101
|
Abstract
This review summarizes recent developments in our understanding of the molecular basis of platelet activation by two distinct types of surface receptor, the immunoglobulin GPVI, and the integrin alphaIIb beta3 (also known as GPIIbIIIa). These two classes of receptor signal through similar yet distinct tyrosine kinase-based signaling cascades leading to activation of phospholipase C gamma2. The significance of these signaling cascades in platelet adhesion and platelet aggregation at arterial rates of shear is discussed.
Collapse
Affiliation(s)
- S P Watson
- Division of Medical Sciences, Centre for Cardiovascular Sciences, Institute of Biomedical Research, The Medical School, University of Birmingham, Birmingham, UK.
| | | | | | | |
Collapse
|
102
|
Moroi M, Jung SM. Platelet glycoprotein VI: its structure and function. Thromb Res 2005; 114:221-33. [PMID: 15381385 DOI: 10.1016/j.thromres.2004.06.046] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 06/28/2004] [Accepted: 06/28/2004] [Indexed: 12/15/2022]
Abstract
Glycoprotein (GP) VI is a platelet membrane protein with a molecular weight of 62 kDa that was identified as a physiological collagen receptor from studies of patients deficient in this protein. GPVI-deficient platelets lacked specifically collagen-induced aggregation and the ability to form thrombi on a collagen surface under flow conditions, suggesting that GPVI makes an indispensable contribution to collagen-induced platelet activation. On the platelet surface, GPVI is present as a complex with the Fc receptor (FcR) gamma-chain, probably composed of two GPVI molecules and one FcR gamma-chain dimer. GPVI must form such a dimeric complex to exhibit high affinity binding to collagen. The GPVI-induced activation mechanism is initiated by tyrosine phosphorylation of the immunoreceptor tyrosine-based activation motif (ITAM) of the FcR gamma-chain, and then this signal is transduced to many related proteins, mainly by tyrosine phosphorylation. GPVI is widely recognized as a requisite factor for the formation of platelet aggregates on a collagen surface under blood flow. However, individuals with GPVI-deficient or null platelets do not exhibit any strong bleeding tendency. Analyzing this apparent dichotomy should provide us with a more precise understanding of the mechanism of thrombus formation.
Collapse
Affiliation(s)
- Masaaki Moroi
- Department of Protein Biochemistry, Institute of Life Science, Kurume University, 2432-3 Aikawa-machi, Kurume, Fukuoka 839-0861, Japan.
| | | |
Collapse
|
103
|
Abstract
Platelets perform a central role in haemostasis and thrombosis. They adhere to subendothelial collagens exposed at sites of blood vessel injury via the glycoprotein (GP) Ib-V-IX receptor complex, GPVI and integrin alpha(2)beta(1). These receptors perform distinct functions in the regulation of cell signalling involving non-receptor tyrosine kinases (e.g. Src, Fyn, Lyn, Syk and Btk), adaptor proteins, phospholipase C and lipid kinases such as phosphoinositide 3-kinase. They are also coupled to an increase in cytosolic calcium levels and protein kinase C activation, leading to the secretion of paracrine/autocrine platelet factors and an increase in integrin receptor affinities. Through the binding of plasma fibrinogen and von Willebrand Factor to integrin alpha(IIb)beta(3), a platelet thrombus is formed. Although increasing evidence indicates that each of the adhesion receptors GPIb-V-IX and GPVI and integrins alpha(2)beta(1) and alpha(IIb)beta(3) contribute to the signalling that regulates this process, the individual roles of each are only beginning to be dissected. By contrast, adhesion receptor signalling through platelet endothelial cell adhesion molecule 1 (PECAM-1) is implicated in the inhibition of platelet function and thrombus formation in the healthy circulation. Recent studies indicate that understanding of platelet adhesion signalling mechanisms might enable the development of new strategies to treat and prevent thrombosis.
