101
|
Thompson MG, Foley DA, Swartzentruber KG, Colley KJ. Sequences at the interface of the fifth immunoglobulin domain and first fibronectin type III repeat of the neural cell adhesion molecule are critical for its polysialylation. J Biol Chem 2010; 286:4525-34. [PMID: 21131353 DOI: 10.1074/jbc.m110.200386] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polysialic acid is an anti-adhesive glycan that modifies a select group of mammalian proteins. The primary substrate of the polysialyltransferases (polySTs) is the neural cell adhesion molecule (NCAM). Polysialic acid negatively regulates cell adhesion, is required for proper brain development, and is expressed in specific areas of the adult brain where it promotes on-going cell migration and synaptic plasticity. The first fibronectin type III repeat (FN1) of NCAM is required for polysialylation of the N-glycans on the adjacent immunoglobulin-like domain (Ig5), and acidic residues on the surface of FN1 play a role in polyST recognition. Recent work demonstrated that the FN1 domain from the unpolysialylated olfactory cell adhesion molecule (OCAM) was able to partially replace NCAM FN1 (Foley, D. A., Swartzentruber, K. G., Thompson, M. G., Mendiratta, S. S., and Colley, K. J. (2010) J. Biol. Chem. 285, 35056-35067). Here we demonstrate that individually replacing three identical regions shared by NCAM and OCAM FN1, (500)PSSP(503) (PSSP), (526)GGVPI(530) (GGVPI), and (580)NGKG(583) (NGKG), dramatically reduces NCAM polysialylation. In addition, we show that the polyST, ST8SiaIV/PST, specifically binds NCAM and that this binding requires the FN1 domain. Replacing the FN1 PSSP sequences and the acidic patch residues decreases NCAM-polyST binding, whereas replacing the GGVPI and NGKG sequences has no effect. The location of GGVPI and NGKG in loops that flank the Ig5-FN1 linker and the proximity of PSSP to this linker suggest that GGVPI and NGKG sequences may be critical for stabilizing the Ig5-FN1 linker, whereas PSSP may play a dual role maintaining the Ig5-FN1 interface and a polyST recognition site.
Collapse
Affiliation(s)
- Matthew G Thompson
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, Illinois 60607, USA
| | | | | | | |
Collapse
|
102
|
Foley DA, Swartzentruber KG, Thompson MG, Mendiratta SS, Colley KJ. Sequences from the first fibronectin type III repeat of the neural cell adhesion molecule allow O-glycan polysialylation of an adhesion molecule chimera. J Biol Chem 2010; 285:35056-67. [PMID: 20805222 PMCID: PMC2966120 DOI: 10.1074/jbc.m110.170209] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Indexed: 01/19/2023] Open
Abstract
Polysialic acid is a developmentally regulated, anti-adhesive polymer that is added to N-glycans on the fifth immunoglobulin domain (Ig5) of the neural cell adhesion molecule (NCAM). We found that the first fibronectin type III repeat (FN1) of NCAM is required for the polysialylation of N-glycans on the adjacent Ig5 domain, and we proposed that the polysialyltransferases recognize specific sequences in FN1 to position themselves for Ig5 N-glycan polysialylation. Other studies identified a novel FN1 acidic surface patch and α-helix that play roles in NCAM polysialylation. Here, we characterize the contribution of two additional FN1 sequences, Pro(510)-Tyr(511)-Ser(512) (PYS) and Gln(516)-Val(517)-Gln(518) (QVQ). Replacing PYS or the acidic patch dramatically decreases the O-glycan polysialylation of a truncated NCAM protein, and replacing the α-helix or QVQ shifts polysialic acid to FN1 O-glycans in full-length NCAM. We also found that the FN1 domain of the olfactory cell adhesion molecule, a homologous but unpolysialylated protein, could partially replace NCAM FN1. Inserting Pro(510)-Tyr(511) eliminated N-glycan polysialylation and enhanced O-glycosylation of an NCAM- olfactory cell adhesion molecule chimera, and inserting other FN1 sequences unique to NCAM, predominantly the acidic patch, created a new polysialyltransferase recognition site. Taken together, our results highlight the role of the FN1 α-helix and QVQ sequences in N-glycan polysialylation and demonstrate that the acidic patch primarily functions in O-glycan polysialylation.
Collapse
Affiliation(s)
- Deirdre A. Foley
- From the Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois, Chicago, Illinois 60607
| | - Kristin G. Swartzentruber
- From the Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois, Chicago, Illinois 60607
| | - Matthew G. Thompson
- From the Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois, Chicago, Illinois 60607
| | - Shalu Shiv Mendiratta
- From the Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois, Chicago, Illinois 60607
| | - Karen J. Colley
- From the Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois, Chicago, Illinois 60607
| |
Collapse
|
103
|
Haastert-Talini K, Schaper-Rinkel J, Schmitte R, Bastian R, Mühlenhoff M, Schwarzer D, Draeger G, Su Y, Scheper T, Gerardy-Schahn R, Grothe C. In Vivo Evaluation of Polysialic Acid as Part of Tissue-Engineered Nerve Transplants. Tissue Eng Part A 2010; 16:3085-98. [DOI: 10.1089/ten.tea.2010.0180] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Kirsten Haastert-Talini
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
- Center for Systems Neurosciences (ZSN), Hannover, Germany
| | - Janett Schaper-Rinkel
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
- Center for Systems Neurosciences (ZSN), Hannover, Germany
| | - Ruth Schmitte
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Rode Bastian
- Institute of Technical Chemistry, University of Hannover, Hannover, Germany
| | - Martina Mühlenhoff
- Institute for Cellular Chemistry, Hannover Medical School, Hannover, Germany
| | - David Schwarzer
- Institute for Cellular Chemistry, Hannover Medical School, Hannover, Germany
| | - Gerald Draeger
- Institute of Organic Chemistry, University of Hannover, Hannover, Germany
| | - Yi Su
- Institute of Organic Chemistry, University of Hannover, Hannover, Germany
| | - Thomas Scheper
- Institute of Technical Chemistry, University of Hannover, Hannover, Germany
| | - Rita Gerardy-Schahn
- Center for Systems Neurosciences (ZSN), Hannover, Germany
- Institute for Cellular Chemistry, Hannover Medical School, Hannover, Germany
| | - Claudia Grothe
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
- Center for Systems Neurosciences (ZSN), Hannover, Germany
| |
Collapse
|
104
|
Park H, Pagan L, Tan O, Fadiel A, Demir N, Kui Huang, Mittal K, Naftolin F. Estradiol Regulates Expression of Polysialated Neural Cell Adhesion Molecule by Human Vascular Endothelial Cells. Reprod Sci 2010; 17:1090-8. [DOI: 10.1177/1933719110379649] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Hyein Park
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA
| | - Lisandra Pagan
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA
| | - Orkun Tan
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA
| | - Ahmed Fadiel
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA, Meharry Medical College, Nashville, TN, USA
| | | | - Kui Huang
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA
| | - Khushbakhat Mittal
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA
| | - Frederick Naftolin
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA,
| |
Collapse
|
105
|
In vivo activation of channelrhodopsin-2 reveals that normal patterns of spontaneous activity are required for motoneuron guidance and maintenance of guidance molecules. J Neurosci 2010; 30:10575-85. [PMID: 20686000 DOI: 10.1523/jneurosci.2773-10.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Spontaneous, highly rhythmic episodes of propagating bursting activity are present early during the development of chick and mouse spinal cords. Acetylcholine, and GABA and glycine, which are both excitatory at this stage, provide the excitatory drive. It was previously shown that a moderate decrease in the frequency of bursting activity, caused by in ovo application of the GABA(A) receptor blocker, picrotoxin, resulted in motoneurons making dorsal-ventral (D-V) pathfinding errors in the limb and in the altered expression of guidance molecules associated with this decision. To distinguish whether the pathfinding errors were caused by perturbation of the normal frequency of bursting activity or interference with GABA(A) receptor signaling, chick embryos were chronically treated in ovo with picrotoxin to block GABA(A) receptors, while light activation by channelrhodopsin-2 was used to restore bursting activity to the control frequency. The restoration of normal patterns of neural activity in the presence of picrotoxin prevented the D-V pathfinding errors in the limb and maintained the normal expression levels of EphA4, EphB1, and polysialic acid on neural cell adhesion molecule, three molecules previously shown to be necessary for this pathfinding choice. These observations demonstrate that developing spinal motor circuits are highly sensitive to the precise frequency and pattern of spontaneous activity, and that any drugs that alter this activity could result in developmental defects.
