101
|
Arora M, Packard CZ, Banerjee T, Parvin JD. RING1A and BMI1 bookmark active genes via ubiquitination of chromatin-associated proteins. Nucleic Acids Res 2015; 44:2136-44. [PMID: 26578590 PMCID: PMC4797268 DOI: 10.1093/nar/gkv1223] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 10/29/2015] [Indexed: 01/27/2023] Open
Abstract
During mitosis the chromatin undergoes dramatic architectural changes with the halting of the transcriptional processes and evacuation of nearly all transcription associated machinery from genes and promoters. Molecular bookmarking of genes during mitosis is a mechanism of faithfully transmitting cell-specific transcription patterns through cell division. We previously discovered chromatin ubiquitination at active promoters as a potential mitotic bookmark. In this study, we identify the enzymes involved in the deposition of ubiquitin before mitosis. We find that the polycomb complex proteins BMI1 and RING1A regulate the ubiquitination of chromatin associated proteins bound to promoters, and this modification is necessary for the expression of marked genes once the cells enter G1. Depletion of RING1A, and thus inactivation of mitotic bookmarking by ubiquitination, is deleterious to progression through G1, cell survival and proliferation. Though the polycomb complex proteins are thought to primarily regulate gene expression by transcriptional repression, in this study, we discover that these two polycomb proteins regulate the transcription of active genes during the mitosis to G1 transition.
Collapse
Affiliation(s)
- Mansi Arora
- Department of Biomedical Informatics, OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Colin Z Packard
- Department of Biomedical Informatics, OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Tapahsama Banerjee
- Department of Biomedical Informatics, OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Jeffrey D Parvin
- Department of Biomedical Informatics, OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
102
|
Beckley JR, Chen JS, Yang Y, Peng J, Gould KL. A Degenerate Cohort of Yeast Membrane Trafficking DUBs Mediates Cell Polarity and Survival. Mol Cell Proteomics 2015; 14:3132-41. [PMID: 26412298 DOI: 10.1074/mcp.m115.050039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Indexed: 12/26/2022] Open
Abstract
Deubiquitinating enzymes (DUBs), cysteine or metallo- proteases that cleave ubiquitin chains or protein conjugates, are present in nearly every cellular compartment, with overlapping protein domain structure, localization, and functions. We discovered a cohort of DUBs that are involved in membrane trafficking (ubp4, ubp5, ubp9, ubp15, and sst2) and found that loss of all five of these DUBs but not loss of any combination of four, significantly impacted cell viability in the fission yeast Schizosaccharomyces pombe (1). Here, we delineate the collective and individual functions and activities of these five conserved DUBs using comparative proteomics, biochemistry, and microscopy. We find these five DUBs are degenerate rather than redundant at the levels of cell morphology, substrate selectivity, ubiquitin chain specificity, and cell viability under stress. These studies reveal the complexity of interplay among these enzymes, providing a foundation for understanding DUB biology and providing another example of how cells utilize degeneracy to improve survival.
Collapse
Affiliation(s)
- Janel R Beckley
- From the Cell & Developmental Biology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN 37232
| | - Jun-Song Chen
- From the Cell & Developmental Biology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN 37232
| | - Yanling Yang
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Kathleen L Gould
- From the Cell & Developmental Biology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN 37232
| |
Collapse
|
103
|
Sawant DB, Majumder S, Perkins JL, Yang CH, Eyers PA, Fisk HA. Centrin 3 is an inhibitor of centrosomal Mps1 and antagonizes centrin 2 function. Mol Biol Cell 2015; 26:3741-53. [PMID: 26354417 PMCID: PMC4626060 DOI: 10.1091/mbc.e14-07-1248] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/04/2015] [Indexed: 11/11/2022] Open
Abstract
Centrins are a family of small, calcium-binding proteins with diverse cellular functions that play an important role in centrosome biology. We previously identified centrin 2 and centrin 3 (Cetn2 and Cetn3) as substrates of the protein kinase Mps1. However, although Mps1 phosphorylation sites control the function of Cetn2 in centriole assembly and promote centriole overproduction, Cetn2 and Cetn3 are not functionally interchangeable, and we show here that Cetn3 is both a biochemical inhibitor of Mps1 catalytic activity and a biological inhibitor of centrosome duplication. In vitro, Cetn3 inhibits Mps1 autophosphorylation at Thr-676, a known site of T-loop autoactivation, and interferes with Mps1-dependent phosphorylation of Cetn2. The cellular overexpression of Cetn3 attenuates the incorporation of Cetn2 into centrioles and centrosome reduplication, whereas depletion of Cetn3 generates extra centrioles. Finally, overexpression of Cetn3 reduces Mps1 Thr-676 phosphorylation at centrosomes, and mimicking Mps1-dependent phosphorylation of Cetn2 bypasses the inhibitory effect of Cetn3, suggesting that the biological effects of Cetn3 are due to the inhibition of Mps1 function at centrosomes.
