101
|
Li C, Kuemmerle JF. The fate of myofibroblasts during the development of fibrosis in Crohn's disease. J Dig Dis 2020; 21:326-331. [PMID: 32092217 DOI: 10.1111/1751-2980.12852] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/06/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
Abstract
Intestinal fibrosis is a devastating complication in patients with inflammatory bowel disease. Its characteristics include the loss of regular peristalsis and nutrition absorption, excessive deposition of extracellular matrix (ECM) components, thickness of intestinal lumen due to the formation of strictures and of scar tissue. As a major cell type involved in fibrogenesis, the myofibroblasts have already been shown to have a plastic and heterogeneous function in producing abundant collagen, fibronectin and connective tissue growth factor. The primary sources of ECM-producing and vimentin-positive myofibroblasts come from different precursor cells, including bone marrow-derived mesenchymal cells, fibrocytes, pericytes, epithelial to mesenchymal transition and endothelial to mesenchymal transition. Recent immunological research findings suggest that numerous cytokines and chemokines made from macrophages, in addition to T cells and other myeloid cell types, are also important drivers of myofibroblast differentiation and hence of the activation of myofibroblast-mediated transforming growth factor and collagen production. In this review we discuss the origins, roles and cell signaling of myofibroblasts during the development of fibrosis in different organs, particularly in Crohn's disease. Finally, we suggest that the epigenetic and immunological regulation of myofibroblast differentiation may provide a novel antifibrotic strategy in the near future.
Collapse
Affiliation(s)
- Chao Li
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia.,Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - John F Kuemmerle
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia.,Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
102
|
Revisiting Cancer Stem Cells as the Origin of Cancer-Associated Cells in the Tumor Microenvironment: A Hypothetical View from the Potential of iPSCs. Cancers (Basel) 2020; 12:cancers12040879. [PMID: 32260363 PMCID: PMC7226406 DOI: 10.3390/cancers12040879] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/17/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022] Open
Abstract
The tumor microenvironment (TME) has an essential role in tumor initiation and development. Tumor cells are considered to actively create their microenvironment during tumorigenesis and tumor development. The TME contains multiple types of stromal cells, cancer-associated fibroblasts (CAFs), Tumor endothelial cells (TECs), tumor-associated adipocytes (TAAs), tumor-associated macrophages (TAMs) and others. These cells work together and with the extracellular matrix (ECM) and many other factors to coordinately contribute to tumor growth and maintenance. Although the types and functions of TME cells are well understood, the origin of these cells is still obscure. Many scientists have tried to demonstrate the origin of these cells. Some researchers postulated that TME cells originated from surrounding normal tissues, and others demonstrated that the origin is cancer cells. Recent evidence demonstrates that cancer stem cells (CSCs) have differentiation abilities to generate the original lineage cells for promoting tumor growth and metastasis. The differentiation of CSCs into tumor stromal cells provides a new dimension that explains tumor heterogeneity. Using induced pluripotent stem cells (iPSCs), our group postulates that CSCs could be one of the key sources of CAFs, TECs, TAAs, and TAMs as well as the descendants, which support the self-renewal potential of the cells and exhibit heterogeneity. In this review, we summarize TME components, their interactions within the TME and their insight into cancer therapy. Especially, we focus on the TME cells and their possible origin and also discuss the multi-lineage differentiation potentials of CSCs exploiting iPSCs to create a society of cells in cancer tissues including TME.
Collapse
|
103
|
Farrugia B, Smith SM, Shu CC, Melrose J. Spatiotemporal Expression of 3-B-3(-) and 7-D-4 Chondroitin Sulfation, Tissue Remodeling, and Attempted Repair in an Ovine Model of Intervertebral Disc Degeneration. Cartilage 2020; 11:234-250. [PMID: 31578084 PMCID: PMC7097983 DOI: 10.1177/1947603519876354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE Examination of intervertebral disc (IVD) regeneration in an ovine annular lesion model. HYPOTHESIS Sulfation motifs are important functional determinants in glycosaminoglycans (GAGs). Previous studies have correlated 3-B-3(-) and 7-D-4 chondroitin sulfate (CS) motifs in tissues undergoing morphogenetic transition in development. We hypothesize that these motifs may also be expressed in degenerate IVDs and may represent a reparative response. DESIGN Induction of disc degeneration by 5 mm or 6 × 20 mm lesions in the annulus fibrosus (AF) over 6 or 3 to 6 months postoperation (PO). Tissue sections were stained with toluidine blue-fast green, 3-B-3(-) and 7-D-4 CS-sulfation motifs were immunolocalized in 3-month PO 6 × 20 mm lesion IVDs. Sulfated glycosaminoglycan (GAG), 3-B-3(-), and 7-D-4 epitopes were quantitated by ELISIA (enzyme-linked immunosorbent inhibition assay) in extracts of AF (lesion site and contralateral half) and nucleus pulposus (NP) 0, 3, and 6 months PO. RESULTS Collagenous overgrowth of lesions occurred in the outer AF. Chondroid metaplasia in ~20% of the 6 × 20 mm affected discs resulted in integration of an outgrowth of NP tissue with the inner AF lamellae preventing propagation of the lesion. 3-B-3(-) and 7-D-4 CS sulfation motifs were immunolocalized in this chondroid tissue. ELISIA quantified CS sulfation motifs demonstrating an increase 3 to 6 months PO in the AF lesion and a reduction in sulfated GAG not evident in the contralateral AF. CONCLUSIONS (1) Outer annular lesions underwent spontaneous repair. (2) Chondroid metaplasia of the inner 6 × 20 mm defect prevented its propagation suggesting an apparent reparative response.
Collapse
Affiliation(s)
- Brooke Farrugia
- Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne
| | - Susan M. Smith
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute of Medical Research, Northern Sydney Area Health Authority, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| | - Cindy C. Shu
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute of Medical Research, Northern Sydney Area Health Authority, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute of Medical Research, Northern Sydney Area Health Authority, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
- Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
104
|
Midgley AC, Woods EL, Jenkins RH, Brown C, Khalid U, Chavez R, Hascall V, Steadman R, Phillips AO, Meran S. Hyaluronidase-2 Regulates RhoA Signaling, Myofibroblast Contractility, and Other Key Profibrotic Myofibroblast Functions. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1236-1255. [PMID: 32201263 PMCID: PMC7254050 DOI: 10.1016/j.ajpath.2020.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 01/13/2020] [Accepted: 02/07/2020] [Indexed: 12/17/2022]
Abstract
Hyaluronidase (HYAL)-2 is a weak, acid-active, hyaluronan-degrading enzyme broadly expressed in somatic tissues. Aberrant HYAL2 expression is implicated in diverse pathology. However, a significant proportion of HYAL2 is enzymatically inactive; thus the mechanisms through which HYAL2 dysregulation influences pathobiology are unclear. Recently, nonenzymatic HYAL2 functions have been described, and nuclear HYAL2 has been shown to influence mRNA splicing to prevent myofibroblast differentiation. Myofibroblasts drive fibrosis, thereby promoting progressive tissue damage and leading to multimorbidity. This study identifies a novel HYAL2 cytoplasmic function in myofibroblasts that is unrelated to its enzymatic activity. In fibroblasts and myofibroblasts, HYAL2 interacts with the GTPase-signaling small molecule ras homolog family member A (RhoA). Transforming growth factor beta 1–driven fibroblast-to-myofibroblast differentiation promotes HYAL2 cytoplasmic relocalization to bind to the actin cytoskeleton. Cytoskeletal-bound HYAL2 functions as a key regulator of downstream RhoA signaling and influences profibrotic myofibroblast functions, including myosin light-chain kinase–mediated myofibroblast contractility, myofibroblast migration, myofibroblast collagen/fibronectin deposition, as well as connective tissue growth factor and matrix metalloproteinase-2 expression. These data demonstrate that, in certain biological contexts, the nonenzymatic effects of HYAL2 are crucial in orchestrating RhoA signaling and downstream pathways that are important for full profibrotic myofibroblast functionality. In conjunction with previous data demonstrating the influence of HYAL2 on RNA splicing, these findings begin to explain the broad biological effects of HYAL2.
Collapse
Affiliation(s)
- Adam C Midgley
- Wales Kidney Research Unit, Systems Immunity URI, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Emma L Woods
- Wales Kidney Research Unit, Systems Immunity URI, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Robert H Jenkins
- Wales Kidney Research Unit, Systems Immunity URI, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Charlotte Brown
- Wales Kidney Research Unit, Systems Immunity URI, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Usman Khalid
- Wales Kidney Research Unit, Systems Immunity URI, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Rafael Chavez
- Wales Kidney Research Unit, Systems Immunity URI, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Vincent Hascall
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Robert Steadman
- Wales Kidney Research Unit, Systems Immunity URI, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Aled O Phillips
- Wales Kidney Research Unit, Systems Immunity URI, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Soma Meran
- Wales Kidney Research Unit, Systems Immunity URI, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
105
|
Petz A, Grandoch M, Gorski DJ, Abrams M, Piroth M, Schneckmann R, Homann S, Müller J, Hartwig S, Lehr S, Yamaguchi Y, Wight TN, Gorressen S, Ding Z, Kötter S, Krüger M, Heinen A, Kelm M, Gödecke A, Flögel U, Fischer JW. Cardiac Hyaluronan Synthesis Is Critically Involved in the Cardiac Macrophage Response and Promotes Healing After Ischemia Reperfusion Injury. Circ Res 2020; 124:1433-1447. [PMID: 30916618 DOI: 10.1161/circresaha.118.313285] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RATIONALE Immediate changes in the ECM (extracellular matrix) microenvironment occur after myocardial ischemia and reperfusion (I/R) injury. OBJECTIVE Aim of this study was to unravel the role of the early hyaluronan (HA)-rich ECM after I/R. METHODS AND RESULTS Genetic deletion of Has2 and Has1 was used in a murine model of cardiac I/R. Chemical exchange saturation transfer imaging was adapted to image cardiac ECM post-I/R. Of note, the cardiac chemical exchange saturation transfer signal was severely suppressed by Has2 deletion and pharmacological inhibition of HA synthesis 24 hours after I/R. Has2 KO ( Has2 deficient) mice showed impaired hemodynamic function suggesting a protective role for endogenous HA synthesis. In contrast to Has2 deficiency, Has1-deficient mice developed no specific phenotype compared with control post-I/R. Importantly, in Has2 KO mice, cardiac macrophages were diminished after I/R as detected by 19F MRI (magnetic resonance imaging) of perfluorcarbon-labeled immune cells, Mac-2/Galectin-3 immunostaining, and FACS (fluorescence-activated cell sorting) analysis (CD45+CD11b+Ly6G-CD64+F4/80+cells). In contrast to macrophages, cardiac Ly6Chigh and Ly6Clow monocytes were unaffected post-I/R compared with control mice. Mechanistically, inhibition of HA synthesis led to increased macrophage apoptosis in vivo and in vitro. In addition, α-SMA (α-smooth muscle actin)-positive cells were reduced in the infarcted myocardium and in the border zone. In vitro, the myofibroblast response as measured by Acta2 mRNA expression was reduced by inhibition of HA synthesis and of CD44 signaling. Furthermore, Has2 KO fibroblasts were less able to contract collagen gels in vitro. The effects of HA/CD44 on fibroblasts and macrophages post-I/R might also affect intercellular cross talk because cardiac fibroblasts were activated by monocyte/macrophages and, in turn, protected macrophages from apoptosis. CONCLUSIONS Increased HA synthesis contributes to postinfarct healing by supporting macrophage survival and by promoting the myofibroblast response. Additionally, imaging of cardiac HA by chemical exchange saturation transfer post-I/R might have translational value.
Collapse
Affiliation(s)
- Anne Petz
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Maria Grandoch
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Daniel J Gorski
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Marcel Abrams
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Marco Piroth
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Rebekka Schneckmann
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Susanne Homann
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Julia Müller
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Sonja Hartwig
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, Germany (S.H., S.L.).,German Center for Diabetes Research, München-Neuherberg, Germany (S.H., S.L.)
| | - Stefan Lehr
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, Germany (S.H., S.L.).,German Center for Diabetes Research, München-Neuherberg, Germany (S.H., S.L.)
| | - Yu Yamaguchi
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA (Y.Y.)
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA (T.N.W.)
| | - Simone Gorressen
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Zhaoping Ding
- Institut für Molekulare Kardiologie (Z.D., U.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Sebastian Kötter
- Institut für Herz- und Kreislaufphysiologie (S.K., M. Krüger, A.H., A.G.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Martina Krüger
- Institut für Herz- und Kreislaufphysiologie (S.K., M. Krüger, A.H., A.G.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Andre Heinen
- Institut für Herz- und Kreislaufphysiologie (S.K., M. Krüger, A.H., A.G.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Malte Kelm
- CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,Klinik für Kardiologie, Pneumologie und Angiologie (M. Kelm, U.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Axel Gödecke
- CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,Institut für Herz- und Kreislaufphysiologie (S.K., M. Krüger, A.H., A.G.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Ulrich Flögel
- CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,Institut für Molekulare Kardiologie (Z.D., U.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,Klinik für Kardiologie, Pneumologie und Angiologie (M. Kelm, U.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Jens W Fischer
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| |
Collapse
|
106
|
Kania G, Rudnik M, Distler O. Involvement of the myeloid cell compartment in fibrogenesis and systemic sclerosis. Nat Rev Rheumatol 2020; 15:288-302. [PMID: 30953037 DOI: 10.1038/s41584-019-0212-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Systemic sclerosis (SSc) is an autoimmune fibrotic disease of unknown aetiology that is characterized by vascular changes in the skin and visceral organs. Autologous haematopoietic stem cell transplantation can improve skin and organ fibrosis in patients with progressive disease and a high risk of organ failure, indicating that cells originating in the bone marrow are important contributors to the pathogenesis of SSc. Animal studies also indicate a pivotal function of myeloid cells in the development of fibrosis leading to changes in the tissue architecture and dysfunction in multiple organs such as the heart, lungs, liver and kidney. In this Review, we summarize current knowledge about the function of myeloid cells in fibrogenesis that occurs in patients with SSc. Targeted therapies currently in clinical studies for SSc might affect myeloid cell-related pathways. Therefore, myeloid cells might be used as cellular biomarkers of disease through the application of high-dimensional techniques such as mass cytometry and single-cell RNA sequencing.
