101
|
Li J, Zhu Z. Research and development of next generation of antibody-based therapeutics. Acta Pharmacol Sin 2010; 31:1198-207. [PMID: 20694021 DOI: 10.1038/aps.2010.120] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Monoclonal antibodies (mAb) are emerging as one of the major class of therapeutic agents in the treatment of many human diseases, in particular in cancer and immunological disorders. To date, 28 mAb have been approved by the United States Food and Drug Administration for clinical applications. In addition, several hundreds of mAb are being developed clinically by many biotech and pharmaceutical companies for various disease indications. Many challenges still remain, however, and the full potential of therapeutic antibodies has yet to be realized. With the advancement of antibody engineering technologies and our further understanding of disease biology as well as antibody mechanism of action, many classes of novel antibody formats or antibody derived molecules are emerging as promising new generation therapeutics. These new antibody formats or molecules are carefully designed and engineered to acquire special features, such as improved pharmacokinetics, increased selectivity, and enhanced efficacy. These new agents may have the potential to revolutionize both our thinking and practice in the efforts to research and develop next generation antibody-based therapeutics.
Collapse
|
102
|
Sesarman A, Vidarsson G, Sitaru C. The neonatal Fc receptor as therapeutic target in IgG-mediated autoimmune diseases. Cell Mol Life Sci 2010; 67:2533-50. [PMID: 20217455 PMCID: PMC11115620 DOI: 10.1007/s00018-010-0318-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 01/29/2010] [Accepted: 02/12/2010] [Indexed: 01/01/2023]
Abstract
Therapy approaches based on lowering levels of pathogenic autoantibodies represent rational, effective, and safe treatment modalities of autoimmune diseases. The neonatal Fc receptor (FcRn) is a major factor regulating the serum levels of IgG antibodies. While FcRn-mediated half-life extension is beneficial for IgG antibody responses against pathogens, it also prolongs the serum half-life of IgG autoantibodies and thus promotes tissue damage in autoimmune diseases. In the present review article, we examine current evidence on the relevance of FcRn in maintaining high autoantibody levels and discuss FcRn-targeted therapeutic approaches. Further investigation of the FcRn-IgG interaction will not only provide mechanistic insights into the receptor function, but should also greatly facilitate the design of therapeutics combining optimal pharmacokinetic properties with the appropriate antibody effector functions in autoimmune diseases.
Collapse
Affiliation(s)
- Alina Sesarman
- Department of Dermatology, University of Freiburg, Hauptstrasse 7, 79104 Freiburg, Germany
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Cassian Sitaru
- Department of Dermatology, University of Freiburg, Hauptstrasse 7, 79104 Freiburg, Germany
- Centre for Biological Signalling Studies (bioss), University of Freiburg, Freiburg, Germany
| |
Collapse
|
103
|
Bugelski PJ, Achuthanandam R, Capocasale RJ, Treacy G, Bouman-Thio E. Monoclonal antibody-induced cytokine-release syndrome. Expert Rev Clin Immunol 2010; 5:499-521. [PMID: 20477639 DOI: 10.1586/eci.09.31] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Monoclonal antibodies (mAbs) are widely used in anti-inflammatory and tumor therapy. Although effective, mAbs can cause a variety of adverse effects. An important toxicity seen with a few mAbs is cytokine-release syndrome (CRS). These mAbs include: alemtuzumab, muromonab-CD3, rituximab, tosituzumab, CP-870,893, LO-CD2a/BTI-322 and TGN1412. By contrast, over 30 mAbs used clinically are not associated with CRS. In this review, the clinical aspects of CRS, the mAbs associated with CRS, the cytokines involved and putative mechanisms mediating cytokine release will be discussed. This will be followed by a discussion of the poor predictive value of studies in animals and the prospects for creating in vitro screens. Finally, approaches to decreasing the probability of CRS, decreasing the severity or treating CRS, should it occur, will be described.