Collapse
|
106
|
Foley DA, Swartzentruber KG, Lavie A, Colley KJ. Structure and mutagenesis of neural cell adhesion molecule domains: evidence for flexibility in the placement of polysialic acid attachment sites. J Biol Chem 2010; 285:27360-27371. [PMID: 20573953 DOI: 10.1074/jbc.m110.140038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The addition of alpha2,8-polysialic acid to the N-glycans of the neural cell adhesion molecule, NCAM, is critical for brain development and plays roles in synaptic plasticity, learning and memory, neuronal regeneration, and the growth and invasiveness of cancer cells. Our previous work indicates that the polysialylation of two N-glycans located on the fifth immunoglobulin domain (Ig5) of NCAM requires the presence of specific sequences in the adjacent fibronectin type III repeat (FN1). To understand the relationship of these two domains, we have solved the crystal structure of the NCAM Ig5-FN1 tandem. Unexpectedly, the structure reveals that the sites of Ig5 polysialylation are on the opposite face from the FN1 residues previously found to be critical for N-glycan polysialylation, suggesting that the Ig5-FN1 domain relationship may be flexible and/or that there is flexibility in the placement of Ig5 glycosylation sites for polysialylation. To test the latter possibility, new Ig5 glycosylation sites were engineered and their polysialylation tested. We observed some flexibility in glycosylation site location for polysialylation and demonstrate that the lack of polysialylation of a glycan attached to Asn-423 may be in part related to a lack of terminal processing. The data also suggest that, although the polysialyltransferases do not require the Ig5 domain for NCAM recognition, their ability to engage with this domain is necessary for polysialylation to occur on Ig5 N-glycans.
Collapse
Affiliation(s)
- Deirdre A Foley
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, Illinois 60607
| | - Kristin G Swartzentruber
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, Illinois 60607
| | - Arnon Lavie
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, Illinois 60607
| | - Karen J Colley
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, Illinois 60607.
| |
Collapse
|
107
|
Synaptic cell adhesion molecule SynCAM 1 is a target for polysialylation in postnatal mouse brain. Proc Natl Acad Sci U S A 2010; 107:10250-5. [PMID: 20479255 DOI: 10.1073/pnas.0912103107] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Among the large set of cell surface glycan structures, the carbohydrate polymer polysialic acid (polySia) plays an important role in vertebrate brain development and synaptic plasticity. The main carrier of polySia in the nervous system is the neural cell adhesion molecule NCAM. As polySia with chain lengths of more than 40 sialic acid residues was still observed in brain of newborn Ncam(-/-) mice, we performed a glycoproteomics approach to identify the underlying protein scaffolds. Affinity purification of polysialylated molecules from Ncam(-/-) brain followed by peptide mass fingerprinting led to the identification of the synaptic cell adhesion molecule SynCAM 1 as a so far unknown polySia carrier. SynCAM 1 belongs to the Ig superfamily and is a powerful inducer of synapse formation. Importantly, the appearance of polysialylated SynCAM 1 was not restricted to the Ncam(-/-) background but was found to the same extent in perinatal brain of WT mice. PolySia was located on N-glycans of the first Ig domain, which is known to be involved in homo- and heterophilic SynCAM 1 interactions. Both polysialyltransferases, ST8SiaII and ST8SiaIV, were able to polysialylate SynCAM 1 in vitro, and polysialylation of SynCAM 1 completely abolished homophilic binding. Analysis of serial sections of perinatal Ncam(-/-) brain revealed that polySia-SynCAM 1 is expressed exclusively by NG2 cells, a multifunctional glia population that can receive glutamatergic input via unique neuron-NG2 cell synapses. Our findings sug-gest that polySia may act as a dynamic modulator of SynCAM 1 functions during integration of NG2 cells into neural networks.
Collapse
|
108
|
Amoureux MC, Coulibaly B, Chinot O, Loundou A, Metellus P, Rougon G, Figarella-Branger D. Polysialic acid neural cell adhesion molecule (PSA-NCAM) is an adverse prognosis factor in glioblastoma, and regulates olig2 expression in glioma cell lines. BMC Cancer 2010; 10:91. [PMID: 20219118 PMCID: PMC2854115 DOI: 10.1186/1471-2407-10-91] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 03/10/2010] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most aggressive and frequent brain tumor, albeit without cure. Although patient survival is limited to one year on average, significant variability in outcome is observed. The assessment of biomarkers is needed to gain better knowledge of this type of tumor, help prognosis, design and evaluate therapies. The neurodevelopmental polysialic acid neural cell adhesion molecule (PSA-NCAM) protein is overexpressed in various cancers. Here, we studied its expression in GBM and evaluated its prognosis value for overall survival (OS) and disease free survival (DFS). METHODS We set up a specific and sensitive enzyme linked immunosorbent assay (ELISA) test for PSA-NCAM quantification, which correlated well with PSA-NCAM semi quantitative analysis by immunohistochemistry, and thus provides an accurate quantitative measurement of PSA-NCAM content for the 56 GBM biopsies analyzed. For statistics, the Spearman correlation coefficient was used to evaluate the consistency between the immunohistochemistry and ELISA data. Patients' survival was estimated by using the Kaplan-Meier method, and curves were compared using the log-rank test. On multivariate analysis, the effect of potential risk factors on the DFS and OS were evaluated using the cox regression proportional hazard models. The threshold for statistical significance was p = 0.05. RESULTS We showed that PSA-NCAM was expressed by approximately two thirds of the GBM at variable levels. On univariate analysis, PSA-NCAM content was an adverse prognosis factor for both OS (p = 0.04) and DFS (p = 0.0017). On multivariate analysis, PSA-NCAM expression was an independent negative predictor of OS (p = 0.046) and DFS (p = 0.007). Furthermore, in glioma cell lines, PSA-NCAM level expression was correlated to the one of olig2, a transcription factor required for gliomagenesis. CONCLUSION PSA-NCAM represents a valuable biomarker for the prognosis of GBM patients.