Collapse
Affiliation(s)
- Gabriela Kania
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Michal Rudnik
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Oliver Distler
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
107
|
Jiang D, Rinkevich Y. Scars or Regeneration?-Dermal Fibroblasts as Drivers of Diverse Skin Wound Responses. Int J Mol Sci 2020; 21:E617. [PMID: 31963533 PMCID: PMC7014275 DOI: 10.3390/ijms21020617] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
Scarring and regeneration are two physiologically opposite endpoints to skin injuries, with mammals, including humans, typically healing wounds with fibrotic scars. We aim to provide an updated review on fibroblast heterogeneity as determinants of the scarring-regeneration continuum. We discuss fibroblast-centric mechanisms that dictate scarring-regeneration continua with a focus on intercellular and cell-matrix adhesion. Improved understanding of fibroblast lineage-specific mechanisms and how they determine scar severity will ultimately allow for the development of antiscarring therapies and the promotion of tissue regeneration.
Collapse
Affiliation(s)
| | - Yuval Rinkevich
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377 Munich, Germany;
| |
Collapse
|
108
|
Sasaki N, Toyoda M. Vascular Diseases and Gangliosides. Int J Mol Sci 2019; 20:ijms20246362. [PMID: 31861196 PMCID: PMC6941100 DOI: 10.3390/ijms20246362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
Vascular diseases, such as myocardial infarction and cerebral infarction, are most commonly caused by atherosclerosis, one of the leading causes of death worldwide. Risk factors for atherosclerosis include lifestyle and aging. It has been reported that lifespan could be extended in mice by targeting senescent cells, which led to the suppression of aging-related diseases, such as vascular diseases. However, the molecular mechanisms underlying the contribution of aging to vascular diseases are still not well understood. Several types of cells, such as vascular (endothelial cell), vascular-associated (smooth muscle cell and fibroblast) and inflammatory cells, are involved in plaque formation, plaque rupture and thrombus formation, which result in atherosclerosis. Gangliosides, a group of glycosphingolipids, are expressed on the surface of vascular, vascular-associated and inflammatory cells, where they play functional roles. Clarifying the role of gangliosides in atherosclerosis and their relationship with aging is fundamental to develop novel prevention and treatment methods for vascular diseases based on targeting gangliosides. In this review, we highlight the involvement and possible contribution of gangliosides to vascular diseases and further discuss their relationship with aging.
Collapse
Affiliation(s)
- Norihiko Sasaki
- Correspondence: (N.S.); (M.T.); Tel.: +81-3-3964-3241 (N.S.); +81-3-3964-4421 (M.T.)
| | - Masashi Toyoda
- Correspondence: (N.S.); (M.T.); Tel.: +81-3-3964-3241 (N.S.); +81-3-3964-4421 (M.T.)
| |
Collapse
|
109
|
Garoffolo G, Pesce M. Mechanotransduction in the Cardiovascular System: From Developmental Origins to Homeostasis and Pathology. Cells 2019; 8:cells8121607. [PMID: 31835742 PMCID: PMC6953076 DOI: 10.3390/cells8121607] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022] Open
Abstract
With the term ‘mechanotransduction’, it is intended the ability of cells to sense and respond to mechanical forces by activating intracellular signal transduction pathways and the relative phenotypic adaptation. While a known role of mechanical stimuli has been acknowledged for developmental biology processes and morphogenesis in various organs, the response of cells to mechanical cues is now also emerging as a major pathophysiology determinant. Cells of the cardiovascular system are typically exposed to a variety of mechanical stimuli ranging from compression to strain and flow (shear) stress. In addition, these cells can also translate subtle changes in biophysical characteristics of the surrounding matrix, such as the stiffness, into intracellular activation cascades with consequent evolution toward pro-inflammatory/pro-fibrotic phenotypes. Since cellular mechanotransduction has a potential readout on long-lasting modifications of the chromatin, exposure of the cells to mechanically altered environments may have similar persisting consequences to those of metabolic dysfunctions or chronic inflammation. In the present review, we highlight the roles of mechanical forces on the control of cardiovascular formation during embryogenesis, and in the development and pathogenesis of the cardiovascular system.
Collapse
Affiliation(s)
- Gloria Garoffolo
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Via Parea, 4, I-20138 Milan, Italy;
- PhD Program in Translational and Molecular Medicine DIMET, Università di Milano - Bicocca, 20126 Milan, Italy
- Correspondence:
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Via Parea, 4, I-20138 Milan, Italy;
| |
Collapse
|
110
|
Lu L, Xie R, Wei R, Cai C, Bi D, Yin D, Liu H, Zheng J, Zhang Y, Song F, Gao Y, Tan L, Wei Q, Qin H. Integrin α5 subunit is required for the tumor supportive role of fibroblasts in colorectal adenocarcinoma and serves as a potential stroma prognostic marker. Mol Oncol 2019; 13:2697-2714. [PMID: 31600854 PMCID: PMC6887586 DOI: 10.1002/1878-0261.12583] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/24/2019] [Accepted: 10/08/2019] [Indexed: 12/18/2022] Open
Abstract
The tumorigenesis of colorectal cancer (CRC) is a complicated process, involving interactions between cancer cells and the microenvironment. The role of α5 integrin subunit in CRC remains controversial, and previous studies mainly focused on cancer cells. Herein, we report an important role of α5 in stroma fibroblasts in the tumorigenesis of CRC. The expression of α5 was found to be located in colorectal tumor stroma rather than in epithelia cancer cells. Immunofluorescence colocalization and gene correlation analysis confirmed that α5 was mainly expressed in cancer-associated fibroblasts (CAFs). Moreover, experimental evidence showed that α5 expression was required for the tumor-promoting effect of fibroblast cells. In an in vivo xenograft nude mice model, α5 depletion in fibroblasts dramatically suppressed fibroblast-induced tumor growth. In an in vitro cell coculture assay, α5 depletion or knockdown reduced the ability of fibroblasts to promote cancer cell migration and invasion compared with wild-type fibroblasts; moreover, we observed that the expression and assembly of fibronectin were downregulated after α5 depletion or knockdown in fibroblasts. Analysis of the RNA-Seq data of the Cancer Genome Atlas cohort revealed that high expression of ITGA5 (α5 integrin subunit) was correlated with poor overall survival in colorectal adenocarcinoma, which was further confirmed by immunohistochemistry in an independent cohort of 355 patients. Thus, our study identifies α5 integrin subunit as a novel stroma molecular marker for colorectal adenocarcinoma, offers a fresh insight into colorectal adenocarcinoma progression, and shows that α5 expression in stroma fibroblasts underlies its ability to promote the tumorigenesis of colorectal adenocarcinoma.
Collapse
Affiliation(s)
- Ling Lu
- Department of PathologyShanghai Tenth People’s Hospital Affiliated to Tongji UniversityChina
| | - Ruting Xie
- Department of PathologyShanghai Tenth People’s Hospital Affiliated to Tongji UniversityChina
| | - Rong Wei
- Department of PathologyShanghai Tenth People’s Hospital Affiliated to Tongji UniversityChina
| | - Chunmiao Cai
- Department of PathologyShanghai Tenth People’s Hospital Affiliated to Tongji UniversityChina
| | - Dexi Bi
- Department of PathologyShanghai Tenth People’s Hospital Affiliated to Tongji UniversityChina
| | - Dingzi Yin
- Department of Gastrointestinal SurgeryShanghai Tenth People’s Hospital Affiliated to Tongji UniversityChina
| | - Hu Liu
- Department of PathologyShanghai Tenth People’s Hospital Affiliated to Tongji UniversityChina
| | - Jiayi Zheng
- Department of PathologyShanghai Tenth People’s Hospital Affiliated to Tongji UniversityChina
| | - Youhua Zhang
- Department of PathologyShanghai Tenth People’s Hospital Affiliated to Tongji UniversityChina
| | - Feifei Song
- Department of PathologyShanghai Tenth People’s Hospital Affiliated to Tongji UniversityChina
| | - Yaohui Gao
- Department of PathologyShanghai Tenth People’s Hospital Affiliated to Tongji UniversityChina
| | - Linhua Tan
- Department of PathologyShanghai Tenth People’s Hospital Affiliated to Tongji UniversityChina
| | - Qing Wei
- Department of PathologyShanghai Tenth People’s Hospital Affiliated to Tongji UniversityChina
| | - Huanlong Qin
- Division of GastroenterologyDepartment of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
111
|
Kuse N, Kamio K, Azuma A, Matsuda K, Inomata M, Usuki J, Morinaga A, Tanaka T, Kashiwada T, Atsumi K, Hayashi H, Saito Y, Seike M, Gemma A. Exosome-Derived microRNA-22 Ameliorates Pulmonary Fibrosis by Regulating Fibroblast-to-Myofibroblast Differentiation in Vitro and in Vivo. J NIPPON MED SCH 2019; 87:118-128. [PMID: 31776321 DOI: 10.1272/jnms.jnms.2020_87-302] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Although aberrant proliferation and activation of lung fibroblasts are implicated in the initiation and progression of idiopathic pulmonary fibrosis (IPF), the underlying mechanisms are not well characterized. Numerous microRNAs (miRNAs) have been implicated in this process; however, miRNAs derived from exosomes and the relevance of such miRNAs to fibroblast-to-myofibroblast differentiation are not well understood. In this study, we attempted to identify exosome-derived miRNAs relevant to fibrosis development. METHODS Using miRNA array analysis, we profiled exosome-derived miRNA expression in sera of C57BL/6 mice exhibiting bleomycin-induced pulmonary fibrosis. After validating a selected miRNA by quantitative reverse-transcription polymerase chain reaction, its effect on fibroblast-to-myofibroblast differentiation was investigated in human lung fibroblasts. Furthermore, we determined the role of the selected miRNA in an in vivo model of pulmonary fibrosis. RESULTS MiRNA array analysis revealed that miR-22 expression was increased by up to 2 fold on day 7 after bleomycin treatment compared with that in vehicle-treated mice. In vitro, miR-22 transfection suppressed TGF-β1-induced α-SMA expression. This was mediated via inhibition of the ERK1/2 pathway. Baseline α-SMA expression was increased upon miR-22 inhibitor transfection. Furthermore, miR-22 negatively regulated connective tissue growth factor expression in the presence of TGF-β1. In vivo, administration of a miR-22 mimic on day 10 after bleomycin challenge ameliorated pulmonary fibrosis lesions accompanied by decreased α-SMA expression in the model mice. CONCLUSIONS Exosomal miR-22 modulates fibroblast-to-myofibroblast differentiation. The present findings warrant further study, which could shed light on miR-22 as a novel therapeutic target in IPF.
Collapse
Affiliation(s)
- Naoyuki Kuse
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School
| | - Koichiro Kamio
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School
| | - Arata Azuma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School
| | - Kuniko Matsuda
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School
| | - Minoru Inomata
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School
| | - Jiro Usuki
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School
| | - Akemi Morinaga
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School
| | - Toru Tanaka
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School
| | - Takeru Kashiwada
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School
| | - Kenichiro Atsumi
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School
| | - Hiroki Hayashi
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School
| | - Yoshinobu Saito
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School
| | - Akihiko Gemma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School
| |
Collapse
|
112
|
Azbazdar Y, Ozalp O, Sezgin E, Veerapathiran S, Duncan AL, Sansom MSP, Eggeling C, Wohland T, Karaca E, Ozhan G. More Favorable Palmitic Acid Over Palmitoleic Acid Modification of Wnt3 Ensures Its Localization and Activity in Plasma Membrane Domains. Front Cell Dev Biol 2019; 7:281. [PMID: 31803740 PMCID: PMC6873803 DOI: 10.3389/fcell.2019.00281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022] Open
Abstract
While the lateral organization of plasma membrane components has been shown to control binding of Wnt ligands to their receptors preferentially in the ordered membrane domains, the role of posttranslational lipid modification of Wnt on this selective binding is unknown. Here, we identify that the canonical Wnt is presumably acylated by palmitic acid, a saturated 16-carbon fatty acid, at a conserved serine residue. Acylation of Wnt3 is dispensable for its secretion and binding to Fz8 while it is essential for Wnt3's proper binding and domain-like diffusion in the ordered membrane domains. We further unravel that non-palmitoylated Wnt3 is unable to activate Wnt/β-catenin signaling either in zebrafish embryos or in mammalian cells. Based on these results, we propose that the lipidation of canonical Wnt, presumably by a saturated fatty acid, determines its competence in interacting with the receptors in the appropriate domains of the plasma membrane, ultimately keeping the signaling activity under control.
Collapse
Affiliation(s)
- Yagmur Azbazdar
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir, Turkey
| | - Ozgun Ozalp
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir, Turkey
| | - Erdinc Sezgin
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Sapthaswaran Veerapathiran
- Department of Biological Sciences and Center for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Anna L. Duncan
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Super-Resolution Microscopy, Institute for Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Jena, Germany
- Department of Biophysical Imaging, Leibniz Institute of Photonic Technology e.V., Jena, Germany
| | - Thorsten Wohland
- Department of Biological Sciences and Center for BioImaging Sciences, National University of Singapore, Singapore, Singapore
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Ezgi Karaca
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir, Turkey
| |
Collapse
|
113
|
Wu Y, Zhao Y, He X, He Z, Wang T, Wan L, Chen L, Yan N. Hydroxypropyl‑β‑cyclodextrin attenuates the epithelial‑to‑mesenchymal transition via endoplasmic reticulum stress in MDA‑MB‑231 breast cancer cells. Mol Med Rep 2019; 21:249-257. [PMID: 31746388 PMCID: PMC6896369 DOI: 10.3892/mmr.2019.10802] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/02/2019] [Indexed: 01/04/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) has been reported to serve vital roles in regulating the progress of cancer metastasis. In addition, lipid rafts enriched in sphingolipids and cholesterol serve important roles in physiological and biochemical processes as a signaling platform. The present study explored the effects of hydroxypropyl-β-cyclodextrin (HP-β-CD), a cholesterol-depleting agent of lipid rafts, on the transforming growth factor (TGF)-β/Smad signaling pathway and endoplasmic reticulum (ER) stress in mediating EMT in MDA-MB-231 breast cancer cells. HP-β-CD treatment inhibited TGF-β1-induced EMT, based on increased expression of E-cadherin and decreased expression of vimentin. HP-β-CD reduced the expression of the TGF receptor TβRI and blocked the phosphorylation of Smad2. In addition, HP-β-CD increased the expression of ER stress-related proteins (binding immunoglobulin protein and activating transcription factor 6), but TGF-β1 could reverse these changes. Sodium 4-phenylbutyrate, an inhibitor of ER stress, suppressed these effects of HP-β-CD on EMT and TGF-β/Smad signaling pathway inhibition in breast cancer cells. Thus, HP-β-CD can block the TGF-β/Smad signaling pathway via diminishing the expression of TβRI which helps to activate ER stress and attenuate EMT in MDA-MB-231 cells, highlighting a potential target of lipid rafts for breast cancer treatment.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yiyang Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xuanhong He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhiqiang He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tian Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Linxi Wan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lai Chen
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Nianlong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
114
|
Penke LR, Peters-Golden M. Molecular determinants of mesenchymal cell activation in fibroproliferative diseases. Cell Mol Life Sci 2019; 76:4179-4201. [PMID: 31563998 PMCID: PMC6858579 DOI: 10.1007/s00018-019-03212-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/01/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023]
Abstract
Uncontrolled scarring, or fibrosis, can interfere with the normal function of virtually all tissues of the body, ultimately leading to organ failure and death. Fibrotic diseases represent a major cause of death in industrialized countries. Unfortunately, no curative treatments for these conditions are yet available, highlighting the critical need for a better fundamental understanding of molecular mechanisms that may be therapeutically tractable. The ultimate indispensable effector cells responsible for deposition of extracellular matrix proteins that comprise scars are mesenchymal cells, namely fibroblasts and myofibroblasts. In this review, we focus on the biology of these cells and the molecular mechanisms that regulate their pertinent functions. We discuss key pro-fibrotic mediators, signaling pathways, and transcription factors that dictate their activation and persistence. Because of their possible clinical and therapeutic relevance, we also consider potential brakes on mesenchymal cell activation and cellular processes that may facilitate myofibroblast clearance from fibrotic tissue-topics that have in general been understudied.
