "native" mass spectrometry (MS) was used to study the noncovalent interactions between SOD1 and flavonoid compounds. MS experiments were performed on a quadruple time-of-flight (Q-ToF) mass spectrometer with an electrospray ionization (ESI) source and T-wave ion mobility. ESI-MS was used to detect the SOD1-flavonoid complexes and compare their relative binding strengths. The complement of ion mobility separation allowed comparison in the binding affinities between flavonoid isomers and provided information on the conformational changes. Molecular docking together with molecular dynamics simulations and MM/PBSA methods were applied to gain insights into the binding modes and free energies of SOD1-flavonoid complexes at the molecule level. Among all the flavonoids investigated, flavonoid glycosides preferentially bind to SOD1 than their aglycone counterparts. Naringin, one of the compounds that has the strongest binding affinity to SOD1, was subjected to further characterization. Experiment results show that the binding of naringin can stabilize SOD1 dimer and inhibit the aggregation of SOD1. Molecular simulation results suggest that naringin could reduce the dissociation of SOD1 dimers through direct interaction with the dimer interface. This developed analytical strategy could also be applied to study the interactions between SOD1 and other drug-like molecules, which may have the effect to reduce the aggregation.
Collapse
Affiliation(s)
- Xiaoyu Zhuang
- University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Bing Zhao
- University of the Chinese Academy of Sciences, Beijing 100039, China
| | | | | | | | | | | |
Collapse
|
125
|
Stirpe A, Pantusa M, Rizzuti B, De Santo MP, Sportelli L, Bartucci R, Guzzi R. Resveratrol induces thermal stabilization of human serum albumin and modulates the early aggregation stage. Int J Biol Macromol 2016; 92:1049-1056. [DOI: 10.1016/j.ijbiomac.2016.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/03/2016] [Accepted: 08/06/2016] [Indexed: 10/21/2022]
|
126
|
Breydo L, Redington JM, Uversky VN. Effects of Intrinsic and Extrinsic Factors on Aggregation of Physiologically Important Intrinsically Disordered Proteins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 329:145-185. [PMID: 28109327 DOI: 10.1016/bs.ircmb.2016.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Misfolding and aggregation of proteins and peptides play an important role in a number of diseases as well as in many physiological processes. Many of the proteins that misfold and aggregate in vivo are intrinsically disordered. Protein aggregation is a complex multistep process, and aggregates can significantly differ in morphology, structure, stability, cytotoxicity, and self-propagation ability. The aggregation process is influenced by both intrinsic (e.g., mutations and expression levels) and extrinsic (e.g., polypeptide chain truncation, macromolecular crowding, posttranslational modifications, as well as interaction with metal ions, other small molecules, lipid membranes, and chaperons) factors. This review examines the effect of a variety of these factors on aggregation of physiologically important intrinsically disordered proteins.
Collapse
Affiliation(s)
- L Breydo
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| | - J M Redington
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - V N Uversky
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
127
|
Ranganathan S, Maji SK, Padinhateeri R. Defining a Physical Basis for Diversity in Protein Self-Assemblies Using a Minimal Model. J Am Chem Soc 2016; 138:13911-13922. [DOI: 10.1021/jacs.6b06433] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Srivastav Ranganathan
- Department of Biosciences
and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Samir K. Maji
- Department of Biosciences
and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Ranjith Padinhateeri
- Department of Biosciences
and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
128
|
Ni R, Gillberg PG, Bogdanovic N, Viitanen M, Myllykangas L, Nennesmo I, Långström B, Nordberg A. Amyloid tracers binding sites in autosomal dominant and sporadic Alzheimer's disease. Alzheimers Dement 2016; 13:419-430. [PMID: 27693181 DOI: 10.1016/j.jalz.2016.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/26/2016] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Amyloid imaging has been integrated into diagnostic criteria for Alzheimer's disease (AD). How amyloid tracers binding differ for different tracer structures and amyloid-β aggregates in autosomal dominant AD (ADAD) and sporadic AD is unclear. METHODS Binding properties of different amyloid tracers were examined in brain homogenates from six ADAD with APPswe, PS1 M146V, and PS1 EΔ9 mutations, 13 sporadic AD, and 14 control cases. RESULTS 3H-PIB, 3H-florbetaben, 3H-AZD2184, and BTA-1 shared a high- and a varying low-affinity binding site in the frontal cortex of sporadic AD. AZD2184 detected another binding site (affinity 33 nM) in the frontal cortex of ADAD. The 3H-AZD2184 and 3H-PIB binding were significantly higher in the striatum of ADAD compared to sporadic AD and control. Polyphenol resveratrol showed strongest inhibition on 3H-AZD84 binding followed by 3H-florbetaben and minimal on 3H-PIB. DISCUSSION This study implies amyloid tracers of different structures detect different sites on amyloid-β fibrils or conformations.
