101
|
Li P, Ji M, Lu F, Zhang J, Li H, Cui T, Li Wang X, Tang D, Ji C. Degradation of AF1Q by chaperone-mediated autophagy. Exp Cell Res 2014; 327:48-56. [PMID: 24880125 DOI: 10.1016/j.yexcr.2014.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 05/08/2014] [Accepted: 05/20/2014] [Indexed: 11/29/2022]
Abstract
AF1Q, a mixed lineage leukemia gene fusion partner, is identified as a poor prognostic biomarker for pediatric acute myeloid leukemia (AML), adult AML with normal cytogenetic and adult myelodysplastic syndrome. AF1Q is highly regulated during hematopoietic progenitor differentiation and development but its regulatory mechanism has not been defined clearly. In the present study, we used pharmacological and genetic approaches to influence chaperone-mediated autophagy (CMA) and explored the degradation mechanism of AF1Q. Pharmacological inhibitors of lysosomal degradation, such as chloroquine, increased AF1Q levels, whereas activators of CMA, including 6-aminonicotinamide and nutrient starvation, decreased AF1Q levels. AF1Q interacts with HSPA8 and LAMP-2A, which are core components of the CMA machinery. Knockdown of HSPA8 or LAMP-2A increased AF1Q protein levels, whereas overexpression showed the opposite effect. Using an amino acid deletion AF1Q mutation plasmid, we identified that AF1Q had a KFERQ-like motif which was recognized by HSPA8 for CMA-dependent proteolysis. In conclusion, we demonstrate for the first time that AF1Q can be degraded in lysosomes by CMA.
Collapse
Affiliation(s)
- Peng Li
- Department of Hematology, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250012, P.R. China
| | - Min Ji
- Department of Hematology, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250012, P.R. China
| | - Fei Lu
- Department of Hematology, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250012, P.R. China
| | - Jingru Zhang
- Department of Hematology, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250012, P.R. China
| | - Huanjie Li
- Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250012, P.R. China
| | - Taixing Cui
- Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250012, P.R. China
| | - Xing Li Wang
- Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250012, P.R. China
| | - Dongqi Tang
- Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250012, P.R. China; Center for Stem Cell & Regenerative Medicine, The Second Hospital of Shandong University, Jinan 250033, P.R. China.
| | - Chunyan Ji
- Department of Hematology, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250012, P.R. China.
| |
Collapse
|
102
|
Deak AT, Blass S, Khan MJ, Groschner LN, Waldeck-Weiermair M, Hallström S, Graier WF, Malli R. IP3-mediated STIM1 oligomerization requires intact mitochondrial Ca2+ uptake. J Cell Sci 2014; 127:2944-55. [PMID: 24806964 PMCID: PMC4077590 DOI: 10.1242/jcs.149807] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondria contribute to cell signaling by controlling store-operated Ca2+ entry (SOCE). SOCE is activated by Ca2+ release from the endoplasmic reticulum (ER), whereupon stromal interacting molecule 1 (STIM1) forms oligomers, redistributes to ER–plasma-membrane junctions and opens plasma membrane Ca2+ channels. The mechanisms by which mitochondria interfere with the complex process of SOCE are insufficiently clarified. In this study, we used an shRNA approach to investigate the direct involvement of mitochondrial Ca2+ buffering in SOCE. We demonstrate that knockdown of either of two proteins that are essential for mitochondrial Ca2+ uptake, the mitochondrial calcium uniporter (MCU) or uncoupling protein 2 (UCP2), results in decelerated STIM1 oligomerization and impaired SOCE following cell stimulation with an inositol-1,4,5-trisphosphate (IP3)-generating agonist. Upon artificially augmented cytosolic Ca2+ buffering or ER Ca2+ depletion by sarcoplasmic or endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitors, STIM1 oligomerization did not rely on intact mitochondrial Ca2+ uptake. However, MCU-dependent mitochondrial sequestration of Ca2+ entering through the SOCE pathway was essential to prevent slow deactivation of SOCE. Our findings show a stimulus-specific contribution of mitochondrial Ca2+ uptake to the SOCE machinery, likely through a role in shaping cytosolic Ca2+ micro-domains.