Collapse
Affiliation(s)
- Peter J Bugelski
- Toxicology and Investigational Pharmacology, Centocor R&D, R-4-2, 145 King of Prussia Road, Radnor, PA 19087, USA.
| | | | | | | | | |
Collapse
|
104
|
Abstract
The development of therapeutic antibodies has evolved over the past decade into a mainstay of therapeutic options for patients with autoimmune and inflammatory diseases. Substantial advances in understanding the biology of human diseases have been made and tremendous benefit to patients has been gained with the first generation of therapeutic antibodies. The lessons learnt from these antibodies have provided the foundation for the discovery and development of future therapeutic antibodies. Here we review how key insights obtained from the development of therapeutic antibodies complemented by newer antibody engineering technologies are delivering a second generation of therapeutic antibodies with promise for greater clinical efficacy and safety.
Collapse
|
105
|
Lee CH, Choi DK, Choi HJ, Song MY, Kim YS. Expression of soluble and functional human neonatal Fc receptor in Pichia pastoris. Protein Expr Purif 2010; 71:42-8. [DOI: 10.1016/j.pep.2009.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Revised: 11/30/2009] [Accepted: 12/07/2009] [Indexed: 12/31/2022]
|
106
|
Yeung YA, Wu X, Reyes AE, Vernes JM, Lien S, Lowe J, Maia M, Forrest WF, Meng YG, Damico LA, Ferrara N, Lowman HB. A therapeutic anti-VEGF antibody with increased potency independent of pharmacokinetic half-life. Cancer Res 2010; 70:3269-77. [PMID: 20354184 DOI: 10.1158/0008-5472.can-09-4580] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bevacizumab [Avastin; anti-vascular endothelial growth factor (VEGF) antibody] is an antiangiogenic IgG approved for treating patients with certain types of colon, breast, and lung cancer. In these indications, bevacizumab is administered every 2 to 3 weeks, prompting us to study ways to reduce the frequency of administration. Increasing affinity to neonatal Fc receptor (FcRn) may extend the pharmacokinetic half-life of an antibody, but the quantitative effect of FcRn affinity on clearance has not been clearly elucidated. To gain further insight into this relationship, we engineered a series of anti-VEGF antibody variants with minimal amino acid substitutions and showed a range of half-life improvements in primates. These results suggest that, if proven clinically safe and effective, a modified version of bevacizumab could potentially provide clinical benefit to patients on long-term anti-VEGF therapy through less-frequent dosing and improved compliance with drug therapy. Moreover, despite having half-life similar to that of wild-type in mice due to the species-specific FcRn binding effects, the variant T307Q/N434A exhibited superior in vivo potency in slowing the growth of certain human tumor lines in mouse xenograft models. These results further suggest that FcRn variants may achieve increased potency through unidentified mechanisms in addition to increased systemic exposure.
Collapse
Affiliation(s)
- Yik Andy Yeung
- Departments of Antibody Engineering, Genentech, Inc, South San Francisco, California, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Suzuki T, Ishii-Watabe A, Tada M, Kobayashi T, Kanayasu-Toyoda T, Kawanishi T, Yamaguchi T. Importance of neonatal FcR in regulating the serum half-life of therapeutic proteins containing the Fc domain of human IgG1: a comparative study of the affinity of monoclonal antibodies and Fc-fusion proteins to human neonatal FcR. THE JOURNAL OF IMMUNOLOGY 2010; 184:1968-76. [PMID: 20083659 DOI: 10.4049/jimmunol.0903296] [Citation(s) in RCA: 266] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The neonatal FcR (FcRn) binds to the Fc domain of IgG at acidic pH in the endosome and protects IgG from degradation, thereby contributing to the long serum half-life of IgG. To date, more than 20 mAb products and 5 Fc-fusion protein products have received marketing authorization approval in the United States, the European Union, or Japan. Many of these therapeutic proteins have the Fc domain of human IgG1; however, the serum half-lives differ in each protein. To elucidate the role of FcRn in the pharmacokinetics of Fc domain-containing therapeutic proteins, we evaluated the affinity of the clinically used human, humanized, chimeric, or mouse mAbs and Fc-fusion proteins to recombinant human FcRn by surface plasmon resonance analysis. The affinities of these therapeutic proteins to FcRn were found to be closely correlated with the serum half-lives reported from clinical studies, suggesting the important role of FcRn in regulating their serum half-lives. The relatively short serum half-life of Fc-fusion proteins was thought to arise from the low affinity to FcRn. The existence of some mAbs having high affinity to FcRn and a short serum half-life, however, suggested the involvement of other critical factor(s) in determining the serum half-life of such Abs. We further investigated the reason for the relatively low affinity of Fc-fusion proteins to FcRn and suggested the possibility that the receptor domain of Fc-fusion protein influences the structural environment of the FcRn binding region but not of the FcgammaRI binding region of the Fc domain.