Collapse
Affiliation(s)
- Ruiqing Ni
- Division of Translational Alzheimer Neurobiology, Department of Neurobiology Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Per-Göran Gillberg
- Division of Translational Alzheimer Neurobiology, Department of Neurobiology Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Nenad Bogdanovic
- Division of Clinical Geriatrics, Department of Neurobiology Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden; Department of Geriatric Medicine, University of Oslo, Oslo, Norway
| | - Matti Viitanen
- Division of Clinical Geriatrics, Department of Neurobiology Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden; Department of Geriatric Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | - Inger Nennesmo
- Division of Pathology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Bengt Långström
- Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - Agneta Nordberg
- Division of Translational Alzheimer Neurobiology, Department of Neurobiology Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden; Department of Geriatric Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
129
|
Multi-target therapeutics for neuropsychiatric and neurodegenerative disorders. Drug Discov Today 2016; 21:1886-1914. [PMID: 27506871 DOI: 10.1016/j.drudis.2016.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/20/2016] [Accepted: 08/01/2016] [Indexed: 12/30/2022]
Abstract
Historically, neuropsychiatric and neurodegenerative disease treatments focused on the 'magic bullet' concept; however multi-targeted strategies are increasingly attractive gauging from the escalating research in this area. Because these diseases are typically co-morbid, multi-targeted drugs capable of interacting with multiple targets will expand treatment to the co-morbid disease condition. Despite their theoretical efficacy, there are significant impediments to clinical success (e.g., difficulty titrating individual aspects of the drug and inconclusive pathophysiological mechanisms). The new and revised diagnostic frameworks along with studies detailing the endophenotypic characteristics of the diseases promise to provide the foundation for the circumvention of these impediments. This review serves to evaluate the various marketed and nonmarketed multi-targeted drugs with particular emphasis on their design strategy.
Collapse
|
130
|
Ionophoric polyphenols selectively bind Cu2+, display potent antioxidant and anti-amyloidogenic properties, and are non-toxic toward Tetrahymena thermophila. Bioorg Med Chem 2016; 24:3657-70. [DOI: 10.1016/j.bmc.2016.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/30/2016] [Accepted: 06/03/2016] [Indexed: 01/07/2023]
|
131
|
Ghobeh M, Ahmadian S, Meratan AA, Ebrahim-Habibi A, Ghasemi A, Shafizadeh M, Nemat-Gorgani M. Interaction of Aβ(25-35) fibrillation products with mitochondria: Effect of small-molecule natural products. Biopolymers 2016; 102:473-86. [PMID: 25297917 DOI: 10.1002/bip.22572] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/18/2014] [Accepted: 10/06/2014] [Indexed: 12/25/2022]
Abstract
The 25-35 fragment of the amyloid β (Aβ) peptide is a naturally occurring proteolytic by-product that retains the pathophysiology of its larger parent molecule, whose deposition has been shown to involve mitochondrial dysfunction. Hence, disruption of Aβ(25-35) aggregates could afford an effective remedial strategy for Alzheimer's disease (AD). In the present study, the effect of a number of selected small-molecule natural products (polyphenols: resveratrol, quercetin, biochanin A, and indoles: indole-3-acetic acid, indole-3-carbinol (I3C)) on Aβ(25-35) fibrillogenesis was explored under physiological conditions, and interaction of the resulting structures with rat brain mitochondria was investigated. Several techniques, including fluorescence, circular dichroism, and transmission electron microscopy were utilized to characterize the aggregation products, and possible mitochondrial membrane permeabilization was determined following release of marker enzymes. Results demonstrate the capacity of Aβ(25-35) fibrils to damage mitochondria and suggest how small molecules may afford protection. While I3C appeared more effective in inhibiting the fibrillation process, all natural products behaved similarly in destabilizing preformed aggregates. It is concluded that elucidation of such protection may provide important insights into the development of preventive and therapeutic agents for AD.
Collapse
Affiliation(s)
- Maryam Ghobeh
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
132
|
Caloric restriction: beneficial effects on brain aging and Alzheimer’s disease. Mamm Genome 2016; 27:300-19. [DOI: 10.1007/s00335-016-9647-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/16/2016] [Indexed: 01/25/2023]
|
133
|
Ahmed T, Javed S, Javed S, Tariq A, Šamec D, Tejada S, Nabavi SF, Braidy N, Nabavi SM. Resveratrol and Alzheimer’s Disease: Mechanistic Insights. Mol Neurobiol 2016; 54:2622-2635. [DOI: 10.1007/s12035-016-9839-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/04/2016] [Indexed: 12/28/2022]
|
134
|
Joshi P, Chia S, Habchi J, Knowles TPJ, Dobson CM, Vendruscolo M. A Fragment-Based Method of Creating Small-Molecule Libraries to Target the Aggregation of Intrinsically Disordered Proteins. ACS COMBINATORIAL SCIENCE 2016; 18:144-53. [PMID: 26923286 DOI: 10.1021/acscombsci.5b00129] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The aggregation process of intrinsically disordered proteins (IDPs) has been associated with a wide range of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Currently, however, no drug in clinical use targets IDP aggregation. To facilitate drug discovery programs in this important and challenging area, we describe a fragment-based approach of generating small-molecule libraries that target specific IDPs. The method is based on the use of molecular fragments extracted from compounds reported in the literature to inhibit of the aggregation of IDPs. These fragments are used to screen existing large generic libraries of small molecules to form smaller libraries specific for given IDPs. We illustrate this approach by describing three distinct small-molecule libraries to target, Aβ, tau, and α-synuclein, which are three IDPs implicated in Alzheimer's and Parkinson's diseases. The strategy described here offers novel opportunities for the identification of effective molecular scaffolds for drug discovery for neurodegenerative disorders and to provide insights into the mechanism of small-molecule binding to IDPs.