Collapse
Affiliation(s)
- Loka R Penke
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 6301 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109-5642, USA
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 6301 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109-5642, USA.
| |
Collapse
|
115
|
Shih SR, Liao SL, Shih CW, Wei YH, Lu TX, Chou CH, Yen EY, Chang YC, Lin CC, Chi YC, Yang WS, Tsai FC. Fibroblast Growth Factor Receptor Inhibitors Reduce Adipogenesis of Orbital Fibroblasts and Enhance Myofibroblastic Differentiation in Graves' Orbitopathy. Ocul Immunol Inflamm 2019; 29:193-202. [PMID: 31657648 DOI: 10.1080/09273948.2019.1672196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: Orbital fibroblasts are involved in pathogenesis of Graves' orbitopathy (GO). Fibroblast growth factor (FGF) affects fibroblasts of GO. This study aims to investigate the roles of FGF and FGF receptor (FGFR) in GO.Methods: Serum FGF proteins and orbital fibroblast FGFR proteins and mRNAs were measured in GO patients and controls. Orbital fibroblasts of GO were cultured and accessed for changes in proliferation (by nuclei number and MTT), myofibroblastic differentiation (by α-SMA), and adipogenesis (by oil droplets using Oil Red O stain) under FGF1 with or without FGFR inhibitors (FGFRi).Results: Serum FGF1 and FGF2 were increased in GO patients. FGFR1 was the most abundantly expressed FGFR in GO orbital fibroblasts. FGF1 increased GO fibroblast proliferation/adipogenesis and suppressed myofibroblastic differentiation, while FGFRi reversed these effects.Conclusion: FGF signaling may be involved in GO pathogenesis. Manipulation of FGF-FGFR pathway for GO treatment is worthy of further investigation.Registration number on Clinicaltrials.gov: NCT03324022.
Collapse
Affiliation(s)
- Shyang-Rong Shih
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Center of Anti-Aging and Health Consultation, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-Lang Liao
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Ophthalmology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Wei Shih
- Department of Ophthalmology, Zhongxing Branch, Taipei City Hospital, Taipei, Taiwan
| | - Yi-Hsuan Wei
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ting-Xuan Lu
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chien-Hsiang Chou
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Er-Yen Yen
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Cheng Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan.,Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Chia-Chi Lin
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Chiao Chi
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wei-Shiung Yang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Center for Obesity, Lifestyle, and Metabolic Surgery, National Taiwan University Hospital, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Feng-Chiao Tsai
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
116
|
Park S, Ranjbarvaziri S, Lay FD, Zhao P, Miller MJ, Dhaliwal JS, Huertas-Vazquez A, Wu X, Qiao R, Soffer JM, Rau C, Wang Y, Mikkola HKA, Lusis AJ, Ardehali R. Genetic Regulation of Fibroblast Activation and Proliferation in Cardiac Fibrosis. Circulation 2019; 138:1224-1235. [PMID: 29950403 DOI: 10.1161/circulationaha.118.035420] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Genetic diversity and the heterogeneous nature of cardiac fibroblasts (CFbs) have hindered characterization of the molecular mechanisms that regulate cardiac fibrosis. The Hybrid Mouse Diversity Panel offers a valuable tool to examine genetically diverse cardiac fibroblasts and their role in fibrosis. METHODS Three strains of mice (C57BL/6J, C3H/HeJ, and KK/HlJ) were selected from the Hybrid Mouse Diversity Panel and treated with either isoproterenol (ISO) or saline by an intraperitoneally implanted osmotic pump. After 21 days, cardiac function and levels of fibrosis were measured by echocardiography and trichrome staining, respectively. Activation and proliferation of CFbs were measured by in vitro and in vivo assays under normal and injury conditions. RNA sequencing was done on isolated CFbs from each strain. Results were analyzed by Ingenuity Pathway Analysis and validated by reverse transcription-qPCR, immunohistochemistry, and ELISA. RESULTS ISO treatment in C57BL/6J, C3H/HeJ, and KK/HlJ mice resulted in minimal, moderate, and extensive levels of fibrosis, respectively (n=7-8 hearts per condition). Isolated CFbs treated with ISO exhibited strain-specific increases in the levels of activation but showed comparable levels of proliferation. Similar results were found in vivo, with fibroblast activation, and not proliferation, correlating with the differential levels of cardiac fibrosis after ISO treatment. RNA sequencing revealed that CFbs from each strain exhibit unique gene expression changes in response to ISO. We identified Ltbp2 as a commonly upregulated gene after ISO treatment. Expression of LTBP2 was elevated and specifically localized in the fibrotic regions of the myocardium after injury in mice and in human heart failure patients. CONCLUSIONS This study highlights the importance of genetic variation in cardiac fibrosis by using multiple inbred mouse strains to characterize CFbs and their response to ISO treatment. Our data suggest that, although fibroblast activation is a response that parallels the extent of scar formation, proliferation may not necessarily correlate with levels of fibrosis. In addition, by comparing CFbs from multiple strains, we identified pathways as potential therapeutic targets and LTBP2 as a marker for fibrosis, with relevance to patients with underlying myocardial fibrosis.
Collapse
Affiliation(s)
- Shuin Park
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine (S.P., S.R., P.Z., M.J.M., J.S.D., A.H.-V., X.W., R.Q., J.M.S., A.J.L., R.A.), University of California, Los Angeles.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research (S.P., S.R., F.D.L., P.Z., M.J.M., J.S.D., R.Q., J.M.S., H.K.A.M., R.A.), University of California, Los Angeles.,Molecular, Cellular, and Integrative Physiology Graduate Program (S.P., S.R., R.A.), University of California, Los Angeles
| | - Sara Ranjbarvaziri
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine (S.P., S.R., P.Z., M.J.M., J.S.D., A.H.-V., X.W., R.Q., J.M.S., A.J.L., R.A.), University of California, Los Angeles.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research (S.P., S.R., F.D.L., P.Z., M.J.M., J.S.D., R.Q., J.M.S., H.K.A.M., R.A.), University of California, Los Angeles.,Molecular, Cellular, and Integrative Physiology Graduate Program (S.P., S.R., R.A.), University of California, Los Angeles
| | - Fides D Lay
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine (S.P., S.R., P.Z., M.J.M., J.S.D., A.H.-V., X.W., R.Q., J.M.S., A.J.L., R.A.), University of California, Los Angeles.,Department of Molecular, Cell, and Developmental Biology (F.D.L., H.K.A.M.), University of California, Los Angeles
| | - Peng Zhao
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine (S.P., S.R., P.Z., M.J.M., J.S.D., A.H.-V., X.W., R.Q., J.M.S., A.J.L., R.A.), University of California, Los Angeles.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research (S.P., S.R., F.D.L., P.Z., M.J.M., J.S.D., R.Q., J.M.S., H.K.A.M., R.A.), University of California, Los Angeles
| | - Mark J Miller
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine (S.P., S.R., P.Z., M.J.M., J.S.D., A.H.-V., X.W., R.Q., J.M.S., A.J.L., R.A.), University of California, Los Angeles.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research (S.P., S.R., F.D.L., P.Z., M.J.M., J.S.D., R.Q., J.M.S., H.K.A.M., R.A.), University of California, Los Angeles
| | - Jasmeet S Dhaliwal
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine (S.P., S.R., P.Z., M.J.M., J.S.D., A.H.-V., X.W., R.Q., J.M.S., A.J.L., R.A.), University of California, Los Angeles.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research (S.P., S.R., F.D.L., P.Z., M.J.M., J.S.D., R.Q., J.M.S., H.K.A.M., R.A.), University of California, Los Angeles
| | - Adriana Huertas-Vazquez
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine (S.P., S.R., P.Z., M.J.M., J.S.D., A.H.-V., X.W., R.Q., J.M.S., A.J.L., R.A.), University of California, Los Angeles
| | - Xiuju Wu
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine (S.P., S.R., P.Z., M.J.M., J.S.D., A.H.-V., X.W., R.Q., J.M.S., A.J.L., R.A.), University of California, Los Angeles
| | - Rong Qiao
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine (S.P., S.R., P.Z., M.J.M., J.S.D., A.H.-V., X.W., R.Q., J.M.S., A.J.L., R.A.), University of California, Los Angeles.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research (S.P., S.R., F.D.L., P.Z., M.J.M., J.S.D., R.Q., J.M.S., H.K.A.M., R.A.), University of California, Los Angeles
| | - Justin M Soffer
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine (S.P., S.R., P.Z., M.J.M., J.S.D., A.H.-V., X.W., R.Q., J.M.S., A.J.L., R.A.), University of California, Los Angeles.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research (S.P., S.R., F.D.L., P.Z., M.J.M., J.S.D., R.Q., J.M.S., H.K.A.M., R.A.), University of California, Los Angeles
| | - Christoph Rau
- Anesthesiology and Perioperative Medicine (C.R., Y.W.), University of California, Los Angeles
| | - Yibin Wang
- Anesthesiology and Perioperative Medicine (C.R., Y.W.), University of California, Los Angeles
| | - Hanna K A Mikkola
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research (S.P., S.R., F.D.L., P.Z., M.J.M., J.S.D., R.Q., J.M.S., H.K.A.M., R.A.), University of California, Los Angeles.,Department of Molecular, Cell, and Developmental Biology (F.D.L., H.K.A.M.), University of California, Los Angeles.,Molecular Biology Institute (H.K.A.M., A.J.L., R.A.), University of California, Los Angeles
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine (S.P., S.R., P.Z., M.J.M., J.S.D., A.H.-V., X.W., R.Q., J.M.S., A.J.L., R.A.), University of California, Los Angeles.,Department of Microbiology, Immunology, and Molecular Genetics (A.J.L.), University of California, Los Angeles.,Molecular Biology Institute (H.K.A.M., A.J.L., R.A.), University of California, Los Angeles.,Department of Human Genetics (A.J.L.), University of California, Los Angeles
| | - Reza Ardehali
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine (S.P., S.R., P.Z., M.J.M., J.S.D., A.H.-V., X.W., R.Q., J.M.S., A.J.L., R.A.), University of California, Los Angeles.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research (S.P., S.R., F.D.L., P.Z., M.J.M., J.S.D., R.Q., J.M.S., H.K.A.M., R.A.), University of California, Los Angeles.,Molecular, Cellular, and Integrative Physiology Graduate Program (S.P., S.R., R.A.), University of California, Los Angeles.,Molecular Biology Institute (H.K.A.M., A.J.L., R.A.), University of California, Los Angeles
| |
Collapse
|
117
|
Pandolfi L, Frangipane V, Bocca C, Marengo A, Tarro Genta E, Bozzini S, Morosini M, D'Amato M, Vitulo S, Monti M, Comolli G, Scupoli MT, Fattal E, Arpicco S, Meloni F. Hyaluronic Acid-Decorated Liposomes as Innovative Targeted Delivery System for Lung Fibrotic Cells. Molecules 2019; 24:molecules24183291. [PMID: 31509965 PMCID: PMC6766933 DOI: 10.3390/molecules24183291] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 12/19/2022] Open
Abstract
Collagen Tissue Disease-associated Interstitial Lung Fibrosis (CTD-ILDs) and Bronchiolitis Obliterans Syndrome (BOS) represent severe lung fibrogenic disorders, characterized by fibro-proliferation with uncontrolled extracellular matrix deposition. Hyaluronic acid (HA) plays a key role in fibrosis with its specific receptor, CD44, overexpressed by CTD-ILD and BOS cells. The aim is to use HA-liposomes to develop an inhalatory treatment for these diseases. Liposomes with HA of two molecular weights were prepared and characterized. Targeting efficiency was assessed toward CTD-ILD and BOS cells by flow cytometry and confocal microscopy and immune modulation by RT-PCR and ELISA techniques. HA-liposomes were internalized by CTD-ILD and BOS cells expressing CD44, and this effect increased with higher HA MW. In THP-1 cells, HA-liposomes decreased pro-inflammatory cytokines IL-1β, IL-12, and anti-fibrotic VEGF transcripts but increased TGF-β mRNA. However, upon analyzing TGF-β release from healthy donors-derived monocytes, we found liposomes did not alter the release of active pro-fibrotic cytokine. All liposomes induced mild activation of neutrophils regardless of the presence of HA. HA liposomes could be also applied for lung fibrotic diseases, being endowed with low pro-inflammatory activity, and results confirmed that higher MW HA are associated to an increased targeting efficiency for CD44 expressing LFs-derived from BOS and CTD-ILD patients.
Collapse
Affiliation(s)
- Laura Pandolfi
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy.
| | - Vanessa Frangipane
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy.
| | - Claudia Bocca
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy.
| | - Alessandro Marengo
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
| | - Erika Tarro Genta
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
| | - Sara Bozzini
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy.
| | - Monica Morosini
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy.
| | - Maura D'Amato
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy.
| | - Simone Vitulo
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy.
| | - Manuela Monti
- Laboratory of Biotechnology, Center of Regenerative Medicine Research, IRCCS San Matteo Foundation, 27100 Pavia, Italy.
| | - Giuditta Comolli
- Experimental Research Laboratories, Biotechnology Area, IRCCS San Matteo Foundation, 27100 Pavia, Italy.