Collapse
Affiliation(s)
- Takuo Suzuki
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
108
|
Zalevsky J, Chamberlain AK, Horton HM, Karki S, Leung IWL, Sproule TJ, Lazar GA, Roopenian DC, Desjarlais JR. Enhanced antibody half-life improves in vivo activity. Nat Biotechnol 2010; 28:157-9. [PMID: 20081867 DOI: 10.1038/nbt.1601] [Citation(s) in RCA: 477] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 12/14/2009] [Indexed: 11/09/2022]
Abstract
Improved affinity for the neonatal Fc receptor (FcRn) is known to extend antibody half-life in vivo. However, this has never been linked with enhanced therapeutic efficacy. We tested whether antibodies with half-lives extended up to fivefold in human (h)FcRn transgenic mice and threefold in cynomolgus monkeys retain efficacy at longer dosing intervals. We observed that prolonged exposure due to FcRn-mediated enhancement of half-life improved antitumor activity of Fc-engineered antibodies in an hFcRn/Rag1(-/-) mouse model. This bridges the demand for dosing convenience with the clinical necessity of maintaining efficacy.
Collapse
|
109
|
Deng R, Loyet KM, Lien S, Iyer S, DeForge LE, Theil FP, Lowman HB, Fielder PJ, Prabhu S. Pharmacokinetics of Humanized Monoclonal Anti-Tumor Necrosis Factor-α Antibody and Its Neonatal Fc Receptor Variants in Mice and Cynomolgus Monkeys. Drug Metab Dispos 2010; 38:600-5. [DOI: 10.1124/dmd.109.031310] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
110
|
Magdelaine-Beuzelin C, Ohresser M, Watier H. [Neonatal Fc receptor, key control of immunoglobulins biodistribution]. Med Sci (Paris) 2009; 25:1053-6. [PMID: 20035678 DOI: 10.1051/medsci/200925121053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In 1969, Brambell, while studying the long serum half-life of IgG and their ability to cross the materno-foetal barrier, attributed these two properties to the existence of a specific Fc receptor, which was later denominated FcRn for neonatal Fc receptor. The resolution of its structure revealed that it is a MHC class-I-like molecule. FcRn is able to load IgG and albumin in a pH-dependent manner. It acts as an intracellular transport protein and as such is controling the serum half-life of these proteins (apical recycling of IgG and albumin in endothelial cells), IgG biodistribution (apical to basolateral and basolateral to apical transport of IgG in epithelial and endothelial cells) and it may also contribute to phagocytosis. FcRn is thus a key partner in the pharmacokinetics of therapeutic antibodies, opening interesting prospects for optimisation of their use.
