101
|
Ali EN, Mansour SZ. Boswellic acids extract attenuates pulmonary fibrosis induced by bleomycin and oxidative stress from gamma irradiation in rats. Chin Med 2011; 6:36. [PMID: 21961991 PMCID: PMC3199276 DOI: 10.1186/1749-8546-6-36] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Accepted: 09/30/2011] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Interstitial pulmonary fibrosis is characterized by an altered cellular composition of the alveolar region with excessive deposition of collagen. Lung inflammation is also common in pulmonary fibrosis. This study aims to test the inhibition of 5-lipooxygenase (5-LOX) by boswellic acid (BA) extract in an experimental model of pulmonary fibrosis using bleomycin (BL). METHODS Boswellic acid extract (1 g/kg) was force-fed to rats seven days prior to administration of BL or gamma irradiation or both. BL (0.15 U/rat) in 25 μl of 0.9% normal saline (NS) or 0.9% NS alone was administered intratracheally. Rats were exposed to two fractionated doses of gamma irradiation (0.5 Gy/dose/week) with a gamma cell-40 (Cesium-137 irradiation units, Canada) during the last two weeks of the experiment. BA was administered during BL or irradiation treatment or both. After the animals were sacrificed, bronchoalveolar lavage was performed; lungs were weighed and processed separately for biochemical and histological studies. RESULTS In rats treated with BL, levels of transforming growth factor-β1 (TGF-β1) and tumor necrosis factor-α (TNF-α) were significantly elevated (P = 0.05 and P = 0.005). Hydroxyproline was highly and extensively expressed. Immunoreactive compounds were abundantly expressed, represented in the levels of macrophages infiltrate, accumulation of eosinophils and neutrophils in the lung as well as the aggregation of fibroblasts in the fibrotic area. The levels of lipoxygenase enzyme activity were significantly increased (P = 0.005). Antioxidant activities measured in BL-treated rats deteriorated, coupled with the elevation of both levels of plasma lipid peroxide (LP) content and bronchoalveolar lavage lactate dehydrogenase activity. BA-treated rats had reduced number of macrophages, (P = 0.01), neutrophils in bronchoalveolar lavage (P = 0.01) and protein (P = 0.0001). Moreover, the hydroxyproline content was significantly lowered in BA-treated rats (P = 0.005). BA extract inhibited the TGF-ß induced fibrosis (P = 0.01) and 5-LOX activity levels (P = 0.005).Histologically, BA reduced the number of infiltrating cells, ameliorated the destruction of lung architecture and attenuated lung fibrosis. CONCLUSION BA attenuates the BL-induced injury response in rats, such as collagen accumulation, airway dysfunction and injury. This study suggests that the blocking of 5-LOX may prevent the progression of fibrosis.
Collapse
Affiliation(s)
- Eman Noaman Ali
- Radiation Biology Department, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt.
| | | |
Collapse
|
102
|
Massler A, Kolodkin-Gal D, Meir K, Khalaileh A, Falk H, Izhar U, Shufaro Y, Panet A. Infant lungs are preferentially infected by adenovirus and herpes simplex virus type 1 vectors: role of the tissue mesenchymal cells. J Gene Med 2011; 13:101-13. [DOI: 10.1002/jgm.1544] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
103
|
Wang X, Zhu H, Yang X, Bi Y, Cui S. Vasohibin attenuates bleomycin induced pulmonary fibrosis via inhibition of angiogenesis in mice. Pathology 2010; 42:457-62. [PMID: 20632823 DOI: 10.3109/00313025.2010.493864] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIMS Much evidence suggests that vascular remodelling in the lung plays a crucial role in the development of pulmonary fibrosis. Therefore, anti-angiogenesis therapy may be a promising treatment for pulmonary fibrosis. Recently, a new inhibitor called vasohibin has been discovered to operate as an intrinsic and highly specific feedback inhibitor in the process of angiogenesis. However, to date, the effect of vasohibin on anti-angiogenesis of pulmonary fibrosis has not been examined. METHODS In this study, we utilised vasohibin to test the potential of pulmonary fibrosis therapy. We examined the role of vasohibin in the pathophysiology of bleomycin-induced pneumopathy in mice by transfection of the vasohibin gene. RESULTS The results demonstrated that transfection of the vasohibin gene could attenuate pulmonary fibrosis via inhibition of angiogenesis, which markedly decreased lymphocyte infiltration, cytokine secretion and fibroblast proliferation. CONCLUSIONS This method may be beneficial for treating lung fibrosis and may provide a novel strategy for clinical application in the future.
Collapse
Affiliation(s)
- Xingsheng Wang
- Respiratory Department of Daping Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
104
|
Koskela A, Engström K, Hakelius M, Nowinski D, Ivarsson M. Regulation of fibroblast gene expression by keratinocytes in organotypic skin culture provides possible mechanisms for the antifibrotic effect of reepithelialization. Wound Repair Regen 2010; 18:452-9. [PMID: 20731800 DOI: 10.1111/j.1524-475x.2010.00605.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To investigate the mechanisms behind the antifibrotic effect associated with epidermal regeneration, the expression of 12 fibroblast genes important for the modulation of the extracellular matrix (ECM), as well as α-smooth muscle actin, was studied in a keratinocyte-fibroblast organotypic skin culture model. The study was performed over time during epidermal generation and in the presence or absence of the profibrotic factor transforming growth factor-β. the Presence of epidermal differentiation markers in the model was essentially coherent with that of native skin. Fibroblast gene expression was analyzed with real-time polymerase chain reaction after removal of the epidermal layer. After 2 days of air-exposed culture, 11 out of the 13 genes studied were significantly regulated by keratinocytes in the absence or presence of transforming growth factor-β. The regulation of connective tissue growth factor, collagen I and III, fibronectin, plasmin system regulators, matrix metalloproteinases and their inhibitors as well as α-smooth muscle actin was consistent with a suppression of ECM formation or contraction. Overall, the results support a view that keratinocytes regulate fibroblasts to act catabolically on the ECM in epithelialization processes. This provides possible mechanisms for the clinical observations that reepithelialization and epidermal wound coverage counteract excessive scar formation.