Collapse
Affiliation(s)
- Marie-Claude Amoureux
- Université de la Méditerranée CNRS UMR6216, Institut de Biologie du Développement de Marseille Luminy, Marseille, France.
| | | | | | | | | | | | | |
Collapse
|
109
|
Maarouf AE, Rutishauser U. Use of PSA-NCAM in Repair of the Central Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:137-47. [DOI: 10.1007/978-1-4419-1170-4_9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
110
|
Hildebrandt H, Mühlenhoff M, Gerardy-Schahn R. Polysialylation of NCAM. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:95-109. [DOI: 10.1007/978-1-4419-1170-4_6] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
111
|
Structural basis for the polysialylation of the neural cell adhesion molecule. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:111-26. [PMID: 20017018 DOI: 10.1007/978-1-4419-1170-4_7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
112
|
Nielsen J, Kulahin N, Walmod PS. Extracellular protein interactions mediated by the neural cell adhesion molecule, NCAM: heterophilic interactions between NCAM and cell adhesion molecules, extracellular matrix proteins, and viruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:23-53. [PMID: 20017013 DOI: 10.1007/978-1-4419-1170-4_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Janne Nielsen
- Protein Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
113
|
Janas T, Nowotarski K, Janas T. Polysialic acid can mediate membrane interactions by interacting with phospholipids. Chem Phys Lipids 2009; 163:286-91. [PMID: 20018185 DOI: 10.1016/j.chemphyslip.2009.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 10/21/2009] [Accepted: 12/09/2009] [Indexed: 11/30/2022]
Abstract
Polysialic acid (polySia) is expressed on the surface of neural cells, neuroinvasive bacterial cells and several tumor cells. PolySia chains attached to NCAM can influence both trans interactions between membranes of two cells and cis interactions. Here, we report on the involvement of phospholipids in regulation of membrane interactions by polySia. The pH at the surface of liposomes, specific molecular area of phosphatidylcholine molecules, phase transition of DPPC bilayers, cyclic voltammograms of BLMs, and electron micrographs of phosphatidylcholine vesicles were studied after addition of polysialic acid free in solution. The results indicate that polySia chains can associate with phosphatidylcholine bilayers, incorporate into the polar part of a phospholipid monolayer, modulate cis interactions between phosphatidylcholine molecules, and facilitate trans interactions between apposing phospholipid vesicles. These observations imply that polySia attached to NCAM or to lipids can behave similarly.
Collapse
Affiliation(s)
- Teresa Janas
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
| | | | | |
Collapse
|
114
|
Black MA, Deurveilher S, Seki T, Marsh DR, Rutishauser U, Rafuse VF, Semba K. Role of polysialylated neural cell adhesion molecule in rapid eye movement sleep regulation in rats. Eur J Neurosci 2009; 30:2190-204. [PMID: 20128854 DOI: 10.1111/j.1460-9568.2009.07000.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent evidence suggests that synaptic plasticity occurs during homeostatic processes, including sleep-wakefulness regulation, although the underlying mechanisms are not well understood. Polysialylated neural cell adhesion molecule (PSA NCAM) is a transmembrane protein that has been implicated in various forms of plasticity. To investigate whether PSA NCAM is involved in the neuronal plasticity associated with spontaneous sleep-wakefulness regulation and sleep homeostasis, four studies were conducted using rats. First, we showed that PSA NCAM immunoreactivity is present in close proximity to key neurons in several nuclei of the sleep-wakefulness system, including the tuberomammillary hypothalamic nucleus, dorsal raphe nucleus, and locus coeruleus. Second, using western blot analysis and densitometric image analysis of immunoreactivity, we found that 6 h of sleep deprivation changed neither the levels nor the general location of PSA NCAM in the sleep-wakefulness system. Finally, we injected endoneuraminidase (Endo N) intracerebroventricularly to examine the effects of polysialic acid removal on sleep-wakefulness states and electroencephalogram (EEG) slow waves at both baseline and during recovery from 6 h of sleep deprivation. Endo N-treated rats showed a small but significant decrease in baseline rapid eye movement (REM) sleep selectively in the late light phase, and a facilitated REM sleep rebound after sleep deprivation, as compared with saline-injected controls. Non-REM sleep and wakefulness were unaffected by Endo N. These results suggest that PSA NCAM is not particularly involved in the regulation of wakefulness or non-REM sleep, but plays a role in the diurnal pattern of REM sleep as well as in some aspects of REM sleep homeostasis.
Collapse
Affiliation(s)
- Michelle A Black
- Department of Anatomy & Neurobiology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | | | | | | | | | | | | |
Collapse
|
115
|
Bachelin C, Zujovic V, Buchet D, Mallet J, Baron-Van Evercooren A. Ectopic expression of polysialylated neural cell adhesion molecule in adult macaque Schwann cells promotes their migration and remyelination potential in the central nervous system. ACTA ACUST UNITED AC 2009; 133:406-20. [PMID: 19843650 PMCID: PMC2822629 DOI: 10.1093/brain/awp256] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent findings suggested that inducing neural cell adhesion molecule polysialylation in rodents is a promising strategy for promoting tissue repair in the injured central nervous system. Since autologous grafting of Schwann cells is one potential strategy to promote central nervous system remyelination, it is essential to show that such a strategy can be translated to adult primate Schwann cells and is of interest for myelin diseases. Adult macaque Schwann cells were transduced with a lentiviral vector encoding sialyltransferase, an enzyme responsible for neural cell adhesion molecule polysialylation. In vitro, we found that ectopic expression of polysialylate promoted adult macaque Schwann cell migration and improved their integration among astrocytes in vitro without modifying their antigenic properties as either non-myelinating or pro-myelinating. In addition, forced expression of polysialylate in adult macaque Schwann cells decreased their adhesion with sister cells. To investigate the ability of adult macaque Schwann cells to integrate and migrate in vivo, focally induced demyelination was targeted to the spinal cord dorsal funiculus of nude mice, and both control and sialyltransferase expressing Schwann cells overexpressing green fluorescein protein were grafted remotely from the lesion site. Analysis of the spatio-temporal distribution of the grafted Schwann cells performed in toto and in situ, showed that in both groups, Schwann cells migrated towards the lesion site. However, migration of sialyltransferase expressing Schwann cells was more efficient than that of control Schwann cells, leading to their accelerated recruitment by the lesion. Moreover, ectopic expression of polysialylated neural cell adhesion molecule promoted adult macaque Schwann cell interaction with reactive astrocytes when exiting the graft, and their ‘chain-like’ migration along the dorsal midline. The accelerated migration of sialyltransferase expressing Schwann cells to the lesion site enhanced their ability to compete for myelin repair with endogenous cells, while control Schwann cells were unable to do so. Finally, remyelination by the exogenous sialyltransferase expressing Schwann cells restored the normal distribution of paranodal and nodal elements on the host axons. These greater performances of sialyltransferase expressing Schwann cell correlated with their sustained expression of polysialylated neural cell adhesion molecule at early times when migrating from the graft to the lesion, and its progressive downregulation at later times during remyelination. These results underline the potential therapeutic benefit to genetically modify Schwann cells to overcome their poor migration capacity and promote their repair potential in demyelinating disorders of the central nervous system.