Collapse
Affiliation(s)
- Andras T Deak
- The Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010-Graz, Austria
| | - Sandra Blass
- The Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010-Graz, Austria
| | - Muhammad J Khan
- The Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010-Graz, Austria
| | - Lukas N Groschner
- The Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010-Graz, Austria
| | - Markus Waldeck-Weiermair
- The Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010-Graz, Austria
| | - Seth Hallström
- The Institute of Physiological Chemistry, Center of Physiological Medicine, Medical University of Graz, 8010-Graz, Austria
| | - Wolfgang F Graier
- The Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010-Graz, Austria
| | - Roland Malli
- The Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010-Graz, Austria
| |
Collapse
|
103
|
Hsu YJ, Hsu SC, Huang SM, Lee HS, Lin SH, Tsai CS, Shih CC, Lin CY. Hyperphosphatemia induces protective autophagy in endothelial cells through the inhibition of Akt/mTOR signaling. J Vasc Surg 2014; 62:210-221.e2. [PMID: 24797554 DOI: 10.1016/j.jvs.2014.02.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/16/2014] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Hyperphosphatemia-induced endothelial dysfunction has been shown to play a pathogenic role in the development of atherosclerosis in chronic kidney disease (CKD) through unclear mechanisms. Emerging evidence indicates that autophagy is involved in the maintenance of normal cardiovascular function. However, it is unclear whether autophagy participates in the molecular mechanism underlying high phosphate (Pi)-induced endothelial dysfunction. METHODS The autophagy activity was determined by the immunofluorescence staining of the expression of endothelial microtubule-associated protein 1 light chain 3 (LC3) in the 5/6 nephrectomy rat model of CKD and sham-operated control rats. The LC3-II/LC3-I ratio and the activation of the Akt/mammalian target of rapamycin (mTOR) signaling pathway were determined in cultured human microvascular endothelial cell (HMEC-1) endothelial cells that were exposed to a high concentration of Pi with or without the Pi influx blocker phosphonoformic acid, the autophagy inhibitor 3-methyladenine, and the autophagy inducer rapamycin. The impacts of autophagy on Pi-induced apoptotic damage were assessed by flow cytometry. RESULTS The in vivo rat model of CKD revealed that hyperphosphatemia is associated with increased endothelial LC3 staining. The exposure of HMEC-1 cells to high Pi induced both dose-dependent and time-dependent increases in the LC3-II/LC3-I expression ratio accompanied by the inhibition of the Akt/mTOR signaling pathway. In HMEC-1 cells, high Pi-induced autophagy and the inhibition of Akt/mTOR signaling were reversed by phosphonoformic acid through the blockage of Pi influx. Apoptosis, characterized by the levels of cleaved caspase 3 and poly(ADP-ribose) polymerase, along with autophagy was induced by high Pi, and the inhibition of autophagy by 3-methyladenine significantly aggravated high Pi-induced apoptosis. The flow cytometry results confirmed that the blockage of autophagy promoted the apoptosis of endothelial cells. CONCLUSIONS Hyperphosphatemia induces endothelial autophagy, possibly through the inhibition of the Akt/mTOR signaling pathway, which may play a protective role against high Pi-induced apoptosis.
Collapse
Affiliation(s)
- Yu-Juei Hsu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Che Hsu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Herng-Sheng Lee
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Sung Tsai
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chun-Che Shih
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Yuan Lin
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
104
|
Zhang Q, Zhang Y, Zhang P, Chao Z, Xia F, Jiang C, Zhang X, Jiang Z, Liu H. Hexokinase II inhibitor, 3-BrPA induced autophagy by stimulating ROS formation in human breast cancer cells. Genes Cancer 2014; 5:100-12. [PMID: 25053988 PMCID: PMC4091531 DOI: 10.18632/genesandcancer.9] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 05/15/2014] [Indexed: 12/17/2022] Open
Abstract
Hexokinase II (HKII), a key enzyme of glycolysis, is widely over-expressed in cancer cells. 3-bromopyruvate (3-BrPA), an inhibitor of HK II, has been proposed as a specific antitumor agent. Autophagy is a process that regulates the balance between protein synthesis and protein degradation. Autophagy in mammalian systems occurs under basal conditions and can be stimulated by stresses, including starvation, oxidative stress. Therefore, we hypothesized that 3-BrPA could induce autophagy. In the present study, we explored the mechanism of 3-BrPA and its combined action with chloroquine. Our results demonstrate that in MDA-MB-435 and in MDA-MB-231 cells, 3-BrPA induces autophagy, which can be inhibited by chloroquine. Furthermore, the combined treatment synergistically decreased the number of viable cells. Interestingly, the combined treatment triggered apoptosis in MDA-MB-435 cells, while it induced necroptosis in MDA-MB-231 cells. ROS mediated cell death when 3-BrPA and CQ were co-administered. Finally, CQ enhanced the anticancer efficacy of 3-BrPA in vivo. Collectively, our results show that 3-BrPA triggers autophagy, increasing breast cancer cell resistance to 3-BrPA treatment and that CQ enhanced 3-BrPA-induced cell death in breast cancer cells by stimulating ROS formation. Thus, inhibition of autophagy may be an innovative strategy for adjuvant chemotherapy of breast cancer.human skeletal muscle. Efficient Mirk depletion in SU86.86 pancreatic cancer cells by an inducible shRNA decreased expression of eight antioxidant genes. Thus both cancer cells and differentiated myotubes utilize Mirk kinase to relieve oxidative stress.