Collapse
Affiliation(s)
- Anita Koskela
- Clinical Research Center, University Hospital and Orebro Life Science Center, University Hospital Orebro, Orebro, Sweden
| | | | | | | | | |
Collapse
|
105
|
Santiago JJ, Ma X, McNaughton LJ, Nickel BE, Bestvater BP, Yu L, Fandrich RR, Netticadan T, Kardami E. Preferential accumulation and export of high molecular weight FGF-2 by rat cardiac non-myocytes. Cardiovasc Res 2010; 89:139-47. [DOI: 10.1093/cvr/cvq261] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
106
|
Sun Y, Yang F, Yan J, Li Q, Wei Z, Feng H, Wang R, Zhang L, Zhang X. New anti-fibrotic mechanisms of n-acetyl-seryl-aspartyl-lysyl-proline in silicon dioxide-induced silicosis. Life Sci 2010; 87:232-9. [DOI: 10.1016/j.lfs.2010.06.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 06/01/2010] [Accepted: 06/14/2010] [Indexed: 11/25/2022]
|
107
|
Yue X, Shan B, Lasky JA. TGF-β: Titan of Lung Fibrogenesis. CURRENT ENZYME INHIBITION 2010. [PMID: 24187529 DOI: 10.2174/10067 (2010)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pulmonary fibrosis is characterized by epithelial cell injury, accumulation of myofibroblasts, and excessive deposition of collagen and other extracellular matrix elements, leading to loss of pulmonary function. Studies in both humans and animal models strongly suggest that TGF-β1 plays a pivotal role in the pathogenesis of pulmonary fibrosis. This review will first give an overview of TGF-β signaling and the effects of its inhibition on lung fibrogenesis. This overview includes information on TGF-β signal transduction pathways, the importance of TGF-β in the accumulation of myofibroblasts, the role of TGF-β in epithelial injury and apoptosis, the role of TGF-β in extracellular matrix remodeling, and the effects of inhibiting TGF-β signaling in animal models of lung fibrosis. Subsequently this review will highlight recent advances in two areas of particular interest to our research group: (1) TGF-β and proteoglycans; (2) TGF-β and histone deacetylases. Although our understanding of the role of TGF-β and its mechanisms of action in lung fibrogenesis has increased dramatically in recent years, there is still much to be learned about this important molecule, especially how TGF-β function is modulated in vivo, and its complex interactions with other factors expressed during lung injury and repair. Research in these areas will help identify novel therapeutic targets for the treatment of pulmonary fibrosis that will hopefully improve the prognosis of this devastating illness.
Collapse
Affiliation(s)
- Xinping Yue
- Department of Medicine, Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
108
|
Pegorier S, Campbell GA, Kay AB, Lloyd CM. Bone morphogenetic protein (BMP)-4 and BMP-7 regulate differentially transforming growth factor (TGF)-beta1 in normal human lung fibroblasts (NHLF). Respir Res 2010; 11:85. [PMID: 20573231 PMCID: PMC2898775 DOI: 10.1186/1465-9921-11-85] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 06/23/2010] [Indexed: 01/11/2023] Open
Abstract
Background Airway remodelling is thought to be under the control of a complex group of molecules belonging to the Transforming Growth Factor (TGF)-superfamily. The Bone Morphogenetic Proteins (BMPs) belong to this family and have been shown to regulate fibrosis in kidney and liver diseases. However, the role of BMPs in lung remodelling remains unclear. BMPs may regulate tissue remodelling in asthma by controlling TGF-β-induced profibrotic functions in lung fibroblasts. Methods Cell cultures were exposed to TGF-β1 alone or in the presence of BMP-4 or BMP-7; control cultures were exposed to medium only. Cell proliferation was assessed by quantification of the incorporation of [3H]-thymidine. The expression of the mRNA encoding collagen type I and IV, tenascin C and fibronectin in normal human lung fibroblasts (NHLF) was determined by real-time quantitative PCR and the main results were confirmed by ELISA. Cell differentiation was determined by the analysis of the expression of α-smooth muscle actin (α-SMA) by western blot and immunohistochemistry. The effect on matrix metalloproteinase (MMP) activity was assessed by zymography. Results We have demonstrated TGF-β1 induced upregulation of mRNAs encoding the extracellular matrix proteins, tenascin C, fibronectin and collagen type I and IV when compared to unstimulated NHLF, and confirmed these results at the protein level. BMP-4, but not BMP-7, reduced TGF-β1-induced extracellular matrix protein production. TGF-β1 induced an increase in the activity of the pro-form of MMP-2 which was inhibited by BMP-7 but not BMP-4. Both BMP-4 and BMP-7 downregulated TGF-β1-induced MMP-13 release compared to untreated and TGF-β1-treated cells. TGF-β1 also induced a myofibroblast-like transformation which was partially inhibited by BMP-7 but not BMP-4. Conclusions Our study suggests that some regulatory properties of BMP-7 may be tissue or cell type specific and unveil a potential regulatory role for BMP-4 in the regulation of lung fibroblast function.
Collapse
Affiliation(s)
- Sophie Pegorier
- Leukocyte Biology Section, Faculty of Medicine, MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, National Heart and Lung Institute, Imperial College London, London, UK
| | | | | | | |
Collapse
|
109
|
Halwani R, Al-Muhsen S, Al-Jahdali H, Hamid Q. Role of transforming growth factor-β in airway remodeling in asthma. Am J Respir Cell Mol Biol 2010; 44:127-33. [PMID: 20525803 DOI: 10.1165/rcmb.2010-0027tr] [Citation(s) in RCA: 305] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
TGF-β is one of the main mediators involved in tissue remodeling in the asthmatic lung. This profibrotic cytokine is produced by a number of cells, including macrophages, epithelial cells, fibroblasts, and eosinophils. High expression of TGF-β in patients with asthma was reported by many investigators. However, controversy remains whether the concentration of TGF-β correlates with disease severity. TGF-β is believed to play an important role in most of the cellular biological processes leading to airway remodeling. It was shown to be involved in epithelial changes, subepithelial fibrosis, airway smooth muscle remodeling, and microvascular changes. Here, sources of TGF-β, as well as its role in the development of airway remodeling, will be reviewed. Therapeutic strategies that modulate TGF-β will also be discussed.
Collapse
Affiliation(s)
- Rabih Halwani
- Prince Naif Center for Immunology Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | | | | |
Collapse
|
110
|
Selige J, Tenor H, Hatzelmann A, Dunkern T. Cytokine-dependent balance of mitogenic effects in primary human lung fibroblasts related to cyclic AMP signaling and phosphodiesterase 4 inhibition. J Cell Physiol 2010; 223:317-26. [PMID: 20082309 DOI: 10.1002/jcp.22037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Interleukin-1beta (IL-1beta) and basic fibroblast growth factor (bFGF) are important regulators of proliferation, and their expression is increased in lungs of patients with asthma, idiopathic pulmonary fibrosis (IPF), or chronic obstructive pulmonary disease (COPD). We investigated the effect of IL-1beta and bFGF on proliferation of human lung fibroblasts and the role of COX-2, PGE(2), and cAMP in this process. Furthermore, the effect of phosphodiesterase (PDE) 3 and 4 inhibition was analyzed. In primary human lung fibroblasts low concentrations of IL-1beta (<10 pg/ml) potentiated the bFGF-induced DNA synthesis, whereas higher concentrations revealed antiproliferative effects. Higher concentrations of IL-1beta-induced COX-2 mRNA and protein associated with an increase in PGE(2) and cAMP, and all of these parameters were potentiated by bFGF. The PDE4 inhibitor piclamilast concentration-dependently reduced proliferation by a partial G1 arrest. The PDE3 inhibitor motapizone was inactive by itself but enhanced the effect of the PDE4 inhibitor. This study demonstrates that bFGF and IL-1beta act in concert to fine-tune lung fibroblast proliferation resulting in amplification or reduction. The antiproliferative effect of IL-1beta is likely attributed to the induction of COX-2, which is further potentiated by bFGF, and the subsequent generation of PGE(2) and cAMP. Inhibition of PDE4 inhibition (rather than PDE3) may diminish proliferation of human lung fibroblasts and therefore could be useful in the therapy of pathological remodeling in lung diseases.
