101
|
Liu WH, Chou WM, Chang LS. p38 MAPK/PP2Acα/TTP pathway on the connection of TNF-α and caspases activation on hydroquinone-induced apoptosis. Carcinogenesis 2013; 34:818-27. [PMID: 23288922 DOI: 10.1093/carcin/bgs409] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
This study investigated tumor necrosis factor-α (TNF-α)-mediated death pathway contribution to hydroquinone (HQ) cytotoxicity in human leukemia U937 cells. HQ-induced apoptosis of human leukemia U937 cells was characterized by the increase in mitochondrial membrane depolarization, procaspase-8 degradation and tBid production. Downregulation of Fas-associated death domain protein (FADD) blocked HQ-induced procaspase-8 degradation and rescued the viability of HQ-treated cells, suggesting the involvement of a death receptor-mediated pathway in HQ-induced cell death. HQ induced increased TNF-α mRNA stability led to TNF-α protein expression upregulation, whereas HQ suppressed TNF-α-mediated NFκB pathway activation. HQ elicited protein phosphatase 2A catalytic subunit α (PP2Acα) upregulation via p38 mitogen-activated protein kinase (MAPK)-mediated CREB/c-Jun/ATF-2 phosphorylation, and PP2Acα upregulation was found to promote tristetraprolin (TTP) degradation. Suppression of p38 MAPK activation and protein phosphatase 2A (PP2A) activity abrogated TNF-α upregulation and procaspase degradation in HQ-treated cells. Overexpression of TTP suppressed HQ-induced TNF-α upregulation and restored the viability of HQ-treated cells. Moreover, TTP overexpression increased TNF-α mRNA decay in HQ-treated cells. Taken together, our data indicate that HQ elicits TNF-α upregulation via p38 MAPK/PP2A-mediated TTP downregulation, and suggest that the TNF-α-mediated death pathway is involved in HQ-induced U937 cell death. The same pathway was also proven to be involved in the HQ-induced death of human leukemia HL-60 and Jurkat cells.
Collapse
Affiliation(s)
- Wen-Hsin Liu
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | | | | |
Collapse
|
102
|
Damgaard CK, Lykke-Andersen J. Regulation of ARE-mRNA Stability by Cellular Signaling: Implications for Human Cancer. Cancer Treat Res 2013; 158:153-80. [PMID: 24222358 DOI: 10.1007/978-3-642-31659-3_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During recent years, it has become clear that regulation of mRNA stability is an important event in the control of gene expression. The stability of a large class of mammalian mRNAs is regulated by AU-rich elements (AREs) located in the mRNA 3' UTRs. mRNAs with AREs are inherently labile but as a response to different cellular cues they can become either stabilized, allowing expression of a given gene, or further destabilized to silence their expression. These tightly regulated mRNAs include many that encode growth factors, proto-oncogenes, cytokines, and cell cycle regulators. Failure to properly regulate their stability can therefore lead to uncontrolled expression of factors associated with cell proliferation and has been implicated in several human cancers. A number of transfactors that recognize AREs and regulate the translation and degradation of ARE-mRNAs have been identified. These transfactors are regulated by signal transduction pathways, which are often misregulated in cancers. This chapter focuses on the function of ARE-binding proteins with an emphasis on their regulation by signaling pathways and the implications for human cancer.
Collapse
|
103
|
Venigalla RKC, Turner M. RNA-binding proteins as a point of convergence of the PI3K and p38 MAPK pathways. Front Immunol 2012; 3:398. [PMID: 23272005 PMCID: PMC3530045 DOI: 10.3389/fimmu.2012.00398] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 12/10/2012] [Indexed: 12/26/2022] Open
Abstract
Understanding the mechanisms by which signal transduction pathways mediate changes in RNA abundance requires the examination of the fate of RNA from its transcription to its degradation. Evidence suggests that RNA abundance is partly regulated by post-transcriptional mechanisms affecting RNA decay and this in turn is modulated by some of the same signaling pathways that control transcription. Furthermore, the translation of mRNA is a key regulatory step that is influenced by signal transduction. These processes are regulated, in part, by RNA-binding proteins (RBPs) which bind to sequence-specific RNA elements. The function of RBPs is controlled and co-ordinated by phosphorylation. Based on the current literature we hypothesize that RBPs may be a point of convergence for the activity of different kinases such as phosphoinositide-3-kinase and mitogen-activated protein kinase which regulate RBP localization and function.
Collapse
Affiliation(s)
- Ram K C Venigalla
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute Babraham, UK
| | | |
Collapse
|
104
|
Tiedje C, Ronkina N, Tehrani M, Dhamija S, Laass K, Holtmann H, Kotlyarov A, Gaestel M. The p38/MK2-driven exchange between tristetraprolin and HuR regulates AU-rich element-dependent translation. PLoS Genet 2012; 8:e1002977. [PMID: 23028373 PMCID: PMC3459988 DOI: 10.1371/journal.pgen.1002977] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/08/2012] [Indexed: 12/28/2022] Open
Abstract
TNF expression of macrophages is under stringent translational control that depends on the p38 MAPK/MK2 pathway and the AU–rich element (ARE) in the TNF mRNA. Here, we elucidate the molecular mechanism of phosphorylation-regulated translation of TNF. We demonstrate that translation of the TNF-precursor at the ER requires expression of the ARE–binding and -stabilizing factor human antigen R (HuR) together with either activity of the p38 MAPK/MK2 pathway or the absence of the ARE-binding and -destabilizing factor tristetraprolin (TTP). We show that phosphorylation of TTP by MK2 decreases its affinity to the ARE, inhibits its ability to replace HuR, and permits HuR-mediated initiation of translation of TNF mRNA. Since translation of TTP's own mRNA is also regulated by this mechanism, an intrinsic feedback control of the inflammatory response is ensured. The phosphorylation-regulated TTP/HuR exchange at target mRNAs provides a reversible switch between unstable/non-translatable and stable/efficiently translated mRNAs. For immediate response and better control of gene expression, eukaryotic cells have developed means to specifically regulate the stability and translation of pre-formed mRNA transcripts. This post-transcriptional regulation of gene expression is realized by a variety of mRNA-binding proteins, which target specific mRNA sequence elements in a signal-dependent manner. Here we describe a molecular switch mechanism where the exchange of two mRNA-binding proteins is regulated by stress and inflammatory signals. This switch operates between stabilization and efficient translation of the target mRNA, when the activator protein of translational initiation binds instead of the phosphorylated destabilizing protein, and translational arrest and degradation of the target, when the non-phosphorylated destabilizing protein replaces the activator. This mechanism is specific to the mRNA of the inflammatory cytokine tumor necrosis factor (TNF)-α and the mRNA of its regulator protein TTP and, hence, enables fast inflammatory response and its stringent feedback control.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Matthias Gaestel
- Institute of Biochemistry, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
105
|
Clark AR, Dean JLE. The p38 MAPK Pathway in Rheumatoid Arthritis: A Sideways Look. Open Rheumatol J 2012; 6:209-19. [PMID: 23028406 PMCID: PMC3460412 DOI: 10.2174/1874312901206010209] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 01/02/2023] Open
Abstract
The p38 mitogen-activated protein kinase (MAPK) signaling pathway has been strongly implicated in many of
the processes that underlie the pathology of rheumatoid arthritis (RA). For many years it has been considered a promising
target for development of new anti-inflammatory drugs with which to treat RA and other chronic immune-mediated
inflammatory diseases. However, several recent clinical trials have concluded in a disappointing manner. Why is this so, if
p38 MAPK clearly contributes to the excessive production of inflammatory mediators, the destruction of bone and
cartilage? We argue that, to explain the apparent failure of p38 inhibitors in the rheumatology clinic, we need to
understand better the complexities of the p38 pathway and its many levels of communication with other cellular signaling
pathways. In this review we look at the p38 MAPK pathway from a slightly different perspective, emphasising its role in
post-transcriptional rather than transcriptional control of gene expression, and its contribution to the off-phase rather than
the on-phase of the inflammatory response.
Collapse
Affiliation(s)
- Andrew R Clark
- Kennedy Institute of Rheumatology Division, Imperial College London, 65 Aspenlea Road, Hammersmith, London W6 8LH, UK
| | | |
Collapse
|
106
|
Reactive Oxygen Species, SUMOylation, and Endothelial Inflammation. Int J Inflam 2012; 2012:678190. [PMID: 22991685 PMCID: PMC3443607 DOI: 10.1155/2012/678190] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/26/2012] [Indexed: 12/14/2022] Open
Abstract
Although the exact mechanism through which NADPH oxidases (Nox's) generate reactive oxygen species (ROS) is still not completely understood, it is widely considered that ROS accumulation is the cause of oxidative stress in endothelial cells. Increasing pieces of evidence strongly indicate the role for ROS in endothelial inflammation and dysfunction and subsequent development of atherosclerotic plaques, which are causes of various pathological cardiac events. An overview for a causative relationship between ROS and endothelial inflammation will be provided in this review. Particularly, a crucial role for specific protein SUMOylation in endothelial inflammation will be presented. Given that SUMOylation of specific proteins leads to increased endothelial inflammation, targeting specific SUMOylated proteins may be an elegant, effective strategy to control inflammation. In addition, the involvement of ROS production in increasing the risk of recurrent coronary events in a sub-group of non-diabetic, post-infarction patients with elevated levels of HDL-cholesterol will be presented with the emphasis that elevated HDL-cholesterol under certain inflammatory conditions can lead to increased incidence of cardiovascular events.
Collapse
|
107
|
Wang W. Regulatory RNA-binding proteins in senescence. Ageing Res Rev 2012; 11:485-90. [PMID: 22414963 DOI: 10.1016/j.arr.2012.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/08/2012] [Accepted: 02/08/2012] [Indexed: 11/18/2022]
Abstract
The expression of senescence-associated genes, which governs the progression and the maintenance of senescence, is regulated at multiple levels. Apart from the transcriptional mechanisms that control cellular senescence, studies over the past decade have revealed that post-transcriptional gene regulation, especially through changes in mRNA turnover and translation, critically influences protein expression patterns in the senescent cell. Among the post-transcriptional regulatory factors, RNA-binding proteins (RBPs) are particularly influential in the establishment of senescence-associated protein profiles. In this review, I discuss the current knowledge of the role of RBPs in cellular senescence and the molecular mechanisms that regulate their function.