Collapse
Affiliation(s)
- C Bachelin
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epiniere, Universite Pierre et Marie Curie-Paris 6, UMR-S975, Paris, France
| | | | | | | | | |
Collapse
|
116
|
Shinbrot T, Chun Y, Caicedo-Carvajal C, Foty R. Cellular morphogenesis in silico. Biophys J 2009; 97:958-67. [PMID: 19686642 PMCID: PMC2726306 DOI: 10.1016/j.bpj.2009.05.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 05/09/2009] [Accepted: 05/13/2009] [Indexed: 10/20/2022] Open
Abstract
We describe a model that simulates spherical cells of different types that can migrate and interact either attractively or repulsively. We find that both expected morphologies and previously unreported patterns spontaneously self-assemble. Among the newly discovered patterns are a segmented state of alternating discs, and a "shish-kebab" state, in which one cell type forms a ring around a second type. We show that these unique states result from cellular attraction that increases with distance (e.g., as membranes stretch viscoelastically), and would not be seen in traditional, e.g., molecular, potentials that diminish with distance. Most of the states found computationally have been observed in vitro, and it remains to be established what role these self-assembled states may play in in vivo morphogenesis.
Collapse
Affiliation(s)
- Troy Shinbrot
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA.
| | | | | | | |
Collapse
|
117
|
Mühlenhoff M, Oltmann-Norden I, Weinhold B, Hildebrandt H, Gerardy-Schahn R. Brain development needs sugar: the role of polysialic acid in controlling NCAM functions. Biol Chem 2009; 390:567-74. [PMID: 19426138 DOI: 10.1515/bc.2009.078] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polysialic acid (polySia) is a major regulator of cell-cell interactions in the developing nervous system and a key factor in maintaining neural plasticity. As a polyanionic molecule with high water binding capacity, polySia increases the intercellular space and creates conditions that are permissive for cellular plasticity. While the prevailing model highlights polySia as a non-specific regulator of cell-cell contacts, this review concentrates on recent studies in knockout mice indicating that a crucial function of polySia resides in controlling interactions mediated by its predominant protein carrier, the neural cell adhesion molecule NCAM.
Collapse
Affiliation(s)
- Martina Mühlenhoff
- Institute of Cellular Chemistry, OE 4330, Hannover Medical School, D-30625 Hannover, Germany.
| | | | | | | | | |
Collapse
|
118
|
Drake PM, Stock CM, Nathan JK, Gip P, Golden KPK, Weinhold B, Gerardy-Schahn R, Bertozzi CR. Polysialic acid governs T-cell development by regulating progenitor access to the thymus. Proc Natl Acad Sci U S A 2009; 106:11995-2000. [PMID: 19587240 PMCID: PMC2715481 DOI: 10.1073/pnas.0905188106] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2009] [Indexed: 01/16/2023] Open
Abstract
Although the polysialyltransferase ST8Sia IV is expressed in both primary and secondary human lymphoid organs, its product, polysialic acid (polySia), has been largely overlooked by immunologists. In contrast, polySia expression and function in the nervous system has been well characterized. In this context, polySia modulates cellular adhesion, migration, cytokine response, and contact-dependent differentiation. Provocatively, these same processes are vital components of immune development and function. We previously established that mouse multipotent hematopoietic progenitors use ST8Sia IV to express polySia on their cell surfaces. Here, we demonstrate that, relative to wild-type controls, ST8Sia IV(-/-) mice have a 30% reduction in total thymocytes and a concomitant deficiency in the earliest thymocyte precursors. T-cell progenitors originate in the bone marrow and are mobilized to the blood at regular intervals by unknown signals. We performed in vivo reconstitution experiments in which ST8Sia IV(-/-) progenitors competed with wild-type cells to repopulate depleted or deficient immune subsets. Progenitors lacking polySi exhibited a specific defect in T-cell development because of an inability to access the thymus. This phenotype probably reflects a decreased capacity of the ST8Sia IV(-/-) progenitors to escape from the bone marrow niche. Collectively, these results provide evidence that polySia is involved in hematopoietic development.
Collapse
Affiliation(s)
| | | | | | - Phung Gip
- Molecular and Cell Biology, University of California, Berkeley and the
| | | | - Birgit Weinhold
- Abteilung Zelluläre Chemie, Zentrum Biochemie, Medizinische Hochschule 30625 Hannover, Germany
| | - Rita Gerardy-Schahn
- Abteilung Zelluläre Chemie, Zentrum Biochemie, Medizinische Hochschule 30625 Hannover, Germany
| | - Carolyn R. Bertozzi
- Departments of Chemistry and
- Molecular and Cell Biology, University of California, Berkeley and the
- Howard Hughes Medical Institute, Berkeley, CA 94720-1460; and
| |
Collapse
|
119
|
Bazou D, Blain EJ, Terence Coakley W, Bazou D, Blain EJ, Terence Coakley W. NCAM and PSA-NCAM dependent membrane spreading and F-actin reorganization in suspended adhering neural cells. Mol Membr Biol 2009; 25:102-14. [DOI: 10.1080/09687680701618365] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Despina Bazou
- School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Emma J. Blain
- School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | | | - Despina Bazou
- School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Emma J. Blain
- School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | | |
Collapse
|
120
|
Foley DA, Swartzentruber KG, Colley KJ. Identification of sequences in the polysialyltransferases ST8Sia II and ST8Sia IV that are required for the protein-specific polysialylation of the neural cell adhesion molecule, NCAM. J Biol Chem 2009; 284:15505-16. [PMID: 19336400 PMCID: PMC2708847 DOI: 10.1074/jbc.m809696200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 03/27/2009] [Indexed: 11/06/2022] Open
Abstract
The polysialyltransferases ST8Sia II and ST8Sia IV polysialylate the glycans of a small subset of mammalian proteins. Their most abundant substrate is the neural cell adhesion molecule (NCAM). An acidic surface patch and a novel alpha-helix in the first fibronectin type III repeat of NCAM are required for the polysialylation of N-glycans on the adjacent immunoglobulin domain. Inspection of ST8Sia IV sequences revealed two conserved polybasic regions that might interact with the NCAM acidic patch or the growing polysialic acid chain. One is the previously identified polysialyltransferase domain (Nakata, D., Zhang, L., and Troy, F. A. (2006) Glycoconj. J. 23, 423-436). The second is a 35-amino acid polybasic region that contains seven basic residues and is equidistant from the large sialyl motif in both polysialyltransferases. We replaced these basic residues to evaluate their role in enzyme autopolysialylation and NCAM-specific polysialylation. We found that replacement of Arg(276)/Arg(277) or Arg(265) in the polysialyltransferase domain of ST8Sia IV decreased both NCAM polysialylation and autopolysialylation in parallel, suggesting that these residues are important for catalytic activity. In contrast, replacing Arg(82)/Arg(93) in ST8Sia IV with alanine substantially decreased NCAM-specific polysialylation while only partially impacting autopolysialylation, suggesting that these residues may be particularly important for NCAM polysialylation. Two conserved negatively charged residues, Glu(92) and Asp(94), surround Arg(93). Replacement of these residues with alanine largely inactivated ST8Sia IV, whereas reversing these residues enhanced enzyme autopolysialylation but significantly reduced NCAM polysialylation. In sum, we have identified selected amino acids in this conserved polysialyltransferase polybasic region that are critical for the protein-specific polysialylation of NCAM.