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy.
| | - Maria Teresa Scupoli
- Research Center LURM, Interdepartmental Laboratory of Medical Research, University of Verona, 37134 Verona, Italy.
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy.
| | - Elias Fattal
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, 922996 Châtenay-Malabry, France.
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
| | - Federica Meloni
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy.
- Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
118
|
Seow BKL, McDougall ARA, Short KL, Wallace MJ, Hooper SB, Cole TJ. Identification of Betamethasone-Regulated Target Genes and Cell Pathways in Fetal Rat Lung Mesenchymal Fibroblasts. Endocrinology 2019; 160:1868-1884. [PMID: 31107524 DOI: 10.1210/en.2018-01071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/14/2019] [Indexed: 02/07/2023]
Abstract
Preterm birth is characterized by severe lung immaturity that is frequently treated antenatally or postnatally with the synthetic steroid betamethasone. The underlying cellular targets and pathways stimulated by betamethasone in the fetal lung are poorly defined. In this study, betamethasone was compared with corticosterone in steroid-treated primary cultures of fetal rat lung fibroblasts stimulated for 6 hours and analyzed by whole-cell transcriptome sequencing and glucocorticoid (GC) receptor (GR) chromatin immunoprecipitation sequencing (ChIP-Seq) analysis. Strikingly, betamethasone stimulated a much stronger transcriptional response compared with corticosterone for both induced and repressed genes. A total of 483 genes were significantly stimulated by betamethasone or corticosterone, with 476 stimulated by both steroids, indicating a strong overlap in regulation. Changes in mRNA levels were confirmed by quantitative PCR for eight induced and repressed target genes. Pathway analysis identified cell proliferation and cytoskeletal/cell matrix remodeling pathways as key processes regulated by both steroids. One target, transglutaminase 2 (Tgm2), was localized to fetal lung mesenchymal cells. Tgm2 mRNA and protein levels were strongly increased in fibroblasts by both steroids. Whole-genome GR ChIP-Seq analysis with betamethasone identified GC response element-binding sites close to the previously characterized GR target genes Per1, Dusp1, Fkbp5, and Sgk1 and near the genes identified by transcriptome sequencing encoding Crispld2, Tgm2, Hif3α, and Kdr, defining direct genomic induction of expression in fetal lung fibroblasts via the GR. These results demonstrate that betamethasone stimulates specific genes and cellular pathways controlling cell proliferation and extracellular matrix remodeling in lung mesenchymal fibroblasts, providing a basis for betamethasone's treatment efficacy in preterm birth.
Collapse
Affiliation(s)
- Bennet K L Seow
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Annie R A McDougall
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Kelly L Short
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Megan J Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Timothy J Cole
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
- Division of Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| |
Collapse
|
119
|
IDH2 deficiency impairs cutaneous wound healing via ROS-dependent apoptosis. Biochim Biophys Acta Mol Basis Dis 2019; 1865:165523. [PMID: 31376482 DOI: 10.1016/j.bbadis.2019.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 01/21/2023]
Abstract
Dermal fibroblasts are mesenchymal cells found between the skin epidermis and subcutaneous tissue that play a pivotal role in cutaneous wound healing by synthesizing fibronectin (a component of the extracellular matrix), secreting angiogenesis factors, and generating strong contractile forces. In wound healing, low concentrations of reactive oxygen species (ROS) are essential in combating invading microorganisms and in cell-survival signaling. However, excessive ROS production impairs fibroblasts. Mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH2) is a key enzyme that regulates the mitochondrial redox balance and reduces oxidative stress-induced cell injury through the generation of NADPH. In the present study, the downregulation of IDH2 expression resulted in an increase in cell apoptosis in mouse skin through ROS-dependent ATM-mediated p53 signaling. IDH2 deficiency also delayed cutaneous wound healing in mice and impaired dermal fibroblast function. Furthermore, pretreatment with the mitochondria-targeted antioxidant mito-TEMPO alleviated the apoptosis induced by IDH2 deficiency both in vitro and in vivo. Together, our findings highlight the role of IDH2 in cutaneous wound healing in association with mitochondrial ROS.
Collapse
|
120
|
Sarkar A, Chanda A, Regmi SC, Karve K, Deng L, Jay GD, Jirik FR, Schmidt TA, Bonni S. Recombinant human PRG4 (rhPRG4) suppresses breast cancer cell invasion by inhibiting TGFβ-Hyaluronan-CD44 signalling pathway. PLoS One 2019; 14:e0219697. [PMID: 31361756 PMCID: PMC6667139 DOI: 10.1371/journal.pone.0219697] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/28/2019] [Indexed: 01/02/2023] Open
Abstract
Metastasis is the major cause of cancer-related morbidity and mortality. The ability of cancer cells to become invasive and migratory contribute significantly to metastatic growth, which necessitates the identification of novel anti-migratory and anti-invasive therapeutic approaches. Proteoglycan 4 (PRG4), a mucin-like glycoprotein, contributes to joint synovial homeostasis through its friction-reducing and anti-adhesive properties. Adhesion to surrounding extracellular matrix (ECM) components is critical for cancer cells to invade the ECM and eventually become metastatic, raising the question whether PRG4 has an anti-invasive effect on cancer cells. Here, we report that a full-length recombinant human PRG4 (rhPRG4) suppresses the ability of the secreted protein transforming growth factor beta (TGFβ) to induce phenotypic disruption of three-dimensional human breast cancer cell-derived organoids by reducing ligand-induced cell invasion. In mechanistic studies, we find that rhPRG4 suppresses TGFβ-induced invasiveness of cancer cells by inhibiting the downstream hyaluronan (HA)-cell surface cluster of differentiation 44 (CD44) signalling axis. Furthermore, we find that rhPRG4 represses TGFβ-dependent increase in the protein abundance of CD44 and of the enzyme HAS2, which is involved in HA biosynthesis. It is widely accepted that TGFβ has both tumor suppressing and tumor promoting roles in cancer. The novel finding that rhPRG4 opposes HAS2 and CD44 induction by TGFβ has implications for downregulating the tumor promoting roles, while maintaining the tumor suppressive aspects of TGFβ actions. Finally, these findings point to rhPRG4's potential clinical utility as a therapeutic treatment for invasive and metastatic breast cancer.
Collapse
Affiliation(s)
- Anusi Sarkar
- The Arnie Charbonneau Cancer Institute and Department of Biochemistry & Molecular Biology, The Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Ayan Chanda
- The Arnie Charbonneau Cancer Institute and Department of Biochemistry & Molecular Biology, The Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Suresh C. Regmi
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Kunal Karve
- The Arnie Charbonneau Cancer Institute and Department of Biochemistry & Molecular Biology, The Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Lili Deng
- The Arnie Charbonneau Cancer Institute and Department of Biochemistry & Molecular Biology, The Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gregory D. Jay
- Department of Emergency Medicine—Alpert Medical School & School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Frank R. Jirik
- The Arnie Charbonneau Cancer Institute and Department of Biochemistry & Molecular Biology, The Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tannin A. Schmidt
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Biomedical Engineering Department, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- * E-mail: (SB); (TS)
| | - Shirin Bonni
- The Arnie Charbonneau Cancer Institute and Department of Biochemistry & Molecular Biology, The Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail: (SB); (TS)
| |
Collapse
|
121
|
Identification of a pro-angiogenic functional role for FSP1-positive fibroblast subtype in wound healing. Nat Commun 2019; 10:3027. [PMID: 31289275 PMCID: PMC6617456 DOI: 10.1038/s41467-019-10965-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 06/04/2019] [Indexed: 12/26/2022] Open
Abstract
Fibrosis accompanying wound healing can drive the failure of many different organs. Activated fibroblasts are the principal determinants of post-injury pathological fibrosis along with physiological repair, making them a difficult therapeutic target. Although activated fibroblasts are phenotypically heterogeneous, they are not recognized as distinct functional entities. Using mice that express GFP under the FSP1 or αSMA promoter, we characterized two non-overlapping fibroblast subtypes from mouse hearts after myocardial infarction. Here, we report the identification of FSP1-GFP+ cells as a non-pericyte, non-hematopoietic fibroblast subpopulation with a predominant pro-angiogenic role, characterized by in vitro phenotypic/cellular/ultrastructural studies and in vivo granulation tissue formation assays combined with transcriptomics and proteomics. This work identifies a fibroblast subtype that is functionally distinct from the pro-fibrotic αSMA-expressing myofibroblast subtype. Our study has the potential to shift our focus towards viewing fibroblasts as molecularly and functionally heterogeneous and provides a paradigm to approach treatment for organ fibrosis. Activated fibroblasts are key contributors to tissue repair after cardiac injury. Here, Saraswati et al. identify and characterize a subpopulation of FSP1-positive cardiac fibroblasts with proangiogenic properties in infarcted hearts.
Collapse
|
122
|
Moon J, Yoon JY, Yang JH, Kwon HH, Min S, Suh DH. Atrophic acne scar: a process from altered metabolism of elastic fibres and collagen fibres based on transforming growth factor-β1 signalling. Br J Dermatol 2019; 181:1226-1237. [PMID: 30822364 DOI: 10.1111/bjd.17851] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Atrophic acne scar, a persistent sequela from acne, is undesirably troubling to many patients due to its cosmetic and psychosocial aspects. Although there have been some reports emphasizing the role of early inflammatory responses in atrophic acne scarring, evolving perspectives on the detailed pathogenic processes are promptly needed. OBJECTIVES Examining the histological, immunological and molecular changes in early acne lesions susceptible to atrophic scarring can provide new insights to understand the pathophysiology of atrophic acne scar. METHODS We experimentally validated several early fundamental hallmarks accounting for the transition of early acne lesions to atrophic scars by comparing molecular profiles of skin and acne lesions between patients who were prone to scar (APS) or not (ANS). RESULTS In APS, compared with ANS, devastating degradation of elastic fibres and collagen fibres occurred in the dermis, followed by their incomplete recovery. Abnormally excessive inflammation mediated by innate immunity with T helper 17 and T helper 1 cells was observed. Epidermal proliferation was significantly diminished. Transforming growth factor (TGF)-β1 was drastically elevated in APS, suggesting that aberrant TGF-β1 signalling is an underlying modulator of all of these pathological processes. CONCLUSIONS These results may provide a basis for understanding the pathogenesis of atrophic acne scarring. Reduction of excessive inflammation and TGF-β1 signalling in early acne lesions is expected to facilitate the protection of normal extracellular matrix metabolism and ultimately the prevention of atrophic scar formation. What's already known about this topic? The dermis of atrophic acne scars shows alteration of extracellular matrix components such as collagen fibres. Inflammation in acne lesions is associated with the development of acne scars. What does this study add? Abnormalities in the metabolism of collagen fibres and elastic fibres were observed in the early developmental stages of acne lesions that were progressing into atrophic scars. Exacerbated inflammation and aberrant epidermal proliferation by increased transforming growth factor (TGF)-β1 signalling may affect the abnormal extracellular matrix metabolism. What is the translational message? Abnormal changes in elastic fibres and collagen fibres are found in the early developmental process of acne in patients who are prone to atrophic scarring. An early treatment regimen strongly inhibiting inflammation and TGF-β1 signalling to help the normal recovery of the extracellular matrix components is required to prevent atrophic scarring.
Collapse
Affiliation(s)
- J Moon
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Acne, Rosacea, Seborrheic Dermatitis and Hidradenitis Suppurativa Research Laboratory, Seoul National University Hospital, Seoul, Republic of Korea
| | - J Y Yoon
- Acne, Rosacea, Seborrheic Dermatitis and Hidradenitis Suppurativa Research Laboratory, Seoul National University Hospital, Seoul, Republic of Korea
| | - J H Yang
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Acne, Rosacea, Seborrheic Dermatitis and Hidradenitis Suppurativa Research Laboratory, Seoul National University Hospital, Seoul, Republic of Korea
| | - H H Kwon
- Oaro Dermatology Clinic, Seoul, Republic of Korea
| | - S Min
- SnU Dermatology Clinic, Seoul, Republic of Korea
| | - D H Suh
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Acne, Rosacea, Seborrheic Dermatitis and Hidradenitis Suppurativa Research Laboratory, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
123
|
Wang Y, Mack JA, Maytin EV. CD44 inhibits α-SMA gene expression via a novel G-actin/MRTF-mediated pathway that intersects with TGFβR/p38MAPK signaling in murine skin fibroblasts. J Biol Chem 2019; 294:12779-12794. [PMID: 31285260 DOI: 10.1074/jbc.ra119.007834] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/25/2019] [Indexed: 01/10/2023] Open
Abstract
Well-regulated differentiation of fibroblasts into myofibroblasts (MF) is critical for skin wound healing. Neoexpression of α-smooth muscle actin (α-SMA), an established marker for MF differentiation, is driven by TGFβ receptor (TGFβR)-mediated signaling. Hyaluronan (HA) and its receptor CD44 may also participate in this process. To further understand this process, primary mouse skin fibroblasts were isolated and treated in vitro with recombinant TGF-β1 (rTGF-β1) to induce α-SMA expression. CD44 expression was also increased. Paradoxically, CD44 knockdown by RNA interference (RNAi) led to increased α-SMA expression and α-SMA-containing stress fibers. Removal of extracellular HA or inhibition of HA synthesis had no effect on α-SMA levels, suggesting a dispensable role for HA. Exploration of mechanisms linking CD44 knockdown to α-SMA induction, using RNAi and chemical inhibitors, revealed a requirement for noncanonical TGFβR signaling through p38MAPK. Decreased monomeric G-actin but increased filamentous F-actin following CD44 RNAi suggested a possible role for myocardin-related transcription factor (MRTF), a known regulator of α-SMA transcription and itself regulated by G-actin binding. CD44 RNAi promoted nuclear accumulation of MRTF and the binding to its transcriptional cofactor SRF. MRTF knockdown abrogated the increased α-SMA expression caused by CD44 RNAi, suggesting that MRTF is required for CD44-mediated regulation of α-SMA. Finally, chemical inhibition of p38MAPK reversed nuclear MRTF accumulation after rTGF-β1 addition or CD44 RNAi, revealing a central involvement of p38MAPK in both cases. We concluded that CD44 regulates α-SMA gene expression through cooperation between two intersecting signaling pathways, one mediated by G-actin/MRTF and the other via TGFβR/p38MAPK.