Collapse
Affiliation(s)
- Wengong Wang
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, PR China.
| |
Collapse
|
108
|
Tristetraprolin inhibits poly(A)-tail synthesis in nuclear mRNA that contains AU-rich elements by interacting with poly(A)-binding protein nuclear 1. PLoS One 2012; 7:e41313. [PMID: 22844456 PMCID: PMC3406032 DOI: 10.1371/journal.pone.0041313] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 06/22/2012] [Indexed: 12/24/2022] Open
Abstract
Background Tristetraprolin binds mRNA AU-rich elements and thereby facilitates the destabilization of mature mRNA in the cytosol. Methodology/Principal Findings To understand how tristetraprolin mechanistically functions, we biopanned with a phage-display library for proteins that interact with tristetraprolin and retrieved, among others, a fragment of poly(A)-binding protein nuclear 1, which assists in the 3'-polyadenylation of mRNA by binding to immature poly(A) tails and thereby increases the activity of poly(A) polymerase, which is directly responsible for polyadenylation. The tristetraprolin/poly(A)-binding protein nuclear 1 interaction was characterized using tristetraprolin and poly(A)-binding protein nuclear 1 deletion mutants in pull-down and co-immunoprecipitation assays. Tristetraprolin interacted with the carboxyl-terminal region of poly(A)-binding protein nuclear 1 via its tandem zinc finger domain and another region. Although tristetraprolin and poly(A)-binding protein nuclear 1 are located in both the cytoplasm and the nucleus, they interacted in vivo in only the nucleus. In vitro, tristetraprolin bound both poly(A)-binding protein nuclear 1 and poly(A) polymerase and thereby inhibited polyadenylation of AU-rich element–containing mRNAs encoding tumor necrosis factor α, GM-CSF, and interleukin-10. A tandem zinc finger domain–deleted tristetraprolin mutant was a less effective inhibitor. Expression of a tristetraprolin mutant restricted to the nucleus resulted in downregulation of an AU-rich element–containing tumor necrosis factor α/luciferase mRNA construct. Conclusion/Significance In addition to its known cytosolic mRNA–degrading function, tristetraprolin inhibits poly(A) tail synthesis by interacting with poly(A)-binding protein nuclear 1 in the nucleus to regulate expression of AU-rich element–containing mRNA.
Collapse
|
109
|
EDMUNDS JEREMYJ, TALANIAN ROBERTV. MAPKAP Kinase 2 (MK2) as a Target for Anti-inflammatory Drug Discovery. ANTI-INFLAMMATORY DRUG DISCOVERY 2012. [DOI: 10.1039/9781849735346-00158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Despite the success of anti-TNFα biologicals, there remains a significant unmet need for novel oral anti-inflammatory drugs for the treatment of rheumatoid arthritis and related diseases. Vigorous exploration of many potential targets for inhibition of, for example, pro-inflammatory cytokine production has led to efforts to find inhibitor leads targeting many enzymes including the p38α substrate kinase MK2. MK2 has a key role in the production of several pro-inflammatory cytokines, and studies with knockout animals and inhibitor leads support the promise of MK2 as an anti-inflammatory target. However, MK2 has additional biological roles such as in cell cycle checkpoint control, suggesting caution in the use of MK2 inhibitors for chronic non-life-threatening clinical indications such as inflammation. MK2 inhibitor lead identification and optimization efforts in several labs have resulted in a variety of potent and specific lead molecules, some of which display in-vivo activity. However, potency loss from enzyme to cell, and cell to in vivo, is commonly significant. Further, poor enzyme to cell potency correlations are also common for MK2 lead chemical series, suggesting uncontrolled confounding factors in lead inhibitor properties, or that the biological roles of MK2 and related enzymes may still be poorly understood. While further efforts in identification of MK2 inhibitors may yet yield viable drug leads, efforts to date suggest caution with this target.
Collapse
|
110
|
NADPH oxidase-derived superoxide destabilizes lipopolysaccharide-induced interleukin 8 mRNA via p38, extracellular signal-regulated kinase mitogen-activated protein kinase, and the destabilizing factor tristetraprolin. Shock 2012; 37:433-40. [PMID: 22392142 DOI: 10.1097/shk.0b013e31824582e6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Expression of inflammatory cytokines is regulated by transcriptional and posttranscriptional mechanisms. We previously showed that NADPH oxidase-derived superoxide induces inflammatory mediators in response to tumor necrosis factor α (TNF-α) and lipopolysaccharide (LPS). In this study, we examined the role of endothelial NADPH oxidase in the regulation of mRNA stability of three inflammatory mediators: interleukin (IL) 8, IL-6, and intercellular adhesion molecule 1 (ICAM-1). Tumor necrosis factor α increased mRNA stability of ICAM-1, IL-8, and IL-6 by a p38 mitogen-activated protein kinase (MAPK)-dependent mechanism, but this did not involve NADPH oxidase. Surprisingly, whereas LPS treatment alone did not alter stability of these molecules, the antioxidant N-acetyl-L-cysteine; the flavine inhibitor diphenylene iodonium; short interfering RNA against Nox2, Nox4; and the p22(phox) subunit of NADPH oxidase all enhanced IL-8 mRNA stability in LPS-treated cells, indicating that LPS induced destabilization through NADPH oxidase. This occurred by a mechanism that involved extracellular signal-regulated kinase 1/2, p38 MAPK, and the mRNA-destabilizing factor tristetraprolin. On the other hand, N-acetyl-L-cysteine decreased mRNA stability of ICAM-1 and IL-6 in LPS-treated cells and IL-6 and ICAM-1 in TNF-α-treated cells. In conclusion, NADPH oxidase contributes to destabilization of IL-8 mRNA stability and propose a model for the complex underlying mechanism, which is dependent upon agonist (LPS vs. TNF-α) and target molecule (IL-8 vs. IL-6 and ICAM-1) and involves tristetraprolin, p38, and extracellular signal-regulated kinase 1/2 MAPK.
Collapse
|
111
|
Lin NY, Lin TY, Yang WH, Wang SC, Wang KT, Su YL, Jiang YW, Chang GD, Chang CJ. Differential expression and functional analysis of the tristetraprolin family during early differentiation of 3T3-L1 preadipocytes. Int J Biol Sci 2012; 8:761-77. [PMID: 22701344 PMCID: PMC3371571 DOI: 10.7150/ijbs.4036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 05/15/2012] [Indexed: 01/09/2023] Open
Abstract
The tristetraprolin (TTP) family comprises zinc finger-containing AU-rich element (ARE)-binding proteins consisting of three major members: TTP, ZFP36L1, and ZFP36L2. The present study generated specific antibodies against each TTP member to evaluate its expression during differentiation of 3T3-L1 preadipocytes. In contrast to the inducible expression of TTP, results indicated constitutive expression of ZFP36L1 and ZFP36L2 in 3T3-L1 preadipocytes and their phosphorylation in response to differentiation signals. Physical RNA pull-down and functional luciferase assays revealed that ZFP36L1 and ZFP36L2 bound to the 3' untranslated region (UTR) of MAPK phosphatase-1 (MKP-1) mRNA and downregulated Mkp-1 3'UTR-mediated luciferase activity. Mkp-1 is an immediate early gene for which the mRNA is transiently expressed in response to differentiation signals. The half-life of Mkp-1 mRNA was longer at 30 min of induction than at 1 h and 2 h of induction. Knockdown of TTP or ZFP36L2 increased the Mkp-1 mRNA half-life at 1 h of induction. Knockdown of ZFP36L1, but not ZFP36L2, increased Mkp-1 mRNA basal levels via mRNA stabilization and downregulated ERK activation. Differentiation induced phosphorylation of ZFP36L1 through ERK and AKT signals. Phosphorylated ZFP36L1 then interacted with 14-3-3, which might decrease its mRNA destabilizing activity. Inhibition of adipogenesis also occurred in ZFP36L1 and TTP knockdown cells. The findings indicate that the differential expression of TTP family members regulates immediate early gene expression and modulates adipogenesis.
Collapse
Affiliation(s)
- Nien-Yi Lin
- 1. Institute of Biological Chemistry, Academia Sinica, 128, Academia Road Sec 2, Nankang, Taipei 115, Taiwan
| | - Tzi-Yang Lin
- 2. Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, 1 Roosevelt Road Sec 4, Taipei 106, Taiwan
| | - Wen-Hsuan Yang
- 2. Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, 1 Roosevelt Road Sec 4, Taipei 106, Taiwan
| | - Shun-Chang Wang
- 1. Institute of Biological Chemistry, Academia Sinica, 128, Academia Road Sec 2, Nankang, Taipei 115, Taiwan
| | - Kuan-Ting Wang
- 2. Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, 1 Roosevelt Road Sec 4, Taipei 106, Taiwan
| | - Yu-Lun Su
- 2. Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, 1 Roosevelt Road Sec 4, Taipei 106, Taiwan
| | - Yu-Wun Jiang
- 2. Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, 1 Roosevelt Road Sec 4, Taipei 106, Taiwan
| | - Geen-Dong Chang
- 2. Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, 1 Roosevelt Road Sec 4, Taipei 106, Taiwan
| | - Ching-Jin Chang
- 1. Institute of Biological Chemistry, Academia Sinica, 128, Academia Road Sec 2, Nankang, Taipei 115, Taiwan
- 2. Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, 1 Roosevelt Road Sec 4, Taipei 106, Taiwan
| |
Collapse
|
112
|
Iyer SS, Cheng G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit Rev Immunol 2012; 32:23-63. [PMID: 22428854 DOI: 10.1615/critrevimmunol.v32.i1.30] [Citation(s) in RCA: 931] [Impact Index Per Article: 77.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Interleukin 10 (IL-10) is a cytokine with potent anti-inflammatory properties that plays a central role in limiting host immune response to pathogens, thereby preventing damage to the host and maintaining normal tissue homeostasis. Dysregulation of IL-10 is associated with enhanced immunopathology in response to infection as well as increased risk for development of many autoimmune diseases. Thus a fundamental understanding of IL-10 gene expression is critical for our comprehension of disease progression and resolution of host inflammatory response. In this review, we discuss modes of regulation of IL-10 gene expression in immune effector cell types, including signal transduction, epigenetics, promoter architecture, and post-transcriptional regulation, and how aberrant regulation contributes to immunopathology and disease progression.