Collapse
Affiliation(s)
- Priyanka Joshi
- Department of Chemistry, University of Cambridge , Cambridge CB2 1EW, United Kingdom
| | - Sean Chia
- Department of Chemistry, University of Cambridge , Cambridge CB2 1EW, United Kingdom
| | - Johnny Habchi
- Department of Chemistry, University of Cambridge , Cambridge CB2 1EW, United Kingdom
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge , Cambridge CB2 1EW, United Kingdom
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge , Cambridge CB2 1EW, United Kingdom
| | - Michele Vendruscolo
- Department of Chemistry, University of Cambridge , Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
135
|
Civitelli L, Sandin L, Nelson E, Khattak SI, Brorsson AC, Kågedal K. The Luminescent Oligothiophene p-FTAA Converts Toxic Aβ1-42 Species into Nontoxic Amyloid Fibers with Altered Properties. J Biol Chem 2016; 291:9233-43. [PMID: 26907684 PMCID: PMC4861488 DOI: 10.1074/jbc.m115.696229] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Indexed: 12/20/2022] Open
Abstract
Aggregation of the amyloid-β peptide (Aβ) in the brain leads to the formation of extracellular amyloid plaques, which is one of the pathological hallmarks of Alzheimer disease (AD). It is a general hypothesis that soluble prefibrillar assemblies of the Aβ peptide, rather than mature amyloid fibrils, cause neuronal dysfunction and memory impairment in AD. Thus, reducing the level of these prefibrillar species by using molecules that can interfere with the Aβ fibrillation pathway may be a valid approach to reduce Aβ cytotoxicity. Luminescent-conjugated oligothiophenes (LCOs) have amyloid binding properties and spectral properties that differ when they bind to protein aggregates with different morphologies and can therefore be used to visualize protein aggregates. In this study, cell toxicity experiments and biophysical studies demonstrated that the LCO p-FTAA was able to reduce the pool of soluble toxic Aβ species in favor of the formation of larger insoluble nontoxic amyloid fibrils, there by counteracting Aβ-mediated cytotoxicity. Moreover, p-FTAA bound to early formed Aβ species and induced a rapid formation of β-sheet structures. These p-FTAA generated amyloid fibrils were less hydrophobic and more resistant to proteolysis by proteinase K. In summary, our data show that p-FTAA promoted the formation of insoluble and stable Aβ species that were nontoxic which indicates that p-FTAA might have therapeutic potential.
Collapse
Affiliation(s)
- Livia Civitelli
- From Experimental Pathology, Department of Clinical and Experimental Medicine and
| | - Linnea Sandin
- From Experimental Pathology, Department of Clinical and Experimental Medicine and
| | - Erin Nelson
- From Experimental Pathology, Department of Clinical and Experimental Medicine and
| | | | - Ann-Christin Brorsson
- Division of Molecular Biotechnology, Department of Physics, Chemistry, and Biology, Linköping University, Linköping, Sweden
| | - Katarina Kågedal
- From Experimental Pathology, Department of Clinical and Experimental Medicine and
| |
Collapse
|
136
|
Young LM, Saunders JC, Mahood RA, Revill CH, Foster RJ, Ashcroft AE, Radford SE. ESI-IMS-MS: A method for rapid analysis of protein aggregation and its inhibition by small molecules. Methods 2016; 95:62-9. [PMID: 26007606 PMCID: PMC4769093 DOI: 10.1016/j.ymeth.2015.05.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/26/2015] [Accepted: 05/07/2015] [Indexed: 11/21/2022] Open
Abstract
Electrospray ionisation-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) is a powerful method for the study of conformational changes in protein complexes, including oligomeric species populated during protein self-aggregation into amyloid fibrils. Information on the mass, stability, cross-sectional area and ligand binding capability of each transiently populated intermediate, present in the heterogeneous mixture of assembling species, can be determined individually in a single experiment in real-time. Determining the structural characterisation of oligomeric species and alterations in self-assembly pathways observed in the presence of small molecule inhibitors is of great importance, given the urgent demand for effective therapeutics. Recent studies have demonstrated the capability of ESI-IMS-MS to identify small molecule modulators of amyloid assembly and to determine the mechanism by which they interact (positive, negative, non-specific binding, or colloidal) in a high-throughput format. Here, we demonstrate these advances using self-assembly of Aβ40 as an example, and reveal two new inhibitors of Aβ40 fibrillation.