Collapse
Affiliation(s)
- Qianwen Zhang
- Faculty of pharmacy, Bengbu Medical College, Bengbu, Anhui, P. R. China
| | - Yuanyuan Zhang
- Faculty of pharmacy, Bengbu Medical College, Bengbu, Anhui, P. R. China
| | - Pei Zhang
- Faculty of pharmacy, Bengbu Medical College, Bengbu, Anhui, P. R. China
| | - Zhenhua Chao
- Faculty of pharmacy, Bengbu Medical College, Bengbu, Anhui, P. R. China
| | - Fei Xia
- Faculty of pharmacy, Bengbu Medical College, Bengbu, Anhui, P. R. China
| | - Chenchen Jiang
- School of Medicine and Public Health, Faculty of Health, University of Newcastle, NSW, Australia
| | - Xudong Zhang
- School of Medicine and Public Health, Faculty of Health, University of Newcastle, NSW, Australia
| | - Zhiwen Jiang
- Faculty of pharmacy, Bengbu Medical College, Bengbu, Anhui, P. R. China
| | - Hao Liu
- Faculty of pharmacy, Bengbu Medical College, Bengbu, Anhui, P. R. China
| |
Collapse
|
105
|
Cheon HG, Cho YS. Protection of palmitic acid-mediated lipotoxicity by arachidonic acid via channeling of palmitic acid into triglycerides in C2C12. J Biomed Sci 2014; 21:13. [PMID: 24521082 PMCID: PMC3926261 DOI: 10.1186/1423-0127-21-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/10/2014] [Indexed: 01/22/2023] Open
Abstract
Background Excessive saturated fatty acids have been considered to be one of major contributing factors for the dysfunction of skeletal muscle cells as well as pancreatic beta cells, leading to the pathogenesis of type 2 diabetes. Results PA induced cell death in a dose dependent manner up to 1.5 mM, but AA protected substantially lipotoxicity caused by PA at even low concentration of 62 μM, at which monounsaturated fatty acids including palmitoleic acid (POA) and oleic acid (OA) did not protect as much as AA did. Induction of cell death by PA was resulted from mitochondrial membrane potential loss, and AA effectively blocked the progression of apoptosis. Furthermore, AA rescued significantly PA-impaired glucose uptake and -signal transduction of Akt in response to insulin. Based on the observations that polyunsaturated AA generated competently cellular droplets at low concentration within the cytosol of myotubes compared with other monounsaturated fatty acids, and AA-driven lipid droplets were also enhanced in the presence of PA, we hypothesized that incorporation of harmful PA into inert triglyceride (TG) may be responsible for the protective effects of AA against PA-induced lipotoxicity. To address this assumption, C2C12 myotubes were incubated with fluorescent probed-PA analogue 4, 4-difluoro-5, 7-dimethyl-4-boro-3a,4a-diaza-s-indacene-3-hexadecanoic acid (BODIPY FL C16) in the presence of AA and their subsequent lipid profiles were analyzed. The analyses of lipids on thin layer chromatograpy (TLC) showed that fluorescent PA analogue was rapidly channeled into AA-driven TG droplets. Conclusion Taken together, it is proposed that AA diverts PA into inert TG, therefore reducing the availability of harmful PA into intracellular target molecules.