Collapse
|
113
|
Sanduja S, Blanco FF, Dixon DA. The roles of TTP and BRF proteins in regulated mRNA decay. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 2:42-57. [PMID: 21278925 DOI: 10.1002/wrna.28] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adenylate- and uridylate-rich element (ARE) motifs are cis-acting elements present in the 3′ untranslated region of mRNA transcripts that encode many inflammation- and cancer-associated genes. The TIS11 family of RNA-binding proteins, composed of tristetraprolin (TTP) and butyrate response factors 1 and 2 (BRF-1 and -2), plays a critical role in regulating the expression of ARE-containing mRNAs. Through their ability to bind and target ARE-containing mRNAs for rapid degradation, this class of RNA-binding proteins serves a fundamental role in limiting the expression of a number of critical genes, thereby exerting anti-inflammatory and anti-cancer effects. Regulation of TIS11 family members occurs on a number of levels through cellular signaling events to control their transcription, mRNA turnover, phosphorylation status, cellular localization, association with other proteins, and proteosomal degradation, all of which impact TIS11 members' ability to promote ARE-mediated mRNA decay along with decay-independent functions. This review summarizes our current understanding of posttranscriptional regulation of ARE-containing gene expression by TIS11 family members and discusses their role in maintaining normal physiological processes and the pathological consequences in their absence.
Collapse
Affiliation(s)
- Sandhya Sanduja
- Department of Biological Sciences and Cancer Research Center, University of South Carolina, Columbia, SC, USA
| | | | | |
Collapse
|
114
|
Fukuyama H, Ndiaye S, Hoffmann J, Rossier J, Liuu S, Vinh J, Verdier Y. On-bead tryptic proteolysis: an attractive procedure for LC-MS/MS analysis of the Drosophila caspase 8 protein complex during immune response against bacteria. J Proteomics 2012; 75:4610-9. [PMID: 22450469 DOI: 10.1016/j.jprot.2012.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/24/2012] [Accepted: 03/05/2012] [Indexed: 10/28/2022]
Abstract
This study aims to characterize the immune response against bacteria in Drosophila melanogaster. Obtaining a description of the in vivo state of protein complexes requires their isolation as a snapshot of physiological conditions before their identification. Affinity purification with streptavidin-biotin system is widely used to address this issue. However, because of the extraordinary stability of the interaction between streptavidin and biotin, the release of biotin-labeled bait remains a challenge. We transfected Drosophila cells with a DNA construct encoding a biotin-tagged Dredd protein (ortholog of caspase 8). After affinity purification, different strategies were evaluated, and proteins analyzed by LC-MS/MS mass spectrometry. The on-bead digestion allowed the identification of more proteins associated to the Dredd complex than different protocols using competitive or acid elution. A functional assay showed that a large part of the proteins specifically identified in the Dredd sample are functionally involved in the activation of the Imd pathway. These proteins are immune response proteins (BG4, Q9VP57), stress response proteins (HSP7C, Q9VXQ5), structural proteins (TBB1, CP190), a protein biosynthesis protein (Q9W1B9) and an antioxidant system protein (SODC). Our results clearly show that on-bead digestion of proteins is an attractive procedure for the study of protein complexes by mass spectrometry. This article is part of a Special Issue entitled: Translational Proteomics.
Collapse
Affiliation(s)
- Hidehiro Fukuyama
- Centre National de La Recherche Scientifique, UPR9022, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
115
|
Abstract
Discoveries made over the past 20 years highlight the importance of mRNA decay as a means of modulating gene expression and thereby protein production. Up until recently, studies largely focused on identifying cis-acting sequences that serve as mRNA stability or instability elements, the proteins that bind these elements, how the process of translation influences mRNA decay and the ribonucleases that catalyse decay. Now, current studies have begun to elucidate how the decay process is regulated. This Review examines our current understanding of how mammalian cell mRNA decay is controlled by different signalling pathways and lays out a framework for future research.
Collapse
|
116
|
Schott J, Stoecklin G. Networks controlling mRNA decay in the immune system. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 1:432-56. [PMID: 21956941 DOI: 10.1002/wrna.13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The active control of mRNA degradation has emerged as a key regulatory mechanism required for proper gene expression in the immune system. An adenosine/uridine (AU)-rich element (ARE) is at the heart of a first regulatory system that promotes the rapid degradation of a multitude of cytokine and chemokine mRNAs. AREs serve as binding sites for a number of regulatory proteins that either destabilize or stabilize the mRNA. Several kinase pathways regulate the activity of ARE-binding proteins and thereby coordinate the expression of their target mRNAs. Small regulatory micro (mi)-RNAs represent a second system that enhances the degradation of several mRNAs encoding important components of signal transduction cascades that are activated during adaptive and innate immune responses. Specific miRNAs are important for the differentiation of T helper cells, class switch recombination in B cells, and the maturation of dendritic cells. Excitement in this area of research is fueled by the discovery of novel RNA elements and regulatory proteins that exert control over specific mRNAs, as exemplified by an endonuclease that was found to directly cleave interleukin-6 mRNA. Together, these systems make up an extensive regulatory network that controls decay rates of individual mRNAs in a precise manner and thereby orchestrates the dynamic expression of many factors essential for adaptive and innate immune responses. In this review, we provide an overview of relevant factors regulated at the level of mRNA stability, summarize RNA-binding proteins and miRNAs that control their degradation rates, and discuss signaling pathways operating within this regulatory network.
Collapse
Affiliation(s)
- Johanna Schott
- Helmholtz Junior Research Group Posttranscriptional Control of Gene Expression, German Cancer Research Center, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | |
Collapse
|
117
|
Chrestensen CA, McMurry JL, Salerno JC. MAP kinases bind endothelial nitric oxide synthase. FEBS Open Bio 2012; 2:51-5. [PMID: 23650581 PMCID: PMC3642102 DOI: 10.1016/j.fob.2012.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 01/28/2012] [Accepted: 02/15/2012] [Indexed: 01/06/2023] Open
Abstract
Endothelial nitric oxide synthase (eNOS) contains a motif similar to recognition sequences in known MAPK binding partners. In optical biosensing experiments, eNOS bound p38 and ERK with ∼100 nM affinity and complex kinetics. Binding is diffusion-limited (kon ∼ .15 × 106 M−1 s−1). Neuronal NOS also bound p38 but exhibited much slower and weaker binding. p38-eNOS binding was inhibited by calmodulin. Evidence for a ternary complex was found when eNOS bound p38 was exposed to CaM, increasing the apparent dissociation rate. These observations strongly suggest a direct role for MAPK in regulation of NOS with implications for signaling pathways including angiogenesis and control of vascular tone.
Collapse
Key Words
- AI, autoinhibitory element of nitric oxide synthase
- ATF, activating transcription factor
- Akt, v-akt murine thymoma viral oncogene homolog 1 (a.k.a, protein kinase B)
- BAEC, bovine aortic endothelial cells
- CaM, calmodulin
- ERK
- ERK1/2, mitogen activated protein kinase 1 and 2
- MAP kinase
- MEF, myocyte enhancer factor
- MK or MAPKAP kinase, mitogen activated protein kinase activated protein kinase
- Nitric oxide synthase
- Optical biosensing
- PKA, protein kinase A
- eNOS, endothelial nitric oxide synthase
- nNOS, neuronal nitric oxide synthase
- p38
Collapse
Affiliation(s)
- Carol A. Chrestensen
- Department of Chemistry & Biochemistry, Kennesaw State University, Kennesaw, GA 30144-1203, USA
| | - Jonathan L. McMurry
- Department of Chemistry & Biochemistry, Kennesaw State University, Kennesaw, GA 30144-1203, USA
| | - John C. Salerno
- Department of Biology, Kennesaw State University, Kennesaw, GA 30144-1203, USA
- Corresponding author. Address: Department of Biology, MB #1202, 1000 Chastain Rd., Kennesaw, GA 30144, USA. Fax: +1 770 423 6625.
| |
Collapse
|
118
|
Bode JG, Ehlting C, Häussinger D. The macrophage response towards LPS and its control through the p38(MAPK)-STAT3 axis. Cell Signal 2012; 24:1185-94. [PMID: 22330073 DOI: 10.1016/j.cellsig.2012.01.018] [Citation(s) in RCA: 304] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 01/27/2012] [Indexed: 12/19/2022]
Abstract
In macrophages detection of gram-negative bacteria particularly involves binding of the outer-wall component lipopolysaccharide (LPS) to its cognate receptor complex, comprising Toll like receptor 4 (TLR4), CD14 and MD2. LPS-induced formation of the LPS receptor complex elicits a signaling network, including intra-cellular signal-transduction directly activated by the TLR4 receptor complex as well as successional induction of indirect autocrine and paracrine signaling events. All these different pathways are integrated into the macrophage response towards an inflammatory stimulus by a highly complex cross-talk of the pathways engaged. This also includes a tight control by several intra- and inter-cellular feedback loops warranting an inflammatory response sufficient to battle invading pathogens and to avoid non-essential tissue damage caused by an overwhelming inflammatory response. Several evidences indicate that the reciprocal cross-talk between the p38(MAPK)-pathway and signal transducer and activator of transcription (STAT)3-mediated signal-transduction forms a critical axis successively activated by LPS. The balanced activation of this axis is essential for both induction and propagation of the inflammatory macrophage response as well as for the control of the resolution phase, which is largely driven by IL-10 and sustained STAT3 activation. In this context regulation of suppressor of cytokine signaling (SOCS)3 expression and the recently described divergent regulatory roles of the two p38(MAPK)-activated protein kinases MK2 and MK3 for the regulation of LPS-induced NF-κB- and IRF3-mediated signal-transduction and gene expression, which includes the regulation of IFNβ, IL-10 and DUSP1, appears to play an important role.
Collapse
Affiliation(s)
- Johannes G Bode
- Department of Gastroenterology, Hepatology and Infectious Disease, University Hospital, Heinrich Heine University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany.
| | | | | |
Collapse
|
119
|
Shi JX, Su X, Xu J, Zhang WY, Shi Y. MK2 posttranscriptionally regulates TNF-α-induced expression of ICAM-1 and IL-8 via tristetraprolin in human pulmonary microvascular endothelial cells. Am J Physiol Lung Cell Mol Physiol 2012; 302:L793-9. [PMID: 22268119 DOI: 10.1152/ajplung.00339.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Tristetraprolin (TTP), a substrate of p38 mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MK2), is an RNA-binding protein that binds to AU-rich elements (AREs) in the 3'-untranslated region (3'-UTR) of its target mRNAs and accelerates mRNA degradation. A previous study by our group showed that MK2 regulates tumor necrosis factor-α (TNF-α)-induced expression of intercellular adhesion molecule-1 (ICAM-1) and interleukin-8 (IL-8) in human lung microvascular endothelial cells; however, the downstream protein of MK2 remains unknown. Interestingly, both ICAM-1 and IL-8 have AREs in the 3'-UTR of their mRNAs. In the present study, we performed experiments to determine whether MK2 regulates TNF-α-induced expression of ICAM-1 and IL-8 via TTP in human pulmonary microvascular endothelial cells (HPMECs). The study revealed that MK2 silencing significantly reduced the half-lives of ICAM-1 and IL-8 mRNAs in TNF-α-stimulated HPMECs. TTP phosphorylation levels were decreased in MK2-silenced cells. TTP silencing led to mRNA stabilization of ICAM-1 and IL-8 and upregulation of protein production following TNF-α stimulation. These results, together with our previous study and others, suggest that MK2, in HPMECs, regulates TNF-α-induced expression of ICAM-1 and IL-8 via TTP at the mRNA decay level.