Collapse
Affiliation(s)
- Lydia M Young
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom; School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, United Kingdom.
| | - Janet C Saunders
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom; School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, United Kingdom.
| | - Rachel A Mahood
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom; School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, United Kingdom.
| | - Charlotte H Revill
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom; School of Chemistry, University of Leeds, LS2 9JT, United Kingdom.
| | - Richard J Foster
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom; School of Chemistry, University of Leeds, LS2 9JT, United Kingdom.
| | - Alison E Ashcroft
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom; School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, United Kingdom.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom; School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, United Kingdom.
| |
Collapse
|
137
|
Thapa A, Jett SD, Chi EY. Curcumin Attenuates Amyloid-β Aggregate Toxicity and Modulates Amyloid-β Aggregation Pathway. ACS Chem Neurosci 2016; 7:56-68. [PMID: 26529184 DOI: 10.1021/acschemneuro.5b00214] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The abnormal misfolding and aggregation of amyloid-β (Aβ) peptides into β-sheet enriched insoluble deposits initiates a cascade of events leading to pathological processes and culminating in cognitive decline in Alzheimer's disease (AD). In particular, soluble oligomeric/prefibrillar Aβ have been shown to be potent neurotoxins. The naturally occurring polyphenol curcumin has been shown to exert a neuroprotective effect against age-related neurodegenerative diseases such as AD. However, its protective mechanism remains unclear. In this study, we investigated the effects of curcumin on the aggregation of Aβ40 as well as Aβ40 aggregate induced neurotoxicity. Our results show that the curcumin does not inhibit Aβ fibril formation, but rather enriches the population of "off-pathway" soluble oligomers and prefibrillar aggregates that were nontoxic. Curcumin also exerted a nonspecific neuroprotective effect, reducing toxicities induced by a range of Aβ conformers, including monomeric, oligomeric, prefibrillar, and fibrillar Aβ. The neuroprotective effect is possibly membrane-mediated, as curcumin reduced the extent of cell membrane permeabilization induced by Aβ aggregates. Taken together, our study shows that curcumin exerts its neuroprotective effect against Aβ induced toxicity through at least two concerted pathways, modifying the Aβ aggregation pathway toward the formation of nontoxic aggregates and ameliorating Aβ-induced toxicity possibly through a nonspecific pathway.
Collapse
Affiliation(s)
- Arjun Thapa
- Department
of Chemical and Biological Engineering
and the Center for Biomedical Engineering, and ‡Department of Cell Biology
and Physiology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Stephen D. Jett
- Department
of Chemical and Biological Engineering
and the Center for Biomedical Engineering, and ‡Department of Cell Biology
and Physiology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Eva Y. Chi
- Department
of Chemical and Biological Engineering
and the Center for Biomedical Engineering, and ‡Department of Cell Biology
and Physiology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
138
|
Nedumpully-Govindan P, Kakinen A, Pilkington EH, Davis TP, Chun Ke P, Ding F. Stabilizing Off-pathway Oligomers by Polyphenol Nanoassemblies for IAPP Aggregation Inhibition. Sci Rep 2016; 6:19463. [PMID: 26763863 PMCID: PMC4725907 DOI: 10.1038/srep19463] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/14/2015] [Indexed: 01/09/2023] Open
Abstract
Experimental studies have shown that many naturally occurring polyphenols have inhibitory effect on the aggregation of several proteins. Here, we use discrete molecular dynamics (DMD) simulations and high-throughput dynamic light scattering (DLS) experiments to study the anti-aggregation effects of two polyphenols, curcumin and resveratrol, on the aggregation of islet amyloid polypeptide (IAPP or amylin). Our DMD simulations suggest that the aggregation inhibition is caused by stabilization of small molecular weight IAPP off-pathway oligomers by the polyphenols. Our analysis indicates that IAPP-polyphenol hydrogen bonds and π-π stacking combined with hydrophobic interactions are responsible for the stabilization of oligomers. The presence of small oligomers is confirmed with DLS measurements in which nanometer-sized oligomers are found to be stable for up to 7.5 hours, the time frame within which IAPP aggregates in the absence of polyphenols. Our study offers a general anti-aggregation mechanism for polyphenols, and further provides a computational framework for the future design of anti-amyloid aggregation therapeutics.
