101
|
Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. Biochem Soc Trans 2014; 41:1103-30. [PMID: 24059496 DOI: 10.1042/bst20130134] [Citation(s) in RCA: 274] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autophagy is an intracellular degradation pathway essential for cellular and energy homoeostasis. It functions in the clearance of misfolded proteins and damaged organelles, as well as recycling of cytosolic components during starvation to compensate for nutrient deprivation. This process is regulated by mTOR (mammalian target of rapamycin)-dependent and mTOR-independent pathways that are amenable to chemical perturbations. Several small molecules modulating autophagy have been identified that have potential therapeutic application in diverse human diseases, including neurodegeneration. Neurodegeneration-associated aggregation-prone proteins are predominantly degraded by autophagy and therefore stimulating this process with chemical inducers is beneficial in a wide range of transgenic disease models. Emerging evidence indicates that compromised autophagy contributes to the aetiology of various neurodegenerative diseases related to protein conformational disorders by causing the accumulation of mutant proteins and cellular toxicity. Combining the knowledge of autophagy dysfunction and the mechanism of drug action may thus be rational for designing targeted therapy. The present review describes the cellular signalling pathways regulating mammalian autophagy and highlights the potential therapeutic application of autophagy inducers in neurodegenerative disorders.
Collapse
|
102
|
Hale AN, Ledbetter DJ, Gawriluk TR, Rucker EB. Autophagy: regulation and role in development. Autophagy 2014; 9:951-72. [PMID: 24121596 DOI: 10.4161/auto.24273] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Autophagy is an evolutionarily conserved cellular process through which long-lived proteins and damaged organelles are recycled to maintain energy homeostasis. These proteins and organelles are sequestered into a double-membrane structure, or autophagosome, which subsequently fuses with a lysosome in order to degrade the cargo. Although originally classified as a type of programmed cell death, autophagy is more widely viewed as a basic cell survival mechanism to combat environmental stressors. Autophagy genes were initially identified in yeast and were found to be necessary to circumvent nutrient stress and starvation. Subsequent elucidation of mammalian gene counterparts has highlighted the importance of this process to normal development. This review provides an overview of autophagy, the types of autophagy, its regulation and its known impact on development gleaned primarily from murine models.
Collapse
Affiliation(s)
- Amber N Hale
- Department of Biology; University of Kentucky; Lexington, KY USA
| | | | | | | |
Collapse
|
103
|
Higgins GC, Coughlan MT. Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? Br J Pharmacol 2014; 171:1917-42. [PMID: 24720258 PMCID: PMC3976613 DOI: 10.1111/bph.12503] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/15/2013] [Accepted: 10/24/2013] [Indexed: 12/14/2022] Open
Abstract
Diabetic nephropathy (DN) is a progressive microvascular complication arising from diabetes. Within the kidney, the glomeruli, tubules, vessels and interstitium are disrupted, ultimately impairing renal function and leading to end-stage renal disease (ESRD). Current pharmacological therapies used in individuals with DN do not prevent the inevitable progression to ESRD; therefore, new targets of therapy are urgently required. Studies from animal models indicate that disturbances in mitochondrial homeostasis are central to the pathogenesis of DN. Since renal proximal tubule cells rely on oxidative phosphorylation to provide adequate ATP for tubular reabsorption, an impairment of mitochondrial bioenergetics can result in renal functional decline. Defects at the level of the electron transport chain have long been established in DN, promoting electron leakage and formation of superoxide radicals, mediating microinflammation and contributing to the renal lesion. More recent studies suggest that mitochondrial-associated proteins may be directly involved in the pathogenesis of tubulointerstitial fibrosis and glomerulosclerosis. An accumulation of fragmented mitochondria are found in the renal cortex in both humans and animals with DN, suggesting that in tandem with a shift in dynamics, mitochondrial clearance mechanisms may be impaired. The process of mitophagy is the selective targeting of damaged or dysfunctional mitochondria to autophagosomes for degradation through the autophagy pathway. The current review explores the concept that an impairment in the mitophagy system leads to the accelerated progression of renal pathology. A better understanding of the cellular and molecular events that govern mitophagy and dynamics in DN may lead to improved therapeutic strategies.
Collapse
Affiliation(s)
- G C Higgins
- Glycation, Nutrition & Metabolism Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
104
|
Li X, Chen N, Su Y, He Y, Yin M, Wei M, Wang L, Huang W, Fan C, Huang Q. Autophagy-sensitized cytotoxicity of quantum dots in PC12 cells. Adv Healthc Mater 2014; 3:354-9. [PMID: 24039192 DOI: 10.1002/adhm.201300294] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Indexed: 12/12/2022]
Abstract
Both CdTe and CdTe/CdS/ZnS quantum dots induce similar levels of autophagy in PC12 and HEK293 cells, while the former exhibits higher toxicity. Low levels of cadmium ions are not sufficient to induce either autophagy or cytotoxicity by themselves. Interestingly, the combination of cadmium ions and CdTe/CdS/ZnS mimics the toxic effect of CdTe, suggesting that autophagy sensitizes cells to cadmium ions.
Collapse
Affiliation(s)
- Xiaoming Li
- Division of Physical Biology and Bioimaging Center; Shanghai Synchrotron Radiation Facility (SSRF) Shanghai Institute of Applied Physics, Chinese Academy of Sciences; Shanghai 201800 China
| | - Nan Chen
- Division of Physical Biology and Bioimaging Center; Shanghai Synchrotron Radiation Facility (SSRF) Shanghai Institute of Applied Physics, Chinese Academy of Sciences; Shanghai 201800 China
| | - Yuanyuan Su
- Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices; Soochow University; Suzhou Jiangsu 215123 China
| | - Yao He
- Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices; Soochow University; Suzhou Jiangsu 215123 China
| | - Min Yin
- Division of Physical Biology and Bioimaging Center; Shanghai Synchrotron Radiation Facility (SSRF) Shanghai Institute of Applied Physics, Chinese Academy of Sciences; Shanghai 201800 China
| | - Min Wei
- Division of Physical Biology and Bioimaging Center; Shanghai Synchrotron Radiation Facility (SSRF) Shanghai Institute of Applied Physics, Chinese Academy of Sciences; Shanghai 201800 China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID); Institute of Advanced Materials (IAM) School of Materials Science and Engineering Nanjing University of Posts and Telecommunications; 9 Wenyuan Road Nanjing 210046 China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID); Institute of Advanced Materials (IAM) School of Materials Science and Engineering Nanjing University of Posts and Telecommunications; 9 Wenyuan Road Nanjing 210046 China
| | - Chunhai Fan
- Division of Physical Biology and Bioimaging Center; Shanghai Synchrotron Radiation Facility (SSRF) Shanghai Institute of Applied Physics, Chinese Academy of Sciences; Shanghai 201800 China
| | - Qing Huang
- Division of Physical Biology and Bioimaging Center; Shanghai Synchrotron Radiation Facility (SSRF) Shanghai Institute of Applied Physics, Chinese Academy of Sciences; Shanghai 201800 China
| |
Collapse
|
105
|
Chatterton Z, Morenos L, Mechinaud F, Ashley DM, Craig JM, Sexton-Oates A, Halemba MS, Parkinson-Bates M, Ng J, Morrison D, Carroll WL, Saffery R, Wong NC. Epigenetic deregulation in pediatric acute lymphoblastic leukemia. Epigenetics 2014; 9:459-67. [PMID: 24394348 DOI: 10.4161/epi.27585] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Similar to most cancers, genome-wide DNA methylation profiles are commonly altered in pediatric acute lymphoblastic leukemia (ALL); however, recent observations highlight that a large portion of malignancy-associated DNA methylation alterations are not accompanied by related gene expression changes. By analyzing and integrating the methylome and transcriptome profiles of pediatric B-cell ALL cases and primary tissue controls, we report 325 genes hypermethylated and downregulated and 45 genes hypomethylated and upregulated in pediatric B-cell ALL, irrespective of subtype. Repressed cation channel subunits and cAMP signaling activators and transducers are overrepresented, potentially indicating a reduced cellular potential to receive and propagate apoptotic signals. Furthermore, we report specific DNA methylation alterations with concurrent gene expression changes within individual ALL subtypes. The ETV6-RUNX1 translocation was associated with downregulation of ASNS and upregulation of the EPO-receptor, while Hyperdiploid patients (> 50 chr) displayed upregulation of B-cell lymphoma (BCL) members and repression of PTPRG and FHIT. In combination, these data indicate genetically distinct B-cell ALL subtypes contain cooperative epimutations and genome-wide epigenetic deregulation is common across all B-cell ALL subtypes.