Collapse
Affiliation(s)
- Jia-Xin Shi
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, China
| | | | | | | | | |
Collapse
|
120
|
Spasic M, Friedel CC, Schott J, Kreth J, Leppek K, Hofmann S, Ozgur S, Stoecklin G. Genome-wide assessment of AU-rich elements by the AREScore algorithm. PLoS Genet 2012; 8:e1002433. [PMID: 22242014 PMCID: PMC3252268 DOI: 10.1371/journal.pgen.1002433] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 11/15/2011] [Indexed: 12/18/2022] Open
Abstract
In mammalian cells, AU-rich elements (AREs) are well known regulatory sequences located in the 3′ untranslated region (UTR) of many short-lived mRNAs. AREs cause mRNAs to be degraded rapidly and thereby suppress gene expression at the posttranscriptional level. Based on the number of AUUUA pentamers, their proximity, and surrounding AU-rich regions, we generated an algorithm termed AREScore that identifies AREs and provides a numerical assessment of their strength. By analyzing the AREScore distribution in the transcriptomes of 14 metazoan species, we provide evidence that AREs were selected for in several vertebrates and Drosophila melanogaster. We then measured mRNA expression levels genome-wide to address the importance of AREs in SL2 cells derived from D. melanogaster hemocytes. Tis11, a zinc finger RNA–binding protein homologous to mammalian tristetraprolin, was found to target ARE–containing reporter mRNAs for rapid degradation in SL2 cells. Drosophila mRNAs whose expression is elevated upon knock down of Tis11 were found to have higher AREScores. Moreover high AREScores correlate with reduced mRNA expression levels on a genome-wide scale. The precise measurement of degradation rates for 26 Drosophila mRNAs revealed that the AREScore is a very good predictor of short-lived mRNAs. Taken together, this study introduces AREScore as a simple tool to identify ARE–containing mRNAs and provides compelling evidence that AREs are widespread regulatory elements in Drosophila. Many genes are regulated at the posttranscriptional level by factors that influence the stability of the messenger RNA. In mammals, AU-rich elements are known to cause rapid degradation of messenger RNAs and thereby suppress gene expression. In order to identify such elements on a genome-wide scale, we developed a bioinformatic tool with which we can score messenger RNAs for the presence of AU-rich elements. Using the AREScore algorithm, we observe that AU-rich elements correlate with reduced messenger RNA stability and expression levels. We then used the AREScore to compare the transcriptomes of 14 metazoan species and found that messenger RNAs with high AREScores are enriched in several vertebrates and the fruit fly Drosophila melanogaster. We identified messenger RNAs whose levels are regulated by the Drosophila Tis11 protein, which binds to AU-rich elements. Our study introduces the AREScore as a means to globally assess AU-rich elements and predict short-lived messenger RNAs. Furthermore, it demonstrates the regulatory role of AU-rich elements in suppressing gene expression by accelerating messenger RNA degradation in D. melanogaster cells.
Collapse
Affiliation(s)
- Milan Spasic
- Helmholtz Junior Research Group Posttranscriptional Control of Gene Expression, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Caroline C. Friedel
- Institute for Informatics, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Johanna Schott
- Helmholtz Junior Research Group Posttranscriptional Control of Gene Expression, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Jochen Kreth
- Helmholtz Junior Research Group Posttranscriptional Control of Gene Expression, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Kathrin Leppek
- Helmholtz Junior Research Group Posttranscriptional Control of Gene Expression, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Sarah Hofmann
- Helmholtz Junior Research Group Posttranscriptional Control of Gene Expression, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Sevim Ozgur
- Helmholtz Junior Research Group Posttranscriptional Control of Gene Expression, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Georg Stoecklin
- Helmholtz Junior Research Group Posttranscriptional Control of Gene Expression, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
121
|
David S, Zarruk JG, Ghasemlou N. Inflammatory pathways in spinal cord injury. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012; 106:127-52. [PMID: 23211462 DOI: 10.1016/b978-0-12-407178-0.00006-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Injury to the spinal cord results in direct damage to axons, neuronal cell bodies, and glia that cause functional loss below the site of injury. In addition, the injury also triggers an inflammatory response that contributes to secondary tissue damage that leads to further functional loss. Reducing inflammation after spinal cord injury (SCI) is therefore a worthy therapeutic goal. Inflammation in the injured spinal cord is a complex response that involves resident cells of the central nervous system as well as infiltrating immune cells, and is mediated by a variety of molecular pathways and signaling molecules. Here, we discuss approaches we have used to identify novel therapeutic targets to modulate the inflammatory response after SCI to reduce tissue damage and promote recovery. Effective treatments for SCI will likely require a combination of approaches to reduce inflammation and secondary damage with those that promote axon regeneration.
Collapse
Affiliation(s)
- Samuel David
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
122
|
Sanduja S, Blanco FF, Young LE, Kaza V, Dixon DA. The role of tristetraprolin in cancer and inflammation. Front Biosci (Landmark Ed) 2012; 17:174-88. [PMID: 22201737 DOI: 10.2741/3920] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Messenger RNA decay is a critical mechanism to control the expression of many inflammation- and cancer-associated genes. These transcripts are targeted for rapid degradation through AU-rich element (ARE) motifs present in the mRNA 3' untranslated region (3'UTR). Tristetraprolin (TTP) is an RNA-binding protein that plays a significant role in regulating the expression of ARE-containing mRNAs. Through its ability to bind AREs and target the bound mRNA for rapid degradation, TTP can limit the expression of a number of critical genes frequently overexpressed in inflammation and cancer. Regulation of TTP occurs on multiple levels through cellular signaling events to control transcription, mRNA turnover, phosphorylation status, cellular localization, association with other proteins, and proteosomal degradation, all of which impact TTP's ability to promote ARE-mediated mRNA decay along with decay-independent functions of TTP. This review summarizes the current understanding of post-transcriptional regulation of ARE-containing gene expression by TTP and discusses its role in maintaining homeostasis and the pathological consequences of losing TTP expression.
Collapse
Affiliation(s)
- Sandhya Sanduja
- Department of Biological Sciences and Cancer Research Center, University of South Carolina, Columbia, SC 29203, USA
| | | | | | | | | |
Collapse
|
123
|
Johnsen IB, Nguyen TT, Bergstrøm B, Lien E, Anthonsen MW. Toll-like receptor 3-elicited MAPK activation induces stabilization of interferon-β mRNA. Cytokine 2011; 57:337-46. [PMID: 22200507 DOI: 10.1016/j.cyto.2011.11.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 01/18/2023]
Abstract
Prolonged release of cytokines after activation of the innate immune system may lead to systemic infection and inflammatory diseases. Many cytokines with short half-lives contain adenine- and uridine-rich elements (AREs) in their 3'-untranslated region (UTR), which mediate mRNA destabilization. The Toll-like receptors (TLRs) TLR3 and TLR4 induce immune responses via the adaptor proteins TRIF or TRIF and MyD88, respectively, leading to IFN-β production. The 3'-UTR of IFN-β mRNA contains an ARE sequence. We demonstrate that the TLR3 ligand dsRNA and the TLR4 ligand LPS induce stabilization of IFN-β mRNA transcripts in monocyte-derived dendritic cells. In cells from TRIF(-/-) and MyD88(-/-) mice we found that dsRNA-induced stabilization of IFN-β mRNA is TRIF-dependent. MAPK-activated protein 2 (MK2) has previously been found to regulate mRNA stabilization. We show that dsRNA elicits increased MK2 activation, mediated by TRIF and p38 MAPK. Chemical inhibition of p38 and MK2, and siRNA knockdown of MK2 relieved dsRNA-triggered prolongation of IFN-β mRNA half-life. Taken together, these results suggest that TLR3 induces signaling mechanisms involving TRIF, p38 MAPK and MK2 to enhance stabilization of IFN-β mRNA contributing to enhanced IFN-β levels during pathogen infections.
Collapse
Affiliation(s)
- Ingvild Bjellmo Johnsen
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim N-7006, Norway.
| | | | | | | | | |
Collapse
|
124
|
Hamilton T, Li X, Novotny M, Pavicic PG, Datta S, Zhao C, Hartupee J, Sun D. Cell type- and stimulus-specific mechanisms for post-transcriptional control of neutrophil chemokine gene expression. J Leukoc Biol 2011; 91:377-83. [PMID: 22167720 DOI: 10.1189/jlb.0811404] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
mRNAs encoding inflammatory chemokines that recruit neutrophils frequently exhibit short half-lives that serve to limit their expression under inappropriate conditions but are often prolonged to ensure adequate levels during inflammatory response. Extracellular stimuli that modulate the stability of such mRNAs may be the same as the transcriptional activator, as is the case with TLR ligands, or may cooperate with independent transcriptional stimuli, as with IL-17, which extends the half-life of TNF-induced transcripts. These different stimuli engage independent signaling pathways that target different instability mechanisms distinguished by dependence on different regulatory nucleotide sequence motifs within the 3'UTRs, which involve that action of different mRNA-binding proteins. The selective use of these pathways by different stimuli and in distinct cell populations provides the potential for tailoring of chemokine expression patterns to meet specific needs in different pathophysiologic circumstances.
Collapse
Affiliation(s)
- Thomas Hamilton
- Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH 44195-0001, USA.