Collapse
Affiliation(s)
| | - Young Sik Cho
- College of Pharmacy, Keimyung University, 1000 Sindang-dong, Dalseo-gu, Daegu 704-701, South Korea.
| |
Collapse
|
106
|
Ryter SW, Mizumura K, Choi AMK. The impact of autophagy on cell death modalities. Int J Cell Biol 2014; 2014:502676. [PMID: 24639873 PMCID: PMC3932252 DOI: 10.1155/2014/502676] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 12/18/2013] [Indexed: 12/15/2022] Open
Abstract
Autophagy represents a homeostatic cellular mechanism for the turnover of organelles and proteins, through a lysosome-dependent degradation pathway. During starvation, autophagy facilitates cell survival through the recycling of metabolic precursors. Additionally, autophagy can modulate other vital processes such as programmed cell death (e.g., apoptosis), inflammation, and adaptive immune mechanisms and thereby influence disease pathogenesis. Selective pathways can target distinct cargoes (e.g., mitochondria and proteins) for autophagic degradation. At present, the causal relationship between autophagy and various forms of regulated or nonregulated cell death remains unclear. Autophagy can occur in association with necrosis-like cell death triggered by caspase inhibition. Autophagy and apoptosis have been shown to be coincident or antagonistic, depending on experimental context, and share cross-talk between signal transduction elements. Autophagy may modulate the outcome of other regulated forms of cell death such as necroptosis. Recent advances suggest that autophagy can dampen inflammatory responses, including inflammasome-dependent caspase-1 activation and maturation of proinflammatory cytokines. Autophagy may also act as regulator of caspase-1 dependent cell death (pyroptosis). Strategies aimed at modulating autophagy may lead to therapeutic interventions for diseases in which apoptosis or other forms of regulated cell death may play a cardinal role.
Collapse
Affiliation(s)
- Stefan W. Ryter
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
- Weil Cornell Medical College, 525 East 68th Street, Room M-522, Box 130, New York, NY 10065, USA
| | - Kenji Mizumura
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
- Weil Cornell Medical College, 525 East 68th Street, Room M-522, Box 130, New York, NY 10065, USA
| | - Augustine M. K. Choi
- Weil Cornell Medical College, 525 East 68th Street, Room M-522, Box 130, New York, NY 10065, USA
| |
Collapse
|
107
|
Vishnu N, Jadoon Khan M, Karsten F, Groschner LN, Waldeck-Weiermair M, Rost R, Hallström S, Imamura H, Graier WF, Malli R. ATP increases within the lumen of the endoplasmic reticulum upon intracellular Ca2+ release. Mol Biol Cell 2014; 25:368-79. [PMID: 24307679 PMCID: PMC3907277 DOI: 10.1091/mbc.e13-07-0433] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/19/2013] [Accepted: 11/22/2013] [Indexed: 01/02/2023] Open
Abstract
Multiple functions of the endoplasmic reticulum (ER) essentially depend on ATP within this organelle. However, little is known about ER ATP dynamics and the regulation of ER ATP import. Here we describe real-time recordings of ER ATP fluxes in single cells using an ER-targeted, genetically encoded ATP sensor. In vitro experiments prove that the ATP sensor is both Ca(2+) and redox insensitive, which makes it possible to monitor Ca(2+)-coupled ER ATP dynamics specifically. The approach uncovers a cell type-specific regulation of ER ATP homeostasis in different cell types. Moreover, we show that intracellular Ca(2+) release is coupled to an increase of ATP within the ER. The Ca(2+)-coupled ER ATP increase is independent of the mode of Ca(2+) mobilization and controlled by the rate of ATP biosynthesis. Furthermore, the energy stress sensor, AMP-activated protein kinase, is essential for the ATP increase that occurs in response to Ca(2+) depletion of the organelle. Our data highlight a novel Ca(2+)-controlled process that supplies the ER with additional energy upon cell stimulation.
Collapse
Affiliation(s)
- Neelanjan Vishnu
- Institute of Molecular Biology and Biochemistry, Center of Physiological Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Muhammad Jadoon Khan
- Institute of Molecular Biology and Biochemistry, Center of Physiological Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Felix Karsten
- Institute of Molecular Biology and Biochemistry, Center of Physiological Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Lukas N. Groschner
- Institute of Molecular Biology and Biochemistry, Center of Physiological Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Markus Waldeck-Weiermair
- Institute of Molecular Biology and Biochemistry, Center of Physiological Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Rene Rost
- Institute of Molecular Biology and Biochemistry, Center of Physiological Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Seth Hallström
- Institute of Physiological Chemistry, Center of Physiological Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Hiromi Imamura
- Precursory Research for Embryonic Science, Japan Science and Technology Agency, Tokyo 102-0075, Japan
| | - Wolfgang F. Graier
- Institute of Molecular Biology and Biochemistry, Center of Physiological Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Roland Malli
- Institute of Molecular Biology and Biochemistry, Center of Physiological Medicine, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
108
|
Gunaratnam K, Vidal C, Boadle R, Thekkedam C, Duque G. Mechanisms of palmitate-induced cell death in human osteoblasts. Biol Open 2013; 2:1382-9. [PMID: 24285710 PMCID: PMC3863423 DOI: 10.1242/bio.20136700] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lipotoxicity is an overload of lipids in non-adipose tissues that affects function and induces cell death. Lipotoxicity has been demonstrated in bone cells in vitro using osteoblasts and adipocytes in coculture. In this condition, lipotoxicity was induced by high levels of saturated fatty acids (mostly palmitate) secreted by cultured adipocytes acting in a paracrine manner. In the present study, we aimed to identify the underlying mechanisms of lipotoxicity in human osteoblasts. Palmitate induced autophagy in cultured osteoblasts, which was preceded by the activation of autophagosomes that surround palmitate droplets. Palmitate also induced apoptosis though the activation of the Fas/Jun kinase (JNK) apoptotic pathway. In addition, osteoblasts could be protected from lipotoxicity by inhibiting autophagy with the phosphoinositide kinase inhibitor 3-methyladenine or by inhibiting apoptosis with the JNK inhibitor SP600125. In summary, we have identified two major molecular mechanisms of lipotoxicity in osteoblasts and in doing so we have identified a new potential therapeutic approach to prevent osteoblast dysfunction and death, which are common features of age-related bone loss and osteoporosis.