Collapse
Affiliation(s)
- Jonathan M Gibbins
- School of Animal and Microbial Sciences, The University of Reading, Whiteknights, PO Box 228, Reading, Berkshire RG6 6AJ, UK.
| |
Collapse
|
104
|
Andrews RK, Berndt MC. Platelet physiology and thrombosis. Thromb Res 2005; 114:447-53. [PMID: 15507277 DOI: 10.1016/j.thromres.2004.07.020] [Citation(s) in RCA: 275] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Revised: 07/16/2004] [Accepted: 07/16/2004] [Indexed: 11/24/2022]
Abstract
Glycoprotein (GP) Ibalpha of the GPIb-IX-V complex and GPVI bind von Willebrand factor (vWF) and collagen, respectively, and are critical for the initial interaction of circulating platelets with the injured vessel wall under high shear conditions. These interactions act together to facilitate stable thrombus formation in vivo. Ligand binding to GPIb-IX-V of the leucine-rich repeat family or GPVI of the immunoglobulin superfamily initiates platelet activation, and inside-out activation of the platelet integrin, alphaIIbbeta3, that binds vWF or fibrinogen and mediates platelet aggregation. The binding site for GPIbalpha on vWF resides in the conserved A1 domain, encompassing the disulfide bond at Cys509-Cys695. This domain may be activated to bind platelet GPIbalpha under shear stress by anchoring of the downstream A3 domain to collagen and conformational distortion of the intervening A2 domain. The N-terminal, 282 residues, of GPIbalpha contains the binding site for vWF-A1, as well as the conserved A-type domain of the leukocyte integrin alphaMbeta2 (alphaM I domain) and P-selectin expressed on activated platelets or endothelial cells. Endothelial P-selectin also supports surface expression of vWF multimers, enabling platelet vessel wall interaction by at least two mechanisms. Recent evidence suggests GPVI that binds collagen, and GPIb-IX-V that binds collagen-bound vWF are physically associated on the platelet surface. This review will focus on the structure-function of primary platelet adhesion receptors, GPIb-IX-V and GPVI, and how they act together to regulate platelet thrombus formation in pathophysiology.
Collapse
Affiliation(s)
- Robert K Andrews
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168, Australia.
| | | |
Collapse
|
105
|
Gardiner EE, Arthur JF, Kahn ML, Berndt MC, Andrews RK. Regulation of platelet membrane levels of glycoprotein VI by a platelet-derived metalloproteinase. Blood 2004; 104:3611-7. [PMID: 15308568 DOI: 10.1182/blood-2004-04-1549] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Thrombosis can be initiated when activated platelets adhere to injured blood vessels via the interaction of subendothelial collagen with its platelet receptor, glycoprotein (GP) VI. Here we observed that incubation of platelets with convulxin, collagen, or collagen-related peptide (CRP) resulted in GPVI signaling-dependent loss of surface GPVI and the appearance of an approximately 55-kDa soluble fragment of GPVI as revealed by immunoblotting. Ethylenediaminetetraacetic acid (EDTA) or GM6001 (a metalloproteinase inhibitor with broad specificity) prevented this loss. In other receptor systems, calmodulin binding to membrane-proximal cytoplasmic sequences regulates metalloproteinase-mediated ectodomain shedding. In this regard, we have previously shown that calmodulin binds to a positively charged, membrane-proximal sequence within the cytoplasmic tail of GPVI. Incubation of platelets with calmodulin inhibitor W7 (150 μM) resulted in a time-dependent loss of GPVI from the platelet surface. Both EDTA and GM6001 prevented this loss. Surface plasmon resonance demonstrated that W7 specifically blocked the association of calmodulin with an immobilized synthetic peptide corresponding to the calmodulin-binding sequence of GPVI. These findings suggest that disruption of calmodulin binding to receptor cytoplasmic tails by agonist binding to the receptor triggers metalloproteinase-mediated loss of GPVI from the platelet surface. This process may represent a potential mechanism to regulate GPVI-dependent platelet adhesion.