Collapse
Affiliation(s)
- Jens Selige
- Department of In-Vitro Biology 1, Nycomed GmbH, Konstanz, Germany.
| | | | | | | |
Collapse
|
111
|
Cai XJ, Chen L, Li L, Feng M, Li X, Zhang K, Rong YY, Hu XB, Zhang MX, Zhang Y, Zhang M. Adiponectin inhibits lipopolysaccharide-induced adventitial fibroblast migration and transition to myofibroblasts via AdipoR1-AMPK-iNOS pathway. Mol Endocrinol 2009; 24:218-28. [PMID: 19889816 DOI: 10.1210/me.2009-0128] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Adiponectin is an important antiatherogenic adipocytokine that inhibits inflammation, insulin resistance, and oxide stress. Inflammation in the vascular adventitia is a crucial factor in the pathogenesis of atherosclerosis. Adventitial fibroblasts (AFs) can proliferate, divide into myofibroblasts, and migrate to the intima to become a new component of atherosclerotic plaque under inflammation and atherosclerosis. We investigated whether adiponectin might prevent AFs from proliferating, migrating, and transforming into myofibroblasts. Cultured AFs were stimulated with lipopolysaccharide (LPS) in the presence or absence of adiponectin. Methyl thiazolyl tetrazolium assay and migration and scratch-wound assays demonstrated that adiponectin reduced the AF proliferation and migration induced by LPS, respectively, whereas treatment with AdipoR1 small interfering (si) RNA (siAdipoR1), AMP-activated protein kinase (AMPK) siRNA (siAMPK), and an AMPK inhibitor reversed the effect. Immunocytochemistry and Western blot revealed that adiponectin reduced the transition of AFs to myofibroblasts, and treatment with siAdipoR1, siAMPK, and the AMPK inhibitor increased the transition. RT-PCR, Western blotting, and nitric oxide (NO) assay showed that adiponectin reduces induced NO synthase (iNOS) and nitrotyrosine expression and NO and ONOO(-) production induced by LPS. Treatment with siAdipoR1, siAMPK, and the AMPK inhibitor significantly attenuated adiponectin-induced phosphorylation of AMPK and its downstream target acetyl-coenzyme A carboxylase and up-regulated iNOS mRNA and protein expression, which resulted in a marked increase of NO and ONOO(-) production. In apolipoprotein E-deficient mice, immunohistochemistry of treated vascular adventitia showed that both iNOS expression and ONOO(-) production could be reversed with an adenovirus-adiponectin vector. Taken together, these results suggest that adiponectin reduces LPS-induced NO production and nitrosative stress and prevents AFs from proliferating, transforming to myoflbroblasts, and migrating to the intima, thus worsening atherosclerosis, by inhibiting the AdipoR1-AMPK-iNOS pathway in AFs.
Collapse
Affiliation(s)
- Xiao-jun Cai
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University Qilu Hospital, Jinan, Shandong, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Liebhart J, Dobek R. Transforming growth factor-beta in the pathogenesis of chronic obstructive pulmonary disease. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/17471060701721985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
113
|
Fan J, Shen H, Dai Q, Minuk GY, Burzynski FJ, Gong Y. Bone morphogenetic protein-4 induced rat hepatic progenitor cell (WB-F344 cell) differentiation toward hepatocyte lineage. J Cell Physiol 2009; 220:72-81. [PMID: 19229878 DOI: 10.1002/jcp.21731] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hepatic progenitor cells are local stem cells in the liver and they can be differentiated into either hepatocytes or cholangiocytes depending on different stimulations. These stimulations include extracellular growth factors and intracellular transcription factors. Bone morphogenetic protein 4 (BMP4) is a member of transforming growth factor beta (TGF-beta) superfamily and was first identified as growth factor to induce ectopic bone formation from skeletal muscle. Role of BMP4 in the liver is still unclear especially its role in hepatic progenitor cells (HPCs) differentiation. BMP4 was used to stimulate rat HPCs (WB-F344 cells) and differentiation of WB-F344 cells was investigated by reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot analysis. Both adenovirus delivered BMP4 and recombinant BMP4 were able to induce expression of hepatocyte markers such as albumin, TAT-1, and G6Pase but not cholangiocyte markers such as beta4-integrin and CK19. BMP4 induced differentiation of WB-F344 cells toward hepatocytes was mediated by increase in phosphorylation of Smad1 and ERK1/2. Moreover, BMP4 also stimulated expression of transcription factor--C/EBP-alpha, which involved in differentiation of WB-F344 cells toward hepatocytes. BMP4 is able to stimulate WB-F344 cells differentiation toward hepatocyte lineage.
Collapse
Affiliation(s)
- Jianghong Fan
- Faculty of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | |
Collapse
|
114
|
Vasko R, Koziolek M, Ikehata M, Rastaldi MP, Jung K, Schmid H, Kretzler M, Müller GA, Strutz F. Role of basic fibroblast growth factor (FGF-2) in diabetic nephropathy and mechanisms of its induction by hyperglycemia in human renal fibroblasts. Am J Physiol Renal Physiol 2009; 296:F1452-63. [PMID: 19279131 DOI: 10.1152/ajprenal.90352.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Basic fibroblast growth factor (FGF-2) plays a role in renal fibrogenesis, although its potential implications for tubulointerstitial involvement in diabetic nephropathy are unknown. We evaluated the expression of FGF-2 in kidney biopsies from patients with diabetic nephropathy and studied the mechanisms of its induction in human renal fibroblasts under hyperglycemia. Tubulointerstitial expression of FGF-2 was significantly upregulated in diabetic nephropathy compared with control kidneys with a good correlation to the degree of the injury. Fibroblasts cultivated in high glucose displayed increased FGF-2 mRNA as well as protein synthesis and secretion compared with normal glucose. Proliferation rates under hyperglycemia were significantly higher and could be almost completely inhibited by addition of a neutralizing FGF-2 antibody. Alterations in proliferation were associated with changes in p27(kip1) expression. Hyperglycemia induced the expression of PKC-beta1 and PKC-beta2; however, only inhibition of PKC-beta1 but not PKC-beta2 led to a significant decrease of FGF-2 levels. Relevance of the culture findings and functional association was corroborated by colocalization of FGF-2 and PKC-beta in human diabetic kidneys in vivo. High glucose stimulated fibronectin synthesis and secretion, which could be substantially prevented by inhibition of PKC-beta1 and to a lesser extent by inhibiting the FGF-2. Expression of active phosphorylated form of p38 mitogen-activated protein kinase was upregulated under hyperglycemia; however, its inhibition had no effects on FGF-2 synthesis. Our results implicate a role of FGF-2 in high glucose-altered molecular signaling in pathogenesis of diabetic renal disease.