Collapse
Affiliation(s)
- Krishanthi Gunaratnam
- Ageing Bone Research Program, Sydney Medical School Nepean, The University of Sydney, Penrith, NSW 2750, Australia
| | | | | | | | | |
Collapse
|
109
|
Lee BY, Hochgräfe F, Lin HM, Castillo L, Wu J, Raftery MJ, Martin Shreeve S, Horvath LG, Daly RJ. Phosphoproteomic profiling identifies focal adhesion kinase as a mediator of docetaxel resistance in castrate-resistant prostate cancer. Mol Cancer Ther 2013; 13:190-201. [PMID: 24194567 DOI: 10.1158/1535-7163.mct-13-0225-t] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Docetaxel remains the standard-of-care for men diagnosed with metastatic castrate-resistant prostate cancer (CRPC). However, only approximately 50% of patients benefit from treatment and all develop docetaxel-resistant disease. Here, we characterize global perturbations in tyrosine kinase signaling associated with docetaxel resistance and thereby develop a potential therapeutic strategy to reverse this phenotype. Using quantitative mass spectrometry-based phosphoproteomics, we identified that metastatic docetaxel-resistant prostate cancer cell lines (DU145-Rx and PC3-Rx) exhibit increased phosphorylation of focal adhesion kinase (FAK) on Y397 and Y576, in comparison with parental controls (DU145 and PC3, respectively). Bioinformatic analyses identified perturbations in pathways regulating focal adhesions and the actin cytoskeleton and in protein-protein interaction networks related to these pathways in docetaxel-resistant cells. Treatment with the FAK tyrosine kinase inhibitor (TKI) PF-00562271 reduced FAK phosphorylation in the resistant cells, but did not affect cell viability or Akt phosphorylation. Docetaxel administration reduced FAK and Akt phosphorylation, whereas cotreatment with PF-00562271 and docetaxel resulted in an additive attenuation of FAK and Akt phosphorylation and overcame the chemoresistant phenotype. The enhanced efficacy of cotreatment was due to increased autophagic cell death, rather than apoptosis. These data strongly support that enhanced FAK activation mediates chemoresistance in CRPC, and identify a potential clinical niche for FAK TKIs, where coadministration with docetaxel may be used in patients with CRPC to overcome chemoresistance.
Collapse
Affiliation(s)
- Brian Y Lee
- Corresponding Author: Roger J. Daly, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Level 1, Building 77, Monash University, VIC 3800, Australia. Telephone: 61-3-990-29301;
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Eisenberg T, Büttner S. Lipids and cell death in yeast. FEMS Yeast Res 2013; 14:179-97. [PMID: 24119111 PMCID: PMC4255311 DOI: 10.1111/1567-1364.12105] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/21/2013] [Accepted: 09/25/2013] [Indexed: 01/22/2023] Open
Abstract
Understanding lipid-induced malfunction represents a major challenge of today's biomedical research. The connection of lipids to cellular and organ dysfunction, cell death, and disease (often referred to as lipotoxicity) is more complex than the sole lipotoxic effects of excess free fatty acids and requires genetically tractable model systems for mechanistic investigation. We herein summarize recent advances in the field of lipid-induced toxicity that employ the established model system for cell death and aging research of budding yeast Saccharomyces cerevisiae. Studies in yeast have shed light on various aspects of lipotoxicity, including free fatty acid toxicity, sphingolipid-modulated cell death as well as the involvement of cardiolipin and lipid peroxidation in the mitochondrial pathways of apoptosis. Regimens used range from exogenously applied lipids, genetic modulation of lipolysis and triacylglyceride synthesis, variations in sphingolipid/ceramide metabolism as well as changes in peroxisome function by either genetic or pharmacological means. In future, the yeast model of programmed cell death will further contribute to the clarification of crucial questions of lipid-associated malfunction.