Collapse
|
111
|
Strohl WR. Optimization of Fc-mediated effector functions of monoclonal antibodies. Curr Opin Biotechnol 2009; 20:685-91. [DOI: 10.1016/j.copbio.2009.10.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 10/14/2009] [Indexed: 12/31/2022]
|
112
|
Enever C, Batuwangala T, Plummer C, Sepp A. Next generation immunotherapeutics--honing the magic bullet. Curr Opin Biotechnol 2009; 20:405-11. [PMID: 19709876 DOI: 10.1016/j.copbio.2009.07.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 07/14/2009] [Indexed: 10/20/2022]
Abstract
Most therapeutic antibodies in the clinic today are based on fully humanised immunoglobulins. They have proven to be outstandingly effective, especially for the treatment of cancer, autoimmune and inflammatory diseases where the target is a single, well-defined and accessible molecule. Many diseases however are complex, involving multiple mediators or signalling pathways that could be targeted simultaneously to maximise clinical benefit. There is also a wealth of validated intracellular and CNS-based targets which are currently inaccessible to monoclonal antibody therapy. A spectrum of next generation immunotherapeutics is in development to address these issues and a number of them have also entered clinical trials.
Collapse
Affiliation(s)
- Carrie Enever
- Domantis Ltd, 315 Science Park, Cambridge CB4 0WG, UK.
| | | | | | | |
Collapse
|
113
|
Yeung YA, Leabman MK, Marvin JS, Qiu J, Adams CW, Lien S, Starovasnik MA, Lowman HB. Engineering Human IgG1 Affinity to Human Neonatal Fc Receptor: Impact of Affinity Improvement on Pharmacokinetics in Primates. THE JOURNAL OF IMMUNOLOGY 2009; 182:7663-71. [DOI: 10.4049/jimmunol.0804182] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
114
|
|
115
|
Immunogenicity of biologically-derived therapeutics: assessment and interpretation of nonclinical safety studies. Regul Toxicol Pharmacol 2009; 54:164-82. [PMID: 19345250 DOI: 10.1016/j.yrtph.2009.03.012] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 03/24/2009] [Accepted: 03/25/2009] [Indexed: 11/20/2022]
Abstract
An evaluation of potential antibody formation to biologic therapeutics during the course of nonclinical safety studies and its impact on the toxicity profile is expected under current regulatory guidance and is accepted standard practice. However, approaches for incorporating this information in the interpretation of nonclinical safety studies are not clearly established. Described here are the immunological basis of anti-drug antibody formation to biopharmaceuticals (immunogenicity) in laboratory animals, and approaches for generating and interpreting immunogenicity data from nonclinical safety studies of biotechnology-derived therapeutics to support their progression to clinical evaluation. We subscribe that immunogenicity testing strategies should be adapted to the specific needs of each therapeutic development program, and data generated from such analyses should be integrated with available clinical and anatomic pathology, pharmacokinetic, and pharmacodynamic data to properly interpret nonclinical studies.
Collapse
|
116
|
Impact of methionine oxidation on the binding of human IgG1 to Fc Rn and Fc gamma receptors. Mol Immunol 2009; 46:1878-82. [PMID: 19269032 DOI: 10.1016/j.molimm.2009.02.002] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 01/29/2009] [Accepted: 02/02/2009] [Indexed: 11/23/2022]
Abstract
Methionine oxidation commonly occurs in the Fc fragment of therapeutic monoclonal antibodies; however, its impact on antibody function has not been addressed. Using surface plasmon resonance and cell binding assays, we examined the impact of methionine oxidation on the binding of two humanized IgG1 antibodies to Fc gamma receptors (Fc gammaR) and to the neonatal Fc receptor (Fc Rn). A panel of Fc gammaRs, including Fc gammaRI, Fc gammaRIIa-131H, Fc gammaRIIa-131R, Fc gammaRIIb/c, Fc gammaRIII ALF, Fc gammaRIII ALV, and Fc gammaRIIIb was evaluated. The binding of oxidized IgG1 molecules to individual receptors remained the same with the exception of Fc gammaRIIa where a subtle decrease in binding to the 131H allele was observed. In contrast, but in agreement with recently reported structural changes associated with Met oxidation, binding to Fc Rn was significantly affected. An increase in K(D) values at pH 6.0 was observed with increasing degree of oxidation, reaching several-fold greater value in highly oxidized samples. To our knowledge this is the first report demonstrating that chemical degradations in the constant region of monoclonal antibodies can impact their function and it highlights the importance of avoiding oxidation in therapeutic antibodies.