Collapse
Affiliation(s)
- Zac Chatterton
- Murdoch Childrens Research Institute; The University of Melbourne Department of Paediatrics at the Royal Children's Hospital; Victoria, VIC Australia
| | - Leah Morenos
- Murdoch Childrens Research Institute; The University of Melbourne Department of Paediatrics at the Royal Children's Hospital; Victoria, VIC Australia
| | | | - David M Ashley
- Andrew Love Cancer Centre; Deakin University; Victoria, VIC Australia
| | - Jeffrey M Craig
- Murdoch Childrens Research Institute; The University of Melbourne Department of Paediatrics at the Royal Children's Hospital; Victoria, VIC Australia
| | - Alexandra Sexton-Oates
- Murdoch Childrens Research Institute; The University of Melbourne Department of Paediatrics at the Royal Children's Hospital; Victoria, VIC Australia
| | - Minhee S Halemba
- Murdoch Childrens Research Institute; The University of Melbourne Department of Paediatrics at the Royal Children's Hospital; Victoria, VIC Australia
| | - Mandy Parkinson-Bates
- Murdoch Childrens Research Institute; The University of Melbourne Department of Paediatrics at the Royal Children's Hospital; Victoria, VIC Australia
| | - Jane Ng
- Murdoch Childrens Research Institute; The University of Melbourne Department of Paediatrics at the Royal Children's Hospital; Victoria, VIC Australia
| | | | | | - Richard Saffery
- Murdoch Childrens Research Institute; The University of Melbourne Department of Paediatrics at the Royal Children's Hospital; Victoria, VIC Australia
| | - Nicholas C Wong
- Murdoch Childrens Research Institute; The University of Melbourne Department of Paediatrics at the Royal Children's Hospital; Victoria, VIC Australia
| |
Collapse
|
106
|
Shaw SY, Tran K, Castoreno AB, Peloquin JM, Lassen KG, Khor B, Aldrich LN, Tan PH, Graham DB, Kuballa P, Goel G, Daly MJ, Shamji AF, Schreiber SL, Xavier RJ. Selective modulation of autophagy, innate immunity, and adaptive immunity by small molecules. ACS Chem Biol 2013; 8:2724-2733. [PMID: 24168452 DOI: 10.1021/cb400352d] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Autophagy is an evolutionarily conserved catabolic process that directs cytoplasmic proteins, organelles and microbes to lysosomes for degradation. Autophagy acts at the intersection of pathways involved in cellular stress, host defense, and modulation of inflammatory and immune responses; however, the details of how the autophagy network intersects with these processes remain largely undefined. Given the role of autophagy in several human diseases, it is important to determine the extent to which modulators of autophagy also modify inflammatory or immune pathways and whether it is possible to modulate a subset of these pathways selectively. Here, we identify small-molecule inducers of basal autophagy (including several FDA-approved drugs) and characterize their effects on IL-1β production, autophagic engulfment and killing of intracellular bacteria, and development of Treg, TH17, and TH1 subsets from naïve T cells. Autophagy inducers with distinct, selective activity profiles were identified that reveal the functional architecture of connections between autophagy, and innate and adaptive immunity. In macrophages from mice bearing a conditional deletion of the essential autophagy gene Atg16L1, the small molecules inhibit IL-1β production to varying degrees suggesting that individual compounds may possess both autophagy-dependent and autophagy-independent activity on immune pathways. The small molecule autophagy inducers constitute useful probes to test the contributions of autophagy-related pathways in diseases marked by impaired autophagy or elevated IL-1β and to test novel therapeutic hypotheses.
Collapse
Affiliation(s)
- Stanley Y. Shaw
- Center
for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| | - Khoa Tran
- Center
for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Adam B. Castoreno
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| | - Joanna M. Peloquin
- Center
for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Kara G. Lassen
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| | - Bernard Khor
- Center
for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Leslie N. Aldrich
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
- Dept.
of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Pauline H. Tan
- Center
for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Daniel B. Graham
- Dept.
of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Petric Kuballa
- Center
for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Gautam Goel
- Center
for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Mark J. Daly
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
- Analytic
and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Alykhan F. Shamji
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| | - Stuart L. Schreiber
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
- Dept.
of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02138, United States
| | - Ramnik J. Xavier
- Center
for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
107
|
Mealer RG, Murray AJ, Shahani N, Subramaniam S, Snyder SH. Rhes, a striatal-selective protein implicated in Huntington disease, binds beclin-1 and activates autophagy. J Biol Chem 2013; 289:3547-54. [PMID: 24324270 DOI: 10.1074/jbc.m113.536912] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The protein mutated in Huntington disease (HD), mutant huntingtin (mHtt), is expressed throughout the brain and body. However, the pathology of HD is characterized by early and dramatic destruction selectively of the striatum. We previously reported that the striatal-specific protein Rhes binds mHtt and enhances its cytotoxicity. Moreover, Rhes-deleted mice are dramatically protected from neurodegeneration and motor dysfunction in mouse models of HD. We now report a function of Rhes in autophagy, a lysosomal degradation pathway implicated in aging and HD neurodegeneration. In PC12 cells, deletion of endogenous Rhes decreases autophagy, whereas Rhes overexpression activates autophagy. These effects are independent of mTOR and opposite in the direction predicted by the known activation of mTOR by Rhes. Rhes robustly binds the autophagy regulator Beclin-1, decreasing its inhibitory interaction with Bcl-2 independent of JNK-1 signaling. Finally, co-expression of mHtt blocks Rhes-induced autophagy activation. Thus, the isolated pathology and delayed onset of HD may reflect the striatal-selective expression and changes in autophagic activity of Rhes.
Collapse
|
108
|
Ashoor R, Yafawi R, Jessen B, Lu S. The contribution of lysosomotropism to autophagy perturbation. PLoS One 2013; 8:e82481. [PMID: 24278483 PMCID: PMC3838419 DOI: 10.1371/journal.pone.0082481] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/02/2013] [Indexed: 11/18/2022] Open
Abstract
Autophagy refers to the catabolic process in eukaryotic cells that delivers cytoplasmic material to lysosomes for degradation. This highly conserved process is involved in the clearance of long-lived proteins and damaged organelles. Consequently, autophagy is important in providing nutrients to maintain cellular function under starvation, maintaining cellular homeostasis, and promoting cell survival under certain conditions. Several pathways, including mTOR, have been shown to regulate autophagy. However, the impact of lysosomal function impairment on the autophagy process has not been fully explored. Basic lipophilic compounds can accumulate in lysosomes via pH partitioning leading to perturbation of lysosomal function. Our hypothesis is that these types of compounds can disturb the autophagy process. Eleven drugs previously shown to accumulate in lysosomes were selected and evaluated for their effects on cytotoxicity and autophagy using ATP depletion and LC3 assessment, respectively. All eleven drugs induced increased staining of endogenous LC3 and exogenous GFP-LC3, even at non toxic dose levels. In addition, an increase in the abundance of SQSTM1/p62 by all tested compounds denotes that the increase in LC3 is due to autophagy perturbation rather than enhancement. Furthermore, the gene expression profile resulting from in vitro treatment with these drugs revealed the suppression of plentiful long-lived proteins, including structural cytoskeletal and associated proteins, and extracellular matrix proteins. This finding indicates a retardation of protein turnover which further supports the notion of autophagy inhibition. Interestingly, upregulation of genes containing antioxidant response elements, e.g. glutathione S transferase and NAD(P)H dehydrogenase quinone 1 was observed, suggesting activation of Nrf2 transcription factor. These gene expression changes could be related to an increase in SQSTM1/p62 resulting from autophagy deficiency. In summary, our data indicate that lysosomal accumulation due to the basic lipophilic nature of xenobiotics could be a general mechanism contributing to the perturbation of the autophagy process.
Collapse
Affiliation(s)
- Roshan Ashoor
- Drug Safety Research and Development, Pfizer Inc., San Diego, California, United States of America
| | - Rolla Yafawi
- Drug Safety Research and Development, Pfizer Inc., San Diego, California, United States of America
| | - Bart Jessen
- Drug Safety Research and Development, Pfizer Inc., San Diego, California, United States of America
| | - Shuyan Lu
- Drug Safety Research and Development, Pfizer Inc., San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
109
|
Deciphering the roles of trehalose and Hsp104 in the inhibition of aggregation of mutant huntingtin in a yeast model of Huntington's disease. Neuromolecular Med 2013; 16:280-91. [PMID: 24248470 DOI: 10.1007/s12017-013-8275-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 11/06/2013] [Indexed: 10/26/2022]
Abstract
Despite the significant amount of experimental data available on trehalose, the molecular mechanism responsible for its intracellular stabilising properties has not emerged yet. The repair of cellular homeostasis in many protein-misfolding diseases by trehalose is credited to the disaccharide being an inducer of autophagy, a mechanism by which aggregates of misfolded proteins are cleared by the cell. In this work, we expressed the pathogenic N-terminal fragment of huntingtin in Δnth1 mutant (unable to degrade trehalose) of Saccharomyces cerevisiae BY4742 strain. We show that the presence of trehalose resulted in the partitioning of the mutant huntingtin in the soluble fraction of the cell. This led to reduced oxidative stress and improved cell survival. The beneficial effect was independent of the expression of the major cellular antioxidant enzyme, superoxide dismutase. Additionally, trehalose led to the overexpression of the heat shock protein, Hsp104p, in mutant huntingtin-expressing cells, and resulted in rescue of the endocytotic defect in the yeast cell. We propose that at least in the initial stages of aggregation, trehalose functions as a stabiliser, increasing the level of monomeric mutant huntingtin protein, with its concomitant beneficial effects, in addition to its role as an inducer of autophagy.
Collapse
|
110
|
Onjisaponin B derived from Radix Polygalae enhances autophagy and accelerates the degradation of mutant α-synuclein and huntingtin in PC-12 cells. Int J Mol Sci 2013; 14:22618-41. [PMID: 24248062 PMCID: PMC3856081 DOI: 10.3390/ijms141122618] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/28/2013] [Accepted: 10/30/2013] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence indicates important protective roles being played by autophagy in neurodegenerative disorders through clearance of aggregate-prone or mutant proteins. In the current study, we aimed to identify autophagy inducers from Chinese medicinal herbs as a potential neuroprotective agent that enhances the clearance of mutant huntingtin and α-synuclein in PC-12 cells. Through intensive screening using the green fluorescent protein-light chain 3 (GFP-LC3) autophagy detection platform, we found that the ethanol extracts of Radix Polygalae (Yuan Zhi) were capable of inducing autophagy. Further investigation showed that among three single components derived from Radix Polygalae—i.e., polygalacic acid, senegenin and onjisaponin B—onjisaponin B was able to induce autophagy and accelerate both the removal of mutant huntingtin and A53T α-synuclein, which are highly associated with Huntington disease and Parkinson disease, respectively. Our study further demonstrated that onjisaponin B induces autophagy via the AMPK-mTOR signaling pathway. Therefore, findings in the current study provide detailed insights into the protective mechanism of a novel autophagy inducer, which is valuable for further investigation as a new candidate agent for modulating neurodegenerative disorders through the reduction of toxicity and clearance of mutant proteins in the cellular level.