Collapse
Affiliation(s)
- Elizabeth E Gardiner
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia, 3800.
| | | | | | | | | |
Collapse
|
106
|
Suzuki-Inoue K, Wilde JI, Andrews RK, Auger JM, Siraganian RP, Sekiya F, Rhee SG, Watson SP. Glycoproteins VI and Ib-IX-V stimulate tyrosine phosphorylation of tyrosine kinase Syk and phospholipase Cgamma2 at distinct sites. Biochem J 2004; 378:1023-9. [PMID: 14656219 PMCID: PMC1224016 DOI: 10.1042/bj20031430] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 11/25/2003] [Accepted: 12/05/2003] [Indexed: 11/17/2022]
Abstract
Glycoproteins GPVI and GPIb-IX-V stimulate robust tyrosine phosphorylation of Syk and PLCg2 (phospholipase Cg2) in washed platelets, but only the former stimulates pronounced activation of phospholipase. Using phospho-specific antibodies, we demonstrate that GPVI, but not GPIb-IX-V, stimulates significant tyrosine phosphorylation of Syk at the autophosphorylation site pY525/526, a marker of Syk activity. In addition, GPVI stimulates tyrosine phosphorylation of PLCg2 at Tyr753 and Tyr759, whereas GPIb-IX-V only induces significant phosphorylation at Tyr753. Both receptors stimulate tyrosine phosphorylation of Btk at the regulatory Tyr223 and Tyr551. Syk and Btk phosphorylate peptides from PLCg2 containing Tyr753 and Tyr759 respectively, suggesting that they may stimulate phosphorylation at these sites in phospholipase. Studies using PLCg2-deficient platelets demonstrated that phospholipase is not required for the activation of integrin aIIbb3 by GPIb-IX-V. Our results demonstrate fundamental differences between GPVI and GPIb-IX-V in the regulation of tyrosine phosphorylation of Syk and PLCg2 consistent with the functional impairment of phospholipase in signalling by GPIb-IX-V.
Collapse
Affiliation(s)
- Katsue Suzuki-Inoue
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Massberg S, Konrad I, Bültmann A, Schulz C, Münch G, Peluso M, Lorenz M, Schneider S, Besta F, Müller I, Hu B, Langer H, Kremmer E, Rudelius M, Heinzmann U, Ungerer M, Gawaz M. Soluble glycoprotein VI dimer inhibits platelet adhesion and aggregation to the injured vessel wall in vivo. FASEB J 2004; 18:397-9. [PMID: 14656994 DOI: 10.1096/fj.03-0464fje] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Platelet-collagen interactions play a fundamental role in the process of arterial thrombosis. The major platelet collagen receptor is the glycoprotein VI (GPVI). Here, we determined the effects of a soluble dimeric form of GPVI on platelet adhesion in vitro and in vivo. We fused the extracellular domain of GPVI with the human immunoglobulin Fc domain. The soluble dimeric form of GPVI (GPVI-Fc) specifically bound to immobilized collagen. Binding of GPVI-Fc to collagen was inhibited competitively by soluble GPVI-Fc, but not control Fc lacking the external GPVI domain. GPVI-Fc inhibited the adhesion of CHO cells that stably express human GPVI and of platelets on collagen and attenuated thrombus formation under shear conditions in vitro. To test the effects of GPVI-Fc in vivo, arterial thrombosis was induced in the mouse carotid artery, and platelet-vessel wall interactions were visualized by intravital fluorescence microscopy. Infusion of GPVI-Fc but not of control Fc virtually abolished stable arrest and aggregation of platelets following vascular injury. Importantly, GPVI-Fc but not control Fc, was detected at areas of vascular injury. These findings further substantiate the critical role of the collagen receptor GPVI in the initiation of thrombus formation at sites of vascular injury and identify soluble GPVI as a promising antithrombotic strategy.