Collapse
|
117
|
Schneider DW, Heitner T, Alicke B, Light DR, McLean K, Satozawa N, Parry G, Yoo J, Lewis JS, Parry R. In vivo biodistribution, PET imaging, and tumor accumulation of 86Y- and 111In-antimindin/RG-1, engineered antibody fragments in LNCaP tumor-bearing nude mice. J Nucl Med 2009; 50:435-43. [PMID: 19223400 DOI: 10.2967/jnumed.108.055608] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED To optimize in vivo tissue uptake kinetics and clearance of engineered monoclonal antibody (mAb) fragments for radiotherapeutic and radiodiagnostic applications, we compared the biodistribution and tumor localization of four (111)In- and (86)Y-labeled antibody formats, derived from a single antimindin/RG-1 mAb, in a prostate tumor model. The IgG, diabody, single-chain variable domain (scFv), and novel miniantibody formats, composed of the human IgE-C(H)4 and a modified IgG1 hinge linked to scFv domains, were compared. METHODS Antibodies were first derivatized with the bifunctional chelator CHX-A''-diethylenetriamine pentaacetic acid and then bound to the radiometal to create radiolabeled immunoconjugates. Human LNCaP xenografts were grown in nude mice, and (111)In- or (86)Y-labeled antibodies were administered intravenously. Tissues were harvested at different times, and the level of antibody deposition was determined by measuring radioactivity. Whole-body small-animal PET of mice receiving (86)Y-labeled antibodies was performed at 6 time points and colocalized with simultaneous micro-CT imaging. RESULTS The biodistributions of (111)In and (86)Y antibodies were quite similar. The blood, tumor, kidney, and liver tissues contained varying levels of radioactivity. The antibody accumulation in the tumor correlated with molecular size. The IgG steadily increased with time to 24.1 percentage injected dose per gram (%ID/g) at 48 h. The miniantibody accumulated at a similar rate to reach a lower level (14.2 %ID/g) at 48 h but with a higher tumor-to-blood ratio than the IgG. Tumor accumulation of the diabody peaked at 3 h, reaching a much lower level (3.7 %ID/g). A combination of rapid clearance and lower relative affinity of the scFv precluded deposition in the tumor. Small-animal PET results correlated well with the biodistribution results, with similar tumor localization patterns. CONCLUSION The larger antibody formats (IgG and miniantibody) gave higher tumor uptake levels than did the smaller formats (diabody and scFv). These larger formats may be more suitable for radioimmunotherapy applications, evidenced by the preclinical efficacy previously shown by a report on the IgG format. The smaller formats were rapidly cleared from circulation, and the diabody, which accumulated in the tumor, may be more suitable for radiodiagnostic applications.
Collapse
|
118
|
Abstract
During last two decades, the chimerization and humanization of monoclonal antibodies (mAbs) have led to the approval of several for the treatment of cancer, autoimmune diseases, and transplant rejection. Additional approaches have been used to further improve their in vivo activity. These include combining them with other modalities such as chemotherapy and redesigning them for improved pharmacokinetics, effector function, and signaling activity. The latter has taken advantage of new insights emerging from an increased understanding of the cellular and molecular mechanisms that are involved in the interaction of immunoglobulin G with Fc receptors and complement as well as the negative signaling resulting from the hypercrosslinking of their target antigens. Hence, mAbs have been redesigned to include mutations in their Fc portions, thereby endowing them with enhanced or decreased effector functions and more desirable pharmacokinetic properties. Their valency has been increased to decrease their dissociation rate from cells and enhance their ability to induce apoptosis and cell cycle arrest. In this review we discuss these redesigned mAbs and current data concerning their evaluation both in vitro and in vivo.