Collapse
|
111
|
Garcia-Garcia A, Anandhan A, Burns M, Chen H, Zhou Y, Franco R. Impairment of Atg5-dependent autophagic flux promotes paraquat- and MPP⁺-induced apoptosis but not rotenone or 6-hydroxydopamine toxicity. Toxicol Sci 2013; 136:166-82. [PMID: 23997112 DOI: 10.1093/toxsci/kft188] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Controversial reports on the role of autophagy as a survival or cell death mechanism in dopaminergic cell death induced by parkinsonian toxins exist. We investigated the alterations in autophagic flux and the role of autophagy protein 5 (Atg5)-dependent autophagy in dopaminergic cell death induced by parkinsonian toxins. Dopaminergic cell death induced by the mitochondrial complex I inhibitors 1-methyl-4-phenylpyridinium (MPP⁺) and rotenone, the pesticide paraquat, and the dopamine analog 6-hydroxydopamine (6-OHDA) was paralleled by increased autophagosome accumulation. However, when compared with basal autophagy levels using chloroquine, autophagosome accumulation was a result of impaired autophagic flux. Only 6-OHDA induced an increase in autophagosome formation. Overexpression of a dominant negative form of Atg5 increased paraquat- and MPP⁺-induced cell death. Stimulation of mammalian target of rapamycin (mTOR)-dependent signaling protected against cell death induced by paraquat, whereas MPP⁺-induced toxicity was enhanced by wortmannin, a phosphoinositide 3-kinase class III inhibitor, rapamycin, and trehalose, an mTOR-independent autophagy activator. Modulation of autophagy by either pharmacological or genetic approaches had no effect on rotenone or 6-OHDA toxicity. Cell death induced by parkinsonian neurotoxins was inhibited by the pan caspase inhibitor (Z-VAD), but only caspase-3 inhibition was able to decrease MPP⁺-induced cell death. Finally, inhibition of the lysosomal hydrolases, cathepsins, increased the toxicity by paraquat and MPP⁺, supporting a protective role of Atg5-dependent autophagy and lysosomes degradation pathways on dopaminegic cell death. These results demonstrate that in dopaminergic cells, Atg5-dependent autophagy acts as a protective mechanism during apoptotic cell death induced by paraquat and MPP⁺ but not during rotenone or 6-OHDA toxicity.
Collapse
|
112
|
De Matteis MA, Vicinanza M, Venditti R, Wilson C. Cellular Assays for Drug Discovery in Genetic Disorders of Intracellular Trafficking. Annu Rev Genomics Hum Genet 2013; 14:159-90. [DOI: 10.1146/annurev-genom-091212-153415] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Cathal Wilson
- Telethon Institute of Genetics and Medicine, 80131 Naples, Italy;
| |
Collapse
|
113
|
Proenca CC, Stoehr N, Bernhard M, Seger S, Genoud C, Roscic A, Paganetti P, Liu S, Murphy LO, Kuhn R, Bouwmeester T, Galimberti I. Atg4b-dependent autophagic flux alleviates Huntington's disease progression. PLoS One 2013; 8:e68357. [PMID: 23861892 PMCID: PMC3704647 DOI: 10.1371/journal.pone.0068357] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 05/29/2013] [Indexed: 01/24/2023] Open
Abstract
The accumulation of aggregated mutant huntingtin (mHtt) inclusion bodies is involved in Huntigton’s disease (HD) progression. Medium sized-spiny neurons (MSNs) in the corpus striatum are highly vulnerable to mHtt aggregate accumulation and degeneration, but the mechanisms and pathways involved remain elusive. Here we have developed a new model to study MSNs degeneration in the context of HD. We produced organotypic cortico-striatal slice cultures (CStS) from HD transgenic mice mimicking specific features of HD progression. We then show that induction of autophagy using catalytic inhibitors of mTOR prevents MSNs degeneration in HD CStS. Furthermore, disrupting autophagic flux by overexpressing Atg4b in neurons and slice cultures, accelerated mHtt aggregation and neuronal death, suggesting that Atg4b-dependent autophagic flux influences HD progression. Under these circumstances induction of autophagy using catalytic inhibitors of mTOR was inefficient and did not affect mHtt aggregate accumulation and toxicity, indicating that mTOR inhibition alleviates HD progression by inducing Atg4b-dependent autophagic flux. These results establish modulators of Atg4b-dependent autophagic flux as new potential targets in the treatment of HD.
Collapse
Affiliation(s)
- Catia C. Proenca
- Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Natacha Stoehr
- Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Mario Bernhard
- Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | | | | | | | - Shanming Liu
- Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Leon O. Murphy
- Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Tewis Bouwmeester
- Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Ivan Galimberti
- Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Basel, Switzerland
- * E-mail:
| |
Collapse
|
114
|
Zhao Z, Zhang Z, Li Y, Zhou M, Li X, Yu B, Wang R. Probing the key interactions between human Atg5 and Atg16 proteins: a prospective application of molecular modeling. ChemMedChem 2013; 8:1270-5. [PMID: 23804289 DOI: 10.1002/cmdc.201300256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Zhixiong Zhao
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P.R. China
| | | | | | | | | | | | | |
Collapse
|
115
|
Haines DD, Juhasz B, Tosaki A. Management of multicellular senescence and oxidative stress. J Cell Mol Med 2013; 17:936-57. [PMID: 23789967 PMCID: PMC3780549 DOI: 10.1111/jcmm.12074] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/18/2013] [Indexed: 12/15/2022] Open
Abstract
Progressively sophisticated understanding of cellular and molecular processes that contribute to age-related physical deterioration is being gained from ongoing research into cancer, chronic inflammatory syndromes and other serious disorders that increase with age. Particularly valuable insight has resulted from characterization of how senescent cells affect the tissues in which they form in ways that decrease an organism's overall viability. Increasingly, the underlying pathophysiology of ageing is recognized as a consequence of oxidative damage. This leads to hyperactivity of cell growth pathways, prominently including mTOR (mammalian target of rapamycin), that contribute to a build-up in cells of toxic aggregates such as progerin (a mutant nuclear cytoskeletal protein), lipofuscin and other cellular debris, triggering formation of senescent cellular phenotypes, which interact destructively with surrounding tissue. Indeed, senescent cell ablation dramatically inhibits physical deterioration in progeroid (age-accelerated) mice. This review explores ways in which oxidative stress creates ageing-associated cellular damage and triggers induction of the cell death/survival programs' apoptosis, necrosis, autophagy and 'necroapoptophagy'. The concept of 'necroapoptophagy' is presented here as a strategy for varying tissue oxidative stress intensity in ways that induce differential activation of death versus survival programs, resulting in enhanced and sustained representation of healthy functional cells. These strategies are discussed in the context of specialized mesenchymal stromal cells with the potential to synergize with telocytes in stabilizing engrafted progenitor cells, thereby extending periods of healthy life. Information and concepts are summarized in a hypothetical approach to suppressing whole-organism senescence, with methods drawn from emerging understandings of ageing, gained from Cnidarians (jellyfish, corals and anemones) that undergo a unique form of cellular regeneration, potentially conferring open-ended lifespans.
Collapse
Affiliation(s)
- David D Haines
- Department of Pharmacology, Faculty of Pharmacy, Health and Science Center, University of Debrecen, Debrecen, Hungary
| | | | | |
Collapse
|
116
|
Chen PC, Olson EM, Zhou Q, Kryukova Y, Sampson HM, Thomas DY, Shyng SL. Carbamazepine as a novel small molecule corrector of trafficking-impaired ATP-sensitive potassium channels identified in congenital hyperinsulinism. J Biol Chem 2013; 288:20942-20954. [PMID: 23744072 DOI: 10.1074/jbc.m113.470948] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP-sensitive potassium (KATP) channels consisting of sulfonylurea receptor 1 (SUR1) and the potassium channel Kir6.2 play a key role in insulin secretion by coupling metabolic signals to β-cell membrane potential. Mutations in SUR1 and Kir6.2 that impair channel trafficking to the cell surface lead to loss of channel function and congenital hyperinsulinism. We report that carbamazepine, an anticonvulsant, corrects the trafficking defects of mutant KATP channels previously identified in congenital hyperinsulinism. Strikingly, of the 19 SUR1 mutations examined, only those located in the first transmembrane domain of SUR1 responded to the drug. We show that unlike that reported for several other protein misfolding diseases, carbamazepine did not correct KATP channel trafficking defects by activating autophagy; rather, it directly improved the biogenesis efficiency of mutant channels along the secretory pathway. In addition to its effect on channel trafficking, carbamazepine also inhibited KATP channel activity. Upon subsequent removal of carbamazepine, however, the function of rescued channels was recovered. Importantly, combination of the KATP channel opener diazoxide and carbamazepine led to enhanced mutant channel function without carbamazepine washout. The corrector effect of carbamazepine on mutant KATP channels was also demonstrated in rat and human β-cells with an accompanying increase in channel activity. Our findings identify carbamazepine as a novel small molecule corrector that may be used to restore KATP channel expression and function in a subset of congenital hyperinsulinism patients.