Collapse
Affiliation(s)
| | - Aleksandr Kakinen
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Emily H Pilkington
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.,Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, United Kingdom
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
139
|
Huang L, Liao M, Yang X, Gong H, Ma L, Zhao Y, Huang K. Bisphenol analogues differently affect human islet polypeptide amyloid formation. RSC Adv 2016. [DOI: 10.1039/c5ra21792j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bisphenols (BPs) are widely used in the production of plastic material, misfolded human islet amyloid polypeptide (hIAPP) is a causal factor in diabetes. We demonstrated BPs analogues show different effects on hIAPP amyloid formation.
Collapse
Affiliation(s)
- Lizi Huang
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Mingyan Liao
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Xin Yang
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Hao Gong
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Liang Ma
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Yudan Zhao
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Kun Huang
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
- Center for Biomedicine Research
| |
Collapse
|
140
|
Jarosz-Griffiths HH, Noble E, Rushworth JV, Hooper NM. Amyloid-β Receptors: The Good, the Bad, and the Prion Protein. J Biol Chem 2015; 291:3174-83. [PMID: 26719327 PMCID: PMC4751366 DOI: 10.1074/jbc.r115.702704] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several different receptor proteins have been identified that bind monomeric, oligomeric, or fibrillar forms of amyloid-β (Aβ). "Good" receptors internalize Aβ or promote its transcytosis out of the brain, whereas "bad" receptors bind oligomeric forms of Aβ that are largely responsible for the synapticloss, memory impairments, and neurotoxicity that underlie Alzheimer disease. The prion protein both removes Aβ from the brain and transduces the toxic actions of Aβ. The clustering of distinct receptors in cell surface signaling platforms likely underlies the actions of distinct oligomeric species of Aβ. These Aβ receptor-signaling platforms provide opportunities for therapeutic intervention in Alzheimer disease.
Collapse
Affiliation(s)
- Heledd H Jarosz-Griffiths
- From the Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PT and
| | - Elizabeth Noble
- From the Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PT and
| | - Jo V Rushworth
- the Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, United Kingdom
| | - Nigel M Hooper
- From the Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PT and
| |
Collapse
|
141
|
Singh SK, Srivastav S, Yadav AK, Srikrishna S, Perry G. Overview of Alzheimer's Disease and Some Therapeutic Approaches Targeting Aβ by Using Several Synthetic and Herbal Compounds. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:7361613. [PMID: 27034741 PMCID: PMC4807045 DOI: 10.1155/2016/7361613] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/05/2015] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD) is a complex age-related neurodegenerative disease. In this review, we carefully detail amyloid-β metabolism and its role in AD. We also consider the various genetic animal models used to evaluate therapeutics. Finally, we consider the role of synthetic and plant-based compounds in therapeutics.
Collapse
Affiliation(s)
- Sandeep Kumar Singh
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Saurabh Srivastav
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Amarish Kumar Yadav
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Saripella Srikrishna
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
| | - George Perry
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
142
|
Malishev R, Nandi S, Kolusheva S, Levi-Kalisman Y, Klärner FG, Schrader T, Bitan G, Jelinek R. Toxicity inhibitors protect lipid membranes from disruption by Aβ42. ACS Chem Neurosci 2015; 6:1860-9. [PMID: 26317327 DOI: 10.1021/acschemneuro.5b00200] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although the precise molecular factors linking amyloid β-protein (Aβ) to Alzheimer's disease (AD) have not been deciphered, interaction of Aβ with cellular membranes has an important role in the disease. However, most therapeutic strategies targeting Aβ have focused on interfering with Aβ self-assembly rather than with its membrane interactions. Here, we studied the impact of three toxicity inhibitors on membrane interactions of Aβ42, the longer form of Aβ, which is associated most strongly with AD. The inhibitors included the four-residue C-terminal fragment Aβ(39-42), the polyphenol (-)-epigallocatechin-3-gallate (EGCG), and the lysine-specific molecular tweezer, CLR01, all of which previously were shown to disrupt different steps in Aβ42 self-assembly. Biophysical experiments revealed that incubation of Aβ42 with each of the three modulators affected membrane interactions in a distinct manner. Interestingly, EGCG and CLR01 were found to have significant interaction with membranes themselves. However, membrane bilayer disruption was reduced when the compounds were preincubated with Aβ42, suggesting that binding of the assembly modulators to the peptide attenuated their membrane interactions. Importantly, our study reveals that even though the three tested compounds affect Aβ42 assembly differently, membrane interactions were significantly inhibited upon incubation of each compound with Aβ42, suggesting that preventing the interaction of Aβ42 with the membrane contributes substantially to inhibition of its toxicity by each compound. The data suggest that interference with membrane interactions is an important factor for Aβ42 toxicity inhibitors and should be taken into account in potential therapeutic strategies, in addition to disruption or remodeling of amyloid assembly.