Collapse
Affiliation(s)
- Xiao-yun Liu
- The Cancer Immunobiology Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-8576, USA.
| | | | | |
Collapse
|
119
|
Presta LG. Molecular engineering and design of therapeutic antibodies. Curr Opin Immunol 2009; 20:460-70. [PMID: 18656541 DOI: 10.1016/j.coi.2008.06.012] [Citation(s) in RCA: 365] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 06/02/2008] [Accepted: 06/04/2008] [Indexed: 10/21/2022]
Abstract
Since the first murine monoclonal antibody was approved for human therapeutic use over a decade ago, the realization that monoclonal antibody therapeutics could be engineered to improve their efficacy has inspired an astonishing array of novel antibody constructs. Early focus was on reducing the immunogenicity of rodent antibodies via humanization and generation of antibodies in transgenic mice; as those techniques were being established and then provided marketed therapeutic antibodies, the focus expanded to include engineering for enhanced effector functions, control of half-life, tumor and tissue accessibility, augmented biophysical characteristics such as stability, and more efficient (and less costly) production. Over the past two years significant progress in designing antibodies with improved pharmacokinetic properties, via modified interaction with the neonatal Fc receptor (FcRn), has been achieved. Likewise, the ability to alter the communication of a therapeutic antibody with the immune system has been advanced, using both manipulation of the immunoglobulin protein sequence and its glycosylation. Although clinical evaluation of these engineered modifications has yet to be reported, results in primates are encouraging.
Collapse
|
120
|
Ward ES, Ober RJ. Chapter 4: Multitasking by exploitation of intracellular transport functions the many faces of FcRn. Adv Immunol 2009; 103:77-115. [PMID: 19755184 DOI: 10.1016/s0065-2776(09)03004-1] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The MHC Class I-related receptor, FcRn, transports antibodies of the immunoglobulin G (IgG) class within and across a diverse array of different cell types. Through this transport, FcRn serves multiple roles throughout adult life that extend well beyond its earlier defined function of transcytosing IgGs from mother to offspring. These roles include the maintenance of IgG levels and the delivery of antigen in the form of immune complexes to degradative compartments within cells. Recent studies have led to significant advances in knowledge of the intracellular trafficking of FcRn and (engineered) IgGs at both the molecular and cellular levels. The engineering of FcRn-IgG (or Fc) interactions to generate antibodies of increased longevity represents an area of active interest, particularly in the light of the expanding use of antibodies in therapy. The strict pH dependence of FcRn-IgG interactions, with binding at pH 6 that becomes essentially undetectable as near neutral pH is approached, is essential for efficient transport. The requirement for retention of low affinity at near neutral pH increases the complexity of engineering antibodies for increased half-life. Conversely, engineered IgGs that have gained significant binding for FcRn at this pH can be potent inhibitors of FcRn that lower endogenous IgG levels and have multiple potential uses as therapeutics. In addition, molecular studies of FcRn-IgG interactions indicate that mice have limitations as preclinical models for FcRn function, primarily due to cross-species differences in FcRn-binding specificity.