Collapse
Affiliation(s)
- Deirdre A. Foley
- From the Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, Chicago, Illinois 60607
| | - Kristin G. Swartzentruber
- From the Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, Chicago, Illinois 60607
| | - Karen J. Colley
- From the Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, Chicago, Illinois 60607
| |
Collapse
|
121
|
He Y, Jensen GJ, Bjorkman PJ. Cryo-electron tomography of homophilic adhesion mediated by the neural cell adhesion molecule L1. Structure 2009; 17:460-71. [PMID: 19278660 PMCID: PMC2744468 DOI: 10.1016/j.str.2009.01.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 01/05/2009] [Accepted: 01/10/2009] [Indexed: 10/21/2022]
Abstract
The neural cell adhesion molecule L1 participates in homophilic interactions important for axon guidance and neuronal development. The structural details of homophilic adhesion mediated by L1 and other immunoglobulin superfamily members containing an N-terminal horseshoe arrangement of four immunoglobulin-like domains are unknown. Here we used cryo-electron tomography to study liposomes to which intact or truncated forms of the L1 ectodomain were attached. Tomographic reconstructions revealed an adhesion interface with a regular and repeating pattern consistent with interactions between paired horseshoes contributed by L1 proteins from neighboring liposomes. The characteristics of the pattern changed when N-linked carbohydrates were altered by removing sialic acids or converting from complex to high mannose or oligomannose glycans, suggesting a regulatory role for carbohydrates in L1-mediated homophilic adhesion. Using the results from tomograms and crystal structures of L1-related molecules, we present a structural model for L1-mediated homophilic adhesion that depends on protein-protein, protein-carbohydrate, and carbohydrate-carbohydrate interactions.
Collapse
Affiliation(s)
- Yongning He
- Division of Biology 114-96, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
122
|
Lavdas AA, Matsas R. Towards personalized cell-replacement therapies for brain repair. Per Med 2009; 6:293-313. [DOI: 10.2217/pme.09.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The inability of the CNS to efficiently repair damage caused by trauma and neurodegenerative or demyelinating diseases has underlined the necessity for developing novel therapeutic strategies. Cell transplantation to replace lost neurons and the grafting of myelinating cells to repair demyelinating lesions are promising approaches for treating CNS injuries and demyelination. In this review, we will address the prospects of using stem cells or myelinating glial cells of the PNS, as well as olfactory ensheathing cells, in cell-replacement therapies. The recent generation of induced pluripotent stem cells from adult somatic cells by introduction of three or four genes controlling ‘stemness’ and their subsequent differentiation to desired phenotypes, constitutes a significant advancement towards personalized cell-replacement therapies.
Collapse
Affiliation(s)
- Alexandros A Lavdas
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 11521 Athens, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 11521 Athens, Greece
| |
Collapse
|
123
|
Bisaz R, Conboy L, Sandi C. Learning under stress: A role for the neural cell adhesion molecule NCAM. Neurobiol Learn Mem 2009; 91:333-42. [DOI: 10.1016/j.nlm.2008.11.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 10/19/2008] [Accepted: 11/07/2008] [Indexed: 12/19/2022]
|
124
|
Atomic force microscopy study of the role of LPS O-antigen on adhesion ofE. coli. J Mol Recognit 2009; 22:347-55. [DOI: 10.1002/jmr.955] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
125
|
Maruthamuthu V, Schulten K, Leckband D. Elasticity and rupture of a multi-domain neural cell adhesion molecule complex. Biophys J 2009; 96:3005-14. [PMID: 19383447 PMCID: PMC2718298 DOI: 10.1016/j.bpj.2008.12.3936] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 12/20/2008] [Accepted: 12/24/2008] [Indexed: 12/21/2022] Open
Abstract
The neural cell adhesion molecule (NCAM) plays an important role in nervous system development. NCAM forms a complex between its terminal domains Ig1 and Ig2. When NCAM of cell A and of cell B connect to each other through complexes Ig12(A)/Ig12(B), the relative mobility of cells A and B and membrane tension exerts a force on the Ig12(A)/Ig12(B) complex. In this study, we investigated the response of the complex to force, using steered molecular dynamics. Starting from the structure of the complex from the Ig1-Ig2-Ig3 fragment, we first demonstrated that the complex, which differs in dimensions from a previous structure from the Ig1-Ig2 fragment in the crystal environment, assumes the same extension when equilibrated in solvent. We then showed that, when the Ig12(A)/Ig12(B) complex is pulled apart with forces 30-70 pN, it exhibits elastic behavior (with a spring constant of approximately 0.03 N/m) because of the relative reorientation of domains Ig1 and Ig2. At higher forces, the complex ruptures; i.e., Ig12(A) and Ig12(B) separate. The interfacial interactions between Ig12(A) and Ig12(B), monitored throughout elastic extension and rupture, identify E16, F19, K98, and L175 as key side chains stabilizing the complex.
Collapse
Affiliation(s)
- Venkat Maruthamuthu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Klaus Schulten
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Deborah Leckband
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
126
|
Bonfanti L, Theodosis DT. Polysialic acid and activity-dependent synapse remodeling. Cell Adh Migr 2009; 3:43-50. [PMID: 19372729 PMCID: PMC2675148 DOI: 10.4161/cam.3.1.7258] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 10/23/2008] [Indexed: 02/06/2023] Open
Abstract
Polysialic acid (PSA) is a large carbohydrate added post-translationally to the extracellular domain of the Neural Cell Adhesion Molecule (NCAM) that influences its adhesive and other functional properties. PSA-NCAM is widely distributed in the developing nervous system where it promotes dynamic cell interactions, like those responsible for axonal growth, terminal sprouting and target innervation. Its expression becomes restricted in the adult nervous system where it is thought to contribute to various forms of neuronal and glial plasticity. We here review evidence, obtained mainly from hypothalamic neuroendocrine centers and the olfactory system, that it intervenes in structural synaptic plasticity and accompanying neuronal-glial transformations, making possible the formation and elimination of synapses that occur under particular physiological conditions. While the mechanism of action of this complex sugar is unknown, it is now clear that it is a necessary molecular component of various cell transformations, including those responsible for activity-dependent synaptic remodeling.