Collapse
Affiliation(s)
- Tobias Eisenberg
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | |
Collapse
|
111
|
Li S, Du L, Zhang L, Hu Y, Xia W, Wu J, Zhu J, Chen L, Zhu F, Li C, Yang S. Cathepsin B contributes to autophagy-related 7 (Atg7)-induced nod-like receptor 3 (NLRP3)-dependent proinflammatory response and aggravates lipotoxicity in rat insulinoma cell line. J Biol Chem 2013; 288:30094-30104. [PMID: 23986436 DOI: 10.1074/jbc.m113.494286] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Impairment of glucose-stimulated insulin secretion caused by the lipotoxicity of palmitate was found in β-cells. Recent studies have indicated that defects in autophagy contribute to pathogenesis in type 2 diabetes. Here, we report that autophagy-related 7 (Atg7) induced excessive autophagic activation in INS-1(823/13) cells exposed to saturated fatty acids. Atg7-induced cathepsin B (CTSB) overexpression resulted in an unexpected significant increase in proinflammatory chemokine and cytokine production levels of IL-1β, monocyte chemotactic protein-1, IL-6, and TNF-α. Inhibition of receptor-interacting protein did not affect the inflammatory response, ruling out involvement of necrosis. CTSB siRNA suppressed the inflammatory response but did not affect apoptosis significantly, suggesting that CTSB was a molecular linker between autophagy and the proinflammatory response. Blocking caspase-3 suppressed apoptosis but did not affect the inflammatory response, suggesting that CTSB induced inflammatory effects independently of apoptosis. Silencing of Nod-like receptor 3 (NLRP3) completely abolished both IL-1β secretion and the down-regulation effects of Atg7-induced CTSB overexpression on glucose-stimulated insulin secretion impairment, thus identifying the NLRP3 inflammasome as an autophagy-responsive element in the pancreatic INS-1(823/13) cell line. Combined together, our results indicate that CTSB contributed to the Atg7-induced NLRP3-dependent proinflammatory response, resulting in aggravation of lipotoxicity, independently of apoptosis in the pancreatic INS-1(823/13) cell line.
Collapse
Affiliation(s)
- Shali Li
- From the Department of Cell Biology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu Province 210046, China
| | - Leilei Du
- From the Department of Cell Biology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu Province 210046, China
| | - Lu Zhang
- From the Department of Cell Biology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu Province 210046, China
| | - Yue Hu
- From the Department of Cell Biology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu Province 210046, China
| | - Wenchun Xia
- From the Department of Cell Biology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu Province 210046, China
| | - Jia Wu
- From the Department of Cell Biology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu Province 210046, China
| | - Jing Zhu
- From the Department of Cell Biology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu Province 210046, China
| | - Lingling Chen
- From the Department of Cell Biology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu Province 210046, China
| | - Fengqi Zhu
- From the Department of Cell Biology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu Province 210046, China
| | - Chunxian Li
- From the Department of Cell Biology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu Province 210046, China
| | - SiJun Yang
- From the Department of Cell Biology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu Province 210046, China.
| |
Collapse
|
112
|
Shikonin kills glioma cells through necroptosis mediated by RIP-1. PLoS One 2013; 8:e66326. [PMID: 23840441 PMCID: PMC3695975 DOI: 10.1371/journal.pone.0066326] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 05/03/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Shikonin was reported to induce necroptosis in leukemia cells, but apoptosis in glioma cell lines. Thus, it is needed to clarify whether shikonin could cause necroptosis in glioma cells and investigate its underlying mechanisms. METHODS Shikonin and rat C6 glioma cell line and Human U87 glioma cell line were used in this study. The cellular viability was assayed by MTT. Flow cytometry with annexin V-FITC and PI double staining was used to analyze cellular death modes. Morphological alterations in C6 glioma cells treated with shikoinin were evaluated by electronic transmission microscopy and fluorescence microscopy with Hoechst 33342 and PI double staining. The level of reactive oxygen species was assessed by using redox-sensitive dye DCFH-DA. The expressional level of necroptosis associated protein RIP-1 was analyzed by western blotting. RESULTS Shikonin induced cell death in C6 and U87 glioma cells in a dose and time dependent manner. The cell death in C6 and U87 glioma cells could be inhibited by necroptosis inhibitor necrotatin-1, not by pan-caspase inhibitor z-VAD-fmk. Shikonin treated C6 glioma cells presented electron-lucent cytoplasm, loss of plasma membrane integrity and intact nuclear membrane in morphology. The increased ROS level caused by shikonin was attenuated by necrostatin-1 and blocking ROS by anti-oxidant NAC rescued shikonin-induced cell death in both C6 and U87 glioma cells. Moreover, the expressional level of RIP-1 was up-regulated by shikonin in a dose and time dependent manner as well, but NAC suppressed RIP-1 expression. CONCLUSIONS We demonstrated that the cell death caused by shikonin in C6 and U87 glioma cells was mainly via necroptosis. Moreover, not only RIP-1 pathway, but also oxidative stress participated in the activation of shikonin induced necroptosis.