Collapse
Affiliation(s)
- E Sally Ward
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | |
Collapse
|
121
|
Andersen JT, Sandlie I. The Versatile MHC Class I-related FcRn Protects IgG and Albumin from Degradation: Implications for Development of New Diagnostics and Therapeutics. Drug Metab Pharmacokinet 2009; 24:318-32. [DOI: 10.2133/dmpk.24.318] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
122
|
Rich RL, Myszka DG. Survey of the year 2007 commercial optical biosensor literature. J Mol Recognit 2008; 21:355-400. [DOI: 10.1002/jmr.928] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
123
|
Goebl NA, Babbey CM, Datta-Mannan A, Witcher DR, Wroblewski VJ, Dunn KW. Neonatal Fc receptor mediates internalization of Fc in transfected human endothelial cells. Mol Biol Cell 2008; 19:5490-505. [PMID: 18843053 DOI: 10.1091/mbc.e07-02-0101] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The neonatal Fc receptor, FcRn mediates an endocytic salvage pathway that prevents degradation of IgG, thus contributing to the homeostasis of circulating IgG. Based on the low affinity of IgG for FcRn at neutral pH, internalization of IgG by endothelial cells is generally believed to occur via fluid-phase endocytosis. To investigate the role of FcRn in IgG internalization, we used quantitative confocal microscopy to characterize internalization of fluorescent Fc molecules by HULEC-5A lung microvascular endothelia transfected with GFP fusion proteins of human or mouse FcRn. In these studies, cells transfected with FcRn accumulated significantly more intracellular Fc than untransfected cells. Internalization of FcRn-binding forms of Fc was proportional to FcRn expression level, was enriched relative to dextran internalization in proportion to FcRn expression level, and was blocked by incubation with excess unlabeled Fc. Because we were unable to detect either surface expression of FcRn or surface binding of Fc, these results suggest that FcRn-dependent internalization of Fc may occur through sequestration of Fc by FcRn in early endosomes. These studies indicate that FcRn-dependent internalization of IgG may be important not only in cells taking up IgG from an extracellular acidic space, but also in endothelial cells participating in homeostatic regulation of circulating IgG levels.
Collapse
Affiliation(s)
- Nancy A Goebl
- Department of Drug Disposition Development/Commercialization, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | | | | | | |
Collapse
|
124
|
Andersen JT, Justesen S, Berntzen G, Michaelsen TE, Lauvrak V, Fleckenstein B, Buus S, Sandlie I. A strategy for bacterial production of a soluble functional human neonatal Fc receptor. J Immunol Methods 2008; 331:39-49. [DOI: 10.1016/j.jim.2007.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 09/19/2007] [Accepted: 11/13/2007] [Indexed: 12/31/2022]
|
125
|
Morrey JD, Siddharthan V, Olsen AL, Wang H, Julander JG, Hall JO, Li H, Nordstrom JL, Koenig S, Johnson S, Diamond MS. Defining limits of treatment with humanized neutralizing monoclonal antibody for West Nile virus neurological infection in a hamster model. Antimicrob Agents Chemother 2007; 51:2396-402. [PMID: 17452485 PMCID: PMC1913249 DOI: 10.1128/aac.00147-07] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A potent anti-West Nile virus (anti-WNV)-neutralizing humanized monoclonal antibody, hE16, was previously shown to improve the survival of WNV-infected hamsters when it was administered intraperitoneally (i.p.), even after the virus had infected neurons in the brain. In this study, we evaluated the therapeutic limit of hE16 for the treatment of WNV infection in hamsters by comparing single-dose peripheral (i.p.) therapy with direct administration into the pons through a convection-enhanced delivery (CED) system. At day 5 after infection, treatments with hE16 by the peripheral and the CED routes were equally effective at reducing morbidity and mortality. In contrast, at day 6 only the treatment by the CED route protected the hamsters from lethal infection. These experiments suggest that hE16 can directly control WNV infection in the central nervous system. In support of this, hE16 administered i.p. was detected in a time-dependent manner in the serum, cerebrospinal fluid (CSF), cerebral cortex, brain stem, and spinal cord in CSF. A linear relationship between the hE16 dose and the concentration in serum was observed, and maximal therapeutic activity occurred at doses of 0.32 mg/kg of body weight or higher, which produced serum hE16 concentrations of 1.3 microg/ml or higher. Overall, these data suggest that in hamsters hE16 can ameliorate neurological disease after significant viral replication has occurred, although there is a time window that limits therapeutic efficacy.
Collapse
Affiliation(s)
- John D Morrey
- Institute for Antiviral Research, Animal, Dairy, and Veterinary Sciences Department, Utah State University, 4700 Old Main Hill, Logan, UT 84322-4700, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|