Collapse
Affiliation(s)
- Luca Bonfanti
- Department of Veterinary Morphophysiology, University of Turin, Turin, Italy
| | | |
Collapse
|
127
|
Curtis MA, Monzo HJ, Faull RL. The rostral migratory stream and olfactory system: smell, disease and slippery cells. PROGRESS IN BRAIN RESEARCH 2009; 175:33-42. [DOI: 10.1016/s0079-6123(09)17503-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
128
|
Leckband D. From Single Molecules to Living Cells: Nanomechanical Measurements of Cell Adhesion. Cell Mol Bioeng 2008. [DOI: 10.1007/s12195-008-0029-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
129
|
Quartu M, Serra MP, Boi M, Ibba V, Melis T, Del Fiacco M. Polysialylated-neural cell adhesion molecule (PSA-NCAM) in the human trigeminal ganglion and brainstem at prenatal and adult ages. BMC Neurosci 2008; 9:108. [PMID: 18990213 PMCID: PMC2612005 DOI: 10.1186/1471-2202-9-108] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 11/06/2008] [Indexed: 12/15/2022] Open
Abstract
Background The polysialylated neuronal cell adhesion molecule (PSA-NCAM) is considered a marker of developing and migrating neurons and of synaptogenesis in the immature vertebrate nervous system. However, it persists in the mature normal brain in some regions which retain a capability for morphofunctional reorganization throughout life. With the aim of providing information relevant to the potential for dynamic changes of specific neuronal populations in man, this study analyses the immunohistochemical occurrence of PSA-NCAM in the human trigeminal ganglion (TG) and brainstem neuronal populations at prenatal and adult age. Results Western blot analysis in human and rat hippocampus supports the specificity of the anti-PSA-NCAM antibody and the immunodetectability of the molecule in postmortem tissue. Immunohistochemical staining for PSA-NCAM occurs in TG and several brainstem regions during prenatal life and in adulthood. As a general rule, it appears as a surface staining suggestive of membrane labelling on neuronal perikarya and proximal processes, and as filamentous and dot-like elements in the neuropil. In the TG, PSA-NCAM is localized to neuronal perikarya, nerve fibres, pericellular networks, and satellite and Schwann cells; further, cytoplasmic perikaryal staining and positive pericellular fibre networks are detectable with higher frequency in adult than in newborn tissue. In the adult tissue, positive neurons are mostly small- and medium-sized, and amount to about 6% of the total ganglionic population. In the brainstem, PSA-NCAM is mainly distributed at the level of the medulla oblongata and pons and appears scarce in the mesencephalon. Immunoreactivity also occurs in discretely localized glial structures. At all ages examined, PSA-NCAM occurs in the spinal trigeminal nucleus, solitary nuclear complex, vestibular and cochlear nuclei, reticular formation nuclei, and most of the precerebellar nuclei. In specimens of different age, the distribution pattern remains fairly steady, whereas the density of immunoreactive structures and the staining intensity may change and are usually higher in newborn than in adult specimens. Conclusion The results obtained show that, in man, the expression of PSA-NCAM in selective populations of central and peripheral neurons occurs not only during prenatal life, but also in adulthood. They support the concept of an involvement of this molecule in the structural and functional neural plasticity throughout life. In particular, the localization of PSA-NCAM in TG primary sensory neurons likely to be involved in the transmission of protopathic stimuli suggests the possible participation of this molecule in the processing of the relevant sensory neurotransmission.
Collapse
Affiliation(s)
- Marina Quartu
- Department of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato (Cagliari), Italy.
| | | | | | | | | | | |
Collapse
|
130
|
Röckle I, Seidenfaden R, Weinhold B, Mühlenhoff M, Gerardy-Schahn R, Hildebrandt H. Polysialic acid controls NCAM-induced differentiation of neuronal precursors into calretinin-positive olfactory bulb interneurons. Dev Neurobiol 2008; 68:1170-84. [DOI: 10.1002/dneu.20649] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
131
|
Nielsen J, Kulahin N, Walmod PS. Extracellular Protein Interactions Mediated by the Neural Cell Adhesion Molecule, NCAM: Heterophilic Interactions Between NCAM and Cell Adhesion Molecules, Extracellular Matrix Proteins, and Viruses. Neurochem Res 2008. [DOI: 10.1007/s11064-008-9761-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
132
|
Sialic acids in human health and disease. Trends Mol Med 2008; 14:351-60. [PMID: 18606570 DOI: 10.1016/j.molmed.2008.06.002] [Citation(s) in RCA: 745] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 06/06/2008] [Accepted: 06/06/2008] [Indexed: 12/19/2022]
Abstract
The surfaces of all vertebrate cells are decorated with a dense and complex array of sugar chains, which are mostly attached to proteins and lipids. Most soluble secreted proteins are also similarly decorated with such glycans. Sialic acids are a diverse family of sugar units with a nine-carbon backbone that are typically found attached to the outermost ends of these chains. Given their location and ubiquitous distribution, sialic acids can mediate or modulate a wide variety of physiological and pathological processes. This review considers some examples of their established and newly emerging roles in aspects of human physiology and disease.
Collapse
|
133
|
Hildebrandt H, Mühlenhoff M, Gerardy-Schahn R. WITHDRAWN: Polysialylation of NCAM. Neurochem Res 2008. [PMID: 18461443 DOI: 10.1007/s11064-008-9724-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2008] [Indexed: 12/15/2022]
Affiliation(s)
- Herbert Hildebrandt
- Institute of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | | | | |
Collapse
|
134
|
Schreiber SC, Giehl K, Kastilan C, Hasel C, Mühlenhoff M, Adler G, Wedlich D, Menke A. Polysialylated NCAM represses E-cadherin-mediated cell-cell adhesion in pancreatic tumor cells. Gastroenterology 2008; 134:1555-66. [PMID: 18384787 DOI: 10.1053/j.gastro.2008.02.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 01/31/2008] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Inhibition of cell-cell adhesion between epithelial cells represents an early step during tumor metastasis. Down-regulation or perturbation of E-cadherin-mediated adherens junctions is an essential requirement in this process. METHODS The interaction between polysialylated neural cell adhesion molecule (PSA-NCAM) and the E-cadherin adhesion complex was studied by coimmunoprecipitation assays. The presence of PSA-NCAM was correlated with tumor invasion by using cell-cell aggregation and cell migration assays. The importance of polysialic acid (PSA) in the interaction of NCAM with E-cadherin and inhibition of cell-cell adhesion was confirmed by enzymatic removal of PSA from NCAM and down-regulation of PSA-transferases by siRNA. RESULTS Expression of oncogenic K-Ras(V12) in pancreatic carcinoma cells resulted in induction of PSA-NCAM expression and reduced E-cadherin-mediated cellular adhesion. The association of PSA-NCAM with the E-cadherin adhesion complex correlated with decreased cell-cell aggregation and elevated cell migration of pancreatic carcinoma cells. Enzymatic removal of PSA from NCAM or reduction of polysialyltransferase expression led to reduced association between NCAM and E-cadherin and subsequently increased E-cadherin-mediated cell-cell aggregation and reduced cell migration. CONCLUSIONS Our data suggest the induction of PSA-NCAM by oncogenic K-Ras as a novel molecular mechanism by which E-cadherin-mediated cellular adhesion is reduced and dissemination of tumor cells is facilitated.
Collapse
|
135
|
|
136
|
El Maarouf A, Rutishauser U. WITHDRAWN: Use of PSA-NCAM in Repair of the Central Nervous System. Neurochem Res 2008. [PMID: 18338252 DOI: 10.1007/s11064-008-9635-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 02/19/2008] [Indexed: 11/24/2022]
Abstract
Polysialic acid (PSA) is a highly hydrated polymer whose presence at the cell surface can reduce cell interactions, and thereby increase tissue and cellular plasticity. Given its ability to create a permissive environment for cell migration and axonal growth, the potential of engineered over-expression of PSA to promote tissue repair has been explored in the adult CNS. Several promising results have been obtained that suggest that PSA engineering may become a valuable therapeutic tool.