Collapse
Affiliation(s)
- Yan Wang
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Judith A Mack
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.,Department of Dermatology, Dermatology and Plastic Surgery Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Edward V Maytin
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 .,Department of Dermatology, Dermatology and Plastic Surgery Institute, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
124
|
Baugh L, Watson MC, Kemmerling EC, Hinds PW, Huggins GS, Black LD. Knockdown of CD44 expression decreases valve interstitial cell calcification in vitro. Am J Physiol Heart Circ Physiol 2019; 317:H26-H36. [PMID: 30951363 PMCID: PMC6692733 DOI: 10.1152/ajpheart.00123.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/23/2022]
Abstract
The lack of pharmaceutical targets available to treat patients with calcific aortic valve disease (CAVD) necessitates further research into the specific mechanisms of the disease. The significant changes that occur to the aortic valves extracellular matrix (ECM) during the progression of CAVD suggests that these proteins may play an important role in calcification. Exploring the relationship between valve interstitial cells (VICs) and the ECM may lead to a better understand of CAVD mechanisms and potential pharmaceutical targets. In this study, we look at the effect of two ECM components, collagen and hyaluronic acid (HA), on the mineralization of VICs within the context of a two-dimensional, polyacrylamide (PAAM) model system. Using a novel, nondestructive imaging technique, we were able to track calcific nodule development in culture systems over a 3-wk time frame. We saw a significant increase in the size of the nodules grown on HA PAAM gels as compared with collagen PAAM gels, suggesting that HA has a direct effect on mineralization. Directly looking at the two known receptors of HA, CD44 and receptor for HA-mediated motility (RHAMM), and using siRNA knockdown revealed that a decrease in CD44 expression resulted in a reduction of calcification. A decrease in CD44, through siRNA knockdown, reduces mineralization on HA PAAM gels, suggesting a potential new target for CAVD treatment. NEW & NOTEWORTHY Our in vitro model of calcific aortic valve disease shows an interaction between the hyaluronic acid binding protein CD44 with the osteogenic factor OPN as a potential mechanism of aortic valve calcification. Using siRNA knockdown of CD44, we show an upregulation of OPN expression with a decrease in overall mineralization.
Collapse
Affiliation(s)
- Lauren Baugh
- Department of Biomedical Engineering, Tufts University , Medford, Massachusetts
| | - Matthew C Watson
- Department of Biomedical Engineering, Tufts University , Medford, Massachusetts
- Department of Mechanical Engineering, Tufts University , Medford, Massachusetts
| | - Erica C Kemmerling
- Department of Mechanical Engineering, Tufts University , Medford, Massachusetts
| | - Philip W Hinds
- Cellular, Molecular, and Developmental Biology Program, Sackler School for Graduate Biomedical Sciences, Tufts University School of Medicine , Boston, Massachusetts
| | - Gordon S Huggins
- Molecular Cardiology Research Center, Tufts Medical Center and Tufts University Sackler School for Graduate Biomedical Sciences , Boston, Massachusetts
| | - Lauren D Black
- Department of Biomedical Engineering, Tufts University , Medford, Massachusetts
- Cellular, Molecular, and Developmental Biology Program, Sackler School for Graduate Biomedical Sciences, Tufts University School of Medicine , Boston, Massachusetts
| |
Collapse
|
125
|
Toole BP. The CD147-HYALURONAN Axis in Cancer. Anat Rec (Hoboken) 2019; 303:1573-1583. [PMID: 31090215 DOI: 10.1002/ar.24147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/08/2018] [Accepted: 11/24/2018] [Indexed: 12/15/2022]
Abstract
CD147 (basigin; EMMPRIN), hyaluronan, and hyaluronan receptors (e.g., CD44) are intimately involved in several phenomena that underlie malignancy. A major avenue whereby they influence tumor progression is most likely their role in the characteristics of cancer stem cells (CSCs), subpopulations of tumor cells that exhibit chemoresistance, invasiveness, and potent tumorigenicity. Both CD147 and hyaluronan have been strongly implicated in chemoresistance and invasiveness, and may be drivers of CSC characteristics, since current evidence indicates that both are involved in epithelial-mesenchymal transition, a crucial process in the acquisition of CSC properties. Hyaluronan is a prominent constituent of the tumor microenvironment whose interactions with cell surface receptors influence several signaling pathways that lead to chemoresistance and invasiveness. CD147 is an integral plasma membrane glycoprotein of the Ig superfamily and cofactor in assembly and activity of monocarboxylate transporters (MCTs). CD147 stimulates hyaluronan synthesis and interaction of hyaluronan with its receptors, in particular CD44 and LYVE-1, which in turn result in activation of multiprotein complexes containing members of the membrane-type matrix metalloproteinase, receptor tyrosine kinase, ABC drug transporter, or MCT families within lipid raft domains. Multivalent hyaluronan-receptor interactions are essential for formation or stabilization of these lipid raft complexes and for downstream signaling pathways or transporter activities. We conclude that stimulation of hyaluronan-receptor interactions by CD147 and the consequent activities of these complexes may be critical to the properties of CSCs and their role in malignancy. Anat Rec, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bryan P Toole
- Department of Regenerative Medicine & Cell Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
126
|
Yoshida GJ, Azuma A, Miura Y, Orimo A. Activated Fibroblast Program Orchestrates Tumor Initiation and Progression; Molecular Mechanisms and the Associated Therapeutic Strategies. Int J Mol Sci 2019; 20:ijms20092256. [PMID: 31067787 PMCID: PMC6539414 DOI: 10.3390/ijms20092256] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 02/07/2023] Open
Abstract
: Neoplastic epithelial cells coexist in carcinomas with various non-neoplastic stromal cells, together creating the tumor microenvironment. There is a growing interest in the cross-talk between tumor cells and stromal fibroblasts referred to as carcinoma-associated fibroblasts (CAFs), which are frequently present in human carcinomas. CAF populations extracted from different human carcinomas have been shown to possess the ability to influence the hallmarks of cancer. Indeed, several mechanisms underlying CAF-promoted tumorigenesis are elucidated. Activated fibroblasts in CAFs are characterized as alpha-smooth muscle actin-positive myofibroblasts and actin-negative fibroblasts, both of which are competent to support tumor growth and progression. There are, however, heterogeneous CAF populations presumably due to the diverse sources of their progenitors in the tumor-associated stroma. Thus, molecular markers allowing identification of bona fide CAF populations with tumor-promoting traits remain under investigation. CAFs and myofibroblasts in wound healing and fibrosis share biological properties and support epithelial cell growth, not only by remodeling the extracellular matrix, but also by producing numerous growth factors and inflammatory cytokines. Notably, accumulating evidence strongly suggests that anti-fibrosis agents suppress tumor development and progression. In this review, we highlight important tumor-promoting roles of CAFs based on their analogies with wound-derived myofibroblasts and discuss the potential therapeutic strategy targeting CAFs.
Collapse
Affiliation(s)
- Go J Yoshida
- Department of Molecular Pathogenesis, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Arata Azuma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 1138603, Japan.
| | - Yukiko Miura
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 1138603, Japan.
| | - Akira Orimo
- Department of Molecular Pathogenesis, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
127
|
Park U, Lee MS, Jeon J, Lee S, Hwang MP, Wang Y, Yang HS, Kim K. Coacervate-mediated exogenous growth factor delivery for scarless skin regeneration. Acta Biomater 2019; 90:179-191. [PMID: 30936036 DOI: 10.1016/j.actbio.2019.03.052] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/12/2019] [Accepted: 03/25/2019] [Indexed: 11/19/2022]
Abstract
Although there are numerous medical applications to recover damaged skin tissue, scarless wound healing is being extensively investigated to provide a better therapeutic outcome. The exogenous delivery of therapeutic growth factors (GFs) is one of the engineering strategies for skin regeneration. This study presents an exogenous GF delivery platform developed using coacervates (Coa), a tertiary complex of poly(ethylene argininyl aspartate diglyceride) (PEAD) polycation, heparin, and cargo GFs (i.e., transforming growth factor beta 3 (TGF-β3) and interleukin 10 (IL-10)). Coa encompasses the advantage of high biocompatibility, facile preparation, protection of cargo GFs, and sustained GF release. We therefore speculated that coacervate-mediated dual delivery of TGF-β3/IL-10 would exhibit synergistic effects for the reduction of scar formation during physiological wound healing. Our results indicate that the exogenous administration of dual GF via Coa enhances the proliferation and migration of skin-related cells. Gene expression profiles using RT-PCR revealed up-regulation of ECM formation at early stage of wound healing and down-regulation of scar-related genes at later stages. Furthermore, direct injection of the dual GF Coa into the edges of damaged skin in a rat skin wound defect model demonstrated accelerated wound closure and skin regeneration after 3 weeks. Histological evaluation and immunohistochemical staining also revealed enhanced formation of the epidermal layer along with facilitated angiogenesis following dual GF Coa delivery. Based on these results, we conclude that polycation-mediated Coa fabrication and exogenous dual GF delivery via the Coa platform effectively augments both the quantity and quality of regenerated skin tissues without scar formation. STATEMENT OF SIGNIFICANCE: This study was conducted to develop a simple administration platform for scarless skin regeneration using polycation-based coacervates with dual GFs. Both in vitro and in vivo studies were performed to confirm the therapeutic efficacy of this platform toward scarless wound healing. Our results demonstrate that the platform developed by us enhances the proliferation and migration of skin-related cells. Sequential modulation in various gene expression profiles suggests a balanced collagen-remodeling process by dual GFs. Furthermore, in vivo histological evaluation demonstrates that our technique enhances clear epidermis formation with less scab and thicker woven structure of collagen bundle, similar to that of a normal tissue. We propose that simple administration of dual GFs with Coa has the potential to be applied as a clinical approach for fundamental scarless skin regeneration.
Collapse
Affiliation(s)
- Uiseon Park
- Division of Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Min Suk Lee
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Jin Jeon
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Sangmin Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Mintai P Hwang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Hee Seok Yang
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.
| | - Kyobum Kim
- Division of Bioengineering, Incheon National University, Incheon, Republic of Korea.
| |
Collapse
|
128
|
Rylaarsdam LE, Johnecheck GN, Looyenga BD, Louters LL. GLUT1 is associated with sphingolipid-organized, cholesterol-independent domains in L929 mouse fibroblast cells. Biochimie 2019; 162:88-96. [PMID: 30980844 DOI: 10.1016/j.biochi.2019.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/08/2019] [Indexed: 12/19/2022]
Abstract
Glucose is a preferred metabolite in most mammalian cells, and proper regulation of uptake is critical for organism homeostasis. The glucose transporter 1 (GLUT1) is responsible for glucose uptake in a wide variety of cells and appears to be regulated in a tissue specific manner. Therefore, a better understanding of GLUT1 regulation within its various cellular environments is essential for developing therapeutic strategies to treat disorders associated with glucose homeostasis. Previous findings suggest that plasma membrane subdomains called lipid rafts may play a role in regulation of GLUT1 uptake activity. While studying this phenomenon in L929 mouse fibroblast cells, we observed that GLUT1 associates with a low density lipid microdomain distinct from traditionally-defined lipid rafts. These structures are not altered by cholesterol removal with methyl-β-cyclodextrin and lack resistance to cold Triton X-100 extraction. Our data indicate that the GLUT1-containing membrane microdomains in L929 cells, as well as GLUT1's basal activity, are instead sphingolipid-dependent, being sensitive to both myriocin and sphingomyelinase treatment. These microdomains appear to be organized primarily by their lipid composition, as disruption of the actin cytoskeleton or microtubules does not alter the association of GLUT1 with them. Furthermore, the association of GLUT1 with these microdomains appears not to require palmitoylation or glycosylation, as pharmacologic inhibition of these processes had no impact on GLUT1 density in membrane fractions. Importantly, we find no evidence that GLUT1 is actively translocated into or out of low density membrane fractions in response to acute activation in L929 cell.
Collapse
Affiliation(s)
- Lauren E Rylaarsdam
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI, 49546, USA
| | - Grace N Johnecheck
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI, 49546, USA
| | - Brendan D Looyenga
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI, 49546, USA
| | - Larry L Louters
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI, 49546, USA.
| |
Collapse
|
129
|
Ma R, Ren H, Xu B, Cheng Y, Gan L, Zhang R, Wu J, Qian J. PH20 Inhibits TGFβ1-Induced Differentiation of Perimysial Orbital Fibroblasts via Hyaluronan-CD44 Pathway in Thyroid-Associated Ophthalmopathy. ACTA ACUST UNITED AC 2019; 60:1431-1441. [PMID: 30947333 DOI: 10.1167/iovs.18-26268] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Ruiqi Ma
- Department of Ophthalmology, Fudan Eye & ENT Hospital, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Hui Ren
- Department of Ophthalmology, Fudan Eye & ENT Hospital, Shanghai, China
| | - Binbin Xu
- Department of Ophthalmology, Fudan Eye & ENT Hospital, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yun Cheng
- Department of Ophthalmology, Fudan Eye & ENT Hospital, Shanghai, China
| | - Lu Gan
- Department of Ophthalmology, Fudan Eye & ENT Hospital, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Rui Zhang
- Department of Ophthalmology, Fudan Eye & ENT Hospital, Shanghai, China
| | - Jihong Wu
- Department of Ophthalmology, Fudan Eye & ENT Hospital, Shanghai, China
| | - Jiang Qian
- Department of Ophthalmology, Fudan Eye & ENT Hospital, Shanghai, China
| |
Collapse
|
130
|
Gupta S, Varshney B, Chatterjee S, Ray K. Somatic ERK activation during transit amplification is essential for maintaining the synchrony of germline divisions in Drosophila testis. Open Biol 2019; 8:rsob.180033. [PMID: 30045884 PMCID: PMC6070716 DOI: 10.1098/rsob.180033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 06/28/2018] [Indexed: 12/23/2022] Open
Abstract
Transit amplification (TA) of progenitor cells maintains tissue homeostasis by balancing proliferation and differentiation. In Drosophila testis, the germline proliferation is tightly regulated by factors present in both the germline and the neighbouring somatic cyst cells (SCCs). Although the exact mechanism is unclear, the epidermal growth factor receptor (EGFR) activation in SCCs has been reported to control spermatogonial divisions within a cyst, through downstream activations of Rac1-dependent pathways. Here, we report that somatic activation of the mitogen-activated protein kinase (Rolled/ERK) downstream of EGFR is required to synchronize the mitotic divisions and regulate the transition to meiosis. The process operates independently of the Bag-of-marble activity in the germline. Also, the integrity of the somatic cyst enclosure is inessential for this purpose. Together, these results suggest that synchronization of germ-cell divisions through somatic activation of distinct ERK-downstream targets independently regulates TA and subsequent differentiation of neighbouring germline cells.