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Holmes B, Artinian N, Anderson L, Martin J, Masri J, Cloninger C, Bernath A, Bashir T, Benavides-Serrato A, Gera J. Protor-2 interacts with tristetraprolin to regulate mRNA stability during stress. Cell Signal 2011; 24:309-15. [PMID: 21964062 DOI: 10.1016/j.cellsig.2011.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 09/12/2011] [Indexed: 01/12/2023]
Abstract
The A/U-rich RNA-binding protein tristetraprolin (TTP) is an mRNA destabilizing factor which plays a role in the regulated turnover of many transcripts encoding proteins involved in immune function and cell growth control. TTP also plays a role in stress-induced destabilization of mRNAs. Here we report the interaction of TTP with a component of the mTORC2 kinase, Protor-2 (PRR5-L, protein Q6MZQ0/FLJ14213/CAE45978). Protor-2 is structurally similar to human PRR5 and has been demonstrated to bind mTORC2 via Rictor and/or Sin1 and may signal downstream events promoting apoptosis. Protor-2 dissociates from mTORC2 upon hyperactivation of the kinase and is not required for mTORC2 integrity or activity. We identified Protor-2 in a yeast two-hybrid screen as a TTP interactor using the C-terminal mRNA decay domain of TTP as bait. The interaction of Protor-2 with TTP was also confirmed in vivo in co-immunoprecipitation experiments and Protor-2 was also detected in immunoprecipitates of Rictor. Protor-2 was shown to stimulate TTP-mediated mRNA turnover of several TTP-associated mRNAs (TNF-α, GM-CSF, IL-3 and COX-2) in Jurkat cells when overexpressed while the half-lives of transcripts which do not decay via a TTP-mediated mechanism were unaffected. Knockdown of Protor-2 via RNAi inhibited TTP-mediated mRNA turnover of these TTP-associated mRNAs and inhibited association of TTP with cytoplasmic stress granules (SG) or mRNA processing bodies (P-bodies) following induction of the integrated stress response. These results suggest that Protor-2 associates with TTP to accelerate TTP-mediated mRNA turnover and functionally links the control of TTP-regulated mRNA stability to mTORC2 activity.
Collapse
Affiliation(s)
- Brent Holmes
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California 91343, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Schichl YM, Resch U, Lemberger CE, Stichlberger D, de Martin R. Novel phosphorylation-dependent ubiquitination of tristetraprolin by mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 1 (MEKK1) and tumor necrosis factor receptor-associated factor 2 (TRAF2). J Biol Chem 2011; 286:38466-38477. [PMID: 21921033 DOI: 10.1074/jbc.m111.254888] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Acute versus chronic inflammation is controlled by the accurate activation and regulation of interdependent signaling cascades. TNF-receptor 1 engagement concomitantly activates NF-κB and JNK signaling. The correctly timed activation of these pathways is the key to account for the balance between NF-κB-mediated cell survival and cell death, the latter fostered by prolonged JNK activation. Tristetraprolin (TTP), initially described as an mRNA destabilizing protein, acts as negative feedback regulator of the inflammatory response: it destabilizes cytokine-mRNAs but also acts as an NF-κB inhibitor by interfering with the p65/RelA nuclear import pathway. Our biochemical studies provide evidence that TTP contributes to the NF-κB/JNK balance. We find that the MAP 3-kinase MEKK1 acts as a novel TTP kinase that, together with the TNF receptor-associated factor 2 (TRAF2), constitutes not only a main determinate of the NF-κB-JNK cross-talk but also facilitates "TTP hypermodification": MEKK1 triggers TTP phosphorylation as prerequisite for its Lys-63-linked, TRAF2-mediated ubiquitination. Consequently, TTP no longer affects NF-κB activity but promotes the activation of JNK. Based on our data, we suggest a model where upon TNFα induction, TTP transits a hypo- to hypermodified state, thereby contributing to the molecular regulation of NF-κB versus JNK signaling cascades.
Collapse
Affiliation(s)
- Yvonne M Schichl
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Lazarettgasse 19, 1090 Vienna, Austria.
| | - Ulrike Resch
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Lazarettgasse 19, 1090 Vienna, Austria
| | - Christof E Lemberger
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Lazarettgasse 19, 1090 Vienna, Austria
| | - Dominik Stichlberger
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Lazarettgasse 19, 1090 Vienna, Austria
| | - Rainer de Martin
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Lazarettgasse 19, 1090 Vienna, Austria
| |
Collapse
|
127
|
Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 2011; 75:50-83. [PMID: 21372320 DOI: 10.1128/mmbr.00031-10] [Citation(s) in RCA: 2186] [Impact Index Per Article: 168.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mitogen-activated protein kinases (MAPKs) regulate diverse cellular programs by relaying extracellular signals to intracellular responses. In mammals, there are more than a dozen MAPK enzymes that coordinately regulate cell proliferation, differentiation, motility, and survival. The best known are the conventional MAPKs, which include the extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun amino-terminal kinases 1 to 3 (JNK1 to -3), p38 (α, β, γ, and δ), and ERK5 families. There are additional, atypical MAPK enzymes, including ERK3/4, ERK7/8, and Nemo-like kinase (NLK), which have distinct regulation and functions. Together, the MAPKs regulate a large number of substrates, including members of a family of protein Ser/Thr kinases termed MAPK-activated protein kinases (MAPKAPKs). The MAPKAPKs are related enzymes that respond to extracellular stimulation through direct MAPK-dependent activation loop phosphorylation and kinase activation. There are five MAPKAPK subfamilies: the p90 ribosomal S6 kinase (RSK), the mitogen- and stress-activated kinase (MSK), the MAPK-interacting kinase (MNK), the MAPK-activated protein kinase 2/3 (MK2/3), and MK5 (also known as p38-regulated/activated protein kinase [PRAK]). These enzymes have diverse biological functions, including regulation of nucleosome and gene expression, mRNA stability and translation, and cell proliferation and survival. Here we review the mechanisms of MAPKAPK activation by the different MAPKs and discuss their physiological roles based on established substrates and recent discoveries.
Collapse
|
128
|
Joe Y, Kim HJ, Kim S, Chung J, Ko MS, Lee WH, Chang KC, Park JW, Chung HT. Tristetraprolin mediates anti-inflammatory effects of nicotine in lipopolysaccharide-stimulated macrophages. J Biol Chem 2011; 286:24735-42. [PMID: 21606497 DOI: 10.1074/jbc.m110.204859] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nicotine inhibits the release of TNF-α from macrophage through activation of STAT3. Tristetraprolin (TTP) is known to destabilize pro-inflammatory transcripts containing AU-rich elements (ARE) in 3'-untranslated region (3'-UTR). Here we show that in LPS-stimulated human macrophages the anti-inflammatory action of nicotine is mediated by TTP. Nicotine induced activation of STAT3 enhanced STAT3 binding to the TTP promoter, increased TTP promoter activity, and increased TTP expression resulting in the suppression of LPS-stimulated TNF-α production. Overexpression of a dominant negative mutant of STAT3 (R382W) or down-regulation of STAT3 by siRNA abolished nicotine-induced TTP expression and suppression of LPS-stimulated TNF-α production. Nicotine enhanced the decay of TNF-α mRNA and decreased luciferase expression of a TNF-α 3'-UTR reporter plasmid in U937 cells. However, siRNA to TTP abrogated these effects of nicotine. In this experiment, we are reporting for the first time the involvement of TTP in the cholinergic anti-inflammatory cascade consisting of nicotine-STAT3-TTP-dampening inflammation.
Collapse
Affiliation(s)
- Yeonsoo Joe
- School of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Lee WH, Lee HH, Vo MT, Kim HJ, Ko MS, Im YC, Min YJ, Lee BJ, Cho WJ, Park JW. Casein kinase 2 regulates the mRNA-destabilizing activity of tristetraprolin. J Biol Chem 2011; 286:21577-87. [PMID: 21507959 DOI: 10.1074/jbc.m110.201137] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tristetraprolin (TTP) is an AU-rich element-binding protein that regulates mRNA stability. We previously showed that TTP acts as a negative regulator of VEGF gene expression in colon cancer cells. The p38 MAPK pathway is known to suppress the TTP activity. However, until now the signaling pathway to enhance TTP function is not well known. Here, we show that casein kinase 2 (CK2) enhances the TTP function in the regulation of the VEGF expression in colon cancer cells. CK2 increased TTP protein levels and enhanced VEGF mRNA decaying activity of TTP. TTP was not a direct target of CK2. Instead, CK2 increased the phosphorylation of MKP-1, which led to a decrease in the phosphorylation of p38 MAPK. Inhibition of MKP-1 by siRNA attenuated the increase in TTP function and the decrease of p38 phosphorylation induced by CK2α overexpression. TGF-β1 increased the expressions of CK2 and TTP and the TTP function. The siRNA against CK2α or TTP reversed TGF-β1-induced increases in the expression of CK2 and TTP and the TTP function. Our data suggest that CK2 enhances the protein level and activity of TTP via the modulation of the MKP-1-p38 MAPK signaling pathway and that TGF-β1 enhances the activity of CK2.
Collapse
Affiliation(s)
- Won Hyeok Lee
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Role of RNA-Binding Proteins in MAPK Signal Transduction Pathway. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:109746. [PMID: 21776382 PMCID: PMC3135068 DOI: 10.1155/2011/109746] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 01/20/2011] [Accepted: 02/09/2011] [Indexed: 01/03/2023]
Abstract
Mitogen-activated protein kinases (MAPKs), which are found in all eukaryotes, are signal transducing enzymes playing a central role in diverse biological processes, such as cell proliferation, sexual differentiation, and apoptosis. The MAPK signaling pathway plays a key role in the regulation of gene expression through the phosphorylation of transcription factors. Recent studies have identified several RNA-binding proteins (RBPs) as regulators of MAPK signaling because these RBPs bind to the mRNAs encoding the components of the MAPK pathway and regulate the stability of their transcripts. Moreover, RBPs also serve as targets of MAPKs because MAPK phosphorylate and regulate the ability of RBPs to bind and stabilize target mRNAs, thus controlling various cellular functions. In this review, we present evidence for the significance of the MAPK signaling in the regulation of RBPs and their target mRNAs, which provides additional information about the regulatory mechanism underlying gene expression. We further present evidence for the clinical importance of the posttranscriptional regulation of mRNA stability and its implications for drug discovery.
Collapse
|
131
|
|
132
|
Molecular mechanisms of phosphorylation-regulated TTP (tristetraprolin) action and screening for further TTP-interacting proteins. Biochem Soc Trans 2011; 38:1632-7. [PMID: 21118139 DOI: 10.1042/bst0381632] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
TTP (tristetraprolin) is an RNA-binding protein which regulates mRNA stability or translation or both. The molecular mechanisms which are responsible and which discriminate between regulation of mRNA stability and translation are not completely understood so far, but are clearly dependent on p38 MAPK (mitogen-activated protein kinase)/MK (MAPK-activated protein kinase) 2/3-mediated phosphorylation of TTP. To learn more about these mechanisms, phosphorylation-dependent TTP-interacting proteins could be of great interest. Many interacting partners, which belong to the mRNA-processing and -regulating machinery, have been identified by hypothesis-driven co-immunoprecipitation and in the classical Y2H (yeast two-hybrid) approach, where TTP was identified as prey, and are summarized in the present paper. However, because of transactivating properties of TTP, an unbiased Y2H approach using TTP as bait was hindered. Since novel methods for the identification of phosphorylation-dependent interaction partners and of interactors of full-length auto-activating proteins in eukaryotic systems have evolved in the last few years, these methods should be applied to screen for additional phosphorylation-dependent interaction partners of TTP and could lead towards a complete understanding of TTP function at the molecular level.