Collapse
Affiliation(s)
- Radovan Vasko
- Department of Nephrology and Rheumatology, Georg-August-Univ. Goettingen, Robert-Koch-Str. 40, 37075 Goettingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Jump SS, Childs TE, Zwetsloot KA, Booth FW, Lees SJ. Fibroblast growth factor 2-stimulated proliferation is lower in muscle precursor cells from old rats. Exp Physiol 2009; 94:739-48. [PMID: 19270036 DOI: 10.1113/expphysiol.2008.046136] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In aged skeletal muscle, impairments in regrowth and regeneration may be explained by a decreased responsiveness of muscle precursor cells (MPCs) to environmental cues such as growth factors. We hypothesized that impaired responsiveness to fibroblast growth factor 2 (FGF2) in MPCs from old animals would be explained by impaired FGF2 signalling. We determined that 5-bromo-2'-deoxyuridine (BrdU) incorporation and cell number increase less in MPCs from 32- compared with 3-month-old rats. In the presence of FGF2, we demonstrated that there were age-associated differential expression patterns for FGF receptor 1 and 2 mRNAs. Measurement of downstream signalling revealed that that mitogen-activated protein kinase/ERK kinase 1/2 (MEK1/2)-extracellular signal-regulated kinase 1/2, protein kinase C and p38 were FGF2-driven pathways in MPCs. Uniquely, protein kinase C signalling was shown to play the largest role in FGF2-stimulated proliferation in MPCs. c-Jun N-terminal kinase (JNK) signalling was ruled out as an FGF2-stimulated proliferation pathway in MPCs. Inhibition of JNK had no effect on FGF2 signalling to BrdU incorporation, and FGF2 treatment was associated with increased phosphorylation of p38, which inhibits, rather than stimulates, BrdU incorporation in MPCs. Surprisingly, the commonly used vehicle, dimethyl sulphoxide, rescued proliferation in MPCs from old animals. These findings provide insight for the development of effective treatment strategies that target the age-related impairments of MPC proliferation in old skeletal muscle.
Collapse
Affiliation(s)
- Seth S Jump
- Department of Biomedical Science, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | | | |
Collapse
|
116
|
Burgess JK. The role of the extracellular matrix and specific growth factors in the regulation of inflammation and remodelling in asthma. Pharmacol Ther 2009; 122:19-29. [PMID: 19141302 DOI: 10.1016/j.pharmthera.2008.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 12/17/2008] [Indexed: 12/12/2022]
Abstract
Asthma is a disease characterised by persistent inflammation and structural changes in the airways, referred to as airway remodelling. The mechanisms underlying these processes may be interdependent or they may be separate processes that are driven by common factors. The levels of a variety of growth factors (including transforming growth factor beta, granulocyte macrophage colony stimulating factor, and vascular endothelial growth factor) are known to be changed in the asthmatic airway. These and other growth factors can contribute to the development and persistence of inflammation and remodelling. One of the prominent features of the structural changes of the airways is the increased deposition and alterations in the composition of the extracellular matrix proteins. These proteins include fibronectin, many different collagen types and hyaluronan. There is a dynamic relationship between the extracellular matrix proteins and the airway mesenchymal cells such that the changes in the extracellular matrix proteins can also contribute to the persistence of inflammation and the airway remodelling. This review aims to summarise the role growth factors and extracellular matrix proteins play in the regulation of inflammation and airway remodelling in the asthmatic airway.
Collapse
Affiliation(s)
- Janette K Burgess
- Discipline of Pharmacology, The University of Sydney, Woolcock Institute of Medical Research and the Cooperative Research Centre for Asthma and Airways, Sydney, NSW Australia.
| |
Collapse
|
117
|
Herseth JI, Volden V, Schwarze PE, Låg M, Refsnes M. IL-1beta differently involved in IL-8 and FGF-2 release in crystalline silica-treated lung cell co-cultures. Part Fibre Toxicol 2008; 5:16. [PMID: 19014534 PMCID: PMC2588635 DOI: 10.1186/1743-8977-5-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 11/13/2008] [Indexed: 12/16/2022] Open
Abstract
Background Inhalation of crystalline silica particles is in humans associated with inflammation and development of fibrosis. The aim of the present study was to investigate the effect of crystalline silica on the release of the fibrosis- and angiogenesis-related mediator FGF-2 and the pro-inflammatory mediator IL-8, and how IL-1β and TNF-α were involved in this release from various mono- and co-cultures of monocytes, pneumocytes and endothelial cells. Results Silica exposure induced an increase of IL-8 release from monocytes and from pneumocytes alone, and the FGF-2 level in the medium increased upon silica exposure of pneumocytes. Both the responses were enhanced in non-contact co-cultures with endothelial cells. The FGF-2 release seemed to increase with the silica-induced decrease in the number of pneumocytes. The release of IL-8 and FGF-2 was partially suppressed in cultures with pneumocytes in contact with monocytes compared to non-contact cultures. Treatment with anti-TNF-α and the IL-1 receptor antagonist revealed that release of IL-1β, and not TNF-α, from monocytes dominated the regulation of IL-8 release in co-cultures. For release of FGF-2, IL-1ra was without effect. However, exogenous IL-1β reduced the FGF-2 levels, strongly elevated the FGF-2-binding protein PTX3, and prevented the reduction in the number of pneumocytes induced by silica. Conclusion IL-1β seems to be differently involved in the silica-induced release of IL-8 and FGF-2 in different lung cell cultures. Whereas the silica-induced IL-8 release is regulated via an IL-1-receptor-mediated mechanism, IL-1β is suggested only indirectly to affect the silica-induced FGF-2 release by counteracting pneumocyte loss. Furthermore, the enhanced IL-8 and FGF-2 responses in co-cultures involving endothelial cells show the importance of the interaction between different cell types and may suggest that both these mediators are important in angiogenic or fibrogenic processes.
Collapse
Affiliation(s)
- Jan I Herseth
- Department for Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway.
| | | | | | | | | |
Collapse
|
118
|
Ma F, Liu J, Nikolic-Paterson D. The role of stress-activated protein kinase signaling in renal pathophysiology. Braz J Med Biol Res 2008; 42:29-37. [DOI: 10.1590/s0100-879x2008005000049] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 09/18/2008] [Indexed: 12/31/2022] Open
Affiliation(s)
- F.Y. Ma
- Monash Medical Center, Australia
| | - J. Liu
- Monash Medical Center, Australia
| | | |
Collapse
|
119
|
Liu AC, Gotlieb AI. Transforming growth factor-beta regulates in vitro heart valve repair by activated valve interstitial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1275-85. [PMID: 18832581 DOI: 10.2353/ajpath.2008.080365] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regulation of valve interstitial cell (VIC) function in response to tissue injury and valve disease is not well understood. Because transforming growth factor-beta (TGF-beta) has been implicated in tissue repair, we tested the hypothesis that TGF-beta is a regulator of VIC activation and associated cell responses that occur during early repair processes. We used a well-characterized wound model that was created by mechanical denudation of a confluent VIC monolayer to study activation and repair 24 hours after wounding. VIC activation was demonstrated by immunofluorescent localization of alpha-smooth muscle actin (alpha-SMA), and alpha-SMA mRNA levels were quantified by real-time polymerase chain reaction. Proliferation and apoptosis were quantified by bromodeoxyuridine staining and terminal deoxynucleotidyl transferase dUTP nick end labeling, respectively. Repair was quantified by measuring VIC extension into the wound, and TGF-beta expression was shown by immunofluorescent localization of intracellular TGF-beta. Compared with nonwounded monolayers, VICs at the wound edge showed alpha-SMA staining, increased alpha-SMA mRNA content, elongation into the wound with stress fibers, proliferation, and apoptosis. VICs at the wound edge also showed increased TGF-beta and pSmad2/3 staining with co-expression of alpha-SMA. Addition of TGF-beta neutralizing antibody to the wound decreased VIC activation, alpha-SMA mRNA content, proliferation, apoptosis, wound closure rate, and stress fibers. Conversely, exogenous addition of TGF-beta to the wound increased VIC activation, proliferation, wound closure rate, and stress fibers. Thus, wounding activates VICs, and TGF-beta signaling modulates VIC response to injury.