Collapse
Affiliation(s)
- Abderrahman El Maarouf
- Department of Cell Biology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10021, USA,
| | | |
Collapse
|
137
|
Gahmberg CG, Tian L, Ning L, Nyman-Huttunen H. ICAM-5--a novel two-facetted adhesion molecule in the mammalian brain. Immunol Lett 2008; 117:131-5. [PMID: 18367254 DOI: 10.1016/j.imlet.2008.02.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 02/01/2008] [Accepted: 02/08/2008] [Indexed: 11/25/2022]
Abstract
Cell adhesion is of utmost importance for normal development and cellular functions. ICAM-5 (intercellular adhesion molecule-5, telencephalin) is a member of the ICAM-family of adhesion proteins. These proteins bind to leukocyte beta(2)-integrins (CD11/CD18), but ICAM-5 is exceptional in several ways. It is solely expressed in the mammalian forebrain, appears at the time of birth, and is located in the soma and dendrites of neurons. It is structurally more complex than the others, and also shows homophilic adhesion. Recent studies show that it is important for the regulation of immunological activity in the brain and for the development of neuronal synapses and signal transmission.
Collapse
Affiliation(s)
- Carl G Gahmberg
- Division of Biochemistry, Faculty of Biosciences, University of Helsinki, Viikinkaari 5, 00014 Helsinki, Finland.
| | | | | | | |
Collapse
|
138
|
In silico zebrafish pattern formation. Dev Biol 2008; 315:397-403. [DOI: 10.1016/j.ydbio.2007.12.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 12/11/2007] [Accepted: 12/22/2007] [Indexed: 11/20/2022]
|
139
|
Capkovic KL, Stevenson S, Johnson MC, Thelen JJ, Cornelison DDW. Neural cell adhesion molecule (NCAM) marks adult myogenic cells committed to differentiation. Exp Cell Res 2008; 314:1553-65. [PMID: 18308302 DOI: 10.1016/j.yexcr.2008.01.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2007] [Revised: 01/04/2008] [Accepted: 01/28/2008] [Indexed: 11/28/2022]
Abstract
Although recent advances in broad-scale gene expression analysis have dramatically increased our knowledge of the repertoire of mRNAs present in multiple cell types, it has become increasingly clear that examination of the expression, localization, and associations of the encoded proteins will be critical for determining their functional significance. In particular, many signaling receptors, transducers, and effectors have been proposed to act in higher-order complexes associated with physically distinct areas of the plasma membrane. Adult muscle stem cells (satellite cells) must, upon injury, respond appropriately to a wide range of extracellular stimuli: the role of such signaling scaffolds is therefore a potentially important area of inquiry. To address this question, we first isolated detergent-resistant membrane fractions from primary satellite cells, then analyzed their component proteins using liquid chromatography-tandem mass spectrometry. Transmembrane and juxtamembrane components of adhesion-mediated signaling pathways made up the largest group of identified proteins; in particular, neural cell adhesion molecule (NCAM), a multifunctional cell-surface protein that has previously been associated with muscle regeneration, was significant. Immunohistochemical analysis revealed that not only is NCAM localized to discrete areas of the plasma membrane, it is also a very early marker of commitment to terminal differentiation. Using flow cytometry, we have sorted physically homogeneous myogenic cultures into proliferating and differentiating fractions based solely upon NCAM expression.
Collapse
Affiliation(s)
- Katie L Capkovic
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | |
Collapse
|
140
|
Brennaman LH, Maness PF. Developmental regulation of GABAergic interneuron branching and synaptic development in the prefrontal cortex by soluble neural cell adhesion molecule. Mol Cell Neurosci 2008; 37:781-93. [PMID: 18289872 DOI: 10.1016/j.mcn.2008.01.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 12/17/2007] [Accepted: 01/04/2008] [Indexed: 11/24/2022] Open
Abstract
Neural cell adhesion molecule, NCAM, is an important regulator of neuronal process outgrowth and synaptic plasticity. Transgenic mice that overexpress the soluble NCAM extracellular domain (NCAM-EC) have reduced GABAergic inhibitory and excitatory synapses, and altered behavioral phenotypes. Here, we examined the role of dysregulated NCAM shedding, modeled by overexpression of NCAM-EC, on development of GABAergic basket interneurons in the prefrontal cortex. NCAM-EC overexpression disrupted arborization of basket cells during the major period of axon/dendrite growth, resulting in decreased numbers of GAD65- and synaptophysin-positive perisomatic synapses. NCAM-EC transgenic protein interfered with interneuron branching during early postnatal stages when endogenous polysialylated (PSA) NCAM was converted to non-PSA isoforms. In cortical neuron cultures, soluble NCAM-EC acted as a dominant inhibitor of NCAM-dependent neurite branching and outgrowth. These findings suggested that excess soluble NCAM-EC reduces perisomatic innervation of cortical neurons by perturbing axonal/dendritic branching during cortical development.
Collapse
Affiliation(s)
- Leann Hinkle Brennaman
- Department of Biochemistry and Biophysics, and Silvio Conte Center for Schizophrenia Research, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
141
|
Hildebrandt H, Mühlenhoff M, Weinhold B, Gerardy-Schahn R. Dissecting polysialic acid and NCAM functions in brain development. J Neurochem 2008; 103 Suppl 1:56-64. [PMID: 17986140 DOI: 10.1111/j.1471-4159.2007.04716.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The unique modification of the neural cell adhesion molecule (NCAM) by polysialic acid (polySia) is tightly associated with nervous system development and plasticity. The prevailing view that this large carbohydrate polymer acts as an anti-adhesive factor seems straightforward at first sight. However, during almost 25 years of polySia research it became increasingly clear that the impact of polySia on cell surface interactions can not be explained by one unifying mechanism. Recent progress in the generation of mouse models, which partially or completely lack polySia due to ablation of one or both of the two polySia synthesizing enzymes, provides novel insights into the function of this unique post-translational modification. The present review is focused on a phenotype comparison between the newly established mouse strains which combine polySia-deficiency with normal NCAM expression and the well-characterized NCAM negative mouse model. Analysis of shared and individual phenotypes allows a clear distinction between NCAM and polySia functions and revealed that polySia plays a vital role as a specific control element of NCAM-mediated interactions.
Collapse
Affiliation(s)
- Herbert Hildebrandt
- Zelluläre Chemie, Zentrum Biochemie, Medizinische Hochschule Hannover, Hannover, Germany.
| | | | | | | |
Collapse
|
142
|
Galuska SP, Geyer R, Gerardy-Schahn R, Mühlenhoff M, Geyer H. Enzyme-dependent Variations in the Polysialylation of the Neural Cell Adhesion Molecule (NCAM) in Vivo. J Biol Chem 2008; 283:17-28. [DOI: 10.1074/jbc.m707024200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
143
|
Oltmann-Norden I, Galuska SP, Hildebrandt H, Geyer R, Gerardy-Schahn R, Geyer H, Mühlenhoff M. Impact of the Polysialyltransferases ST8SiaII and ST8SiaIV on Polysialic Acid Synthesis during Postnatal Mouse Brain Development. J Biol Chem 2008; 283:1463-1471. [DOI: 10.1074/jbc.m708463200] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
144
|
Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat Rev Neurosci 2008; 9:26-35. [DOI: 10.1038/nrn2285] [Citation(s) in RCA: 479] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
145
|
Di Cristo G, Chattopadhyaya B, Kuhlman SJ, Fu Y, Bélanger MC, Wu CZ, Rutishauser U, Maffei L, Huang ZJ. Activity-dependent PSA expression regulates inhibitory maturation and onset of critical period plasticity. Nat Neurosci 2007; 10:1569-77. [PMID: 18026099 DOI: 10.1038/nn2008] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Accepted: 10/05/2007] [Indexed: 11/09/2022]
|
146
|
Huang ZJ, Di Cristo G, Ango F. Development of GABA innervation in the cerebral and cerebellar cortices. Nat Rev Neurosci 2007; 8:673-86. [PMID: 17704810 DOI: 10.1038/nrn2188] [Citation(s) in RCA: 206] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In many areas of the vertebrate brain, such as the cerebral and cerebellar cortices, neural circuits rely on inhibition mediated by GABA (gamma-aminobutyric acid) to shape the spatiotemporal patterns of electrical signalling. The richness and subtlety of inhibition are achieved by diverse classes of interneurons that are endowed with distinct physiological properties. In addition, the axons of interneurons display highly characteristic and class-specific geometry and innervation patterns, and thereby distribute their output to discrete spatial domains, cell types and subcellular compartments in neural networks. The cellular and molecular mechanisms that specify and modify inhibitory innervation patterns are only just beginning to be understood.