Collapse
Affiliation(s)
- Steffen Massberg
- Klinikum rechts der Isar, 1. Medizinische Klinik, Technische Universität München, D-81675 München, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Horii K, Okuda D, Morita T, Mizuno H. Structural Characterization of EMS16, an Antagonist of Collagen Receptor (GPIa/IIa) from the Venom of Echis multisquamatus,. Biochemistry 2003; 42:12497-502. [PMID: 14580195 DOI: 10.1021/bi034890h] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Snake venoms contain a number of hemostatically active C-type lectin-like proteins (CLPs), which affect the blood coagulation system, endothelial cells, and platelets. CLPs have broad similarities in structure and possess distinct biological functions. EMS16, a CLP from Echis multisquamatus venom, which is a potent and selective inhibitor of the collagen receptor, glycoprotein Ia/IIa (integrin alpha2beta1), has been used in the present study to examine structure-function relationships in venom CLPs by X-ray crystallography. The structure of EMS16, determined at a resolution of 1.9 A, revealed a heterodimer involved with domain swapping of the central loop as observed in the structures of other CLPs. A part of the glycan was observed and identified as N-acetyl-D-glucosamine (GlcNAc) in the electron density map at Asn21 of subunit B, an expected glycosylation site. EMS16 had a unique, positively charged electrostatic potential patch on the concave surface that may qualify as a site for interaction with the I-domain of the glycoprotein Ia/IIa.
Collapse
Affiliation(s)
- Katsunori Horii
- Department of Biochemistry, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | |
Collapse
|
109
|
Bori-Sanz T, Inoue KS, Berndt MC, Watson SP, Tulasne D. Delineation of the region in the glycoprotein VI tail required for association with the Fc receptor gamma-chain. J Biol Chem 2003; 278:35914-22. [PMID: 12847105 DOI: 10.1074/jbc.m301826200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The glycoprotein VI (GPVI).Fc receptor gamma-chain (FcRgamma-chain) complex is the major activation receptor for collagen on platelets. GPVI cross-linking mediates activation through tyrosine phosphorylation of an ITAM (immunoreceptor tyrosine-based activation motif) in the FcR gamma-chain by Src family kinases. It has been previously shown that a transmembrane arginine and the cytoplasmic domain of GPVI are required for association with the FcR gamma-chain in immortalized cell lines. In this study, we have delineated the regions in the GPVI tail that promote binding to FcR gamma-chain and mediate functional responses to the snake venom convulxin by reconstitution of mutant forms of GPVI in RBL-2H3 cells. Sequential truncation of the cytoplasmic tail of GPVI revealed a major role for the basic region and a minor role for the juxtamembrane six amino acids in the association with FcR gamma-chain and functional responses to convulxin. Analysis of selective deletions in the GPVI tail supported this conclusion. In addition, we show that the proline-rich domain is required for optimal Ca2+ release, whereas it is dispensable for FcR gamma-chain association.
Collapse
Affiliation(s)
- Teresa Bori-Sanz
- Division of Medical Sciences, The Medical School Edgbaston, Birmingham B15 2TT, United Kingdom.
| | | | | | | | | |
Collapse
|
110
|
Suzuki-Inoue K, Inoue O, Frampton J, Watson SP. Murine GPVI stimulates weak integrin activation in PLCgamma2-/- platelets: involvement of PLCgamma1 and PI3-kinase. Blood 2003; 102:1367-73. [PMID: 12730118 DOI: 10.1182/blood-2003-01-0029] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Collagen stimulates platelet activation through a tyrosine kinase-based pathway downstream of the glycoprotein VI (GPVI)-Fc receptor (FcR) gamma-chain complex. Genetic ablation of FcR gamma-chain results in a complete inhibition of aggregation to collagen. In contrast, a steady increase in light transmission is induced by collagen in phospholipase Cgamma2-deficient (PLCgamma2-/-) platelets in a Born aggregometer, indicating a weak level of activation. This increase is inhibited partially in the presence of an alpha2beta1-blocking antibody or an alphaIIbbeta3 antagonist and completely by a combination of the 2 inhibitors. It is also abolished by the Src kinase inhibitor PP1 and reduced in the presence of the phosphatidylinositol (PI) 3-kinase inhibitor wortmannin. The GPVI-specific agonists convulxin and collagen-related peptide (CRP) also stimulate weak aggregation in PLCgamma2-/- platelets, which is inhibited by wortmannin and PP1. Collagen and CRP stimulate tyrosine phosphorylation of PLCgamma1 at its regulatory site, Tyr 783, in murine but not in human platelets through a Src kinase-dependent pathway. Adhesion of PLCgamma2-/- platelets to a collagen monolayer is severely reduced at a shear rate of 800 s-1, relative to controls, whereas it is abolished in FcR gamma-chain-/- platelets. These results provide strong evidence that engagement of GPVI stimulates limited integrin activation in PLCgamma2-/- platelets via PLCgamma1 and PI3-kinase.