Collapse
Affiliation(s)
- Amber C Liu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | | |
Collapse
|
120
|
Chhina M, Shlobin OA, Grant G, Nathan SD. Potential of imatinib mesylate as a novel treatment for pulmonary fibrosis. Expert Rev Respir Med 2008; 2:419-31. [PMID: 20477206 DOI: 10.1586/17476348.2.4.419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pulmonary fibrosis is a disease characterized by progressive scarring of the lungs, with idiopathic pulmonary fibrosis (IPF) being the most aggressive form. The diagnosis of IPF is made after other conditions are excluded and is based on a characteristic clinical presentation, radiographic features and, sometimes, pathologic specimen. Existing IPF drug regimens, including corticosteroids and cytotoxic medications, are generally ineffective. To date, only lung transplantation has been shown to improve mortality in carefully selected patients. Multiple therapeutic agents have been investigated but none have proven to be successful. Novel drugs are constantly being sought in an attempt to find a therapy that halts or reverses this disease. Imatinib mesylate is used for chronic myelogenous leukemia and gastrointestinal stromal tumors. It also has antifibrotic properties, as demonstrated in several studies using mouse models of pulmonary fibrosis. Currently, trials are underway to investigate its efficacy in human subjects with IPF.
Collapse
Affiliation(s)
- Mantej Chhina
- Center for Biomedical Genomics, George Mason University, 10900 University Boulevard 109, Manassas, VA 20110, USA.
| | | | | | | |
Collapse
|
121
|
Bonderman D, Jakowitsch J, Redwan B, Bergmeister H, Renner MK, Panzenböck H, Adlbrecht C, Georgopoulos A, Klepetko W, Kneussl M, Lang IM. Role for staphylococci in misguided thrombus resolution of chronic thromboembolic pulmonary hypertension. Arterioscler Thromb Vasc Biol 2008; 28:678-84. [PMID: 18239156 DOI: 10.1161/atvbaha.107.156000] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Acute pulmonary emboli usually resolve within 6 months. However, in 0.1% to 3.8% of cases thrombus transforms into fibrous masses. If vascular obstruction is severe, the resulting condition is chronic thromboembolic pulmonary hypertension (CTEPH). Patients who carry ventriculo-atrial (VA-) shunts for the treatment of hydrocephalus and report a history of shunt infection are at an increased risk for CTEPH. Because CTEPH lacks traditional plasmatic risk factors for venous thromboembolism, we hypothesized that delayed thrombus resolution rather than abnormal coagulation is important, and that bacterial infection would be important for this misguidance. METHODS AND RESULTS Human CTEPH thromboemboli were harvested during pulmonary endarterectomy. The effects of Staphylococcal infection on thrombus organization were examined in a murine model of stagnant-flow venous thrombosis. Staphylococcal DNA, but not RNA, was detected in 6 of 7 thrombi from VA shunt carriers. In the mouse model, staphylococcal infection delayed thrombus resolution in parallel with upregulation of transforming growth factor (TGF) beta and connective tissue growth factor. CONCLUSIONS In the present work, we propose a mechanism of disease demonstrating that infection with Staphylococci enhances fibrotic vascular remodeling after thrombosis, resulting in misguided thrombus resolution. Thrombus infection appears to be a trigger in the evolution of CTEPH.
Collapse
Affiliation(s)
- Diana Bonderman
- Department of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Abstract
Transforming growth factor-beta (TGF-beta) regulates a wide variety of cellular processes including cell growth, apoptosis, differentiation, migration, and extracellular matrix production among others. The canonical signaling pathway induced by the TGF-beta receptor complex involves the phosphorylation of Smad proteins which upon activation accumulate in the nucleus and regulate transcription. Interestingly, the cellular response to TGF-beta can be extremely variable depending on the cell type and stimulation context. TGF-beta causes epithelial cells to undergo growth arrest and apoptosis, responses which are critical to suppressing carcinogenesis, whereas it can also induce epithelial-mesenchymal transition and mediate fibroblast activation, responses implicated in promoting carcinogenesis and fibrotic diseases. However, TGF-beta induces all these responses via the same receptor complex and Smad proteins. To address this apparent paradox, during the last few years a number of additional signaling pathways have been identified which potentially regulate the different cellular responses to TGF-beta. The identification of these signaling pathways has shed light onto the mechanisms whereby Smad and non-Smad pathways collaborate to induce a particular cellular phenotype. In this article, we review TGF-beta signaling in epithelial cells and fibroblasts with a focus on understanding the mechanisms of TGF-beta versatility.
Collapse
Affiliation(s)
- Rod A Rahimi
- Department of Biochemistry and Molecular Biology, Thoracic Diseases Research Unit, Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
123
|
Liu P, Zhang C, Feng JB, Zhao YX, Wang XP, Yang JM, Zhang MX, Wang XL, Zhang Y. Cross talk among Smad, MAPK, and integrin signaling pathways enhances adventitial fibroblast functions activated by transforming growth factor-beta1 and inhibited by Gax. Arterioscler Thromb Vasc Biol 2008; 28:725-31. [PMID: 18187669 DOI: 10.1161/atvbaha.107.159889] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We investigated whether Smad, mitogen-activated protein kinase (MAPK), and integrin signaling pathways cross-talk to enhance adventitial fibroblast (AF) bioactivity, which was activated by transforming growth factor (TGF)-beta1 and inhibited by Gax. METHODS AND RESULTS Cultured AFs were stimulated with Ad-Gax, TGF-beta1, and siRNA-Gax. Assays for AFs viabilities demonstrated that TGF-beta1 and siRNA-Gax enhanced AFs proliferative, migratory, and adherent abilities, whereas Gax counteracted TGF-beta1-activated actions. Flow cytometry revealed that TGF-beta1 and siRNA-Gax increased S phase cells; however, Gax decreased AFs in the S phase and increased those in the G0-G1 and apoptotic phases. RT-PCR, Western blotting, and immunocytochemistry showed that TGF-beta1 and siRNA-Gax upregulated the expression of cytokines in Smad, MAPK, and integrin signaling pathways, and downregulated that of p15, p16, and p21. Conversely, Gax induced downregulation of these cytokines and upregulation of p15, p16, and p21. Thus, these signaling pathways cross-talk to enhance AF bioactivity; Gax effectively counteracts TGF-beta1 effects, blocks the cross-talk of these pathways, inhibits AF functions, and increases AF apoptosis. CONCLUSIONS Our findings indicate that cross-talk among Smad, MAPK, and integrin signaling pathways may account mainly for the mechanism of AF functions. Gax is a promising therapeutic gene for dissecting the signaling pathways controlling AF bioactivities.