Collapse
|
133
|
Nagaleekar VK, Sabio G, Aktan I, Chant A, Howe IW, Thornton TM, Benoit PJ, Davis RJ, Rincon M, Boyson JE. Translational control of NKT cell cytokine production by p38 MAPK. THE JOURNAL OF IMMUNOLOGY 2011; 186:4140-6. [PMID: 21368234 DOI: 10.4049/jimmunol.1002614] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NKT cells are known to rapidly produce a large amount of cytokines upon activation. Although a number of signaling pathways that regulate the development of NKT cells have been identified, the signaling pathways involved in the regulation of NKT cell cytokine production remain unclear. In this study, we show that the p38 MAPK pathway is dispensable for the development of NKT cells. However, NKT cell cytokine production and NKT-mediated liver damage are highly dependent on activation of this pathway. p38 MAPK does not substantially affect cytokine gene expression in NKT cells, but it regulates the synthesis of cytokines through the Mnk-eIF4E pathway. Thus, in addition to gene expression, translational regulation by p38 MAPK could be a novel mechanism that contributes to the overall production of cytokine by NKT cells.
Collapse
Affiliation(s)
- Viswas K Nagaleekar
- Division of Immunobiology, Department of Medicine, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Cargnello M, Roux PP. Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases. Microbiol Mol Biol Rev 2011. [DOI: 78495111110.1128/mmbr.00031-10' target='_blank'>'"<>78495111110.1128/mmbr.00031-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [78495111110.1128/mmbr.00031-10','', '10.1074/jbc.m310486200')">Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
78495111110.1128/mmbr.00031-10" />
Abstract
SUMMARYThe mitogen-activated protein kinases (MAPKs) regulate diverse cellular programs by relaying extracellular signals to intracellular responses. In mammals, there are more than a dozen MAPK enzymes that coordinately regulate cell proliferation, differentiation, motility, and survival. The best known are the conventional MAPKs, which include the extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun amino-terminal kinases 1 to 3 (JNK1 to -3), p38 (α, β, γ, and δ), and ERK5 families. There are additional, atypical MAPK enzymes, including ERK3/4, ERK7/8, and Nemo-like kinase (NLK), which have distinct regulation and functions. Together, the MAPKs regulate a large number of substrates, including members of a family of protein Ser/Thr kinases termed MAPK-activated protein kinases (MAPKAPKs). The MAPKAPKs are related enzymes that respond to extracellular stimulation through direct MAPK-dependent activation loop phosphorylation and kinase activation. There are five MAPKAPK subfamilies: the p90 ribosomal S6 kinase (RSK), the mitogen- and stress-activated kinase (MSK), the MAPK-interacting kinase (MNK), the MAPK-activated protein kinase 2/3 (MK2/3), and MK5 (also known as p38-regulated/activated protein kinase [PRAK]). These enzymes have diverse biological functions, including regulation of nucleosome and gene expression, mRNA stability and translation, and cell proliferation and survival. Here we review the mechanisms of MAPKAPK activation by the different MAPKs and discuss their physiological roles based on established substrates and recent discoveries.
Collapse
Affiliation(s)
- Marie Cargnello
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
- Molecular Biology Program, Université de Montréal, Montreal, Quebec, Canada
| | - Philippe P. Roux
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
- Molecular Biology Program, Université de Montréal, Montreal, Quebec, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
135
|
Holzmann J, Fuchs J, Pichler P, Peters JM, Mechtler K. Lesson from the stoichiometry determination of the cohesin complex: a short protease mediated elution increases the recovery from cross-linked antibody-conjugated beads. J Proteome Res 2011; 10:780-9. [PMID: 21043528 PMCID: PMC3033704 DOI: 10.1021/pr100927x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Indexed: 12/17/2022]
Abstract
Affinity purification of proteins using antibodies coupled to beads and subsequent mass spectrometric analysis has become a standard technique for the identification of protein complexes. With the recent transfer of the isotope dilution mass spectrometry principle (IDMS) to the field of proteomics, quantitative analyses-such as the stoichiometry determination of protein complexes-have become achievable. Traditionally proteins were eluted from antibody-conjugated beads using glycine at low pH or using diluted acids such as HCl, TFA, or FA, but elution was often found to be incomplete. Using the cohesin complex and the anaphase promoting complex/cyclosome (APC/C) as examples, we show that a short 15-60 min predigestion with a protease such as LysC (modified on-bead digest termed protease elution) increases the elution efficiency 2- to 3-fold compared to standard acid elution protocols. While longer incubation periods-as performed in standard on-bead digestion-led to partial proteolysis of the cross-linked antibodies, no or only insignificant cleavage was observed after 15-60 min protease mediated elution. Using the protease elution method, we successfully determined the stoichiometry of the cohesin complex by absolute quantification of the four core subunits using LC-SRM analysis and 19 reference peptides generated with the EtEP strategy. Protease elution was 3-fold more efficient compared to HCl elution, but measurements using both elution techniques are in agreement with a 1:1:1:1 stoichiometry. Furthermore, using isoform specific reference peptides, we determined the exact STAG1:STAG2 stoichiometry within the population of cohesin complexes. In summary, we show that the protease elution protocol increases the recovery from affinity beads and is compatible with quantitative measurements such as the stoichiometry determination of protein complexes.
Collapse
Affiliation(s)
- Johann Holzmann
- Research Institute of Molecular Pathology (IMP), Vienna, Austria.
| | | | | | | | | |
Collapse
|
136
|
Sandler H, Kreth J, Timmers HTM, Stoecklin G. Not1 mediates recruitment of the deadenylase Caf1 to mRNAs targeted for degradation by tristetraprolin. Nucleic Acids Res 2011; 39:4373-86. [PMID: 21278420 PMCID: PMC3105394 DOI: 10.1093/nar/gkr011] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The carbon catabolite repressor protein 4 (Ccr4)–Negative on TATA (Not) complex controls gene expression at two levels. In the nucleus, it regulates the basal transcription machinery, nuclear receptor-mediated transcription and histone modifications. In the cytoplasm, the complex is required for messenger RNA (mRNA) turnover through its two associated deadenylases, Ccr4 and Caf1. Not1 is the largest protein of the Ccr4–Not complex and serves as a scaffold for other subunits of the complex. Here, we provide evidence that human Not1 in the cytoplasm associates with the C-terminal domain of tristetraprolin (TTP), an RNA binding protein that mediates rapid degradation of mRNAs containing AU-rich elements (AREs). Not1 shows extensive interaction through its central region with TTP, whereas binding of Caf1 is restricted to a smaller central domain within Not1. Importantly, Not1 is required for the rapid decay of ARE-mRNAs, and TTP can recruit the Caf1 deadenylase only in presence of Not1. Thus, cytoplasmic Not1 provides a platform that allows a specific RNA binding protein to recruit the Caf1 deadenylase and thereby trigger decay of its target mRNAs.
Collapse
Affiliation(s)
- Heike Sandler
- Helmholtz Junior Research Group Posttranscriptional Control of Gene Expression, German Cancer Research Center, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
137
|
Ebrahimian T, Li MW, Lemarié CA, Simeone SMC, Pagano PJ, Gaestel M, Paradis P, Wassmann S, Schiffrin EL. Mitogen-activated protein kinase-activated protein kinase 2 in angiotensin II-induced inflammation and hypertension: regulation of oxidative stress. Hypertension 2010; 57:245-54. [PMID: 21173344 DOI: 10.1161/hypertensionaha.110.159889] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Vascular oxidative stress and inflammation play an important role in angiotensin II-induced hypertension, and mitogen-activated protein kinases participate in these processes. We questioned whether mitogen-activated protein kinase-activated protein kinase 2 (MK2), a downstream target of p38 mitogen-activated protein kinase, is involved in angiotensin II-induced vascular responses. In vivo experiments were performed in wild-type and Mk2 knockout mice infused intravenously with angiotensin II. Angiotensin II induced a 30 mm Hg increase in mean blood pressure in wild-type that was delayed in Mk2 knockout mice. Angiotensin II increased superoxide production and vascular cell adhesion molecule-1 in blood vessels of wild-type but not in Mk2 knockout mice. Mk2 knockdown by small interfering RNA in mouse mesenteric vascular smooth muscle cells caused a 42% reduction in MK2 protein and blunted the angiotensin II-induced 40% increase of MK2 expression. Mk2 knockdown blunted angiotensin II-induced doubling of intracellular adhesion molecule-1 expression, 2.4-fold increase of nuclear p65, and 1.4-fold increase in Ets-1. Mk2 knockdown abrogated the angiotensin II-induced 4.7-fold and 1.3-fold increase of monocyte chemoattractant protein-1 mRNA and protein. Angiotensin II enhanced reactive oxygen species levels (by 29%) and nicotinamide adenine dinucleotide phosphate oxidase activity (by 48%), both abolished by Mk2 knockdown. Reduction of MK2 blocked angiotensin II-induced p47phox translocation to the membrane, associated with a 53% enhanced catalase expression. Angiotensin II-induced increase of MK2 was prevented by the nicotinamide adenine dinucleotide phosphate oxidase inhibitor Nox2ds-tat. Mk2 small interfering RNA prevented the angiotensin II-induced 30% increase of proliferation. In conclusion, MK2 plays a critical role in angiotensin II signaling, leading to hypertension, oxidative stress via activation of p47phox and inhibition of antioxidants, and vascular inflammation and proliferation.
Collapse
Affiliation(s)
- Talin Ebrahimian
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Li Q, Yu H, Zinna R, Martin K, Herbert B, Liu A, Rossa C, Kirkwood KL. Silencing mitogen-activated protein kinase-activated protein kinase-2 arrests inflammatory bone loss. J Pharmacol Exp Ther 2010; 336:633-42. [PMID: 21139061 DOI: 10.1124/jpet.110.172395] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
p38 mitogen-activated protein kinases (MAPKs) are critical for innate immune signaling and subsequent cytokine expression in periodontal inflammation and bone destruction. In fact, previous studies show that systemic p38 MAPK inhibitors block periodontal disease progression. However, development of p38 MAPK inhibitors with favorable toxicological profiles is difficult. Here, we report our findings regarding the contribution of the downstream p38 MAPK substrate, mitogen-activated protein kinase-activated protein kinase 2 (MK2 or MAPKAPK-2), in immune response modulation in an experimental model of pathogen-derived lipopolysaccharide (LPS)-induced periodontal bone loss. To determine whether small interfering RNA (siRNA) technology has intraoral applications, we initially validated MK2 siRNA specificity. Then, gingival tissue surrounding maxillary molars of rats was injected with MK2 siRNA or scrambled siRNA at the palatal regions of bone loss. Intraoral tissues treated with MK2 siRNA had significantly less MK2 mRNA expression compared with scrambled siRNA-treated tissues. MK2 siRNA delivery arrested LPS-induced inflammatory bone loss, decreased inflammatory infiltrate, and decreased osteoclastogenesis. This proof-of-concept study suggests a novel target using an intraoral RNA interference strategy to control periodontal inflammation.