Collapse
|
111
|
Abstract
At sites of vascular injury, platelets come into contact with subendothelial collagen, which triggers their activation and the formation of a hemostatic plug. Besides glycoprotein Ib (GPIb) and alphaIIbbeta3 integrin, which indirectly interact with collagen via von Willebrand factor (VWF), several collagen receptors have been identified on platelets, most notably alpha2beta1 integrin and the immunoglobulin (Ig) superfamily member GPVI. Within the last few years, major advances have been made in understanding platelet-collagen interactions including the molecular cloning of GPVI, the generation of mouse strains lacking individual collagen receptors, and the development of collagen receptor-specific antibodies and synthetic peptides. It is now recognized that platelet adhesion to collagen requires prior activation of integrins through "inside-out" signals generated by GPVI and reinforced by released second-wave mediators adenosine diphosphate (ADP) and thromboxane A2. These developments have led to revision of the original "2-site, 2-step" model, which now places GPVI in a central position in the complex processes of platelet tethering, activation, adhesion, aggregation, degranulation, and procoagulant activity on collagen. This review discusses these recent developments and proposes possible mechanisms for how GPVI acts in concert with other receptors and signaling pathways to initiate hemostasis and arterial thrombosis.
Collapse
Affiliation(s)
- Bernhard Nieswandt
- Department of Vascular Biology, Rudolf Virchow Center for Experimental Biomedicine Versbacher, Würzburg, Germany.
| | | |
Collapse
|
112
|
Crosby D, Poole AW. Physical and functional interaction between protein kinase C delta and Fyn tyrosine kinase in human platelets. J Biol Chem 2003; 278:24533-41. [PMID: 12721299 DOI: 10.1074/jbc.m301847200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
An increasing number of tyrosine kinases have been shown to associate with isoforms of the protein kinase C (PKC) family. Here, we show evidence for physical and functional interaction between PKCdelta and the Src family kinase Fyn in human platelets activated by alboaggregin-A, a snake venom capable of activating both GPIb-V-IX and GPVI adhesion receptors. This interaction involves phosphorylation of PKCdelta on tyrosine and is specific in that other isoforms of PKC, PKCepsilon and lambda, which also become tyrosine-phosphorylated, do not interact with Fyn. In addition, PKCdelta does not interact with other platelet-expressed tyrosine kinases Syk, Src, or Btk. Stimulation also leads to activation of both Fyn and PKCdelta and to serine phosphorylation of Fyn within a PKC consensus sequence. Alboaggregin-A-dependent activation of Fyn is blocked by bisindolylmaleimide I, suggesting a role for PKC isoforms in regulating Fyn activity. Platelet activation with alboaggregin-A induces translocation of the two kinases from cytoplasm to the plasma membrane of platelets, as observed by confocal immunofluorescence microscopy. Translocation of Fyn and PKCdelta are blocked by PP1 and bisindolylmaleimide I, showing a dependence upon Src and PKC kinase activities. Although PKC activity is required for translocation, it is not required for association between the two kinases, because this was not blocked by bisindolylmaleimide I. Rottlerin, which inhibited PKCdelta activity, did not block translocation of either PKCdelta or Fyn but potentiated platelet aggregation, 5-hydroxytryptamine secretion, and the calcium response induced by alboaggregin-A, indicating that this kinase plays a negative role in the control of these processes.