Collapse
Affiliation(s)
- Pei-Chun Chen
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239 and
| | - Erik M Olson
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239 and
| | - Qing Zhou
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239 and
| | - Yelena Kryukova
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239 and
| | - Heidi M Sampson
- Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - David Y Thomas
- Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Show-Ling Shyng
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239 and.
| |
Collapse
|
117
|
Choi SM, Kim Y, Shim JS, Park JT, Wang RH, Leach SD, Liu JO, Deng CX, Ye Z, Jang YY. Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells. Hepatology 2013; 57:2458-68. [PMID: 23325555 PMCID: PMC3633649 DOI: 10.1002/hep.26237] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/07/2012] [Accepted: 12/27/2012] [Indexed: 12/12/2022]
Abstract
UNLABELLED Patient-specific induced pluripotent stem cells (iPSCs) represent a potential source for developing novel drug and cell therapies. Although increasing numbers of disease-specific iPSCs have been generated, there has been limited progress in iPSC-based drug screening/discovery for liver diseases, and the low gene-targeting efficiency in human iPSCs warrants further improvement. Using iPSC lines from patients with alpha-1 antitrypsin (AAT) deficiency, for which there is currently no drug or gene therapy available, we established a platform to discover new drug candidates and correct disease-causing mutation with a high efficiency. A high-throughput format screening assay, based on our hepatic differentiation protocol, was implemented to facilitate automated quantification of cellular AAT accumulation using a 96-well immunofluorescence reader. To expedite the eventual application of lead compounds to patients, we conducted drug screening utilizing our established library of clinical compounds (the Johns Hopkins Drug Library) with extensive safety profiles. Through a blind large-scale drug screening, five clinical drugs were identified to reduce AAT accumulation in diverse patient iPSC-derived hepatocyte-like cells. In addition, using the recently developed transcription activator-like effector nuclease technology, we achieved high gene-targeting efficiency in AAT-deficiency patient iPSCs with 25%-33% of the clones demonstrating simultaneous targeting at both diseased alleles. The hepatocyte-like cells derived from the gene-corrected iPSCs were functional without the mutant AAT accumulation. This highly efficient and cost-effective targeting technology will broadly benefit both basic and translational applications. CONCLUSIONS Our results demonstrated the feasibility of effective large-scale drug screening using an iPSC-based disease model and highly robust gene targeting in human iPSCs, both of which are critical for translating the iPSC technology into novel therapies for untreatable diseases.
Collapse
Affiliation(s)
- Su Mi Choi
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yonghak Kim
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joong Sup Shim
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine
| | - Joon Tae Park
- Department of Surgery and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University
| | - Rui-Hong Wang
- Genetics of Development and Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven D Leach
- Department of Surgery and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University
| | - Jun O. Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine
| | - Chu-Xia Deng
- Genetics of Development and Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhaohui Ye
- Institute for Cell Engineering. Johns Hopkins University School of Medicine, Baltimore, MD, USA,Corresponding author: Zhaohui Ye, Ph.D., Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA, , Yoon-Young Jang, M.D., Ph.D., Stem Cell Biology Program, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA, Office (410)-502-8195, Fax (410)-502-5742,
| | - Yoon-Young Jang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Institute for Cell Engineering. Johns Hopkins University School of Medicine, Baltimore, MD, USA,Corresponding author: Zhaohui Ye, Ph.D., Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA, , Yoon-Young Jang, M.D., Ph.D., Stem Cell Biology Program, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA, Office (410)-502-8195, Fax (410)-502-5742,
| |
Collapse
|
118
|
Choi SI, Kim KS, Oh JY, Jin JY, Lee GH, Kim EK. Melatonin induces autophagy via an mTOR-dependent pathway and enhances clearance of mutant-TGFBIp. J Pineal Res 2013; 54:361-72. [PMID: 23363291 DOI: 10.1111/jpi.12039] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 12/21/2012] [Indexed: 12/19/2022]
Abstract
The hallmark of granular corneal dystrophy type 2 (GCD2) is the deposit of mutant transforming growth factor-β (TGF-β)-induced protein (TGFBIp) in the cornea. We have recently shown that there is a delay in autophagic degradation of mutant-TGFBIp via impaired autophagic flux in GCD2 corneal fibroblasts. We hypothesized that melatonin can specifically induce autophagy and consequently eliminate mutant-TGFBIp in GCD corneal fibroblasts. Our results show that melatonin activates autophagy in both wild-type (WT) and GCD2-homozygous (HO) corneal fibroblast cell lines via the mammalian target of rapamycin (mTOR)-dependent pathway. Melatonin treatment also led to increased levels of beclin 1, which is involved in autophagosome formation and maturation. Furthermore, melatonin significantly reduced the amounts of mutant- and WT-TGFBIp. Treatment with melatonin counteracted the autophagy-inhibitory effects of bafilomycin A1, a potent inhibitor of autophagic flux, demonstrating that melatonin enhances activation of autophagy and increases degradation of TGFBIp. Cotreatment with melatonin and rapamycin, an autophagy inducer, had an additive effect on mutant-TGFBIp clearance compared to treatment with either drug alone. Treatment with the selective melatonin receptor antagonist luzindole did not block melatonin-induced autophagy. Given its ability to activate autophagy, melatonin is a potential therapeutic agent for GCD2.
Collapse
Affiliation(s)
- Seung-Il Choi
- Corneal Dystrophy Research Institute; Department of Ophthalmology, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
119
|
Rodríguez-Martín T, Cuchillo-Ibáñez I, Noble W, Nyenya F, Anderton BH, Hanger DP. Tau phosphorylation affects its axonal transport and degradation. Neurobiol Aging 2013; 34:2146-57. [PMID: 23601672 PMCID: PMC3684773 DOI: 10.1016/j.neurobiolaging.2013.03.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 02/15/2013] [Accepted: 03/11/2013] [Indexed: 11/24/2022]
Abstract
Phosphorylated forms of microtubule-associated protein tau accumulate in neurofibrillary tangles in Alzheimer's disease. To investigate the effects of specific phosphorylated tau residues on its function, wild type or phosphomutant tau was expressed in cells. Elevated tau phosphorylation decreased its microtubule binding and bundling, and increased the number of motile tau particles, without affecting axonal transport kinetics. In contrast, reducing tau phosphorylation enhanced the amount of tau bound to microtubules and inhibited axonal transport of tau. To determine whether differential tau clearance is responsible for the increase in phosphomimic tau, we inhibited autophagy in neurons which resulted in a 3-fold accumulation of phosphomimic tau compared with wild type tau, and endogenous tau was unaffected. In autophagy-deficient mouse embryonic fibroblasts, but not in neurons, proteasomal degradation of phosphomutant tau was also reduced compared with wild type tau. Therefore, autophagic and proteasomal pathways are involved in tau degradation, with autophagy appearing to be the primary route for clearing phosphorylated tau in neurons. Defective autophagy might contribute to the accumulaton of tau in neurodegenerative diseases.
Collapse
|
120
|
Bento CF, Puri C, Moreau K, Rubinsztein DC. The role of membrane-trafficking small GTPases in the regulation of autophagy. J Cell Sci 2013; 126:1059-69. [DOI: 10.1242/jcs.123075] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Summary
Macroautophagy is a bulk degradation process characterised by the formation of double-membrane vesicles, called autophagosomes, which deliver cytoplasmic substrates for degradation in the lysosome. It has become increasingly clear that autophagy intersects with multiple steps of the endocytic and exocytic pathways, sharing many molecular players. A number of Rab and Arf GTPases that are involved in the regulation of the secretory and the endocytic membrane trafficking pathways, have been shown to play key roles in autophagy, adding a new level of complexity to its regulation. Studying the regulation of autophagy by small GTPases that are known to be involved in membrane trafficking is becoming a scientific hotspot and may provide answers to various crucial questions currently debated in the autophagy field, such as the origins of the autophagosomal membrane. Thus, this Commentary highlights the recent advances on the regulation of autophagy by membrane-trafficking small GTPases (Rab, Arf and RalB GTPases) and discusses their putative roles in the regulation of autophagosome formation, autophagosome-dependent exocytosis and autophagosome-lysosome fusion.
Collapse
Affiliation(s)
- Carla F. Bento
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Claudia Puri
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Kevin Moreau
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - David C. Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
121
|
New routes to therapy for spinal and bulbar muscular atrophy. J Mol Neurosci 2013; 50:514-23. [PMID: 23420040 DOI: 10.1007/s12031-013-9978-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/06/2013] [Indexed: 10/27/2022]
Abstract
Spinal and bulbar muscular atrophy (SBMA), also known as Kennedy's disease, is a genetically inherited neuromuscular disorder characterized by loss of lower motor neurons in the brainstem and spinal cord and skeletal muscle fasciculation, weakness, and atrophy. SBMA is caused by expansion of a polyglutamine (polyQ) tract in the gene coding for the androgen receptor (AR). PolyQ expansions cause at least eight other neurological disorders, which are collectively known as polyQ diseases. SBMA is unique in the family of polyQ diseases in that the disease manifests fully in male individuals only. The sex specificity of SBMA is the result of the interaction between mutant AR and its natural ligand, testosterone. Here, we will discuss emerging therapeutic perspectives for SBMA in light of recent findings regarding disease pathogenesis.