Collapse
Affiliation(s)
- Ping Liu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Shandong University Qilu Hospital, Jinan, Shandong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Thomas PE, Peters-Golden M, White ES, Thannickal VJ, Moore BB. PGE(2) inhibition of TGF-beta1-induced myofibroblast differentiation is Smad-independent but involves cell shape and adhesion-dependent signaling. Am J Physiol Lung Cell Mol Physiol 2007; 293:L417-28. [PMID: 17557799 PMCID: PMC2846428 DOI: 10.1152/ajplung.00489.2006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myofibroblasts are pathogenic in pulmonary fibrotic disease due to their exuberant production of matrix rich in collagen that interferes with gas exchange and the ability of these cells to contract and distort the alveolar space. Transforming growth factor-beta1 (TGF-beta1) is a well-known inducer of myofibroblast differentiation. TGF-beta1-induced transformation of fibroblasts to apoptosis-resistant myofibroblasts is adhesion-dependent and focal adhesion kinase (FAK)-mediated. Prostaglandin E(2) (PGE(2)) inhibits this differentiation via E prostanoid receptor 2 (EP2) signaling and cAMP elevation, but whether PGE(2) does so by interfering with TGF-beta1 signaling is unknown. Thus we examined the effects of PGE(2) in the presence and absence of TGF-beta1 stimulation on candidate signaling pathways in human lung fibroblasts. We now demonstrate that PGE(2) does not interfere with TGF-beta1-induced Smad phosphorylation or its translocation to the nucleus. Rather, PGE(2) has dramatic effects on cell shape and cytoskeletal architecture and disrupts the formation of appropriate focal adhesions. PGE(2) treatment diminishes TGF-beta1-induced phosphorylation of paxillin, STAT-3, and FAK and, in turn, limits activation of the protein kinase B (PKB/Akt) pathway. These alterations do not, however, result in increased apoptosis within the first 24 h of treatment. Interestingly, the effects of PGE(2) stimulation alone do not always mirror the effects of PGE(2) in the presence of TGF-beta1, indicating that the context for EP2 signaling is different in the presence of TGF-beta1. Taken together, our results demonstrate that PGE(2) has the potential to limit TGF-beta1-induced myofibroblast differentiation via adhesion-dependent, but Smad-independent, pathways.
Collapse
Affiliation(s)
- Peedikayil E Thomas
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | |
Collapse
|
125
|
Kang HR, Lee CG, Homer RJ, Elias JA. Semaphorin 7A plays a critical role in TGF-beta1-induced pulmonary fibrosis. ACTA ACUST UNITED AC 2007; 204:1083-93. [PMID: 17485510 PMCID: PMC2118575 DOI: 10.1084/jem.20061273] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Semaphorin (SEMA) 7A regulates neuronal and immune function. In these studies, we tested the hypothesis that SEMA 7A is also a critical regulator of tissue remodeling. These studies demonstrate that SEMA 7A and its receptors, plexin C1 and β1 integrins, are stimulated by transforming growth factor (TGF)-β1 in the murine lung. They also demonstrate that SEMA 7A plays a critical role in TGF-β1–induced fibrosis, myofibroblast hyperplasia, alveolar remodeling, and apoptosis. TGF-β1 stimulated SEMA 7A via a largely Smad 3–independent mechanism and stimulated SEMA 7A receptors, matrix proteins, CCN proteins, fibroblast growth factor 2, interleukin 13 receptor components, proteases, antiprotease, and apoptosis regulators via Smad 2/3–independent and SEMA 7A–dependent mechanisms. SEMA 7A also played an important role in the pathogenesis of bleomycin-induced pulmonary fibrosis. TGF-β1 and bleomycin also activated phosphatidylinositol 3-kinase (PI3K) and protein kinase B (PKB)/AKT via SEMA 7A–dependent mechanisms, and PKB/AKT inhibition diminished TGF-β1–induced fibrosis. These observations demonstrate that SEMA 7A and its receptors are induced by TGF-β1 and that SEMA 7A plays a central role in a PI3K/PKB/AKT-dependent pathway that contributes to TGF-β1–induced fibrosis and remodeling. They also demonstrate that the effects of SEMA 7A are not specific for transgenic TGF-β1, highlighting the importance of these findings for other fibrotic stimuli.
Collapse
Affiliation(s)
- Hye-Ryun Kang
- Section of Pulmonary and Critical Care Medicine and 2Department of Pathology, Yale University School of Medicine, New Haven, CT 06519, USA
| | | | | | | |
Collapse
|
126
|
Horowitz JC, Thannickal VJ. Epithelial-mesenchymal interactions in pulmonary fibrosis. Semin Respir Crit Care Med 2007; 27:600-12. [PMID: 17195137 PMCID: PMC2225581 DOI: 10.1055/s-2006-957332] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pulmonary fibrosis represents the sequelae of a variety of acute and chronic lung injuries of known and unknown etiologies. Tissue specimens obtained from patients with pulmonary fibrosis, regardless of the etiology, consistently show evidence of an ongoing wound-repair response. Epithelial-mesenchymal interactions have critical roles in normal lung development, tissue repair processes, and fibrosis. Current hypotheses propose that dysregulated function of, and impaired communication between, epithelial and mesenchymal cells prevent resolution of the wound-repair response and contribute to the pathobiology of pulmonary fibrosis. This hypothesis is supported by abundant evidence from patients, animal models, and cell-culture studies demonstrating abnormalities in epithelial cell and mesenchymal cell activities including proliferation, differentiation, and survival. This article reviews the aberrant epithelial and mesenchymal cellular phenotypes found in the context of pulmonary fibrosis and discusses the mechanisms that perpetuate these cellular phenotypes.
Collapse
Affiliation(s)
- Jeffrey C Horowitz
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA.
| | | |
Collapse
|
127
|
Makinde T, Murphy RF, Agrawal DK. The regulatory role of TGF-beta in airway remodeling in asthma. Immunol Cell Biol 2007; 85:348-56. [PMID: 17325694 DOI: 10.1038/sj.icb.7100044] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Both structural and inflammatory cells are capable of secreting transforming growth factor (TGF)-beta and expressing TGF-beta receptors. TGF-beta can induce multiple cellular responses including differentiation, apoptosis, survival and proliferation, and has been implicated in the development of several pathogenic conditions including cancer and asthma. Elevated levels of TGF-beta have been reported in the asthmatic airway. TGF-beta binds to its receptor complex and activates multiple pathways involving proteins such as Sma and Mad homologues, phosphatidylinositol-3 kinase and the mitogen-activated protein kinases, leading to the transcription of several genes. Cell type, cellular condition, and microenvironment, all play a role in determining which pathway is activated, which, in turn, is an indication of which gene is to be transcribed. TGF-beta has been shown to induce apoptosis in airway epithelial cells. A possible role for TGF-beta in the regulation of epithelial cell adhesion properties has also been reported. Enhancement of goblet cell proliferation by TGF-beta suggests a role in mucus hyper-secretion. Elevated levels of TGF-beta correlate with subepithelial fibrosis. TGF-beta induces proliferation of fibroblast cells and their differentiation into myofibroblasts and extracellular matrix (ECM) protein synthesis during the development of subepithelial fibrosis. TGF-beta also induces proliferation and survival of and ECM secretion in airway smooth muscle cells (ASMCs), suggesting a possible cause of increased thickness of airway tissues. TGF-beta also induces the production and release of vascular endothelial cell growth factor and plasminogen activator inhibitor, contributing to the vascular remodeling in the asthmatic airway. Blocking TGF-beta activity inhibits epithelial shedding, mucus hyper-secretion, angiogenesis, ASMC hypertrophy and hyperplasia in an asthmatic mouse model. Reduction of TGF-beta production and control of TGF-beta effects would be beneficial in the development of therapeutic intervention for airway remodeling in chronic asthma.