Collapse
|
113
|
Abstract
In contrast to their role in cell types with higher energy demands, mitochondria in endothelial cells primarily function in signaling cellular responses to environmental cues. This article provides an overview of key aspects of mitochondrial biology in endothelial cells, including subcellular location, biogenesis, dynamics, autophagy, reactive oxygen species production and signaling, calcium homeostasis, regulated cell death, and heme biosynthesis. In each section, we introduce key concepts and then review studies showing the importance of that mechanism to endothelial control of vasomotor tone, angiogenesis, and/or inflammatory activation. We particularly highlight the small number of clinical and translational studies that have investigated each mechanism in human subjects. Finally, we review interventions that target different aspects of mitochondrial function and their effects on endothelial function. The ultimate goal of such research is the identification of new approaches for therapy. The reviewed studies make it clear that mitochondria are important in endothelial physiology and pathophysiology. A great deal of work will be needed, however, before mitochondria-directed therapies are available for the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Matthew A Kluge
- Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | |
Collapse
|
114
|
Wende AR, Symons JD, Abel ED. Mechanisms of lipotoxicity in the cardiovascular system. Curr Hypertens Rep 2013; 14:517-31. [PMID: 23054891 DOI: 10.1007/s11906-012-0307-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cardiovascular diseases account for approximately one third of all deaths globally. Obese and diabetic patients have a high likelihood of dying from complications associated with cardiovascular dysfunction. Obesity and diabetes increase circulating lipids that upon tissue uptake, may be stored as triglyceride, or may be metabolized in other pathways, leading to the generation of toxic intermediates. Excess lipid utilization or activation of signaling pathways by lipid metabolites may disrupt cellular homeostasis and contribute to cell death, defining the concept of lipotoxicity. Lipotoxicity occurs in multiple organs, including cardiac and vascular tissues, and a number of specific mechanisms have been proposed to explain lipotoxic tissue injury. In addition, recent data suggests that increased tissue lipids may also be protective in certain contexts. This review will highlight recent progress toward elucidating the relationship between nutrient oversupply, lipotoxicity, and cardiovascular dysfunction. The review will focus in two sections on the vasculature and cardiomyocytes respectively.
Collapse
Affiliation(s)
- Adam R Wende
- Program in Molecular Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, 84112, USA
| | | | | |
Collapse
|
115
|
Waldeck-Weiermair M, Alam MR, Khan MJ, Deak AT, Vishnu N, Karsten F, Imamura H, Graier WF, Malli R. Spatiotemporal correlations between cytosolic and mitochondrial Ca(2+) signals using a novel red-shifted mitochondrial targeted cameleon. PLoS One 2012; 7:e45917. [PMID: 23029314 PMCID: PMC3448721 DOI: 10.1371/journal.pone.0045917] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/23/2012] [Indexed: 01/11/2023] Open
Abstract
The transfer of Ca2+ from the cytosol into the lumen of mitochondria is a crucial process that impacts cell signaling in multiple ways. Cytosolic Ca2+ ([Ca2+]cyto) can be excellently quantified with the ratiometric Ca2+ probe fura-2, while genetically encoded Förster resonance energy transfer (FRET)-based fluorescent Ca2+ sensors, the cameleons, are efficiently used to specifically measure Ca2+ within organelles. However, because of a significant overlap of the fura-2 emission with the spectra of the cyan and yellow fluorescent protein of most of the existing cameleons, the measurement of fura-2 and cameleons within one given cell is a complex task. In this study, we introduce a novel approach to simultaneously assess [Ca2+]cyto and mitochondrial Ca2+ ([Ca2+]mito) signals at the single cell level. In order to eliminate the spectral overlap we developed a novel red-shifted cameleon, D1GO-Cam, in which the green and orange fluorescent proteins were used as the FRET pair. This ratiometric Ca2+ probe could be successfully targeted to mitochondria and was suitable to be used simultaneously with fura-2 to correlate [Ca2+]cyto and [Ca2+]mito within same individual cells. Our data indicate that depending on the kinetics of [Ca2+]cyto rises there is a significant lag between onset of [Ca2+]cyto and [Ca2+]mito signals, pointing to a certain threshold of [Ca2+]cyto necessary to activate mitochondrial Ca2+ uptake. The temporal correlation between [Ca2+]mito and [Ca2+]cyto as well as the efficiency of the transfer of Ca2+ from the cytosol into mitochondria varies between different cell types. Moreover, slow mitochondrial Ca2+ extrusion and a desensitization of mitochondrial Ca2+ uptake cause a clear difference in patterns of mitochondrial and cytosolic Ca2+ oscillations of pancreatic beta-cells in response to D-glucose.