Collapse
Affiliation(s)
- Z J Huang
- Cold Spring Harbour Laboratory, One Bungtown Road, Cold Spring Harbor, New York 11724, USA.
| | | | | |
Collapse
|
147
|
Paradigms for glycan-binding receptors in cell adhesion. Curr Opin Cell Biol 2007; 19:572-7. [PMID: 17942297 DOI: 10.1016/j.ceb.2007.09.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 09/05/2007] [Indexed: 11/22/2022]
Abstract
Diverse glycans found on the surfaces of mammalian cells provide a basis for selective adhesion between cells mediated by glycan-specific receptors. Well-understood examples of cell adhesion based on such interactions include selectin-mediated rolling of leukocytes on endothelia. Other receptors with similar selectivity for specific sugar epitopes on cell surfaces are being characterised. However, the simple paradigm of adhesion resulting from receptors on one cell binding to glycans on another cell applies in only a limited number of systems. Instead, glycans and receptor-glycan interactions often modulate adhesion in indirect ways, such as by changing the organisation of cell surface glycoproteins and by antagonising the effect of protein adhesion systems.
Collapse
|
148
|
Angata K, Huckaby V, Ranscht B, Terskikh A, Marth JD, Fukuda M. Polysialic acid-directed migration and differentiation of neural precursors are essential for mouse brain development. Mol Cell Biol 2007; 27:6659-68. [PMID: 17682066 PMCID: PMC2099222 DOI: 10.1128/mcb.00205-07] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polysialic acid, which is synthesized by two polysialyltransferases, ST8SiaII and ST8SiaIV, plays an essential role in brain development by modifying the neural cell adhesion molecule (NCAM). It is currently unclear how polysialic acid functions in different processes of neural development. Here we generated mice doubly mutant in both ST8SiaII and ST8SiaIV to determine the effects of loss of polysialic acid on brain development. In contrast to NCAM-deficient, ST8SiaII-deficient, or ST8SiaIV-deficient single mutant mice, ST8SiaII and ST8SiaIV double mutants displayed severe defects in anatomical organization of the forebrain associated with apoptotic cell death. Loss of polysialic acid affected both tangential and radial migration of neural precursors during cortical development, resulting in aberrant positioning of neuronal and glial cells. Glial cell differentiation was aberrantly increased in vivo and in vitro in the absence of polysialic acid. Consistent with these findings, polysialic acid-deficient mice exhibited increased expression of the glial cell marker glial fibrillary acidic protein and a decrease in expression of Pax6, a transcription factor regulating neural cell migration. These results indicate that polysialic acid regulates cell migration and differentiation of neural precursors crucial for brain development.
Collapse
Affiliation(s)
- Kiyohiko Angata
- Glycobiology Program, Cancer Research Center, Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
149
|
Conchonaud F, Nicolas S, Amoureux MC, Ménager C, Marguet D, Lenne PF, Rougon G, Matarazzo V. Polysialylation increases lateral diffusion of neural cell adhesion molecule in the cell membrane. J Biol Chem 2007; 282:26266-74. [PMID: 17623676 DOI: 10.1074/jbc.m608590200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Polysialic acid (PSA) is a polymer of N-acetylneuraminic acid residues added post-translationally to the membrane-bound neural cell adhesion molecule (NCAM). The large excluded volume created by PSA polymer is thought to facilitate cell migration by decreasing cell adhesion. Here we used live cell imaging (spot fluorescence recovery after photobleaching and fluorescence correlation spectroscopy) combined with biochemical approaches in an attempt to uncover a link between cell motility and the impact of polysialylation on NCAM dynamics. We show that PSA regulates specifically NCAM lateral diffusion and this is dependent on the integrity of the cytoskeleton. However, whereas the glial-derivative neurotrophic factor chemotactic effect is dependent on PSA, the molecular dynamics of PSA-NCAM is not directly affected by glial-derivative neurotrophic factor. These findings reveal a new intrinsic mechanism by which polysialylation regulates NCAM dynamics and thereby a biological function like cell migration.
Collapse
Affiliation(s)
- Fabien Conchonaud
- Institut de Biologie du Développement de Marseille-Luminy and Centre d'Immunologie de Marseille Luminy, MOSAIC Group, Université de la Méditerranée, 13288 Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Murphy JA, Nickerson PEB, Clarke DB. Injury to retinal ganglion cell axons increases polysialylated neural cell adhesion molecule (PSA-NCAM) in the adult rodent superior colliculus. Brain Res 2007; 1163:21-32. [PMID: 17631281 DOI: 10.1016/j.brainres.2007.05.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 05/15/2007] [Accepted: 05/21/2007] [Indexed: 11/27/2022]
Abstract
The adult mammalian central nervous system (CNS) exhibits a limited regenerative response to injury. It is well established that polysialylated neural cell adhesion molecule (PSA-NCAM) contributes to nervous system plasticity. In the visual system, PSA-NCAM participates in retinal ganglion cell (RGC) axon growth during development and specifically influences RGC innervation of its principle target tissue, the superior colliculus (SC). The goals of this study were to determine whether PSA-NCAM is expressed in the normal adult mouse SC and to evaluate PSA-NCAM expression following RGC injury. In the normal rostral, but not caudal, SC we find that PSA-NCAM is present in the retinorecipient layers; however, PSA-NCAM and RGC axons do not co-localize. In the deeper collicular layers, PSA-NCAM is observed as several distinct patches that occur at the same depth along the medial-lateral axis throughout the colliculus. RGC axotomy denervates predominantly the contralateral colliculus, where increased PSA-NCAM levels are seen at 7 and 10 days after the injury. Further evaluation of the retinorecipient layers of the partially denervated SC reveals that some intact CTB-traced RGC axons (less than 5%) labeled from the ipsilateral eye do co-localize with PSA-NCAM. This study is the first characterization of PSA-NCAM expression in the normal and partially denervated adult SC and may indicate that PSA-NCAM is involved in attempted visual system remodeling after injury.
Collapse
Affiliation(s)
- J A Murphy
- Neuron Survival and Regeneration Laboratory, Department of Anatomy and Neurobiology, Faculty of Medicine, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 1X5
| | | | | |
Collapse
|