Collapse
|
122
|
Im J, Kim S, Jeong YH, Kim W, Lee D, Lee WS, Chang YT, Kim KT, Chung SK. Preparation and evaluation of BBB-permeable trehalose derivatives as potential therapeutic agents for Huntington's disease. MEDCHEMCOMM 2013. [DOI: 10.1039/c2md20112g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
123
|
Lee S, Kim E, Park SB. Discovery of autophagy modulators through the construction of a high-content screening platform via monitoring of lipid droplets. Chem Sci 2013. [DOI: 10.1039/c3sc51344k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
124
|
Analysis of proteolytic processes and enzymatic activities in the generation of huntingtin n-terminal fragments in an HEK293 cell model. PLoS One 2012; 7:e50750. [PMID: 23236391 PMCID: PMC3517621 DOI: 10.1371/journal.pone.0050750] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/24/2012] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND N-terminal fragments of mutant huntingtin (htt) that terminate between residues 90-115, termed cleavage product A or 1 (cp-A/1), form intracellular and intranuclear inclusion bodies in the brains of patients with Huntington's disease (HD). These fragments appear to be proteolytic products of the full-length protein. Here, we use an HEK293 cell culture model to investigate huntingtin proteolytic processing; previous studies of these cells have demonstrated cleavage of htt to cp-A/1 like htt fragments. RESULTS Recombinant N-terminal htt fragments, terminating at residue 171 (also referred to as cp-B/2 like), were efficiently cleaved to produce cp-A/1 whereas fragments representing endogenous caspase, calpain, and metalloproteinase cleavage products, terminating between residues 400-600, were inefficiently cleaved. Using cysteine-labeling techniques and antibody binding mapping, we localized the C-terminus of the cp-A/1 fragments produced by HEK293 cells to sequences minimally limited by cysteine 105 and an antibody epitope composed of residues 115-124. A combination of genetic and pharmacologic approaches to inhibit potential proteases, including γ-secretase and calpain, proved ineffective in preventing production of cp-A/1. CONCLUSIONS Our findings indicate that HEK293 cells express a protease that is capable of efficiently cleaving cp-B/2 like fragments of htt with normal or expanded glutamine repeats. For reasons that remain unclear, this protease cleaves longer htt fragments, with normal or expanded glutamine expansions, much less efficiently. The protease in HEK293 cells that is capable of generating a cp-A/1 like htt fragment may be a novel protease with a high preference for a cp-B/2-like htt fragment as substrate.
Collapse
|
125
|
Li X, Wu DI, Shen J, Zhou M, Lu Y. Rapamycin induces autophagy in the melanoma cell line M14 via regulation of the expression levels of Bcl-2 and Bax. Oncol Lett 2012; 5:167-172. [PMID: 23255914 DOI: 10.3892/ol.2012.986] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 10/09/2012] [Indexed: 12/30/2022] Open
Abstract
Cancer therapy with rapamycin has been successfully implemented for kidney cancer, glioblastoma and prostate cancer. However, there are few studies concerning the effects of rapamycin on the treatment of human melanoma. In this study, we investigated whether rapamycin may be a promising strategy for the effective treatment of melanoma and explored the possible mechanism for this by culturing M14 cells in vitro and treating with rapamycin at three concentrations (10, 50 or 100 nmol/l). MDC and LC3B staining, western blot analysis, flow cytometry and transmission electron microscopy were employed. We revealed that rapamycin induced autophagy and inhibited the proliferation of M14 cells in a concentration-dependent manner, Furthermore, western blot analysis revealed an upregulated expression of Bcl-2 and downregulated expression of Bax in M14 cells. In conclusion, rapamycin induced autophagy and inhibited the growth of M14 cells. The mechanism may involve regulation of the expression of Bcl-2 family proteins. Rapamycin appears to be a promising strategy for the effective treatment of melanoma.
Collapse
Affiliation(s)
- Xue Li
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | | | | | | | | |
Collapse
|
126
|
Rubinsztein DC, Codogno P, Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 2012; 11:709-30. [PMID: 22935804 PMCID: PMC3518431 DOI: 10.1038/nrd3802] [Citation(s) in RCA: 1164] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autophagy is an essential, conserved lysosomal degradation pathway that controls the quality of the cytoplasm by eliminating protein aggregates and damaged organelles. It begins when double-membraned autophagosomes engulf portions of the cytoplasm, which is followed by fusion of these vesicles with lysosomes and degradation of the autophagic contents. In addition to its vital homeostatic role, this degradation pathway is involved in various human disorders, including metabolic conditions, neurodegenerative diseases, cancers and infectious diseases. This article provides an overview of the mechanisms and regulation of autophagy, the role of this pathway in disease and strategies for therapeutic modulation.
Collapse
Affiliation(s)
- David C. Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 OXY, UK
| | - Patrice Codogno
- Faculté de Pharmacie, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR984, Université Paris-Sud 11, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France
| | - Beth Levine
- Departments of Internal Medicine and Microbiology, Center for Autophagy Research, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
127
|
Niedowicz DM, Nelson PT, Murphy MP. Alzheimer's disease: pathological mechanisms and recent insights. Curr Neuropharmacol 2012; 9:674-84. [PMID: 22654725 PMCID: PMC3263461 DOI: 10.2174/157015911798376181] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 06/17/2010] [Accepted: 10/11/2010] [Indexed: 01/26/2023] Open
Abstract
Amyloidopathies cause neurodegeneration in a substantial portion of the elderly population. Improvements in long term health care have made elderly individuals a large and growing demographic group, marking these diseases as a major public health concern. Alzheimer's Disease (AD) is the most studied form of neurodegenerative amyloidopathy. Although our understanding of AD is far from complete, several decades of research have advanced our knowledge to the point where it is conceivable that some form of disease modifying therapy may be available in the near future. These advances have been built on a strong mechanistic understanding of the disease from its underlying genetics, molecular biology and clinical pathology. Insights derived from the study of other neurodegenerative diseases, such as some forms of frontotemporal dementia, have been critical to this process. This knowledge has allowed researchers to construct animal models of the disease process that have paved the way towards the development of therapeutics. However, what was once thought to be a straightforward problem has evolved into a series of disappointing outcomes. Examination of pathways common to all neurodegenerative diseases, including the cellular mechanisms that clear misfolded proteins and their regulation, may be the best way to move forward.
Collapse
Affiliation(s)
- Dana M Niedowicz
- Departments of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | | | | |
Collapse
|
128
|
Boll MC, Alcaraz-Zubeldia M, Rios C. Medical management of Parkinson's disease: focus on neuroprotection. Curr Neuropharmacol 2012; 9:350-9. [PMID: 22131943 PMCID: PMC3131725 DOI: 10.2174/157015911795596577] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 07/21/2010] [Accepted: 08/13/2010] [Indexed: 12/12/2022] Open
Abstract
Neuroprotection refers to the protection of neurons from excitotoxicity, oxidative stress and apoptosis as principal mechanisms of cell loss in a variety of diseases of the central nervous system. Our interest in Parkinson’s disease (PD) treatment is focused on drugs with neuroprotective properties in preclinical experiments and evidence-based efficacy in human subjects. To this date, neuroprotection has never been solidly proven in clinical trials but recent adequate markers and/or strategies to study and promote this important goal are described. A myriad of compounds with protective properties in cell cultures and animal models yield to few treatments in clinical practice. At present, markers of neuronal vitality, disease modifying effects and long term clinical stability are the elements searched for in clinical trials. This review highlights new strategies to monitor patients with PD. Currently, neuroprotection in subjects has not been solidly achieved for selegiline and pramipexole; however, a recent rasagiline trial design is showing new indications of disease course modifying effects. In neurological practice, it is of utmost importance to take into account the potential neuroprotection exerted by a treatment in conjunction with its symptomatic efficacy.
Collapse
Affiliation(s)
- Marie-Catherine Boll
- Department of Clinical Investigation in Neurology National Institute of Neurology and Neurosurgery, Mexico. D.F
| | | | | |
Collapse
|
129
|
|
130
|
Schall N, Page N, Macri C, Chaloin O, Briand JP, Muller S. Peptide-based approaches to treat lupus and other autoimmune diseases. J Autoimmun 2012; 39:143-53. [PMID: 22727561 DOI: 10.1016/j.jaut.2012.05.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 05/20/2012] [Indexed: 01/15/2023]
Abstract
After a long period where the potential of therapeutic peptides was let into oblivion and even dismissed, there is a revival of interest in peptides as potential drug candidates. Novel strategies for limiting metabolism and improve their bioavailability, and alternative routes of administration have emerged. This resulted in a large number of peptide-based drugs that are now being marketed in different indications. Regarding autoimmunity, successful data have been reported in numerous mouse models of autoimmune inflammation, yet relatively few clinical trials based on synthetic peptides are currently underway. This review reports on peptides that show much promises in appropriate mouse models of autoimmunity and describes in more detail clinical trials based on peptides for treating autoimmune patients. A particular emphasis is given to the 21-mer peptide P140/Lupuzor that has completed successfully phase I, phase IIa and phase IIb clinical trials for systemic lupus erythematosus.