Collapse
Affiliation(s)
- Markus Waldeck-Weiermair
- Institute of Molecular Biology and Biochemistry, Centre of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Muhammad Rizwan Alam
- Institute of Molecular Biology and Biochemistry, Centre of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Muhammad Jadoon Khan
- Institute of Molecular Biology and Biochemistry, Centre of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Andras T. Deak
- Institute of Molecular Biology and Biochemistry, Centre of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Neelanjan Vishnu
- Institute of Molecular Biology and Biochemistry, Centre of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Felix Karsten
- Institute of Molecular Biology and Biochemistry, Centre of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Hiromi Imamura
- Precursory Research for Embryonic Science, Japan Science and Technology Agency, Tokyo, Japan
| | - Wolfgang F. Graier
- Institute of Molecular Biology and Biochemistry, Centre of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Roland Malli
- Institute of Molecular Biology and Biochemistry, Centre of Molecular Medicine, Medical University of Graz, Graz, Austria
- * E-mail:
| |
Collapse
|
116
|
Willer EA, Malli R, Bondarenko AI, Zahler S, Vollmar AM, Graier WF, Fürst R. The vascular barrier-protecting hawthorn extract WS® 1442 raises endothelial calcium levels by inhibition of SERCA and activation of the IP3 pathway. J Mol Cell Cardiol 2012; 53:567-77. [PMID: 22814436 DOI: 10.1016/j.yjmcc.2012.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 07/06/2012] [Indexed: 10/28/2022]
Abstract
WS® 1442 has been proven as an effective and safe therapeutical to treat mild forms of congestive heart failure. Beyond this action, we have recently shown that WS® 1442 protects against thrombin-induced vascular barrier dysfunction and the subsequent edema formation by affecting endothelial calcium signaling. The aim of the study was to analyze the influence of WS® 1442 on intracellular calcium concentrations [Ca(2+)](i) in the human endothelium and to investigate the underlying mechanisms. Using ratiometric calcium measurements and a FRET sensor, we found that WS® 1442 concentration-dependently increased basal [Ca(2+)](i) by depletion of the endoplasmic reticulum (ER) and inhibited a subsequent histamine-triggered rise of [Ca(2+)](i). Interestingly, the augmented [Ca(2+)](i) did neither trigger an activation of the contractile machinery nor led to a barrier breakdown (macromolecular permeability). It also did not impair endothelial cell viability. As assessed by patch clamp recordings, WS® 1442 did only slightly affect endothelial Na(+)/K(+)-ATPase, but increased [Ca(2+)](i) by inhibiting the sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase (SERCA) and by activating the inositol 1,4,5-trisphosphate (IP(3)) pathway. Most importantly, WS® 1442 did not induce store-operated calcium entry (SOCE), but even irreversibly prevented histamine-induced SOCE. Taken together, WS® 1442 prevented the deleterious hyperpermeability-associated rise of [Ca(2+)](i) by a preceding, non-toxic release of Ca(2+) from the ER. WS® 1442 interfered with SERCA and the IP(3) pathway without inducing SOCE. The elucidation of this intriguing mechanism helps to understand the complex pharmacology of the cardiovascular drug WS® 1442.
Collapse
Affiliation(s)
- Elisabeth A Willer
- Department of Pharmacy, Centre for Drug Research, Pharmaceutical Biology, University of Munich, Butenandtstr. 5-13, 81377 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|