Collapse
Affiliation(s)
- Toluwalope Makinde
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA
| | | | | |
Collapse
|
128
|
Hosokawa Y, Hosokawa I, Ozaki K, Nakae H, Matsuo T. Proinflammatory effects of tumour necrosis factor-like weak inducer of apoptosis (TWEAK) on human gingival fibroblasts. Clin Exp Immunol 2007; 146:540-9. [PMID: 17100776 PMCID: PMC1810398 DOI: 10.1111/j.1365-2249.2006.03233.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Tumour necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK), a member of the TNF family, is a multi-functional cytokine that regulates cellular proliferation, angiogenesis, inflammation and apoptosis. In this study, we investigated TWEAK expression in periodontally diseased tissues and the effect of TWEAK on human gingival fibroblasts (HGF). Reverse transcription-polymerase chain reaction (RT-PCR) analysis and immunohistochemistry revealed that TWEAK and the TWEAK receptor, fibroblast growth factor-inducible 14 (Fn14), mRNA and protein were expressed in periodontally diseased tissues. HGF expressed Fn14 and produced interleukin (IL)-8 and vascular endothelial growth factor (VEGF) production upon TWEAK stimulation in a dose-dependent manner. The IL-8 and VEGF production induced by TWEAK was augmented synergistically by simultaneous stimulation with transforming growth factor (TGF)-beta1 or IL-1beta. IL-1beta and TGF-beta1 enhanced Fn14 expression in a dose-dependent manner. Moreover, TWEAK induced intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expression on HGF in a dose-dependent manner. The ICAM-1 expression induced by TWEAK was augmented by TGF-beta1. On the other hand, the TWEAK-induced VCAM-1 expression was inhibited by TGF-beta1. Phosphatidylinositol 3-kinase (PI3K) and nuclear factor-kappaB (NF-kappaB) inhibitor inhibit both ICAM-1 and VCAM-1 expression induced by TWEAK. However, mitogen-activated protein kinase (MEK) and c-Jun NH2-terminal kinase (JNK) inhibitor enhanced only VCAM-1 expression on HGF. These results suggest that TWEAK may be involved in the pathophysiology of periodontal disease. Moreover, in combination with IL-1beta or TGF-beta1, TWEAK may be related to the exacerbation of periodontal disease to induce proinflammatory cytokines and adherent molecules by HGF.
Collapse
Affiliation(s)
- Y Hosokawa
- Department of Conservative Dentistry and Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Tokushima, Japan.
| | | | | | | | | |
Collapse
|
129
|
Abstract
PURPOSE OF REVIEW Pleural fibrosis is a double-edged sword in clinical settings. Successful induction of pleural fibrosis is the basis of therapeutic pleurodesis. On the other hand, pleural septations and fibrosis are undesirable outcomes in pleural infection and fibrothoraces. The significance of growth factors in the pathogenesis of pleural fibrosis has become increasingly apparent. RECENT FINDINGS Recent findings have indicated that transforming growth factor beta is a key mediator of pleural fibrosis and demonstrated the therapeutic potential of both transforming growth factor beta itself and transforming growth factor beta inhibitors. Basic fibroblast growth factor has been highlighted as a key factor in successful pleurodesis, and in the formation of pleural effusions. Vascular endothelial growth factor inhibition has been shown to decrease pleural fibrosis in vivo. By contrast, hepatocyte growth factor stimulates non-fibrotic healing, while inhibition increases fibrosis. SUMMARY The actions of the growth factors, and their inhibitors, are potentially and/or currently applicable in a clinical setting. Understanding the biology of these growth factors may allow therapeutic manipulation of these cytokines to create pleurodesis or to inhibit pleural (and peritoneal) adhesion/fibrosis.
Collapse
Affiliation(s)
- Steven E Mutsaers
- Asthma, Allergy & Respiratory Research Institute, Department of Medicine, University of Western Australia, Perth, Australia
| | | | | | | |
Collapse
|
130
|
Martinez FJ, Keane MP. Update in diffuse parenchymal lung diseases 2005. Am J Respir Crit Care Med 2006; 173:1066-71. [PMID: 16679445 DOI: 10.1164/rccm.2601011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
MESH Headings
- Adult
- Age Factors
- Alveolitis, Extrinsic Allergic/diagnosis
- Alveolitis, Extrinsic Allergic/epidemiology
- Alveolitis, Extrinsic Allergic/therapy
- Biomarkers/blood
- Biopsy, Needle
- Child
- Child, Preschool
- Disease Progression
- Female
- Humans
- Immunohistochemistry
- Lung Diseases, Interstitial/diagnosis
- Lung Diseases, Interstitial/epidemiology
- Lung Diseases, Interstitial/therapy
- Macrophages, Alveolar/cytology
- Male
- Middle Aged
- Oxidative Stress/physiology
- Prognosis
- Pulmonary Fibrosis/diagnosis
- Pulmonary Fibrosis/epidemiology
- Pulmonary Fibrosis/therapy
- Respiratory Function Tests
- Risk Assessment
- Sarcoidosis, Pulmonary/diagnosis
- Sarcoidosis, Pulmonary/epidemiology
- Sarcoidosis, Pulmonary/therapy
- Severity of Illness Index
- Survival Analysis
Collapse
Affiliation(s)
- Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI 48109-0360, USA.
| | | |
Collapse
|
131
|
Barth K, Bläsche R, Kasper M. Lack of evidence for caveolin-1 and CD147 interaction before and after bleomycin-induced lung injury. Histochem Cell Biol 2006; 126:563-73. [PMID: 16733664 DOI: 10.1007/s00418-006-0192-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2006] [Indexed: 10/24/2022]
Abstract
Immunohistochemical and in vitro studies indicate that caveolin-1, which occurs abundantly in alveolar epithelial type I cells and microvascular endothelial cells of the lung, is selectively downregulated in the alveolar epithelium following exposure to bleomycin. Bleomycin is also known to enhance the expression levels of metalloproteinases and of the metalloproteinase inducer CD147/EMMPRIN in lung cells. Experimental in vitro data has showed that MMP-inducing activity of CD147 is under the control of caveolin-1. We studied the effects of bleomycin on the expression of caveolin-1, CD147 and metalloproteinases using an alveolar epithelial rat cell line R3/1 with properties of both alveolar type I and type II cells and explanted rat lung slices. In parallel, retrospective samples of bleomycin-induced fibrosis in rats and mice as well as samples of wild type and caveolin-1 knockout animals were included for immunohistochemical comparison with in vitro data. Here we report that treatment with bleomycin downregulates caveolin-1 and increases CD147 and MMP-2 and -9 expression/activity in R3/1 cells using RT-PCR, Western blot analysis, MMP-2 activity assay and immunocytochemistry. Immunofluorescence double labeling revealed that caveolin-1 and CD147 were not colocalized in vitro. The in vitro findings were confirmed through immunohistochemical studies of the proteins in paraffin embedded precision-cut rat lung slices and in fibrotic rat lung tissues. The caveolin-1-negative hyperplastic ATII cells exhibited enhanced immunoreactivity for CD147 and MMP-2. Caveolin-1-negative ATI cells of fibrotic samples were mostly CD147 negative. There were no differences in the pulmonary expression of CD147 between the normal and caveolin-1 deficient animals. The results demonstrate that bleomycin-induced lung injury is associated with an increase in CD147 expression and MMP activity, particularly in alveolar epithelial cells. In addition, our data exclude any functional interaction between CD147 and alveolar epithelial caveolin-1.