Collapse
Affiliation(s)
- David Crosby
- Department of Pharmacology, School of Medical Sciences, University Walk, Bristol BS8 1TD, United Kingdom
| | | |
Collapse
|
113
|
Joutsi-Korhonen L, Smethurst PA, Rankin A, Gray E, IJsseldijk M, Onley CM, Watkins NA, Williamson LM, Goodall AH, de Groot PG, Farndale RW, Ouwehand WH. The low-frequency allele of the platelet collagen signaling receptor glycoprotein VI is associated with reduced functional responses and expression. Blood 2003; 101:4372-9. [PMID: 12560230 DOI: 10.1182/blood-2002-08-2591] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interaction of platelets with collagen under conditions of blood flow is a multi-step process with tethering via glycoprotein IbIXV (GPIbIXV) over von Willebrand factor, adhesion by direct interaction with the integrin GPIaIIa, and signaling via GPVI. GPVI can be specifically agonized by cross-linked collagen-related peptide (CRP-XL), which results in a signaling cascade very similar to that evoked by native collagen. The GPVI gene has 2 common alleles that differ by 3 replacements in the glycosylated stem and 2 in the cytoplasmic domain. We used CRP-XL to elucidate the variation in responses observed in platelet function in different individuals. We observed a 3-fold difference in the response to CRP-XL in platelet aggregation when comparing platelets from 10 high-frequency allele homozygotes with 8 low-frequency ones (2-way analysis of variance [ANOVA], P <.0001). The difference in functional responses was reflected in fibrinogen binding and in downstream signaling events as measured by tyrosine phosphorylation, the expression of P-selectin, and the binding of annexin V and the generation of thrombin on the platelet surface (2-way ANOVA, P <.001). Platelets homozygous for the low-frequency allele tended to be less able to form a thrombus on a collagen surface in flowing whole blood or in the platelet function analyzer-100 (t test, P =.065 and P =.061, respectively). The functional difference was correlated to a difference in total and membrane-expressed GPVI measured by monoclonal and polyclonal antibodies. This study demonstrates for the first time that platelet function may be altered by allelic differences in GPVI.
Collapse
|
114
|
Cole VJ, Staton JM, Eikelboom JW, Hankey GJ, Yi Q, Shen Y, Berndt MC, Baker RI. Collagen platelet receptor polymorphisms integrin alpha2beta1 C807T and GPVI Q317L and risk of ischemic stroke. J Thromb Haemost 2003; 1:963-70. [PMID: 12871362 DOI: 10.1046/j.1538-7836.2003.00179.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several polymorphisms of integrin alpha2beta1 and glycoprotein (GP) VI that may modify platelet-collagen interactions or subsequent signaling have been described. We conducted a case-control study involving 180 stroke patients and 172 controls to determine whether the alpha2 C807T and GPVI Q317L polymorphisms were associated with an increased risk of ischemic stroke. We found no statistically significant differences in the distribution of alpha2 C807T and GPVI Q317L in patients and controls overall or after stratification by etiological subtype. The GPVI 317QQ genotype was found to be over-represented in a subgroup of patients >/=60 years compared to corresponding controls. However, this association did not remain significant after adjustment for other cardiovascular risk factors. Our results do not support a role for the integrin alpha2 C807T and GPVI Q317L polymorphisms in the development of first-ever ischemic stroke. However, larger studies are required to confirm this.
Collapse
Affiliation(s)
- V J Cole
- Thrombosis and Haemophilia Unit, Royal Perth Hospital, Perth, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Abstract
Ca2+ store depletion activates both Ca2+ selective and non-selective currents in endothelial cells. Recently, considerable progress has been made in understanding the molecular make-up and regulation of an endothelial cell thapsigargin-activated Ca2+ selective current, I(SOC). Indeed, I(SOC) is a relatively small inward Ca2+ current that exhibits an approximate +40mV reversal potential and is strongly inwardly rectifying. This current is sensitive to organization of the actin-based cytoskeleton. Transient receptor potential (TRP) proteins 1 and 4 (TRPC1 and TRPC4, respectively) each contribute to the molecular basis of I(SOC), although it is TRPC4 that appears to be tethered to the cytoskeleton through a dynamic interaction with protein 4.1. Activation of I(SOC) requires association between protein 4.1 and the actin-based cytoskeleton (mediated through spectrin), suggesting protein 4.1 mediates the physical communication between Ca2+ store depletion and channel activation. Thus, at present findings indicate a TRPC4-protein 4.1 physical linkage regulates I(SOC) activation following Ca2+ store depletion.