Collapse
Affiliation(s)
- Nicolas Schall
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
131
|
Fouillet A, Levet C, Virgone A, Robin M, Dourlen P, Rieusset J, Belaidi E, Ovize M, Touret M, Nataf S, Mollereau B. ER stress inhibits neuronal death by promoting autophagy. Autophagy 2012; 8:915-26. [PMID: 22660271 DOI: 10.4161/auto.19716] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Endoplasmic reticulum (ER) stress has been implicated in neurodegenerative diseases but its relationship and role in disease progression remain unclear. Using genetic and pharmacological approaches, we showed that mild ER stress ("preconditioning") is neuroprotective in Drosophila and mouse models of Parkinson disease. In addition, we found that the combination of mild ER stress and apoptotic signals triggers an autophagic response both in vivo and in vitro. We showed that when autophagy is impaired, ER-mediated protection is lost. We further demonstrated that autophagy inhibits caspase activation and apoptosis. Based on our findings, we conclude that autophagy is required for the neuroprotection mediated by mild ER stress, and therefore ER preconditioning has potential therapeutic value for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Antoine Fouillet
- Ecole Normale Supérieure de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, Lyon, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Gatto E, Parisi V, Persi G, Converso DP, Etcheverry JL, Varela V, Alba L, Fretchel G. Clinical and genetic characteristics in patients with Huntington’s Disease from Argentina. Parkinsonism Relat Disord 2012; 18:166-9. [DOI: 10.1016/j.parkreldis.2011.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 09/09/2011] [Accepted: 09/15/2011] [Indexed: 02/01/2023]
|
133
|
Baek KH, Park J, Shin I. Autophagy-regulating small molecules and their therapeutic applications. Chem Soc Rev 2012; 41:3245-63. [PMID: 22293658 DOI: 10.1039/c2cs15328a] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autophagy or self-eating is a complicated cellular process that is involved in protein and organelle digestion occurring via a lysosome-dependent pathway. This process is of great importance in maintaining normal cellular homeostasis. However, disruption of autophagy is closely associated with various human diseases such as cancer, neurodegenerative disorders, heart disease and pathogen infection. Therefore, small molecules that modulate autophagy can be employed to dissect this complex process and ultimately could have high potential for the treatment of a variety of diseases. This critical review discusses general aspects of autophagy, autophagy-associated diseases and autophagy regulators for biological research and therapeutic applications (207 references).
Collapse
Affiliation(s)
- Kyung-Hwa Baek
- Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | | | | |
Collapse
|
134
|
Alibhoy AA, Giardina BJ, Dunton DD, Chiang HL. Vid30 is required for the association of Vid vesicles and actin patches in the vacuole import and degradation pathway. Autophagy 2012; 8:29-46. [PMID: 22082961 DOI: 10.4161/auto.8.1.18104] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
When Saccharomyces cerevisiae is starved of glucose, the gluconeogenic enzymes fructose-1,6-bisphosphatase (FBPase), malate dehydrogenase (MDH2), isocitrate lyase (Icl1) and phosphoenolpyruvate carboxykinase (Pck1) are induced. However, when glucose is added to prolonged starved cells, these enzymes are degraded in the vacuole via the vacuole import and degradation (Vid) pathway. Recent evidence suggests that the Vid pathway merges with the endocytic pathway at actin patches where endocytic vesicles are formed. The convergence of the Vid pathway with the endocytic pathway allows cells to remove intracellular and extracellular proteins simultaneously. However, the genes that regulate this step of the convergence have not been identified previously. Here we show that VID30 plays a critical role for the association of Vid vesicles and actin patches. Vid30 is constitutively expressed and interacts with Vid vesicle proteins Vid24 and Sec28 but not with the cargo protein FBPase. In the absence of SEC28 or VID24, Vid30 association with actin patches was prolonged. In cells lacking the VID30 gene, FBPase and Vid24 were not localized to actin patches, suggesting that Vid30 has a role in the association of Vid vesicles and actin patches. Vid30 contains a LisH and a CTLH domain, both of which are required for FBPase degradation. When these domains were deleted, FBPase trafficking to the vacuole was impaired. We suggest that Vid30 also has a role in the Vid pathway at a later step in a process that is mediated by the LisH and CTLH domains.
Collapse
Affiliation(s)
- Abbas A Alibhoy
- Department of Cellular and Molecular Physiology, Penn State University, College of Medicine, Hershey, PA, USA
| | | | | | | |
Collapse
|
135
|
Abstract
Macroautophagy (autophagy hereafter) is a catabolic process by which cells degrade intracellular components in lysosomes. This cellular garbage disposal and intracellular recycling system maintains cellular homeostasis by eliminating superfluous or damaged proteins and organelles and invading microbes and by providing substrates for energy generation and biosynthesis in stress. Autophagy thus promotes the health of cells and animals and is critical for the development, differentiation, and maintenance of cell function and for the host defense against pathogens. Deregulation of autophagy is linked to susceptibility to various disorders including degenerative diseases, metabolic syndrome, aging, infectious diseases, and cancer. Autophagic activity emerges as a critical factor in the development and progression of diseases that are associated with increased cancer risk as well as in different stages of cancer. Given that cancer is a complex process and autophagy exerts its effects in multiple ways, the role of autophagy in tumorigenesis is context-dependent. As a cytoprotective survival pathway, autophagy prevents chronic tissue damage that can lead to cancer initiation and progression. In this setting, stimulation or restoration of autophagy may prevent cancer. In contrast, once cancer occurs, many cancer cells upregulate basal autophagy and utilize autophagy to enhance fitness and survive in the hostile tumor microenvironment. These findings revealed the concept that aggressive cancers can be addicted to autophagy for survival. In this setting, autophagy inhibition is a therapeutic strategy for established cancers.
Collapse
Affiliation(s)
- Hsin-Yi Chen
- The Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | | |
Collapse
|
136
|
Dupont N, Jiang S, Pilli M, Ornatowski W, Bhattacharya D, Deretic V. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β. EMBO J 2011; 30:4701-11. [PMID: 22068051 PMCID: PMC3243609 DOI: 10.1038/emboj.2011.398] [Citation(s) in RCA: 723] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 10/07/2011] [Indexed: 01/02/2023] Open
Abstract
Autophagy controls the quality and quantity of the eukaryotic cytoplasm while performing two evolutionarily highly conserved functions: cell-autonomous provision of energy and nutrients by cytosol autodigestion during starvation, and removal of defunct organelles and large aggregates exceeding the capacity of other cellular degradative systems. In contrast to these autodigestive processes, autophagy in yeast has additional, biogenesis functions. However, no equivalent biosynthetic roles have been described for autophagy in mammals. Here, we show that in mammalian cells, autophagy has a hitherto unappreciated positive contribution to the biogenesis and secretion of the proinflammatory cytokine IL-1β via an export pathway that depends on Atg5, inflammasome, at least one of the two mammalian Golgi reassembly stacking protein (GRASP) paralogues, GRASP55 (GORASP2) and Rab8a. This process, which is a type of unconventional secretion, expands the functional manifestations of autophagy beyond autodigestive and quality control roles in mammals. It enables a subset of cytosolic proteins devoid of signal peptide sequences, and thus unable to access the conventional pathway through the ER, to enter an autophagy-based secretory pathway facilitating their exit from the cytoplasm.
Collapse
Affiliation(s)
- Nicolas Dupont
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Shanya Jiang
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Manohar Pilli
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Wojciech Ornatowski
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Dhruva Bhattacharya
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Vojo Deretic
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
137
|
Abstract
Polymorphisms in NOD2, encoding an intracellular pattern recognition receptor, contribute the largest fraction of genetic risk for Crohn's disease among the >40 risk loci identified so far. Autophagy plays a prominent role in the innate immune response towards intracellular bacteria. The discovery of the autophagy genes ATG16L1 and IRGM as risk factors for Crohn's disease turned autophagy into the spotlight in inflammatory bowel disease (IBD). Remarkably, NOD2 has recently been identified as a potent autophagy inducer. A physical interaction of NOD2 and ATG16L1 appears to be required for autophagic clearance of intracellular pathogens. Moreover, Crohn's disease-associated NOD2 and ATG16L1 variants exhibit a defect in the induction of an autophagic response and hence predict autophagy as a key converging mechanism that leads to Crohn's disease. Another pathway that is closely intertwined with autophagy and mutually cross-regulated is the unfolded protein response (UPR), which is induced by endoplasmic reticulum (ER) stress. Genes involved in the UPR (XBP1, ORMDL3) have also been genetically associated with Crohn's disease and ulcerative colitis. Moreover, the intestinal epithelium at the interface between host and microbe appears particularly affected by IBD-associated hypomorphic function of autophagy and the UPR. The functional convergence of main genetic risk factors for IBD on these innate immune pathways has hence important implications for the host's interaction with the microbiota. Moreover, the genetic convergence on these molecular mechanisms may open novel therapeutic options for IBD that deserve further exploration.