Collapse
Affiliation(s)
- Dwitiya B Sawant
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Shubhra Majumder
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Jennifer L Perkins
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Ching-Hui Yang
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Harold A Fisk
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
104
|
Hoffman EA, Frey BL, Smith LM, Auble DT. Formaldehyde crosslinking: a tool for the study of chromatin complexes. J Biol Chem 2015; 290:26404-11. [PMID: 26354429 DOI: 10.1074/jbc.r115.651679] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Formaldehyde has been used for decades to probe macromolecular structure and function and to trap complexes, cells, and tissues for further analysis. Formaldehyde crosslinking is routinely employed for detection and quantification of protein-DNA interactions, interactions between chromatin proteins, and interactions between distal segments of the chromatin fiber. Despite widespread use and a rich biochemical literature, important aspects of formaldehyde behavior in cells have not been well described. Here, we highlight features of formaldehyde chemistry relevant to its use in analyses of chromatin complexes, focusing on how its properties may influence studies of chromatin structure and function.
Collapse
Affiliation(s)
- Elizabeth A Hoffman
- From the Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908 and
| | - Brian L Frey
- the Department of Chemistry and Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706
| | - Lloyd M Smith
- the Department of Chemistry and Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706
| | - David T Auble
- From the Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908 and
| |
Collapse
|
105
|
Liu XM, Sun LL, Hu W, Ding YH, Dong MQ, Du LL. ESCRTs Cooperate with a Selective Autophagy Receptor to Mediate Vacuolar Targeting of Soluble Cargos. Mol Cell 2015; 59:1035-42. [DOI: 10.1016/j.molcel.2015.07.034] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/08/2015] [Accepted: 07/31/2015] [Indexed: 11/16/2022]
|
106
|
Ryder DJ, Judge SM, Beharry AW, Farnsworth CL, Silva JC, Judge AR. Identification of the Acetylation and Ubiquitin-Modified Proteome during the Progression of Skeletal Muscle Atrophy. PLoS One 2015; 10:e0136247. [PMID: 26302492 PMCID: PMC4547751 DOI: 10.1371/journal.pone.0136247] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/31/2015] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle atrophy is a consequence of several physiological and pathophysiological conditions including muscle disuse, aging and diseases such as cancer and heart failure. In each of these conditions, the predominant mechanism contributing to the loss of skeletal muscle mass is increased protein turnover. Two important mechanisms which regulate protein stability and degradation are lysine acetylation and ubiquitination, respectively. However our understanding of the skeletal muscle proteins regulated through acetylation and ubiquitination during muscle atrophy is limited. Therefore, the purpose of the current study was to conduct an unbiased assessment of the acetylation and ubiquitin-modified proteome in skeletal muscle during a physiological condition of muscle atrophy. To induce progressive, physiologically relevant, muscle atrophy, rats were cast immobilized for 0, 2, 4 or 6 days and muscles harvested. Acetylated and ubiquitinated peptides were identified via a peptide IP proteomic approach using an anti-acetyl lysine antibody or a ubiquitin remnant motif antibody followed by mass spectrometry. In control skeletal muscle we identified and mapped the acetylation of 1,326 lysine residues to 425 different proteins and the ubiquitination of 4,948 lysine residues to 1,131 different proteins. Of these proteins 43, 47 and 50 proteins were differentially acetylated and 183, 227 and 172 were differentially ubiquitinated following 2, 4 and 6 days of disuse, respectively. Bioinformatics analysis identified contractile proteins as being enriched among proteins decreased in acetylation and increased in ubiquitination, whereas histone proteins were enriched among proteins increased in acetylation and decreased in ubiquitination. These findings provide the first proteome-wide identification of skeletal muscle proteins exhibiting changes in lysine acetylation and ubiquitination during any atrophy condition, and provide a basis for future mechanistic studies into how the acetylation and ubiquitination status of these identified proteins regulates the muscle atrophy phenotype.