Collapse
Affiliation(s)
- K Barth
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Fiedlerstr. 42, 01307 Dresden, Germany.
| | | | | |
Collapse
|
132
|
Abstract
Transforming growth factor-beta (TGF-beta) superfamily members, TGF-beta and bone morphogenetic proteins (BMPs), are potent regulatory cytokines with diverse functions on vascular cells. They signal through heteromeric type I and II receptor complexes activating Smad-dependent and Smad-independent signals, which regulate proliferation, differentiation, and survival. They are potent regulators of vascular development and vessel remodeling and play key roles in atherosclerosis and restenosis, regulating endothelial, smooth muscle cell, macrophage, T cell, and probably vascular calcifying cell responses. In atherosclerosis, TGF-beta regulates lesion phenotype by controlling T-cell responses and stimulating smooth muscle cells to produce collagen. It contributes to restenosis by augmenting neointimal cell proliferation and collagen accumulation. Defective TGF-beta signaling in endothelial cells attributable to mutations in endoglin or the type I receptor ALK-1 leads to hereditary hemorrhagic telangiectasia, whereas defective BMP signaling attributable to mutations in the BMP receptor II has been associated with development of primary pulmonary hypertension. The development of mouse models with either cell type-specific or general inactivation of TGF-beta/BMP signaling has started to reveal the importance of the regulatory network of TGF-beta/BMP pathways in vivo and their significance for atherosclerosis, hereditary hemorrhagic telangiectasia, and primary pulmonary hypertension. This review highlights recent findings that have advanced our understanding of the roles of TGF-beta superfamily members in regulating vascular cell responses and provides likely avenues for future research that may lead to novel pharmacological therapies for the treatment or prevention of vascular disorders.
Collapse
Affiliation(s)
- Alex Bobik
- Cell Biology Laboratory, Baker Heart Research Institute, PO Box 6492, St Kilda Rd Central, Melbourne, Victoria 8008, Australia.
| |
Collapse
|
133
|
Chen G, Khalil N. TGF-beta1 increases proliferation of airway smooth muscle cells by phosphorylation of map kinases. Respir Res 2006; 7:2. [PMID: 16390551 PMCID: PMC1360679 DOI: 10.1186/1465-9921-7-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 01/03/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Airway remodeling in asthma is the result of increased expression of connective tissue proteins, airway smooth muscle cell (ASMC) hyperplasia and hypertrophy. TGF-beta1 has been found to increase ASMC proliferation. The activation of mitogen-activated protein kinases (MAPKs), p38, ERK, and JNK, is critical to the signal transduction associated with cell proliferation. In the present study, we determined the role of phosphorylated MAPKs in TGF-beta1 induced ASMC proliferation. METHODS Confluent and growth-arrested bovine ASMCs were treated with TGF-beta1. Proliferation was measured by [3H]-thymidine incorporation and cell counting. Expressions of phosphorylated p38, ERK1/2, and JNK were determined by Western analysis. RESULTS In a concentration-dependent manner, TGF-beta1 increased [3H]-thymidine incorporation and cell number of ASMCs. TGF-beta1 also enhanced serum-induced ASMC proliferation. Although ASMCs cultured with TGF-beta1 had a significant increase in phosphorylated p38, ERK1/2, and JNK, the maximal phosphorylation of each MAPK had a varied onset after incubation with TGF-beta1. TGF-beta1 induced DNA synthesis was inhibited by SB 203580 or PD 98059, selective inhibitors of p38 and MAP kinase kinase (MEK), respectively. Antibodies against EGF, FGF-2, IGF-I, and PDGF did not inhibit the TGF-beta1 induced DNA synthesis. CONCLUSION Our data indicate that ASMCs proliferate in response to TGF-beta1, which is mediated by phosphorylation of p38 and ERK1/2. These findings suggest that TGF-beta1 which is expressed in airways of asthmatics may contribute to irreversible airway remodeling by enhancing ASMC proliferation.
Collapse
Affiliation(s)
- Gang Chen
- Division of Respiratory Medicine, Department of Medicine, The University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada
| | - Nasreen Khalil
- Division of Respiratory Medicine, Department of Medicine, The University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada
| |
Collapse
|
134
|
Pelaia G, Gallelli L, D'Agostino B, Vatrella A, Cuda G, Fratto D, Renda T, Galderisi U, Piegari E, Crimi N, Rossi F, Caputi M, Costanzo FS, Vancheri C, Maselli R, Marsico SA. Effects of TGF-β and glucocorticoids on map kinase phosphorylation, IL-6/IL-11 secretion and cell proliferation in primary cultures of human lung fibroblasts. J Cell Physiol 2006; 210:489-97. [PMID: 17044077 DOI: 10.1002/jcp.20884] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transforming growth factor-beta1 (TGF-beta1) is crucially involved in the fibrotic events characterizing interstitial lung diseases (ILDs), as well as in the airway remodeling process typical of asthma. Within such a context, the aim of our study was to investigate, in primary cultures of normal and fibrotic human lung fibroblasts (HLFs), the effects of TGF-beta1 on mitogen-activated protein kinase (MAPK) phosphorylation, cell proliferation, and production of interleukins 6 (IL-6) and 11 (IL-11), in the presence or absence of a pretreatment with budesonide (BUD). MAPK phosphorylation was detected by Western blotting, cell viability and proliferation were evaluated using Trypan blue staining and [(3)H]-thymidine incorporation assay, respectively, and the release of IL-6 and IL-11 into cell culture supernatants was assessed by ELISA. TGF-beta1 (10 ng/ml) significantly stimulated MAPK phosphorylation (P < 0.01), and also enhanced cell proliferation as well as the secretion of both IL-6 and IL-11, which reached the highest increases at the 72nd h of cell exposure to this growth factor. All such effects were prevented by BUD (10(-8) M) and, with the exception of IL-6 release, also by a mixture of MAPK inhibitors. Therefore, our findings suggest that the fibrotic action exerted by TGF-beta1 in the lung is mediated at least in part by MAPK activation and by an increased synthesis of the profibrogenic cytokines IL-6 and IL-11; all these effects appear to be prevented by corticosteroids via inhibition of MAPK phosphorylation.
Collapse
Affiliation(s)
- Girolamo Pelaia
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and usually fatal pulmonary disease for which there are no proven drug therapies. Anti-inflammatory and immunosuppressive agents have been largely ineffective. The precise relationship of IPF to other idiopathic interstitial pneumonias (IIPs) is not known, despite the observation that different histopathologic patterns of IIP may coexist in the same patient. We propose that these different histopathologic 'reaction' patterns may be determined by complex interactions between host and environmental factors that alter the local alveolar milieu. Recent paradigms in IPF pathogenesis have focused on dysregulated epithelial-mesenchymal interactions, an imbalance in T(H)1/T(H)2 cytokine profile and potential roles for aberrant angiogenesis. In this review, we discuss these evolving concepts in disease pathogenesis and emerging therapies designed to target pro-fibrogenic pathways in IPF.
Collapse
Affiliation(s)
| | - Victor J. Thannickal
- Address correspondence to: Victor J. Thannickal, M.D. Division of Pulmonary and Critical Care Medicine University of Michigan Medical Center 6301 MSRB III 1150 W. Medical Center Dr. Ann Arbor, Michigan 48109 United States of America Phone: 734−936−9371 Fax: 734−764−4556 e-mail:
| |
Collapse
|