Collapse
Affiliation(s)
- Samir Gupta
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Bhavana Varshney
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Shambhabi Chatterjee
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Krishanu Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| |
Collapse
|
131
|
HIV-1 Protein gp120 Induces Mouse Lung Fibroblast-to-Myofibroblast Transdifferentiation via CXCR4 Activation. Am J Med Sci 2019; 357:483-491. [PMID: 31000424 DOI: 10.1016/j.amjms.2019.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/09/2019] [Accepted: 03/14/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Individuals with HIV have ∼2-fold increased risk of developing pulmonary fibrosis. The mechanism(s) by which this occurs has yet to be determined. HIV-1 protein gp120 activates CXCR4 in the lymphocyte, promoting a variety of intracellular signaling pathways including those common to TGFβ1 associated with lung fibroblast-to-myofibroblast transdifferentiation. We hypothesized that gp120 promotes pulmonary fibrotic changes via activation of CXCR4 in the lung fibroblast. METHODS Mouse primary lung fibroblasts (PLFs) were cultured ± gp120, then analyzed for α-SMA expression and stress fiber formation. In parallel, PLFs were cultured ± gp120 ± AMD3100 (a CXCR4 antagonist), and α-SMA, pan and phospho-Akt, and total and phospho-MAPK (or ERK1/2) protein expression was quantified. Finally, lungs and PLFs from wild-type and HIV-1 transgenic mice were analyzed for hydroxyproline and α-SMA content. RESULTS gp120 treatment increased α-SMA expression and myofibroblast differentiation in PLFs. gp120 treatment activated phosphorylation of ERK1/2, but not PI3K-Akt. Pretreatment with AMD3100 inhibited gp120-induced ERK1/2 phosphorylation and gp120-induced α-SMA expression. In parallel, there was a significant increase in hydroxyproline content in lungs from older HIV-1 transgenic mice and a >3-fold increase in α-SMA expression in PLFs isolated from HIV-1 transgenic mice. CONCLUSIONS gp120 induces α-SMA expression and fibroblast-to-myofibroblast transdifferentiation by activating the CXCR4-ERK1/2 signaling pathway in mouse PLFs. Lungs of older HIV-1 transgenic mice contain higher hydroxyproline content and their PLFs have a striking increase in α-SMA expression. These results suggest a mechanism by which individuals with HIV are at increased risk of developing pulmonary fibrotic changes as they age.
Collapse
|
132
|
Rosenberg JH, Werner JH, Plitt GD, Noble VV, Spring JT, Stephens BA, Siddique A, Merritt-Genore HL, Moulton MJ, Agrawal DK. Immunopathogenesis and biomarkers of recurrent atrial fibrillation following ablation therapy in patients with preexisting atrial fibrillation. Expert Rev Cardiovasc Ther 2019; 17:193-207. [PMID: 30580643 PMCID: PMC6386629 DOI: 10.1080/14779072.2019.1562902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Recurrent atrial fibrillation (RAF) following ablation therapy occurs in about 50% of patients. The pathogenesis of RAF is unknown, but is believed to be driven by atrial remodeling in the setting of background inflammation. Structural, electrophysiological and mechanical remodeling has been associated with atrial fibrillation (AF). Inflammation and fibrotic remodeling are the major factors perpetuating AF, as mediators released from the atrial tissues and cardiomyocytes due to mechanical and surgical injury could initiate the inflammatory process. In this article, we have critically reviewed the key mediators that may serve as potential biomarkers to predict RAF. Areas covered: Damage associated molecular patterns, heat shock proteins, inflammatory cytokines, non-inflammatory markers, markers of inflammatory cell activity, and markers of collagen deposition and metabolism are evaluated as potential biomarkers with molecular treatment options in RAF. Expert commentary: Establishing biomarkers to predict RAF could be useful in reducing morbidity and mortality. Investigations into the role of DAMPs participating in a sterile immune response may provide greater insight into the pathogenesis of RAF. Markers evaluating immune cell activity, collagen deposition, and levels of heat shock proteins show the greatest promise as potential biomarkers to predict RAF and develop novel therapies.
Collapse
Affiliation(s)
- John H Rosenberg
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE USA
| | - John H Werner
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE USA
| | - Gilman D Plitt
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE USA
| | - Victoria V Noble
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE USA
| | - Jordan T Spring
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE USA
| | - Brooke A Stephens
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE USA
| | - Aleem Siddique
- Department of Cardiothoracic Surgery, University of Nebraska Medical Center, Omaha, NE USA
| | | | - Michael J Moulton
- Department of Cardiothoracic Surgery, University of Nebraska Medical Center, Omaha, NE USA
| | - Devendra K Agrawal
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE USA
| |
Collapse
|
133
|
Gorski DJ, Petz A, Reichert C, Twarock S, Grandoch M, Fischer JW. Cardiac fibroblast activation and hyaluronan synthesis in response to hyperglycemia and diet-induced insulin resistance. Sci Rep 2019; 9:1827. [PMID: 30755628 PMCID: PMC6372628 DOI: 10.1038/s41598-018-36140-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/16/2018] [Indexed: 12/14/2022] Open
Abstract
Diabetic patients are at a greater risk of heart failure due to diabetic cardiomyopathy and worsened outcome post-myocardial infarction. While the molecular mechanisms remain unclear, fibrosis and chronic inflammation are common characteristics of both conditions. Diabetes mellitus (types I and II) results in excessive hyaluronan (HA) deposition in vivo, and hyperglycemia stimulates HA synthesis for several cell types in vitro. HA-rich extracellular matrix contributes to fibrotic, hyperplastic and inflammatory disease progression. We hypothesized that excessive hyperglycemia-driven HA accumulation may contribute to pathological fibroblast activation and fibrotic remodelling in diabetic patients. Therefore, we analysed the impact of both hyperglycemia and diet-induced obesity and insulin resistance on HA matrix formation and cardiac fibroblast activation. Here we report that cardiac fibroblasts isolated from mice on a diabetogenic diet acquire pro-fibrotic gene expression without a concomitant increase in HA matrix deposition. Additionally, hyperglycemia alone does not stimulate HA synthesis or cardiac fibroblast activation in vitro, suggesting that the direct effect of hyperglycemia on fibroblasts is not the primary driver of fibrotic remodelling in cardiac diabetic maladaptation.
Collapse
Affiliation(s)
- Daniel J Gorski
- Institut für Pharmakologie und Klinische Pharmakologie, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Anne Petz
- Institut für Pharmakologie und Klinische Pharmakologie, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christina Reichert
- Institut für Pharmakologie und Klinische Pharmakologie, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sören Twarock
- Institut für Pharmakologie und Klinische Pharmakologie, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Maria Grandoch
- Institut für Pharmakologie und Klinische Pharmakologie, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jens W Fischer
- Institut für Pharmakologie und Klinische Pharmakologie, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany. .,CARID, Cardiovascular Research Institute Düsseldorf, University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
134
|
Fede C, Stecco C, Angelini A, Fan C, Belluzzi E, Pozzuoli A, Ruggieri P, De Caro R. Variations in contents of hyaluronan in the peritumoral micro-environment of human chondrosarcoma. J Orthop Res 2019; 37:503-509. [PMID: 30444002 DOI: 10.1002/jor.24176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/30/2018] [Indexed: 02/04/2023]
Abstract
A concept consolidated in recent years is that tumor growth depends to a great extent on the micro-environment surrounding the tumor, which has a fundamental role in tumor progression and in determining the effectiveness of therapies. Our analysis focuses on chondrosarcoma, the second primary malignant bone tumor, resistant to both chemotherapeutic and radiation therapy. We quantified hyaluronan, one of the main components of the extracellular matrix, with the aim of comparing its amount in the connective tissue surrounding the tumor with intra-tumoral tissue and healthy fascia of the same anatomic district, viewed as a health control. We demonstrate that hyaluronan increased significantly in the peritumoral stroma compared with the healthy fascia, which showed an average amount according to the physical characteristics of body districts by a mean value of 26.9 μg/g. In the peritumoral stroma, the mean hyaluronan content reached 132.6 μg/g (mean value of 63.2 μg/g). The p-value was less than 0.01, showing a highly significant statistical difference. Surprisingly, no significant differences were detected as a function of age, gender, or tumor grade. The levels of hyaluronan were comparable in peritumoral and tumor tissues, although there were differences depending on the state of necrosis. In addition, data on the expression of hyaluronic acid synthetase showed a decrease of about 50% in peritumoral and tumor tissues, indicating alterations in hyaluronan turnover and synthesis. This work demonstrates a variation in hyaluronan contents around the chondrosarcoma, likely correlated with the aggressiveness and resistance to chemotherapy of this tumors. Statement of Clinical Significance: Deeper knowledge about the composition of the peritumoral stroma, rich in extracellular matrix, will enhance better study and understanding of the metastatic potential of tumors and their prognostic indices. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:503-509, 2019.
Collapse
Affiliation(s)
- Caterina Fede
- Department of Neuroscience, Anatomy Institute, University of Padova, via Gabelli 65, Padova 35121, Italy
| | - Carla Stecco
- Department of Neuroscience, Anatomy Institute, University of Padova, via Gabelli 65, Padova 35121, Italy
| | - Andrea Angelini
- Department of Orthopedics and Orthopedic Oncology, University of Padova, via Giustiniani 2, Padova 35121, Italy
| | - Chenglei Fan
- Department of Neuroscience, Anatomy Institute, University of Padova, via Gabelli 65, Padova 35121, Italy
| | - Elisa Belluzzi
- Department of Orthopedics and Orthopedic Oncology, University of Padova, via Giustiniani 2, Padova 35121, Italy
| | - Assunta Pozzuoli
- Department of Orthopedics and Orthopedic Oncology, University of Padova, via Giustiniani 2, Padova 35121, Italy
| | - Pietro Ruggieri
- Department of Orthopedics and Orthopedic Oncology, University of Padova, via Giustiniani 2, Padova 35121, Italy
| | - Raffaele De Caro
- Department of Neuroscience, Anatomy Institute, University of Padova, via Gabelli 65, Padova 35121, Italy
| |
Collapse
|
135
|
Doridot L, Jeljeli M, Chêne C, Batteux F. Implication of oxidative stress in the pathogenesis of systemic sclerosis via inflammation, autoimmunity and fibrosis. Redox Biol 2019; 25:101122. [PMID: 30737171 PMCID: PMC6859527 DOI: 10.1016/j.redox.2019.101122] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/31/2022] Open
Abstract
Systemic sclerosis is an autoimmune disorder characterized by inflammation and a progressive fibrosis affecting the skin and visceral organs. Over the last two decades, it became clear that oxidative stress plays a key role in its pathogenesis. In this review, we highlighted the role of ROS in the various pathological components of systemic sclerosis, namely the inflammatory, the autoimmune and the fibrotic processes. We also discussed how these pathological processes can induce ROS overproduction, thus maintaining a vicious circle. Finally, we summarized the therapeutic approaches targeting oxidative stress tested in systemic sclerosis, in cells, animal models and patients.
Collapse
Affiliation(s)
- Ludivine Doridot
- Inserm, U1016, Institut Cochin, Paris, France; Cnrs, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, France.
| | - Mohamed Jeljeli
- Inserm, U1016, Institut Cochin, Paris, France; Cnrs, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, France; Department of Immunology, Cochin Teaching Hospital, AP-HP, 27, rue du faubourg Saint-Jacques, F75014, Paris, France
| | | | - Frédéric Batteux
- Inserm, U1016, Institut Cochin, Paris, France; Cnrs, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, France; Department of Immunology, Cochin Teaching Hospital, AP-HP, 27, rue du faubourg Saint-Jacques, F75014, Paris, France
| |
Collapse
|
136
|
Chen DD, Ji JA, Yan HC, Huang GH, Fang XJ. Effect of CD44st and HER2 expression on the postoperative prognosis of breast cancer patients. Onco Targets Ther 2019; 12:577-585. [PMID: 30697055 PMCID: PMC6339464 DOI: 10.2147/ott.s180972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objective CD44st is a member of the CD44 family; abnormal expression of some CD44 isoforms are closely associated with axillary lymph node metastasis, cancer progression, and patients’ prognosis. The objective of this study is to investigate the correlation between the expression of CD44st and HER2 in breast cancer and the effect on patients’ prognosis. Methods Primers were designed to target the CD44st mRNA (Gene Bank No FJ216964) which has been newly identified in a drug-resistant breast cancer cell line. The expression of CD44st and HER2 mRNA and proteins in cancerous and paracancerous tissue of postoperative breast cancer patients was detected and compared. Tissue samples were obtained from 102 cases of invasive ductal carcinoma, 19 cases of intraductal carcinoma, and 11 cases of medullary carcinoma. The correlation between CD44st and HER2 expression and clinical pathological features was examined. Results The expression rate of CD44st mRNA and protein in breast cancer tissue was 64.4% (85/132), while HER2 mRNA and protein was expressed in 22.0% (29/106) of the samples. The expression of CD44st and HER2 were low in paracancerous tissue. In breast cancer tissue, the expression rate of HER2 mRNA and protein in the CD44st-positive group was 28.2% (24/85), and 10.6% (5/47) in the CD44st-negative group. This difference was statistically significant (P=0.015). Sequencing analysis showed that the amplified CD44st gene in this study was the same as that which was previously discovered in the drug-resistant breast cancer cell line. A linear correlation was found between the expression of CD44st and HER2 (r=0.972, r2=0.945, F=2,213.51, P<0.001). The expression of CD44st and HER2 was also closely associated with luminal cancer subtypes, lymph node metastasis, and TNM stage (P<0.05), but not associated with age, pathological type, or tumor size (P>0.05). The median overall survival in the CD44st high-expression group was 51.85 months (95% CI: 48.48–55.22), which was significantly shorter than that in the CD44st low-expression group (57.61 months; 95% CI: 55.54–59.68, P=0.032). Conclusion CD44st is closely related to the expression of HER2. The expression of CD44st affects patient prognosis and is associated with lymph node metastasis, TNM staging, and molecular subtyping.