Collapse
Affiliation(s)
- Qiyan Li
- Department of Craniofacial Biology, Center for Oral Health Research, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Phosphorylation of tristetraprolin by MK2 impairs AU-rich element mRNA decay by preventing deadenylase recruitment. Mol Cell Biol 2010; 31:256-66. [PMID: 21078877 DOI: 10.1128/mcb.00717-10] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
mRNA turnover is a critical step in the control of gene expression. In mammalian cells, a subset of mRNAs regulated at the level of mRNA turnover contain destabilizing AU-rich elements (AREs) in their 3' untranslated regions. These transcripts are bound by a suite of ARE-binding proteins (AUBPs) that receive information from cell signaling events to modulate rates of ARE mRNA decay. Here we show that a key destabilizing AUBP, tristetraprolin (TTP), is repressed by the p38 mitogen-activated protein kinase (MAPK)-activated kinase MK2 due to the inability of phospho-TTP to recruit deadenylases to target mRNAs. TTP is tightly associated with cytoplasmic deadenylases and promotes rapid deadenylation of target mRNAs both in vitro and in cells. TTP can direct the deadenylation of substrate mRNAs when tethered to a heterologous mRNA, yet its ability to do so is inhibited upon phosphorylation by MK2. Phospho-TTP is not impaired in mRNA binding but does fail to recruit the major cytoplasmic deadenylases. These observations suggest that phosphorylation of TTP by MK2 primarily affects mRNA decay downstream of RNA binding by preventing recruitment of the deadenylation machinery. Thus, TTP may remain poised to rapidly reactivate deadenylation of bound transcripts to downregulate gene expression once the p38 MAPK pathway is deactivated.
Collapse
|
140
|
Mitogen-activated protein kinase-activated protein kinase 2 (MK2) contributes to secondary damage after spinal cord injury. J Neurosci 2010; 30:13750-9. [PMID: 20943915 DOI: 10.1523/jneurosci.2998-10.2010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The inflammatory response contributes importantly to secondary tissue damage and functional deficits after spinal cord injury (SCI). In this work, we identified mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MAPKAPK2 or MK2), a downstream substrate of p38 MAPK, as a potential target using microarray analysis of contused spinal cord tissue taken at the peak of the inflammatory response. There was increased expression and phosphorylation of MK2 after SCI, with phospho-MK2 expressed in microglia/macrophages, neurons and astrocytes. We examined the role of MK2 in spinal cord contusion injury using MK2(-/-) mice. These results show that locomotor recovery was significantly improved in MK2(-/-) mice, compared with wild-type controls. MK2(-/-) mice showed reduced neuron and myelin loss, and increased sparing of serotonergic fibers in the ventral horn caudal to the injury site. We also found differential expression of matrix metalloproteinase-2 and 9 in MK2(-/-) and wild-type mice after SCI. Significant reduction was also seen in the expression of proinflammatory cytokines and protein nitrosylation in the injured spinal cord of MK2(-/-) mice. Our previous work has shown that macrophages lacking MK2 have an anti-inflammatory phenotype. We now show that there is no difference in the number of macrophages in the injured spinal cord between the two mouse strains and little if any difference in their phagocytic capacity, suggesting that macrophages lacking MK2 have a beneficial phenotype. These findings suggest that a lack of MK2 can reduce tissue damage after SCI and improve locomotor recovery. MK2 may therefore be a useful target to treat acute SCI.
Collapse
|
141
|
Khera TK, Dick AD, Nicholson LB. Mechanisms of TNFα regulation in uveitis: Focus on RNA-binding proteins. Prog Retin Eye Res 2010; 29:610-21. [DOI: 10.1016/j.preteyeres.2010.08.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
142
|
Raaby L, Otkjær K, Salvskov-Iversen ML, Johansen C, Iversen L. A Characterization of the expression of 14-3-3 isoforms in psoriasis, basal cell carcinoma, atopic dermatitis and contact dermatitis. Dermatol Reports 2010; 2:e14. [PMID: 25386251 PMCID: PMC4211473 DOI: 10.4081/dr.2010.e14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 10/08/2010] [Indexed: 11/23/2022] Open
Abstract
14-3-3 is a highly conserved protein involved in a number of cellular processes including cell signalling, cell cycle regulation and gene transcription. Seven isoforms of the protein have been identified; β, γ, ε, ζ η σ and τ. The expression profile of the various isoforms in skin diseases is unknown. To investigate the expression of the seven 14-3-3 isoforms in involved and uninvolved skin from psoriasis, basal cell carcinoma (BCC), atopic dermatitis and nickel induced allergic contact dermatitis. Punch biopsies from involved and uninvolved skin were analyzed with quantitative reverse transcription-polymerase chain reaction to determine the mRNA expression of the 14-3-3 isoforms. The protein level of 14-3-3 isoforms was measured by Western blot technique in keratome biopsies from patients with psoriasis. Evaluation of dermal and epidermal protein expression was performed by immunofluorescence staining. Increased 14-3-3τ mRNA levels were detected in involved skin from patients with psoriasis, contact dermatitis and BCC. 14-3-3σ mRNA expression was increased in psoriasis and contact dermatitis, but not in BCC. In atopic dermatitis no significant difference between involved and uninvolved skin was found. The expression of the 14-3-3 isoforms was also studied at the protein level in psoriasis. Only 14-3-3τ expression was significantly increased in involved psoriatic skin compared with uninvolved skin. Immunofluorescence staining with 14-3-3τ- and 14-3-3σ-specific antibodies showed localization of both isoforms to the cytoplasm of the keratinocytes in the various skin sections. These results demonstrate a disease specific expression profile of the 14-3-3τ and 14-3-3σ iso-forms.
Collapse
Affiliation(s)
- Line Raaby
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Kristian Otkjær
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Claus Johansen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
143
|
Kim CW, Kim HK, Vo MT, Lee HH, Kim HJ, Min YJ, Cho WJ, Park JW. Tristetraprolin controls the stability of cIAP2 mRNA through binding to the 3'UTR of cIAP2 mRNA. Biochem Biophys Res Commun 2010; 400:46-52. [PMID: 20691152 DOI: 10.1016/j.bbrc.2010.07.136] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 07/30/2010] [Indexed: 11/17/2022]
Abstract
cIAP2 is a key regulator of programmed cell death and the NF-κB pathway. Here, we investigated the post-transcriptional regulation of cIAP2 expression by tristetraprolin (TTP). Our results showed that overexpression of TTP reduced the stability of cIAP2 mRNA and the expression level of cIAP2. In addition, TTP destabilized a luciferase mRNA containing cIAP2 mRNA 3'UTR. cIAP2 mRNA 3'UTR contains four AU-rich elements (AREs) and the 2nd ARE was responsible for the TTP-mediated destabilization of the cIAP2 mRNA. RNA EMSA revealed that TTP directly bound to 42 nucleotides from the 3'UTR of cIAP2 mRNA containing the 2nd ARE. However, the 42 nucleotides did not promote TTP-dependent destabilization of mRNA and did not recruit the decapping enzyme Dcp2 and the 5'-3' exonuclease Xrn1. When we used a 52 nucleotide sequence containing an additional 5 nucleotides from cIAP2 mRNA 3'UTR at both ends, this long nucleotide sequences recruited Dcp2 and Xrn1 and promoted TTP-dependent destabilization of mRNA. Collectively, our results suggest that TTP can bind to the 2nd ARE of cIAP2 mRNA 3'UTR and destabilize cIAP2 mRNA by forming complexes with Dcp2 and Xrn1. However, while a short nucleotide sequence containing the 2nd ARE of cIAP2 mRNA can recruit the TTP binding, this cannot recruit Dcp2 and Xrn1 and cannot induce TTP-mediated destabilize the mRNA. Instead, additional nucleotide sequences are required to recruit Dcp2 and Xrn1 and to destabilize mRNA.
Collapse
Affiliation(s)
- Chae Won Kim
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Werno C, Schmid T, Schnitzer SE, Peters K, Milke L, Brüne B. A combination of hypoxia and lipopolysaccharide activates tristetraprolin to destabilize proinflammatory mRNAs such as tumor necrosis factor-alpha. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1104-12. [PMID: 20639458 DOI: 10.2353/ajpath.2010.091212] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inflammation is often accompanied by hypoxia because of the high oxygen consumption of invading bacteria and immune cells. During resolution of inflammation, the formation of inflammatory mediators such as tumor necrosis factor-alpha (TNF-alpha), which is produced by macrophages, needs to be terminated. We show in RAW264.7 macrophages that TNF-alpha mRNA as well as intracellular and secreted TNF-alpha protein levels are reduced after prolonged incubations with lipopolysaccharide (LPS) under hypoxic conditions. The decrease in TNF-alpha was mediated by destabilization of TNF-alpha mRNA via a 3'-untranslated region-dependent mechanism. Specifically, the RNA-binding protein tristetraprolin (TTP) increased at mRNA and protein levels after 16-hour incubations with LPS under hypoxia. Interestingly, TTP accumulated in a dephosphorylated and active form, and this accumulation was attributable to reduced p38 mitogen-activated protein kinase activity under these conditions. Knockdown of TTP by small interfering RNA abolished destabilization of TNF-alpha mRNA. Prolonged incubations with LPS under hypoxia also reduced mRNA amounts and stability of other proinflammatory mediators such as macrophage inflammatory protein-2, interleukin-6, and granulocyte macrophage colony-stimulating factor. Therefore, we propose that hypoxia plays a key role during resolution of inflammation by activating posttranscriptional, TTP-dependent regulatory mechanisms.