Collapse
Affiliation(s)
- Daniel J. Ryder
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States of America
| | - Sarah M. Judge
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States of America
| | - Adam W. Beharry
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States of America
| | | | - Jeffrey C. Silva
- Cell Signaling Technology, Danvers, MA, United States of America
| | - Andrew R. Judge
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
107
|
The SnRK2-APC/C(TE) regulatory module mediates the antagonistic action of gibberellic acid and abscisic acid pathways. Nat Commun 2015; 6:7981. [PMID: 26272249 PMCID: PMC4557272 DOI: 10.1038/ncomms8981] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 07/02/2015] [Indexed: 12/23/2022] Open
Abstract
Abscisic acid (ABA) and gibberellic acid (GA) antagonistically regulate many developmental processes and responses to biotic or abiotic stresses in higher plants. However, the molecular mechanism underlying this antagonism is still poorly understood. Here, we show that loss-of-function mutation in rice Tiller Enhancer (TE), an activator of the APC/C(TE) complex, causes hypersensitivity and hyposensitivity to ABA and GA, respectively. We find that TE physically interacts with ABA receptor OsPYL/RCARs and promotes their degradation by the proteasome. Genetic analysis also shows OsPYL/RCARs act downstream of TE in mediating ABA responses. Conversely, ABA inhibits APC/C(TE) activity by phosphorylating TE through activating the SNF1-related protein kinases (SnRK2s), which may interrupt the interaction between TE and OsPYL/RCARs and subsequently stabilize OsPYL/RCARs. In contrast, GA can reduce the level of SnRK2s and may promote APC/C(TE)-mediated degradation of OsPYL/RCARs. Thus, we propose that the SnRK2-APC/C(TE) regulatory module represents a regulatory hub underlying the antagonistic action of GA and ABA in plants.
Collapse
|
108
|
Borek WE, Groocock LM, Samejima I, Zou J, de Lima Alves F, Rappsilber J, Sawin KE. Mto2 multisite phosphorylation inactivates non-spindle microtubule nucleation complexes during mitosis. Nat Commun 2015; 6:7929. [PMID: 26243668 PMCID: PMC4918325 DOI: 10.1038/ncomms8929] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 06/25/2015] [Indexed: 01/09/2023] Open
Abstract
Microtubule nucleation is highly regulated during the eukaryotic cell cycle, but the underlying molecular mechanisms are largely unknown. During mitosis in fission yeast Schizosaccharomyces pombe, cytoplasmic microtubule nucleation ceases simultaneously with intranuclear mitotic spindle assembly. Cytoplasmic nucleation depends on the Mto1/2 complex, which binds and activates the γ-tubulin complex and also recruits the γ-tubulin complex to both centrosomal (spindle pole body) and non-centrosomal sites. Here we show that the Mto1/2 complex disassembles during mitosis, coincident with hyperphosphorylation of Mto2 protein. By mapping and mutating multiple Mto2 phosphorylation sites, we generate mto2-phosphomutant strains with enhanced Mto1/2 complex stability, interaction with the γ-tubulin complex and microtubule nucleation activity. A mutant with 24 phosphorylation sites mutated to alanine, mto2[24A], retains interphase-like behaviour even in mitotic cells. This provides a molecular-level understanding of how phosphorylation ‘switches off' microtubule nucleation complexes during the cell cycle and, more broadly, illuminates mechanisms regulating non-centrosomal microtubule nucleation. In S. pombe, cytoplasmic microtubule nucleation, which depends on the Mto1/2 complex, ceases during mitosis. Here, Borek et al., show that multisite phosphorylation of Mto1/2 during mitosis disassembles the Mto1/2 complex and prevents microtubule nucleation activity.