Collapse
Affiliation(s)
- Teresa Fritz
- Department of Medicine II (Gastroenterology & Hepatology), Innsbruck Medical University, Innsbruck, Austria
| | - Lukas Niederreiter
- Department of Medicine II (Gastroenterology & Hepatology), Innsbruck Medical University, Innsbruck, Austria
| | - Timon Adolph
- Department of Medicine II (Gastroenterology & Hepatology), Innsbruck Medical University, Innsbruck, Austria
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology and Endoscopy, Dept of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Arthur Kaser
- Department of Medicine II (Gastroenterology & Hepatology), Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
138
|
Yu Z, Wang AM, Adachi H, Katsuno M, Sobue G, Yue Z, Robins DM, Lieberman AP. Macroautophagy is regulated by the UPR-mediator CHOP and accentuates the phenotype of SBMA mice. PLoS Genet 2011; 7:e1002321. [PMID: 22022281 PMCID: PMC3192827 DOI: 10.1371/journal.pgen.1002321] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 08/10/2011] [Indexed: 12/11/2022] Open
Abstract
Altered protein homeostasis underlies degenerative diseases triggered by misfolded proteins, including spinal and bulbar muscular atrophy (SBMA), a neuromuscular disorder caused by a CAG/glutamine expansion in the androgen receptor. Here we show that the unfolded protein response (UPR), an ER protein quality control pathway, is induced in skeletal muscle from SBMA patients, AR113Q knock-in male mice, and surgically denervated wild-type mice. To probe the consequence of UPR induction, we deleted CHOP (C/EBP homologous protein), a transcription factor induced following ER stress. CHOP deficiency accentuated atrophy in both AR113Q and surgically denervated muscle through activation of macroautophagy, a lysosomal protein quality control pathway. Conversely, impaired autophagy due to Beclin-1 haploinsufficiency decreased muscle wasting and extended lifespan of AR113Q males, producing a significant and unexpected amelioration of the disease phenotype. Our findings highlight critical cross-talk between the UPR and macroautophagy, and they indicate that autophagy activation accentuates aspects of the SBMA phenotype. In many age-dependent neurodegenerative diseases, the accumulation of misfolded or mutant proteins drives pathogenesis. Several protein quality control pathways have emerged as central regulators of the turnover of these toxic proteins and therefore impact phenotypic severity. In spinal and bulbar muscular atrophy (SBMA), the mutant androgen receptor with an expanded glutamine tract undergoes hormone-dependent nuclear translocation, unfolding, and oligomerization—steps that are critical to the development of progressive proximal limb and bulbar muscle weakness in men. Here we show that the unfolded protein response (UPR), an endoplasmic reticulum stress response, is triggered in skeletal muscle from SBMA patients and knock-in mice. We find that disruption of the UPR exacerbates skeletal muscle atrophy through the induction of macroautophagy, a lysosomal protein quality pathway. In contrast, impaired autophagy diminishes muscle wasting and prolongs lifespan of SBMA mice. Our findings highlight cross-talk between the UPR and autophagy, and they suggest that limited activation of the autophagic pathway may be beneficial in certain neuromuscular diseases such as SBMA where the nucleus is the essential site of toxicity.
Collapse
Affiliation(s)
- Zhigang Yu
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Adrienne M. Wang
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Neuroscience Graduate Program, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Hiroaki Adachi
- Department of Neurology, Nagoya University, Nagoya, Japan
| | | | - Gen Sobue
- Department of Neurology, Nagoya University, Nagoya, Japan
| | - Zhenyu Yue
- Departments of Neurology and Neuroscience, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Diane M. Robins
- Department of Human Genetics, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Andrew P. Lieberman
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Neuroscience Graduate Program, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
139
|
Shen D, Coleman J, Chan E, Nicholson TP, Dai L, Sheppard PW, Patton WF. Novel cell- and tissue-based assays for detecting misfolded and aggregated protein accumulation within aggresomes and inclusion bodies. Cell Biochem Biophys 2011; 60:173-85. [PMID: 21132543 PMCID: PMC3112480 DOI: 10.1007/s12013-010-9138-4] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aggresomes and related inclusion bodies appear to serve as storage depots for misfolded and aggregated proteins within cells, which can potentially be degraded by the autophagy pathway. A homogenous fluorescence-based assay was devised to detect aggregated proteins inside aggresomes and inclusion bodies within an authentic cellular context. The assay employs a novel red fluorescent molecular rotor dye, which is essentially nonfluorescent until it binds to structural features associated with the aggregated protein cargo. Aggresomes and related structures were generated within cultured cells using various potent, cell permeable, proteasome inhibitors: MG-132, lactacystin, epoxomicin and bortezomib, and then selectively detected with the fluorescent probe. Employing the probe in combination with various fluorescein-labeled primary antibodies facilitated co-localization of key components of the autophagy system (ubiquitin, p62, and LC3) with aggregated protein cargo by fluorescence microscopy. Furthermore, cytoplasmic aggregates were highlighted in SK-N-SH human neuroblastoma cells incubated with exogenously supplied amyloid beta peptide 1–42. SMER28, a small molecule modulator of autophagy acting via an mTOR-independent mechanism, prevented the accumulation of amyloid beta peptide within these cells. The described assay allows assessment of the effects of protein aggregation directly in cells, without resorting to the use of non-physiological protein mutations or genetically engineered cell lines. With minor modification, the assay was also adapted to the analysis of frozen or formalin-fixed, paraffin-embedded tissue sections, with demonstration of co-localization of aggregated cargo with β-amyloid and tau proteins in brain tissue sections from Alzheimer’s disease patients.
Collapse
Affiliation(s)
- Dee Shen
- Enzo Life Sciences, 10 Executive Blvd, Farmingdale, NY 11735, USA
| | | | | | | | | | | | | |
Collapse
|
140
|
Harris J. Autophagy and cytokines. Cytokine 2011; 56:140-4. [PMID: 21889357 DOI: 10.1016/j.cyto.2011.08.022] [Citation(s) in RCA: 292] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 07/28/2011] [Accepted: 08/07/2011] [Indexed: 12/21/2022]
Abstract
Autophagy is a highly conserved homoeostatic mechanism for the lysosomal degradation of cytosolic constituents, including long-lived macromolecules, organelles and intracellular pathogens. Autophagosomes are formed in response to a number of environmental stimuli, including amino acid deprivation, but also by both host- and pathogen-derived molecules, including toll-like receptor ligands and cytokines. In particular, IFN-γ, TNF-α, IL-1, IL-2, IL-6 and TGF-β have been shown to induce autophagy, while IL-4, IL-10 and IL-13 are inhibitory. Moreover, autophagy can itself regulate the production and secretion of cytokines, including IL-1, IL-18, TNF-α, and Type I IFN. This review discusses the potentially pivotal roles of autophagy in the regulation of inflammation and the coordination of innate and adaptive immune responses.
Collapse
Affiliation(s)
- James Harris
- Immunology Research Centre, School of Biochemistry & Immunology, Trinity College Dublin, College Green, Dublin 2, Ireland.
| |
Collapse
|
141
|
Green DR, Galluzzi L, Kroemer G. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 2011; 333:1109-12. [PMID: 21868666 PMCID: PMC3405151 DOI: 10.1126/science.1201940] [Citation(s) in RCA: 881] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alterations of mitochondrial functions are linked to multiple degenerative or acute diseases. As mitochondria age in our cells, they become progressively inefficient and potentially toxic, and acute damage can trigger the permeabilization of mitochondrial membranes to initiate apoptosis or necrosis. Moreover, mitochondria have an important role in pro-inflammatory signaling. Autophagic turnover of cellular constituents, be it general or specific for mitochondria (mitophagy), eliminates dysfunctional or damaged mitochondria, thus counteracting degeneration, dampening inflammation, and preventing unwarranted cell loss. Decreased expression of genes that regulate autophagy or mitophagy can cause degenerative diseases in which deficient quality control results in inflammation and the death of cell populations. Thus, a combination of mitochondrial dysfunction and insufficient autophagy may contribute to multiple aging-associated pathologies.
Collapse
Affiliation(s)
- Douglas R. Green
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Lorenzo Galluzzi
- INSERM, U848, F-94805 Villejuif, France
- Institut Gustave Roussy, F94805 Villejuif, France
- Université Paris-Sud, Paris 11, F-94805 Villejuif, France
| | - Guido Kroemer
- INSERM, U848, F-94805 Villejuif, France
- Metabolomics Platform, Institut Gustave Roussy, F-94805 Villejuif, France
- Centre de Recherche des Cordeliers, F-75005 Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, F-75908 Paris, France
- Université Paris Descartes, Paris 5, F-75270 Paris, France
| |
Collapse
|
142
|
Abstract
Osteoarthritis (OA) is the most prevalent joint disease, but neither preventive measures nor disease-modifying drugs are available and a continuing need exists for safe and effective symptom-modifying therapies. Clinical trials of candidate disease-modifying OA drugs in patients with established or advanced disease have not demonstrated their efficacy, but these failed trials have motivated investigation into the mechanisms that maintain joint health. The enhancement of such mechanisms could be a novel approach to reducing the risk of OA. Aging is one of the most important risk factors for OA; however, aging of joint cartilage is a process that is distinct from the subsequent cartilage changes that develop following the onset of OA. This Review focuses on the mechanisms that maintain cell and tissue homeostasis, and how these mechanisms fail during the aging process. Autophagy is a cellular homeostasis mechanism for the removal of dysfunctional organelles and macromolecules. Defective autophagy is involved in the pathogenesis of aging-related diseases and recent observations indicate that this process is compromised in aging cartilage. Augmentation of homeostasis mechanisms is discussed as a novel avenue to delay joint aging and reduce OA risk.
Collapse
|
143
|
Pritchard SM, Dolan PJ, Vitkus A, Johnson GVW. The toxicity of tau in Alzheimer disease: turnover, targets and potential therapeutics. J Cell Mol Med 2011; 15:1621-35. [PMID: 21348938 PMCID: PMC4373356 DOI: 10.1111/j.1582-4934.2011.01273.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 02/08/2011] [Indexed: 11/28/2022] Open
Abstract
It has been almost 25 years since the initial discovery that tau was the primary component of the neurofibrillary tangles (NFTs) in Alzheimer disease (AD) brain. Although AD is defined by both β-amyloid (Aβ) pathology (Aβ plaques) and tau pathology (NFTs), whether or not tau played a critical role in disease pathogenesis was a subject of discussion for many years. However, given the increasing evidence that pathological forms of tau can compromise neuronal function and that tau is likely an important mediator of Aβ toxicity, there is a growing awareness that tau is a central player in AD pathogenesis. In this review we begin with a brief history of tau, then provide an overview of pathological forms of tau, followed by a discussion of the differential degradation of tau by either the proteasome or autophagy and possible mechanisms by which pathological forms of tau may exert their toxicity. We conclude by discussing possible avenues for therapeutic intervention based on these emerging themes of tau's role in AD.