Collapse
Affiliation(s)
- Dan Dan Chen
- Department of Oncology, The Second People's Hospital of Lianyungang (Lianyungang Hospital affiliated to Bengbu Medical College), Lianyungang, Jiangsu 222000, China, ;
| | - Jun An Ji
- Department of Medical Oncology, The Gan Yu District Hospital of Lianyungang, Lianyungang, Jiangsu 222000, China
| | - Hai Cui Yan
- Department of Oncology, The Second People's Hospital of Lianyungang (Lianyungang Hospital affiliated to Bengbu Medical College), Lianyungang, Jiangsu 222000, China, ;
| | - Guan Hong Huang
- Department of Oncology, The Second People's Hospital of Lianyungang (Lianyungang Hospital affiliated to Bengbu Medical College), Lianyungang, Jiangsu 222000, China, ;
| | - Xin Jian Fang
- Department of Oncology, The Second People's Hospital of Lianyungang (Lianyungang Hospital affiliated to Bengbu Medical College), Lianyungang, Jiangsu 222000, China, ;
| |
Collapse
|
137
|
Govindaraju P, Todd L, Shetye S, Monslow J, Puré E. CD44-dependent inflammation, fibrogenesis, and collagenolysis regulates extracellular matrix remodeling and tensile strength during cutaneous wound healing. Matrix Biol 2019; 75-76:314-330. [PMID: 29894820 PMCID: PMC6286871 DOI: 10.1016/j.matbio.2018.06.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/21/2018] [Accepted: 06/08/2018] [Indexed: 12/19/2022]
Abstract
Cutaneous wound healing consists of three main phases: inflammation, re-epithelialization, and tissue remodeling. During normal wound healing, these processes are tightly regulated to allow restoration of skin function and biomechanics. In many instances, healing leads to an excess accumulation of fibrillar collagen (the principal protein found in the extracellular matrix - ECM), and the formation of scar tissue, which has compromised biomechanics, tested using ramp to failure tests, compared to normal skin (Corr and Hart, 2013 [1]). Alterations in collagen accumulation and architecture have been attributed to the reduced tensile strength found in scar tissue (Brenda et al., 1999; Eleswarapu et al., 2011). Defining mechanisms that govern cellular functionality and ECM remodeling are vital to understanding normal versus pathological healing and developing approaches to prevent scarring. CD44 is a cell surface adhesion receptor expressed on nearly all cell types present in dermis. Although CD44 has been implicated in an array of inflammatory and fibrotic processes such as leukocyte recruitment, T-cell extravasation, and hyaluronic acid (the principal glycosaminoglycan found in the ECM) metabolism, the role of CD44 in cutaneous wound healing and scarring remains unknown. We demonstrate that in an excisional biopsy punch wound healing model, CD44-null mice have increased inflammatory and reduced fibrogenic responses during early phases of wound healing. At wound closure, CD44-null mice exhibit reduced collagen degradation leading to increased accumulation of fibrillar collagen, which persists after wound closure leading to reduced tensile strength resulting in a more severe scarring phenotype compared to WT mice. These data indicate that CD44 plays a previously unknown role in fibrillar collagen accumulation and wound healing during the injury response.
Collapse
Affiliation(s)
- Priya Govindaraju
- Department of Biomedical Sciences of the University of Pennsylvania, Philadelphia, PA, United States of America; Pharmacology Graduate Group of the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Leslie Todd
- Department of Biomedical Sciences of the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Snehal Shetye
- McKay Orthopaedic Research Laboratory of the University of Pennsylvania, Philadelphia, PA, United States of America
| | - James Monslow
- Department of Biomedical Sciences of the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Ellen Puré
- Department of Biomedical Sciences of the University of Pennsylvania, Philadelphia, PA, United States of America; Pharmacology Graduate Group of the University of Pennsylvania, Philadelphia, PA, United States of America.
| |
Collapse
|
138
|
Liu S, Hou H, Zhang P, Wu Y, He X, Li H, Yan N. Sphingomyelin synthase 1 regulates the epithelial‑to‑mesenchymal transition mediated by the TGF‑β/Smad pathway in MDA‑MB‑231 cells. Mol Med Rep 2018; 19:1159-1167. [PMID: 30535436 PMCID: PMC6323219 DOI: 10.3892/mmr.2018.9722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/06/2018] [Indexed: 12/25/2022] Open
Abstract
Breast cancer is the most common cancer in women and a leading cause of cancer‑associated mortalities in the world. Epithelial‑to‑mesenchymal transition (EMT) serves an important role in the process of metastasis and invasive ability in cancer cells, and transforming growth factor β1 (TGF‑β1) have been investigated for promoting EMT. However, in the present study, the role of the sphingomyelin synthase 1 (SMS1) in TGF‑β1‑induced EMT development was investigated. Firstly, bioinformatics analysis demonstrated that the overexpression of SMS1 negatively regulated the TGFβ receptor I (TβRI) level of expression. Subsequently, the expression of SMS1 was decreased, whereas, SMS2 had no significant difference when MDA‑MB‑231 cells were treated by TGF‑β1 for 72 h. Furthermore, the present study constructed an overexpression cells model of SMS1 and these cells were treated by TGF‑β1. These results demonstrated that overexpression of SMS1 inhibited TGF‑β1‑induced EMT and the migration and invasion of MDA‑MB‑231 cells, increasing the expression of E‑cadherin while decreasing the expression of vimentin. Furthermore, the present study further confirmed that SMS1 overexpression could decrease TβRI expression levels and blocked smad family member 2 phosphorylation. Overall, the present results suggested that SMS1 could inhibit EMT and the migration and invasion of MDA‑MB‑231 cells via TGF‑β/Smad signaling pathway.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Huan Hou
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Panpan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yifan Wu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xuanhong He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hua Li
- Department of Biochemistry and Molecular Biology, Centre of Experimental Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Nianlong Yan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
139
|
Fernández S, Córdoba M. Hyaluronic acid-induced capacitation involves protein kinase C and tyrosine kinase activity modulation with a lower oxidative metabolism in cryopreserved bull sperm. Theriogenology 2018; 122:68-73. [DOI: 10.1016/j.theriogenology.2018.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 10/28/2022]
|
140
|
Johnson P, Arif AA, Lee-Sayer SSM, Dong Y. Hyaluronan and Its Interactions With Immune Cells in the Healthy and Inflamed Lung. Front Immunol 2018; 9:2787. [PMID: 30555472 PMCID: PMC6281886 DOI: 10.3389/fimmu.2018.02787] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022] Open
Abstract
Hyaluronan is a hygroscopic glycosaminoglycan that contributes to both extracellular and pericellular matrices. While the production of hyaluronan is essential for mammalian development, less is known about its interaction and function with immune cells. Here we review what is known about hyaluronan in the lung and how it impacts immune cells, both at homeostasis and during lung inflammation and fibrosis. In the healthy lung, alveolar macrophages provide the first line of defense and play important roles in immunosurveillance and lipid surfactant homeostasis. Alveolar macrophages are surrounded by a coat of hyaluronan that is bound by CD44, a major hyaluronan receptor on immune cells, and this interaction contributes to their survival and the maintenance of normal alveolar macrophage numbers. Alveolar macrophages are conditioned by the alveolar environment to be immunosuppressive, and can phagocytose particulates without alerting an immune response. However, during acute lung infection or injury, an inflammatory immune response is triggered. Hyaluronan levels in the lung are rapidly increased and peak with maximum leukocyte infiltration, suggesting a role for hyaluronan in facilitating leukocyte access to the injury site. Hyaluronan can also be bound by hyaladherins (hyaluronan binding proteins), which create a provisional matrix to facilitate tissue repair. During the subsequent remodeling process hyaluronan concentrations decline and levels return to baseline as homeostasis is restored. In chronic lung diseases, the inflammatory and/or repair phases persist, leading to sustained high levels of hyaluronan, accumulation of associated immune cells and an inability to resolve the inflammatory response.
Collapse
Affiliation(s)
- Pauline Johnson
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Arif A Arif
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Sally S M Lee-Sayer
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Yifei Dong
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
141
|
Bucur M, Dinca O, Vladan C, Popp C, Nichita L, Cioplea M, Stînga P, Mustatea P, Zurac S, Ionescu E. Variation in Expression of Inflammation-Related Signaling Molecules with Profibrotic and Antifibrotic Effects in Cutaneous and Oral Mucosa Scars. J Immunol Res 2018; 2018:5196023. [PMID: 30622976 PMCID: PMC6304192 DOI: 10.1155/2018/5196023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/06/2018] [Accepted: 10/11/2018] [Indexed: 01/08/2023] Open
Abstract
Wound healing is a complex biologic process evolving in three phases: inflammation, proliferation, and tissue remodeling controlled by numerous growth factors and cytokines. Oral mucosa wounds heal with significantly less important scars with less numerous macrophages and mast cells and more numerous myofibroblasts than cutaneous counterparts. We analyzed 32 cutaneous and 32 oral mucosa scars for TGFbeta1, TGFbeta2, TGFbeta3, TNFalpha, PDGF BB and FGF1 expression in mesenchymal cells, endothelial cells, macrophages, and multinucleated giant cells. We identified differences in the expression of profibrotic and antifibrotic factors in oral mucosa and skin scars; TGFbeta2 was positive in cutaneous multinucleated giant cells, TNFalpha was positive in cutaneous macrophages, and both were negative in oral mucosa while TGFbeta3 was positive in oral macrophages and mostly negative in cutaneous ones. PDGF BB and FGF1 were positive in oral endothelial cells and oral macrophages and negative in macrophages with opposite positivity pattern in cutaneous scars. Based on these findings, macrophage seems to be the key player in modulating pro- and antifibrotic processes in wound regeneration.
Collapse
Affiliation(s)
- Mihai Bucur
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- Department of OroMaxilloFacial Surgery, Clinical Hospital of OroMaxilloFacial Surgery Prof. Dr. Dan Theodorescu, 17 Calea Plevnei, 010221 Bucharest, Romania
| | - Octavian Dinca
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- Department of OroMaxilloFacial Surgery, Clinical Hospital of OroMaxilloFacial Surgery Prof. Dr. Dan Theodorescu, 17 Calea Plevnei, 010221 Bucharest, Romania
| | - Cristian Vladan
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- Department of OroMaxilloFacial Surgery, Clinical Hospital of OroMaxilloFacial Surgery Prof. Dr. Dan Theodorescu, 17 Calea Plevnei, 010221 Bucharest, Romania
| | - Cristiana Popp
- Department of Pathology, Colentina University Hospital, 21 Stefan cel Mare, 020125 Bucharest, Romania
| | - Luciana Nichita
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- Department of Pathology, Colentina University Hospital, 21 Stefan cel Mare, 020125 Bucharest, Romania
| | - Mirela Cioplea
- Department of Pathology, Colentina University Hospital, 21 Stefan cel Mare, 020125 Bucharest, Romania
| | - Patricia Stînga
- Department of Pathology, Colentina University Hospital, 21 Stefan cel Mare, 020125 Bucharest, Romania
| | - Petronel Mustatea
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- Department of Surgery, Clinical Hospital “Dr. Ion Cantacuzino”, 5 Ioan Movila, 020475 Bucharest, Romania
| | - Sabina Zurac
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- Department of Pathology, Colentina University Hospital, 21 Stefan cel Mare, 020125 Bucharest, Romania
| | - Ecaterina Ionescu
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- Ambulatory of Orthodontics, Clinical Hospital of OroMaxilloFacial Surgery Prof. Dr. Dan Theodorescu, 17 Calea Plevnei, 010221 Bucharest, Romania
| |
Collapse
|
142
|
Chaigne B, Clary G, Le Gall M, Dumoitier N, Fernandez C, Lofek S, Chafey P, Moinzadeh P, Krieg T, Denton CP, Mouthon L. Proteomic Analysis of Human Scleroderma Fibroblasts Response to Transforming Growth Factor-ß. Proteomics Clin Appl 2018; 13:e1800069. [PMID: 30141531 DOI: 10.1002/prca.201800069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/14/2018] [Indexed: 01/28/2023]
Abstract
PURPOSE Systemic sclerosis (SSc) is characterized by autoimmunity, vasculopathy and fibrosis. Fibrosis is due to an activation of fibroblasts by the transforming growth factor-ß (TGF-ß). This study investigates the proteomic response of SSc fibroblasts to TGF-ß. EXPERIMENTAL DESIGN Skin fibroblasts from diffuse SSc patients and healthy controls (HC) are cultured with or without TGF-ß. Two-dimensional differential in-gel electrophoresis and mass spectrometry (MS) combined with Ingenuity Pathway analysis (IPA) and Panther/David software analyze proteins differentially expressed between groups. Real-time cell analyzer (RTCA) assesses fibroblast proliferation and viability. RESULTS Two-hundred-and-seventy-nine proteins are differentially expressed between groups. Principal component analysis shows significant differences between groups. IPA shows specific process networks such as actin cytoskeleton and integrin signaling. Panther and David software show predominant biological processes such as cellular and metabolic processes. TGF-ß enhances protein synthesis and protein pathways. IPA and RTCA suggest the involvement of epidermal growth factor receptor (EGFR) and phosphatidylinositol 3 kinase (Pi3K). CONCLUSIONS AND CLINICAL RELEVANCE That the proteome of fibroblasts differs between SSc patients and HC is confirmed, and it is demonstrated that fibroblasts exacerbate their proteomic phenotype upon stimulation with TGF-ß. EGFR and Pi3K are highlighted as proteins of interest in SSc fibroblasts.