Collapse
Affiliation(s)
- Donna L Cioffi
- Department of Pharmacology, Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL 36688, USA
| | | | | |
Collapse
|
116
|
Locke D, Liu C, Peng X, Chen H, Kahn ML. Fc Rgamma -independent signaling by the platelet collagen receptor glycoprotein VI. J Biol Chem 2003; 278:15441-8. [PMID: 12594225 DOI: 10.1074/jbc.m212338200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The platelet collagen receptor glycoprotein VI (GPVI) is structurally homologous to multisubunit immune receptors and signals through the immune receptor adaptor Fc Rgamma. Multisubunit receptors are composed of specialized subunits thought to be dedicated exclusively to ligand binding or signal transduction. However, recent studies of the intracellular region of GPVI, a ligand-binding subunit, have suggested the existence of protein-protein interactions that could regulate receptor signaling. In the present study we have investigated the signaling role of the GPVI intracellular domain by stably expressing GPVI mutants in RBL-2H3 cells, a model system that accurately reproduces the GPVI signaling events observed in platelets. Studies of mutant GPVI receptor protein-protein interaction and calcium signaling reveal the existence of discrete domains within the receptor's intracellular tail that mediate interaction with Fc Rgamma, calmodulin, and Src family tyrosine kinases. These receptor interactions are modular and mediated by non-overlapping regions of the receptor transmembrane and intracellular domains. GPVI signaling requires all three of these domains as receptor mutants able to couple to only two interacting proteins exhibited severe signaling defects despite normal surface expression. Our results demonstrate that the ligand-binding subunit of the GPVI-Fc Rgamma receptor participates directly in receptor signaling by interacting with downstream signaling molecules other than Fc Rgamma through an adaptor-like mechanism.
Collapse
Affiliation(s)
- Darren Locke
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6100, USA
| | | | | | | | | |
Collapse
|
117
|
Inoue O, Suzuki-Inoue K, Dean WL, Frampton J, Watson SP. Integrin alpha2beta1 mediates outside-in regulation of platelet spreading on collagen through activation of Src kinases and PLCgamma2. J Cell Biol 2003; 160:769-80. [PMID: 12615912 PMCID: PMC2173361 DOI: 10.1083/jcb.200208043] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Collagen plays a critical role in hemostasis by promoting adhesion and activation of platelets at sites of vessel injury. In the present model of platelet-collagen interaction, adhesion is mediated via the inside-out regulation of integrin alpha2beta1 and activation through the glycoprotein VI (GPVI)-Fc receptor (FcR) gamma-chain complex. The present study extends this model by demonstrating that engagement of alpha2beta1 by an integrin-specific sequence from within collagen or by collagen itself generates tyrosine kinase-based intracellular signals that lead to formation of filopodia and lamellipodia in the absence of the GPVI-FcR gamma-chain complex. The same events do not occur in platelet suspensions. alpha2beta1 activation of adherent platelets stimulates tyrosine phosphorylation of many of the proteins in the GPVI-FcR gamma-chain cascade, including Src, Syk, SLP-76, and PLCgamma2 as well as plasma membrane calcium ATPase and focal adhesion kinase. alpha2beta1-mediated spreading is dramatically inhibited in the presence of the Src kinase inhibitor PP2 and in PLCgamma2-deficient platelets. Spreading is abolished by chelation of intracellular Ca2+. Demonstration that adhesion of platelets to collagen via alpha2beta1 generates intracellular signals provides a new insight into the mechanisms that control thrombus formation and may explain the unstable nature of beta1-deficient thrombi and why loss of the GPVI-FcR gamma-chain complex has a relatively minor effect on bleeding.
Collapse
Affiliation(s)
- Osamu Inoue
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| | | | | | | | | |
Collapse
|