Collapse
Affiliation(s)
- Ravit Malishev
- Department
of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Sukhendu Nandi
- Department
of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Sofiya Kolusheva
- Ilse
Katz Institute for Nanotechnology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Yael Levi-Kalisman
- Department
of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Frank-Gerrit Klärner
- Institute
of Organic Chemistry, University of Duisburg-Essen, Essen 45117, Germany
| | - Thomas Schrader
- Institute
of Organic Chemistry, University of Duisburg-Essen, Essen 45117, Germany
| | - Gal Bitan
- Department
of Neurology, David Geffen School of Medicine, Brain Research Institute,
and Molecular Biology Institute, University of California at Los Angeles, Los
Angeles, California 90095, United States
| | - Raz Jelinek
- Department
of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
- Ilse
Katz Institute for Nanotechnology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
143
|
Neuroprotection of Neuro2a cells and the cytokine suppressive and anti-inflammatory mode of action of resveratrol in activated RAW264.7 macrophages and C8-B4 microglia. Neurochem Int 2015; 95:46-54. [PMID: 26522689 DOI: 10.1016/j.neuint.2015.10.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 09/08/2015] [Accepted: 10/24/2015] [Indexed: 02/07/2023]
Abstract
Chronic inflammation is a hallmark of neurodegenerative disease and cytotoxic levels of nitric oxide (NO) and pro-inflammatory cytokines can initiate neuronal death pathways. A range of cellular assays were used to assess the anti-inflammatory and neuroprotective action of resveratrol using murine microglial (C8-B4), macrophage (RAW264.7) and neuronal-like (Neuro2a) cell lines. We examined the release of NO by Griess assay and used a Bioplex array to measure a panel of pro- and anti-inflammatory cytokines and chemokines, in response to the inflammatory stimuli lipopolysaccharide (LPS) and interferon-γ (IFN-γ). Resveratrol was a potent inhibitor of NO and cytokine release in activated macrophages and microglia. The activity of resveratrol increased marginally in potency with longer pre-incubation times in cell culture that was not due to cytotoxicity. Using an NO donor we show that resveratrol can protect Neuro2a cells from cytotoxic concentrations of NO. The protective effect of resveratrol from pro-inflammatory signalling in RAW264.7 cells was confirmed in co-culture experiments leading to increased survival of Neuro2a cells. Together our data are indicative of the potential neuroprotective effect of resveratrol during nitrosative stress and neuroinflammation.
Collapse
|
144
|
Biflavonoids as Potential Small Molecule Therapeutics for Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 863:55-77. [PMID: 26092626 DOI: 10.1007/978-3-319-18365-7_3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Flavonoids are naturally occurring phytochemicals found in a variety of fruits and vegetables and offer color, flavor, aroma, nutritional and health benefits. Flavonoids have been found to play a neuroprotective role by inhibiting and/or modifying the self-assembly of the amyloid-β (Aβ) peptide into oligomers and fibrils, which are linked to the pathogenesis of Alzheimer's disease. The neuroprotective efficacy of flavonoids has been found to strongly depend on their structure and functional groups. Flavonoids may exist in monomeric, as well as di-, tri-, tetra- or polymeric form through C-C or C-O-C linkages. It has been shown that flavonoids containing two or more units, e.g., biflavonoids, exert greater biological activity than their respective monoflavonoids. For instance, biflavonoids have the ability to distinctly alter Aβ aggregation and more effectively reduce the toxicity of Aβ oligomers compared to the monoflavonoid moieties. Although the molecular mechanisms remain to be elucidated, flavonoids have been shown to alter the Aβ aggregation pathway to yield non-toxic, unstructured Aβ aggregates, as well as directly exerting a neuroprotective effect to cells. In this chapter, we review biflavonoid-mediated Aβ aggregation and toxicity, and highlight the beneficial roles biflavonoids can potentially play in the prevention and treatment of Alzheimer's disease.
Collapse
|
145
|
Šneideris T, Baranauskienė L, Cannon JG, Rutkienė R, Meškys R, Smirnovas V. Looking for a generic inhibitor of amyloid-like fibril formation among flavone derivatives. PeerJ 2015; 3:e1271. [PMID: 26421240 PMCID: PMC4586895 DOI: 10.7717/peerj.1271] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/04/2015] [Indexed: 01/08/2023] Open
Abstract
A range of diseases is associated with amyloid fibril formation. Despite different proteins being responsible for each disease, all of them share similar features including beta-sheet-rich secondary structure and fibril-like protein aggregates. A number of proteins can form amyloid-like fibrils in vitro, resembling structural features of disease-related amyloids. Given these generic structural properties of amyloid and amyloid-like fibrils, generic inhibitors of fibril formation would be of interest for treatment of amyloid diseases. Recently, we identified five outstanding inhibitors of insulin amyloid-like fibril formation among the pool of 265 commercially available flavone derivatives. Here we report testing of these five compounds and of epi-gallocatechine-3-gallate (EGCG) on aggregation of alpha-synuclein and beta-amyloid. We used a Thioflavin T (ThT) fluorescence assay, relying on halftimes of aggregation as the measure of inhibition. This method avoids large numbers of false positive results. Our data indicate that four of the five flavones and EGCG inhibit alpha-synuclein aggregation in a concentration-dependent manner. However none of these derivatives were able to increase halftimes of aggregation of beta-amyloid.