Collapse
Affiliation(s)
- Benjamin Chaigne
- INSERM U1016, Institut Cochin, 75014 Paris, France.,CNRS UMR 8104, 75014 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France.,Service de Médecine Interne, Centre de Référence Maladies Systémiques Autoimmunes Rares, Vascularites Nécrosantes Et Sclérodermie Systémique, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France
| | - Guilhem Clary
- INSERM U1016, Institut Cochin, 75014 Paris, France.,CNRS UMR 8104, 75014 Paris, France.,Proteomic core facility of Paris Descartes University (3P5), 75014 Paris, France
| | - Morgane Le Gall
- INSERM U1016, Institut Cochin, 75014 Paris, France.,CNRS UMR 8104, 75014 Paris, France.,Proteomic core facility of Paris Descartes University (3P5), 75014 Paris, France
| | - Nicolas Dumoitier
- INSERM U1016, Institut Cochin, 75014 Paris, France.,CNRS UMR 8104, 75014 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Claire Fernandez
- INSERM U1016, Institut Cochin, 75014 Paris, France.,CNRS UMR 8104, 75014 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France.,Service de Médecine Interne, Centre de Référence Maladies Systémiques Autoimmunes Rares, Vascularites Nécrosantes Et Sclérodermie Systémique, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France
| | - Sebastien Lofek
- INSERM U1016, Institut Cochin, 75014 Paris, France.,CNRS UMR 8104, 75014 Paris, France
| | - Philippe Chafey
- INSERM U1016, Institut Cochin, 75014 Paris, France.,CNRS UMR 8104, 75014 Paris, France.,Proteomic core facility of Paris Descartes University (3P5), 75014 Paris, France
| | - Pia Moinzadeh
- Department of Dermatology, University of Cologne, 50937 Cologne, Germany
| | - Thomas Krieg
- Department of Dermatology, University of Cologne, 50937 Cologne, Germany
| | - Christopher P Denton
- Institute of Immunity and Transplantation, Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, NW3 2QG London, UK
| | - Luc Mouthon
- INSERM U1016, Institut Cochin, 75014 Paris, France.,CNRS UMR 8104, 75014 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France.,Service de Médecine Interne, Centre de Référence Maladies Systémiques Autoimmunes Rares, Vascularites Nécrosantes Et Sclérodermie Systémique, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France
| |
Collapse
|
143
|
Zent J, Guo LW. Signaling Mechanisms of Myofibroblastic Activation: Outside-in and Inside-Out. Cell Physiol Biochem 2018; 49:848-868. [PMID: 30184544 DOI: 10.1159/000493217] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/27/2018] [Indexed: 12/17/2022] Open
Abstract
Myofibroblasts are central mediators of fibrosis. Typically derived from resident fibroblasts, myofibroblasts represent a heterogeneous population of cells that are principally defined by acquired contractile function and high synthetic ability to produce extracellular matrix (ECM). Current literature sheds new light on the critical role of ECM signaling coupled with mechanotransduction in driving myofibroblastic activation. In particular, transforming growth factor β1 (TGF-β1) and extra domain A containing fibronectin (EDA-FN) are thought to be the primary ECM signaling mediators that form and also induce positive feedback loops. The outside-in and inside-out signaling circuits are transmitted and integrated by TGF-β receptors and integrins at the cell membrane, ultimately perpetuating the abundance and activities of TGF-β1 and EDA-FN in the ECM. In this review, we highlight these conceptual advances in understanding myofibroblastic activation, in hope of revealing its therapeutic anti-fibrotic implications.
Collapse
Affiliation(s)
- Joshua Zent
- Medical Scientist Training Program, the Ohio State University, Columbus, Columbus, Ohio, USA
| | - Lian-Wang Guo
- Department of Surgery, Department of Physiology & Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center, the Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
144
|
Enzo MV, Cattelan P, Rastrelli M, Tosi A, Rossi CR, Hladnik U, Segat D. Growth rate and myofibroblast differentiation of desmoid fibroblast-like cells are modulated by TGF-β signaling. Histochem Cell Biol 2018; 151:145-160. [DOI: 10.1007/s00418-018-1718-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2018] [Indexed: 02/06/2023]
|
145
|
Grune J, Kuebler WM. Is there a role for endothelin-1 receptor antagonists in the treatment of lung fibrosis associated with pulmonary hypertension? Eur Respir J 2018; 52:52/2/1801287. [PMID: 30166496 DOI: 10.1183/13993003.01287-2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/06/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Jana Grune
- Institute of Physiology, Charité - Universitaetsmedizin, Berlin, Germany
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitaetsmedizin, Berlin, Germany.,The Keenan Research Centre for Biomedical Science at St. Michael's, Toronto, ON, Canada.,Departments of Surgery and Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
146
|
Leng Y, Abdullah A, Wendt MK, Calve S. Hyaluronic acid, CD44 and RHAMM regulate myoblast behavior during embryogenesis. Matrix Biol 2018; 78-79:236-254. [PMID: 30130585 DOI: 10.1016/j.matbio.2018.08.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/24/2018] [Accepted: 08/17/2018] [Indexed: 12/17/2022]
Abstract
Hyaluronic acid (HA) is an extracellular matrix (ECM) component that has been shown to play a significant role in regulating muscle cell behavior during repair and regeneration. For instance, ECM remodeling after muscle injury involves an upregulation in HA expression that is coupled with skeletal muscle precursor cell recruitment. However, little is known about the role of HA during skeletal muscle development. To gain insight into the way in which HA mediates embryonic myogenesis, we first determined the spatial distribution and gene expression of CD44, RHAMM and other HA related proteins in embryonic day (E)10.5 to E12.5 murine forelimbs. While HA and CD44 expression remained high, RHAMM decreased at both the protein (via immunohistochemistry) and RNA (via qPCR) levels. Next, we determined that 4-methylumbelliferone-mediated knockdown of HA synthesis inhibited the migration and proliferation of E11.5/E12.5 forelimb-derived cells. Then, the influence of CD44 and RHAMM on myoblast and connective tissue cell behavior was investigated using antibodies against these receptors. Anti-RHAMM, but not anti-CD44, significantly decreased the total distance myogenic progenitors migrated over 24 h, whereas both inhibited connective tissue cell migration. In contrast, anti-CD44 inhibited the proliferation of connective tissue cells and muscle progenitors, but anti-RHAMM had no effect. However, when myoblasts and connective tissue cells were depleted of CD44 and RHAMM by shRNA, motility and proliferation were significantly inhibited in both cells indicating that blocking cell surface-localized CD44 and RHAMM does not have as pronounced effect as global shRNA-mediated depletion of these receptors. These results show, for the first time, the distribution and activity of RHAMM in the context of skeletal muscle. Furthermore, our data indicate that HA, through interactions with CD44 and RHAMM, promotes myogenic progenitor migration and proliferation. Confirmation of the role of HA and its receptors in directing myogenesis will be useful for the design of regenerative therapies that aim to promote the restoration of damaged or diseased muscle.
Collapse
Affiliation(s)
- Yue Leng
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States of America
| | - Ammara Abdullah
- Medicinal Chemistry and Molecular Pharmacology, Hansen Life Sciences Research Building, Purdue University, 201 S University St, West Lafayette, IN 47907, United States of America
| | - Michael K Wendt
- Medicinal Chemistry and Molecular Pharmacology, Hansen Life Sciences Research Building, Purdue University, 201 S University St, West Lafayette, IN 47907, United States of America
| | - Sarah Calve
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States of America.
| |
Collapse
|
147
|
Li YY, Zhou CX, Gao Y. Interaction between oral squamous cell carcinoma cells and fibroblasts through TGF-β1 mediated by podoplanin. Exp Cell Res 2018; 369:43-53. [PMID: 29719198 DOI: 10.1016/j.yexcr.2018.04.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/19/2018] [Accepted: 04/26/2018] [Indexed: 12/16/2022]
Abstract
Podoplanin is upregulated in the invasive front of oral squamous cell carcinoma (OSCC). Carcinoma-associated fibroblasts (CAFs) may mediate podoplanin expression. However, the role of podoplanin in OSCC cell and fibroblast interaction remains elusive. In the present study, we found that positive podoplanin expression in OSCC cells correlated with smooth muscle actin (α-SMA) expression in CAFs. Using CAFs and normal mucosal fibroblasts (NFs), we established indirect and direct co-culture systems mimicking the structure of OSCC. Podoplanin-overexpressing OSCC cells promoted NF activation; in direct co-culture, but not in indirect co-culture, podoplanin-overexpressing OSCC cells increased fibroblast invasion via matrix metalloproteinase 2 (MMP-2), MMP-14, and αv/β6 integrin receptor (ITGA5/ITGB6) signaling. CAFs also induced podoplanin expression through the transforming growth factor-β1 (TGF-β1)/Smad pathway. TGF-β1 increased the podoplanin-dependent activation of epidermal growth factor receptor (EGFR), AKT, and extracellular signal-regulated kinase (ERK) signaling. Additionally, CAFs promoted OSCC cell invasion by upregulating MMP-2 and MMP-14 expression in both indirect and direct co-culture. Taken together, our findings indicate that podoplanin regulates the interaction between OSCC cells and CAFs via the mutual paracrine effects of TGF-β1.
Collapse
Affiliation(s)
- Yao-Yin Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, 22 South Avenue Zhongguancun, Haidian District, Beijing 100081, PR China
| | - Chuan-Xiang Zhou
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, 22 South Avenue Zhongguancun, Haidian District, Beijing 100081, PR China.
| | - Yan Gao
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, 22 South Avenue Zhongguancun, Haidian District, Beijing 100081, PR China.
| |
Collapse
|
148
|
Lee J, Park H, Yoon H, Chung J, Cho S. CD34 stromal expression is inversely proportional to smooth muscle actin expression and extent of morphea. J Eur Acad Dermatol Venereol 2018; 32:2208-2216. [DOI: 10.1111/jdv.15120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/01/2018] [Indexed: 01/17/2023]
Affiliation(s)
- J.S. Lee
- Department of Dermatology; Seoul Metropolitan Government - Seoul National University Boramae Medical Center; Seoul Korea
- Institute of Human-Environmental Interface Biology; Medical Research Center; Seoul National University; Seoul Korea
- Department of Biomedical Science; Seoul National University Graduate School; Seoul Korea
| | - H.S. Park
- Department of Dermatology; Seoul Metropolitan Government - Seoul National University Boramae Medical Center; Seoul Korea
- Institute of Human-Environmental Interface Biology; Medical Research Center; Seoul National University; Seoul Korea
- Department of Biomedical Science; Seoul National University Graduate School; Seoul Korea
| | - H.S. Yoon
- Department of Dermatology; Seoul Metropolitan Government - Seoul National University Boramae Medical Center; Seoul Korea
- Institute of Human-Environmental Interface Biology; Medical Research Center; Seoul National University; Seoul Korea
- Department of Biomedical Science; Seoul National University Graduate School; Seoul Korea
| | - J.H. Chung
- Institute of Human-Environmental Interface Biology; Medical Research Center; Seoul National University; Seoul Korea
- Department of Biomedical Science; Seoul National University Graduate School; Seoul Korea
- Department of Dermatology; Seoul National University College of Medicine; Seoul Korea
| | - S. Cho
- Department of Dermatology; Seoul Metropolitan Government - Seoul National University Boramae Medical Center; Seoul Korea
- Institute of Human-Environmental Interface Biology; Medical Research Center; Seoul National University; Seoul Korea
- Department of Biomedical Science; Seoul National University Graduate School; Seoul Korea
- Department of Dermatology; Seoul National University College of Medicine; Seoul Korea
| |
Collapse
|
149
|
3D Cell Migration Studies for Chemotaxis on Microfluidic-Based Chips: A Comparison between Cardiac and Dermal Fibroblasts. Bioengineering (Basel) 2018; 5:bioengineering5020045. [PMID: 29895736 PMCID: PMC6027294 DOI: 10.3390/bioengineering5020045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/07/2018] [Accepted: 06/09/2018] [Indexed: 11/16/2022] Open
Abstract
Fibroblast migration to damaged zones in different tissues is crucial to regenerate and recuperate their functional activity. However, fibroblast migration patterns have hardly been studied in disease terms. Here, we study this fundamental process in dermal and cardiac fibroblasts by means of microfluidic-based experiments, which simulate a three-dimensional matrix in which fibroblasts are found in physiological conditions. Cardiac fibroblasts show a higher mean and effective speed, as well as greater contractile force, in comparison to dermal fibroblasts. In addition, we generate chemical gradients to study fibroblast response to platelet derived growth factor (PDGF) and transforming growth factor beta (TGF-β) gradients. Dermal fibroblasts were attracted to PDGF, whereas cardiac fibroblasts are not. Notwithstanding, cardiac fibroblasts increased their mean and effective velocity in the presence of TGF-β. Therefore, given that we observe that the application of these growth factors does not modify fibroblasts’ morphology, these alterations in the migration patterns may be due to an intracellular regulation.
Collapse
|
150
|
Hao Y, Ran Y, Lu B, Li J, Zhang J, Feng C, Fang J, Ma R, Qiao Z, Dai X, Xiong W, Liu J, Zhou Q, Hao J, Li R, Dai J. Therapeutic Effects of Human Umbilical Cord-Derived Mesenchymal Stem Cells on Canine Radiation-Induced Lung Injury. Int J Radiat Oncol Biol Phys 2018; 102:407-416. [PMID: 30191872 DOI: 10.1016/j.ijrobp.2018.05.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 05/02/2018] [Accepted: 05/25/2018] [Indexed: 12/27/2022]
Abstract
PURPOSE To investigate the effect of human umbilical cord-derived mesenchymal stem cell (MSC) transplantation on canine radiation-induced lung injury. METHODS AND MATERIALS Beagle dogs received localized 15-Gy x-ray radiation to the right lower lung to establish the model of radiation-induced lung injury. After 180 days, dogs were divided into 2 groups (4 per group). The MSC group received intratracheal MSC transplantation, and the saline group received the same volume of normal saline by lavage. The effect of MSC transplantation on lung injury was then evaluated 180 days after transplantation. RESULTS At 180 days after 15-Gy radiation, canine arterial blood oxygen partial pressure was significantly decreased, and the levels of hydroxyproline and transforming growth factor (TGF)-β in peripheral blood were significantly increased, whereas that of TGF-α was significantly decreased. Computed tomography evaluation revealed visible honeycomb shadows in the right middle and lower pulmonary pleurae. Blood oxygen partial pressure of the MSC group gradually increased over time, whereas the levels of hydroxyproline and TGF-β in the peripheral blood showed a decreasing trend; TGF-α levels gradually increased, which differed significantly from the results observed in the saline group. In addition, computed tomography and pathologic examination showed that the degree of lung injury in the MSC group was milder. The MSC group also showed significantly increased pulmonary superoxide dismutase levels and significantly decreased tumor necrosis factor-α, Interleukein-1, and hyaluronic acid levels. Further study confirmed that MSC transplantation inhibited the activation of TGF-β-Smad2/3 in lung tissues, and in vitro experiments showed that medium conditioned with MSCs effectively inhibited the increase in Smad2 and 3 levels induced by TGF-β1. CONCLUSION Canine radiation-induced lung injury could be observed at 180 days after radiation at 15 Gy. MSC transplantation can reduce oxidative stress, inflammatory reactions, and TGF-β-Smad2/3 pathway activation, thereby reducing lung injury.
Collapse
Affiliation(s)
- Yuhui Hao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China.
| | - Yonghong Ran
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Binghui Lu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Jiayin Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jiaojiao Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chunjing Feng
- Institute of Animals, Chinese Academy of Sciences, Beijing, China
| | - Jinhui Fang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ruoyu Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhihui Qiao
- Department of Respiratory Diseases, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaotian Dai
- Department of Respiratory Diseases, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wei Xiong
- Department of Respiratory Diseases, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jing Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Qi Zhou
- Institute of Animals, Chinese Academy of Sciences, Beijing, China
| | - Jie Hao
- Institute of Animals, Chinese Academy of Sciences, Beijing, China
| | - Rong Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Jianwu Dai
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|