Collapse
Affiliation(s)
- Weronika E Borek
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Lynda M Groocock
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Itaru Samejima
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Juan Zou
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Flavia de Lima Alves
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Juri Rappsilber
- 1] Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK [2] Department of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin 13355, Germany
| | - Kenneth E Sawin
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| |
Collapse
|
109
|
Abstract
Ubiquitin (UB)-driven signaling systems permeate biology, and are often integrated with other types of post-translational modifications (PTMs), including phosphorylation. Flux through such pathways is dictated by the fractional stoichiometry of distinct modifications and protein assemblies as well as the spatial organization of pathway components. Yet, we rarely understand the dynamics and stoichiometry of rate-limiting intermediates along a reaction trajectory. Here, we review how quantitative proteomic tools and enrichment strategies are being used to quantify UB-dependent signaling systems, and to integrate UB signaling with regulatory phosphorylation events, illustrated with the PINK1/PARKIN pathway. A key feature of ubiquitylation is that the identity of UB chain linkage types can control downstream processes. We also describe how proteomic and enzymological tools can be used to identify and quantify UB chain synthesis and linkage preferences. The emergence of sophisticated quantitative proteomic approaches will set a new standard for elucidating biochemical mechanisms of UB-driven signaling systems.
Collapse
Affiliation(s)
- Alban Ordureau
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christian Münch
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
110
|
Nguyen NTT, Saguez C, Conesa C, Lefebvre O, Acker J. Identification of proteins associated with RNA polymerase III using a modified tandem chromatin affinity purification. Gene 2015; 556:51-60. [DOI: 10.1016/j.gene.2014.07.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 01/12/2023]
|
111
|
Alekseyenko AA, McElroy KA, Kang H, Zee BM, Kharchenko PV, Kuroda MI. BioTAP-XL: Cross-linking/Tandem Affinity Purification to Study DNA Targets, RNA, and Protein Components of Chromatin-Associated Complexes. ACTA ACUST UNITED AC 2015; 109:21.30.1-21.30.32. [PMID: 25559106 DOI: 10.1002/0471142727.mb2130s109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In order to understand how chromatin complexes function in the nucleus, it is important to obtain a comprehensive picture of their protein, DNA, and RNA components, as well as their mutual interactions. This unit presents a chromatin cross-linking approach (BioTAP-XL) that utilizes a special BioTAP-tagged transgenic protein bait along with mass spectrometry to identify protein complex components, and high-throughput sequencing to identify RNA components and DNA binding sites. Full protocols are provided for Drosophila cells and for human cells in culture, along with an additional protocol for Drosophila embryos as the source material. A key element of the approach in all cases is the generation of control data from input chromatin samples.