Collapse
Affiliation(s)
- Tomas Šneideris
- Department of Biothermodynamics and Drug Design, Vilnius University Institute of Biotechnology , Vilnius , Lithuania
| | - Lina Baranauskienė
- Department of Biothermodynamics and Drug Design, Vilnius University Institute of Biotechnology , Vilnius , Lithuania
| | - Jonathan G Cannon
- Department of Natural Sciences and Engineering, Middle Georgia State University , Cochran, GA , USA
| | - Rasa Rutkienė
- Department of Molecular Microbiology and Biotechnology, Vilnius University Institute of Biochemistry , Vilnius , Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Vilnius University Institute of Biochemistry , Vilnius , Lithuania
| | - Vytautas Smirnovas
- Department of Biothermodynamics and Drug Design, Vilnius University Institute of Biotechnology , Vilnius , Lithuania
| |
Collapse
|
146
|
Shariatizi S, Meratan AA, Ghasemi A, Nemat-Gorgani M. Inhibition of amyloid fibrillation and cytotoxicity of lysozyme fibrillation products by polyphenols. Int J Biol Macromol 2015; 80:95-106. [PMID: 26102331 DOI: 10.1016/j.ijbiomac.2015.06.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 12/13/2022]
Abstract
An increasing number of studies conducted under in vitro and in vivo conditions, have concluded that polyphenols, compounds frequently occurring in many herbs with antioxidant properties, prevent and reverse amyloid fibril formation. However, the mechanisms by which these natural products modulate the protein aggregation process are poorly understood. Herein, a range of techniques including thioflavin T (ThT) and ANS fluorescence assays, electron microscopy and circular dichroism have been employed to determine the efficacy of rosmarinic acid (RA) and resveratrol (Res) on the inhibition/reversion of fibrillogenesis and hindering cytotoxicity induced by protofibrils and amyloid fibrils of hen egg white lysozyme (HEWL). Results demonstrated that both polyphenols effectively inhibit fibrillogenesis and destabilize preformed fibrils of HEWL in a concentration-dependent manner. Cytotoxicity protection on PC12 cells was also observed using the MTT assay, ROS production assay, and phase-contrast microscopy. It is suggested that the mechanism underlying the inhibitory effects of RA and Res is to prevent hydrophobic interactions between HEWL amyloidogenic prefibrillar species, although additional studies is needed to elucidate the detailed mechanisms involved. A combination of antioxidative and anti-amyloidogenic properties of these molecules may provide them with the described neuroprotective capacities.
Collapse
Affiliation(s)
- Sajad Shariatizi
- Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, 1417614411 Tehran, Iran
| | - Ali Akbar Meratan
- Department of Biotechnology, Ramin University of Agricultural and Natural Resources, Khouzestan, Iran.
| | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, 1417614411 Tehran, Iran
| | | |
Collapse
|
147
|
Rodacka A, Strumillo J, Serafin E, Puchala M. Analysis of Potential Binding Sites of 3,5,4'-Trihydroxystilbene (Resveratrol) and trans-3,3',5,5'-Tetrahydroxy-4'-methoxystilbene (THMS) to the GAPDH Molecule Using a Computational Ligand-Docking Method: Structural and Functional Changes in GAPDH Induced by the Examined Polyphenols. J Phys Chem B 2015; 119:9592-600. [PMID: 26112149 DOI: 10.1021/acs.jpcb.5b03810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The presented study analyzed potential binding sites of 3,5,4'-trihydroxystilbene (resveratrol, RSV) and its derivative, trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene (THMS) to glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The effects of stilbene analogs on the structure of GAPDH were determined by fluorescence spectroscopy and ζ potential measurements. To what extent the studied compounds affect the activity of the enzyme was also assessed. A computational ligand-docking study showed that there are 11 potential binding sites of RSV and 8 such sites of THMS in the GAPDH molecule. While resveratrol does not significantly affect the activity of the dehydrogenase upon binding to it, THMS leads to approximately 10% inactivation of this enzyme. THMS has no effect on GAPDH inactivation induced by the superoxide anion radical, in contrast to resveratrol, which increases dehydrogenase inactivation.