Collapse
Affiliation(s)
- Susanne M Pritchard
- Gail V.W. JOHNSON, Ph.D., Department of Anesthesiology, 601 Elmwood Ave., Box 604, Rm. 4–6314, University of Rochester, Rochester, NY 14642, USA. Tel.: 585-276-3740 Fax: 585-276-2418 E-mail:
| | | | - Alisa Vitkus
- Department of Anesthesiology and the Interdepartmental Graduate Program in Neuroscience, University of RochesterRochester, NY, USA
| | - Gail VW Johnson
- Department of Anesthesiology and the Interdepartmental Graduate Program in Neuroscience, University of RochesterRochester, NY, USA
| |
Collapse
|
144
|
Autophagy promotes survival of retinal ganglion cells after optic nerve axotomy in mice. Cell Death Differ 2011; 19:162-9. [PMID: 21701497 DOI: 10.1038/cdd.2011.88] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Autophagy is an essential recycling pathway implicated in neurodegeneration either as a pro-survival or a pro-death mechanism. Its role after axonal injury is still uncertain. Axotomy of the optic nerve is a classical model of neurodegeneration. It induces retinal ganglion cell death, a process also occurring in glaucoma and other optic neuropathies. We analyzed autophagy induction and cell survival following optic nerve transection (ONT) in mice. Our results demonstrate activation of autophagy shortly after axotomy with autophagosome formation, upregulation of the autophagy regulator Atg5 and apoptotic death of 50% of the retinal ganglion cells (RGCs) after 5 days. Genetic downregulation of autophagy using knockout mice for Atg4B (another regulator of autophagy) or with specific deletion of Atg5 in retinal ganglion cells, using the Atg5(flox/flox) mice reduces cell survival after ONT, whereas pharmacological induction of autophagy in vivo increases the number of surviving cells. In conclusion, our data support that autophagy has a cytoprotective role in RGCs after traumatic injury and may provide a new therapeutic strategy to ameliorate retinal diseases.
Collapse
|
145
|
Eng CH, Abraham RT. The autophagy conundrum in cancer: influence of tumorigenic metabolic reprogramming. Oncogene 2011; 30:4687-96. [PMID: 21666712 DOI: 10.1038/onc.2011.220] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tumorigenesis is often accompanied by metabolic changes that favor rapid energy production and increased biosynthetic capabilities. These metabolic adaptations promote the survival and proliferation of tumor cells, and in conjunction with the hypoxic and metabolically challenged tumor microenvironment, influence autophagic activity. Autophagy is a catabolic process that allows cellular macromolecules to be broken down and re-utilized as metabolic precursors. Stimulation of autophagy promotes the survival of tumor cells under stressful metabolic and environmental conditions, and counters the potentially deleterious effects of mitochondrial dysfunction and the ROS that these organelles generate. However, inhibition of autophagy has also been reported to fuel tumorigenesis. In spite of the advances in our understanding of the relationship between autophagy and tumorigenesis, it remains unclear whether the therapeutic approaches targeting autophagy should aim to increase or decrease autophagic flux in tumor tissues in human patients. Here, we review how metabolic reprogramming influences autophagic activity in tumors, and discuss how inhibition of autophagy might be exploited to target tumor cells that show altered metabolism.
Collapse
Affiliation(s)
- C H Eng
- Pfizer Oncology Research Unit, Pearl River, NY 10965, USA.
| | | |
Collapse
|
146
|
Perlmutter DH. Alpha-1-antitrypsin deficiency: importance of proteasomal and autophagic degradative pathways in disposal of liver disease-associated protein aggregates. Annu Rev Med 2011; 62:333-45. [PMID: 20707674 DOI: 10.1146/annurev-med-042409-151920] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alpha-1-antitrypsin (AT) deficiency is the most common genetic cause of liver disease in children. The primary pathological issue is a point mutation that renders an abundant hepatic secretory glycoprotein prone to altered folding and a tendency to polymerize and aggregate. However, the expression of serious liver damage among homozygotes is dependent on genetic and/or environmental modifiers. Several studies have validated the concept that endogenous hepatic pathways for disposal of aggregation-prone proteins, including the proteasomal and autophagic degradative pathways, could play a key role in the variation in hepatic damage and be the target of the modifiers. Exciting recent results have shown that a drug that enhances autophagy can reduce the hepatic load of aggregated protein and reverse fibrosis in a mouse model of this disease.
Collapse
Affiliation(s)
- David H Perlmutter
- Department of Pediatrics, Cell Biology and Physiology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15217, USA.
| |
Collapse
|
147
|
Mehrpour M, Codogno P. Drug enhanced autophagy to fight mutant protein overload. J Hepatol 2011; 54:1066-8. [PMID: 21167888 DOI: 10.1016/j.jhep.2010.11.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 11/09/2010] [Accepted: 11/16/2010] [Indexed: 12/04/2022]
Affiliation(s)
- Maryam Mehrpour
- INSERM U984, Faculté de Pharmacie, University Paris-Sud 11, 92296 Châtenay-Malabry Cedex, France.
| | | |
Collapse
|
148
|
Barnes MR, Huxley-Jones J, Maycox PR, Lennon M, Thornber A, Kelly F, Bates S, Taylor A, Reid J, Jones N, Schroeder J, Scorer CA, Davies C, Hagan JJ, Kew JNC, Angelinetta C, Akbar T, Hirsch S, Mortimer AM, Barnes TRE, de Belleroche J. Transcription and pathway analysis of the superior temporal cortex and anterior prefrontal cortex in schizophrenia. J Neurosci Res 2011; 89:1218-27. [PMID: 21538462 DOI: 10.1002/jnr.22647] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/08/2011] [Accepted: 02/18/2011] [Indexed: 12/21/2022]
Abstract
The molecular basis of schizophrenia is poorly understood; however, different brain regions are believed to play distinct roles in disease symptomology. We have studied gene expression in the superior temporal cortex (Brodmann area 22; BA22), which may play a role in positive pathophysiology, and compared our results with data from the anterior prefrontal cortex (BA10), which shows evidence for a role in negative symptoms. Genome-wide mRNA expression was determined in the BA22 region in 23 schizophrenics and 19 controls and compared with a BA10 data set from the same subjects. After adjustments for confounding sources of variation, we carried out GeneGO pathway enrichment analysis in each region. Significant differences were seen in age-related transcriptional changes between the BA22 and the BA10 regions, 21.8% and 41.4% of disease-associated transcripts showing age association, respectively. After removing age associated changes from our data, we saw the highest enrichment in processes mediating cell adhesion, synaptic contact, cytoskeletal remodelling, and apoptosis in the BA22 region. For the BA10 region, we observed the strongest changes in reproductive signalling, tissue remodelling, and cell differentiation. Further exploratory analysis also identified potentially disease-relevant processes that were undetected in our more stringent primary analysis, including autophagy in the BA22 region and the amyloid process in the BA10 region. Collectively, our analysis suggests disruption of many common pathways and processes underpinning synaptic plasticity in both regions in schizophrenia, whereas individual regions emphasize changes in certain pathways that may help to highlight pathway-specific therapeutic opportunities to treat negative or positive symptoms of the disease.
Collapse
Affiliation(s)
- Michael R Barnes
- Computational Biology, Quantitative Sciences, Biopharmaceuticals, GlaxoSmithKline Medicines Research Centre, Stevenage, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Abstract
Autophagy is an intracellular lysosomal (vacuolar) degradation process that is characterized by the formation of double-membrane vesicles, known as autophagosomes, which sequester cytoplasm. As autophagy is involved in cell growth, survival, development and death, the levels of autophagy must be properly regulated, as indicated by the fact that dysregulated autophagy has been linked to many human pathophysiologies, such as cancer, myopathies, neurodegeneration, heart and liver diseases, and gastrointestinal disorders. Substantial progress has recently been made in understanding the molecular mechanisms of the autophagy machinery, and in the regulation of autophagy. However, many unanswered questions remain, such as how the Atg1 complex is activated and the function of PtdIns3K is regulated, how the ubiquitin-like conjugation systems participate in autophagy and the mechanisms of phagophore expansion and autophagosome formation, how the network of TOR signaling pathways regulating autophagy are controlled, and what the underlying mechanisms are for the pro-cell survival and the pro-cell death effects of autophagy. As several recent reviews have comprehensively summarized the recent progress in the regulation of autophagy, we focus in this Commentary on the main unresolved questions in this field.
Collapse
Affiliation(s)
- Yongqiang Chen
- Life Sciences Institute and Department of Molecular, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | | |
Collapse
|
150
|
Lin Y, Wilson JH. Transcription-induced DNA toxicity at trinucleotide repeats: double bubble is trouble. Cell Cycle 2011; 10:611-8. [PMID: 21293182 DOI: 10.4161/cc.10.4.14729] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Trinucleotide repeats (TNR) are a blessing and a curse. In coding regions, where they are enriched, short repeats offer the potential for continuous, rapid length variation with linked incremental changes in the activity of the encoded protein, a valuable source of variation for evolution. But at the upper end of these benign and beneficial lengths, trinucleotide repeats become very unstable, with a dangerous bias toward continual expansion, which can lead to neurological diseases in humans. The mechanisms of expansion are varied and the links to disease are complex. Where they have been delineated, however, they have often revealed unexpected, fundamental aspects of the underlying cell biology. Nowhere is this more apparent than in recent studies, which indicate that expanded CAG repeats can form toxic sites in the genome, which can, upon interaction with normal components of DNA metabolism, trigger cell death. Here we discuss the phenomenon of TNR-induced DNA toxicity, with special emphasis on the role of transcription. Transcription-induced DNA toxicity may have profound biological consequences, with particular relevance to repeat-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Yunfu Lin
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX USA.
| | | |
Collapse
|