Collapse
Affiliation(s)
- Christian Werno
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Biochemistry, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
145
|
Bak RO, Mikkelsen JG. Regulation of cytokines by small RNAs during skin inflammation. J Biomed Sci 2010; 17:53. [PMID: 20594301 PMCID: PMC2905360 DOI: 10.1186/1423-0127-17-53] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 07/01/2010] [Indexed: 02/08/2023] Open
Abstract
Intercellular signaling by cytokines is a vital feature of the innate immune system. In skin, an inflammatory response is mediated by cytokines and an entwined network of cellular communication between T-cells and epidermal keratinocytes. Dysregulated cytokine production, orchestrated by activated T-cells homing to the skin, is believed to be the main cause of psoriasis, a common inflammatory skin disorder. Cytokines are heavily regulated at the transcriptional level, but emerging evidence suggests that regulatory mechanisms that operate after transcription play a key role in balancing the production of cytokines. Herein, we review the nature of cytokine signaling in psoriasis with particular emphasis on regulation by mRNA destabilizing elements and the potential targeting of cytokine-encoding mRNAs by miRNAs. The proposed linkage between mRNA decay mediated by AU-rich elements and miRNA association is described and discussed as a possible general feature of cytokine regulation in skin. Moreover, we describe the latest attempts to therapeutically target cytokines at the RNA level in psoriasis by exploiting the cellular RNA interference machinery. The applicability of cytokine-encoding mRNAs as future clinical drug targets is evaluated, and advances and obstacles related to topical administration of RNA-based drugs targeting the cytokine circuit in psoriasis are described.
Collapse
Affiliation(s)
- Rasmus O Bak
- Department of Human Genetics, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | |
Collapse
|
146
|
Marchese FP, Aubareda A, Tudor C, Saklatvala J, Clark AR, Dean JLE. MAPKAP kinase 2 blocks tristetraprolin-directed mRNA decay by inhibiting CAF1 deadenylase recruitment. J Biol Chem 2010; 285:27590-600. [PMID: 20595389 DOI: 10.1074/jbc.m110.136473] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tristetraprolin (TTP) directs its target AU-rich element (ARE)-containing mRNAs for degradation by promoting removal of the poly(A) tail. The p38 MAPK pathway regulates mRNA stability via the downstream kinase MAPK-activated protein kinase 2 (MAPKAP kinase 2 or MK2), which phosphorylates and prevents the mRNA-destabilizing function of TTP. We show that deadenylation of endogenous ARE-containing tumor necrosis factor mRNA is inhibited by p38 MAPK. To investigate whether phosphorylation of TTP by MK2 regulates TTP-directed deadenylation of ARE-containing mRNAs, we used a cell-free assay that reconstitutes the mechanism in vitro. We find that phosphorylation of Ser-52 and Ser-178 of TTP by MK2 results in inhibition of TTP-directed deadenylation of ARE-containing RNA. The use of 14-3-3 protein antagonists showed that regulation of TTP-directed deadenylation by MK2 is independent of 14-3-3 binding to TTP. To investigate the mechanism whereby TTP promotes deadenylation, it was necessary to identify the deadenylases involved. The carbon catabolite repressor protein (CCR)4.CCR4-associated factor (CAF)1 complex was identified as the major source of deadenylase activity in HeLa cells responsible for TTP-directed deadenylation. CAF1a and CAF1b were found to interact with TTP in an RNA-independent fashion. We find that MK2 phosphorylation reduces the ability of TTP to promote deadenylation by inhibiting the recruitment of CAF1 deadenylase in a mechanism that does not involve sequestration of TTP by 14-3-3. Cyclooxygenase-2 mRNA stability is increased in CAF1-depleted cells in which it is no longer p38 MAPK/MK2-regulated.
Collapse
Affiliation(s)
- Francesco P Marchese
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College London, London W6 8LH, United Kingdom
| | | | | | | | | | | |
Collapse
|
147
|
MAPK-activated protein kinase 2 is required for mouse meiotic spindle assembly and kinetochore-microtubule attachment. PLoS One 2010; 5:e11247. [PMID: 20596525 PMCID: PMC2893158 DOI: 10.1371/journal.pone.0011247] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 05/28/2010] [Indexed: 11/19/2022] Open
Abstract
MAPK-activated protein kinase 2 (MK2), a direct substrate of p38 MAPK, plays key roles in multiple physiological functions in mitosis. Here, we show for the first time the unique distribution pattern of MK2 in meiosis. Phospho-MK2 was localized on bipolar spindle minus ends and along the interstitial axes of homologous chromosomes extending over centromere regions and arm regions at metaphase of first meiosis (MI stage) in mouse oocytes. At metaphase of second meiosis (MII stage), p-MK2 was localized on the bipolar spindle minus ends and at the inner centromere region of sister chromatids as dots. Knockdown or inhibition of MK2 resulted in spindle defects. Spindles were surrounded by irregular nondisjunction chromosomes, which were arranged in an amphitelic or syntelic/monotelic manner, or chromosomes detached from the spindles. Kinetochore-microtubule attachments were impaired in MK2-deficient oocytes because spindle microtubules became unstable in response to cold treatment. In addition, homologous chromosome segregation and meiosis progression were inhibited in these oocytes. Our data suggest that MK2 may be essential for functional meiotic bipolar spindle formation, chromosome segregation and proper kinetochore-microtubule attachments.
Collapse
|
148
|
Ronkina N, Menon MB, Schwermann J, Tiedje C, Hitti E, Kotlyarov A, Gaestel M. MAPKAP kinases MK2 and MK3 in inflammation: complex regulation of TNF biosynthesis via expression and phosphorylation of tristetraprolin. Biochem Pharmacol 2010; 80:1915-20. [PMID: 20599781 DOI: 10.1016/j.bcp.2010.06.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 06/07/2010] [Accepted: 06/08/2010] [Indexed: 02/06/2023]
Abstract
Downstream of mitogen-activated protein kinases (MAPKs), three structurally related MAPK-activated protein kinases (MAPKAPKs or MKs) - MK2, MK3 and MK5 - signal to diverse cellular targets. Although there is no known common function for all three MKs, MK2 and MK3 are mainly involved in regulation of gene expression at the post-transcriptional level and are implicated in inflammation and cancer. MK2 and MK3 are phosphorylated and activated by p38(MAPKα,β) and, in turn phosphorylate various substrates involved in diverse cellular processes. In addition to forwarding of the p38-signal by MK2/3, protein complex formation between MK2/3 and p38 mutually stabilizes these enzymes and affects p38(MAPK) signaling in general. Among the substrates of MK2/3, there are mRNA-AU-rich-element (ARE)-binding proteins, such as tristetraprolin (TTP) and hnRNP A0, which regulate mRNA stability and translation in a phosphorylation-dependent manner. Phosphorylation by MK2 stabilizes TTP, releases ARE-containing mRNAs, such as TNF-mRNA, from default translational repression and inhibits their nucleolytic degradation. Here we demonstrate that MK2/3 also contribute to the de novo synthesis of TTP. Whether this contribution proceeds via transcription factors directly targeted by MK2/3 or via chromatin remodeling by the reported binding of MK2/3 to the polycomb repressive complex is still open. A model is proposed, which demonstrates how this new function of transcriptional activation of TTP by MK2/3 cooperates with the role of MK2/3 in post-transcriptional gene expression to limit the inflammatory response.
Collapse
Affiliation(s)
- Natalia Ronkina
- Institute of Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
149
|
Hitti E, Al-Yahya S, Al-Saif M, Mohideen P, Mahmoud L, Polyak SJ, Khabar KSA. A versatile ribosomal protein promoter-based reporter system for selective assessment of RNA stability and post-transcriptional control. RNA (NEW YORK, N.Y.) 2010; 16:1245-55. [PMID: 20418359 PMCID: PMC2874176 DOI: 10.1261/rna.2026310] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Assessment of post-transcriptional control relies on use of transcriptional inhibitors and is masked by copious and cryptic transcriptional induction. We screened several cellular promoters that are constitutively active yet noninducible to external stimuli. The ribosomal protein RPS30 promoter was chosen; its TATA signal and sp1 site location were optimized. The modified promoter (RPS30M) is selective to post-transcriptional effects of AU-rich elements (ARE) in the 3'UTR, while it is not transcriptionally responsive to a wide variety of agents including pro-inflammatory cytokines and RNA-binding proteins. Specific cis-acting elements can be appended to RPS30M by a cloning-free approach to allow coupled transcriptional/post-transcriptional assessment, as demonstrated with NF-kappaB and beta-catenin/wnt signaling experiments. Moreover, efficient tetracycline-regulated RPS30M was created for quantitative assessment of the half-lives of mRNAs containing AREs. The described approach provides enhanced versatility and suitability for selective post-transcriptional assessment with or without transcriptional induction.
Collapse
Affiliation(s)
- Edward Hitti
- Program in BioMolecular Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia 11211
| | | | | | | | | | | | | |
Collapse
|
150
|
Bérubé J, Roussel L, Nattagh L, Rousseau S. Loss of cystic fibrosis transmembrane conductance regulator function enhances activation of p38 and ERK MAPKs, increasing interleukin-6 synthesis in airway epithelial cells exposed to Pseudomonas aeruginosa. J Biol Chem 2010; 285:22299-307. [PMID: 20460375 DOI: 10.1074/jbc.m109.098566] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In cystic fibrosis (CF), the absence of functional cystic fibrosis transmembrane conductance regulator (CFTR) translates into chronic bacterial infection, excessive inflammation, tissue damage, impaired lung function and eventual death. Understanding the mechanisms underlying this vicious circle of inflammation is important to design better therapies for CF. We found in CF lung biopsies increased immunoreactivity for p38 MAPK activity markers. Moreover, when compared with their non-CF counterpart, airway epithelial cells expressing the most common mutation in CF (CFTRDeltaF508) were more potent at inducing neutrophil chemotaxis through increased interleukin (IL)-6 synthesis when challenged with Pseudomonas aeruginosa diffusible material. We then discovered that in CFTRDeltaF508 cells, the p38 and ERK MAPKs are hyperactivated in response to P. aeruginosa diffusible material, leading to increased IL-6 mRNA expression and stability. Moreover, although TLR5 contributes to p38 MAPK activation upon P. aeruginosa challenge, it only played a weak role in IL-6 synthesis. Instead, we found that the production of reactive oxygen species is essential for IL-6 synthesis in response to P. aeruginosa diffusible material. Finally, we uncovered that in CFTRDeltaF508 cells, the extracellular glutathione levels are decreased, leading to a greater sensitivity to reactive oxygen species, providing an explanation for the hyperactivation of the p38 and ERK MAPKs and increased IL-6 synthesis. Taken together, our study has characterized a mechanism whereby the CFTRDeltaF508 mutation in airway epithelial cells contributes to increase inflammation of the airways.
Collapse
Affiliation(s)
- Julie Bérubé
- Meakins-Christie Laboratories, McGill University Heath Centre Research Institute, Montréal, Québec H2X 2P2, Canada
| | | | | | | |
Collapse
|