Collapse
Affiliation(s)
- Aleksandra Rodacka
- †Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Joanna Strumillo
- †Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Eligiusz Serafin
- ‡Laboratory of Computer and Analytical Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Mieczyslaw Puchala
- †Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
148
|
Kotler SA, Brender JR, Vivekanandan S, Suzuki Y, Yamamoto K, Monette M, Krishnamoorthy J, Walsh P, Cauble M, Holl MMB, Marsh ENG, Ramamoorthy A. High-resolution NMR characterization of low abundance oligomers of amyloid-β without purification. Sci Rep 2015; 5:11811. [PMID: 26138908 PMCID: PMC4490348 DOI: 10.1038/srep11811] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/21/2015] [Indexed: 01/30/2023] Open
Abstract
Alzheimer's disease is characterized by the misfolding and self-assembly of the amyloidogenic protein amyloid-β (Aβ). The aggregation of Aβ leads to diverse oligomeric states, each of which may be potential targets for intervention. Obtaining insight into Aβ oligomers at the atomic level has been a major challenge to most techniques. Here, we use magic angle spinning recoupling (1)H-(1)H NMR experiments to overcome many of these limitations. Using (1)H-(1)H dipolar couplings as a NMR spectral filter to remove both high and low molecular weight species, we provide atomic-level characterization of a non-fibrillar aggregation product of the Aβ1-40 peptide using non-frozen samples without isotopic labeling. Importantly, this spectral filter allows the detection of the specific oligomer signal without a separate purification procedure. In comparison to other solid-state NMR techniques, the experiment is extraordinarily selective and sensitive. A resolved 2D spectra could be acquired of a small population of oligomers (6 micrograms, 7% of the total) amongst a much larger population of monomers and fibers (93% of the total). By coupling real-time (1)H-(1)H NMR experiments with other biophysical measurements, we show that a stable, primarily disordered Aβ1-40 oligomer 5-15 nm in diameter can form and coexist in parallel with the well-known cross-β-sheet fibrils.
Collapse
Affiliation(s)
- Samuel A. Kotler
- Biophysics, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, U.S.A
| | - Jeffrey R. Brender
- Biophysics, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, U.S.A
- Department of Chemistry, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, U.S.A
| | | | - Yuta Suzuki
- Department of Chemistry, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, U.S.A
| | - Kazutoshi Yamamoto
- Biophysics, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, U.S.A
- Department of Chemistry, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, U.S.A
| | - Martine Monette
- Bruker BioSpin Ltd., Bruker Corporation, 555 E Steeles Ave, Milton, ON, Canada
| | - Janarthanan Krishnamoorthy
- Biophysics, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, U.S.A
- Department of Chemistry, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, U.S.A
| | - Patrick Walsh
- Biophysics, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, U.S.A
- Department of Chemistry, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, U.S.A
| | - Meagan Cauble
- Department of Chemistry, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, U.S.A
| | - Mark M. Banaszak Holl
- Department of Chemistry, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, U.S.A
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, U.S.A
| | - E. Neil. G. Marsh
- Department of Chemistry, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, U.S.A
| | - Ayyalusamy Ramamoorthy
- Biophysics, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, U.S.A
- Department of Chemistry, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, U.S.A
| |
Collapse
|
149
|
Bu XL, Rao PPN, Wang YJ. Anti-amyloid Aggregation Activity of Natural Compounds: Implications for Alzheimer's Drug Discovery. Mol Neurobiol 2015; 53:3565-3575. [PMID: 26099310 DOI: 10.1007/s12035-015-9301-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/09/2015] [Indexed: 11/24/2022]
Abstract
Several plant-derived natural compounds are known to exhibit anti-amyloid aggregation activity which makes them attractive as potential therapies to treat Alzheimer's disease. The mechanisms of their anti-amyloid activity are not well known. In this regard, many natural compounds are known to exhibit direct binding to various amyloid species including oligomers and fibrils, which in turn can lead to conformational change in the beta-sheet assembly to form nontoxic aggregates. This review discusses the mechanism of anti-amyloid activity of 16 natural compounds and gives structural details on their direct binding interactions with amyloid aggregates. Our computational investigations show that the physicochemical properties of natural products do fit Lipinski's criteria and that catechol and catechol-type moieties present in natural compounds act as lysine site-specific inhibitors of amyloid aggregation. Based on these observations, we propose a structural template to design novel small molecules containing site-specific ring scaffolds, planar aromatic and nonaromatic linkers with suitably substituted hydrogen bond acceptors and donors. These studies will have significant implications in the design and development of novel amyloid aggregation inhibitors with superior metabolic stability and blood-brain barrier penetration as potential agents to treat Alzheimer's disease.
Collapse
Affiliation(s)
- Xian-Le Bu
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Praveen P N Rao
- School of Pharmacy, Health Sciences Campus, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China.
| |
Collapse
|
150
|
Determining binding sites of polycyclic aromatic small molecule-based amyloid-beta peptide aggregation modulators using sequence-specific antibodies. Anal Biochem 2015; 470:61-70. [DOI: 10.1016/j.ab.2014.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/21/2014] [Accepted: 10/27/2014] [Indexed: 12/22/2022]
|