Collapse
Affiliation(s)
- Artyom A Alekseyenko
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Kyle A McElroy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Genetics, Harvard Medical School, Boston, Massachusetts.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts
| | - Hyuckjoon Kang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Barry M Zee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Peter V Kharchenko
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts.,Hematology/Oncology Program, Children's Hospital, Boston, Massachusetts
| | - Mitzi I Kuroda
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Genetics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
112
|
Kaake RM, Kao A, Yu C, Huang L. Characterizing the dynamics of proteasome complexes by proteomics approaches. Antioxid Redox Signal 2014; 21:2444-56. [PMID: 24423446 PMCID: PMC4241863 DOI: 10.1089/ars.2013.5815] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE The proteasome is the degradation machine of the ubiquitin-proteasome system, which is critical in controlling many essential biological processes. Aberrant regulation of proteasome-dependent protein degradation can lead to various human diseases, and general proteasome inhibitors have shown efficacy for cancer treatments. Though clinically effective, current proteasome inhibitors have detrimental side effects and, thus, better therapeutic strategies targeting proteasomes are needed. Therefore, a comprehensive characterization of proteasome complexes will provide the molecular details that are essential for developing new and improved drugs. RECENT ADVANCES New mass spectrometry (MS)-based proteomics approaches have been developed to study protein interaction networks and structural topologies of proteasome complexes. The results have helped define the dynamic proteomes of proteasome complexes, thus providing new insights into the mechanisms underlying proteasome function and regulation. CRITICAL ISSUES The proteasome exists as heterogeneous populations in tissues/cells, and its proteome is highly dynamic and complex. In addition, proteasome complexes are regulated by various mechanisms under different physiological conditions. Consequently, complete proteomic profiling of proteasome complexes remains a major challenge for the field. FUTURE DIRECTIONS We expect that proteomic methodologies enabling full characterization of proteasome complexes will continue to evolve. Further advances in MS instrumentation and protein separation techniques will be needed to facilitate the detailed proteomic analysis of low-abundance components and subpopulations of proteasome complexes. The results will help us understand proteasome biology as well as provide new therapeutic targets for disease diagnostics and treatment.
Collapse
Affiliation(s)
- Robyn M Kaake
- Department of Physiology and Biophysics, University of California , Irvine, Irvine, California
| | | | | | | |
Collapse
|
113
|
A mass spectrometry view of stable and transient protein interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:263-82. [PMID: 24952186 DOI: 10.1007/978-3-319-06068-2_11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Through an impressive range of dynamic interactions, proteins succeed to carry out the majority of functions in a cell. These temporally and spatially regulated interactions provide the means through which one single protein can perform diverse functions and modulate different cellular pathways. Understanding the identity and nature of these interactions is therefore critical for defining protein functions and their contribution to health and disease processes. Here, we provide an overview of workflows that incorporate immunoaffinity purifications and quantitative mass spectrometry (frequently abbreviated as IP-MS or AP-MS) for characterizing protein-protein interactions. We discuss experimental aspects that should be considered when optimizing the isolation of a protein complex. As the presence of nonspecific associations is a concern in these experiments, we discuss the common sources of nonspecific interactions and present label-free and metabolic labeling mass spectrometry-based methods that can help determine the specificity of interactions. The effective regulation of cellular pathways and the rapid reaction to various environmental stresses rely on the formation of stable, transient, and fast-exchanging protein-protein interactions. While determining the exact nature of an interaction remains challenging, we review cross-linking and metabolic labeling approaches that can help address this important aspect of characterizing protein interactions and macromolecular assemblies.
Collapse
|
114
|
Kaake RM, Wang X, Burke A, Yu C, Kandur W, Yang Y, Novtisky EJ, Second T, Duan J, Kao A, Guan S, Vellucci D, Rychnovsky SD, Huang L. A new in vivo cross-linking mass spectrometry platform to define protein-protein interactions in living cells. Mol Cell Proteomics 2014; 13:3533-43. [PMID: 25253489 DOI: 10.1074/mcp.m114.042630] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Protein-protein interactions (PPIs) are fundamental to the structure and function of protein complexes. Resolving the physical contacts between proteins as they occur in cells is critical to uncovering the molecular details underlying various cellular activities. To advance the study of PPIs in living cells, we have developed a new in vivo cross-linking mass spectrometry platform that couples a novel membrane-permeable, enrichable, and MS-cleavable cross-linker with multistage tandem mass spectrometry. This strategy permits the effective capture, enrichment, and identification of in vivo cross-linked products from mammalian cells and thus enables the determination of protein interaction interfaces. The utility of the developed method has been demonstrated by profiling PPIs in mammalian cells at the proteome scale and the targeted protein complex level. Our work represents a general approach for studying in vivo PPIs and provides a solid foundation for future studies toward the complete mapping of PPI networks in living systems.
Collapse
Affiliation(s)
- Robyn M Kaake
- From the ‡Department of Physiology & Biophysics, University of California, Irvine, California 92697
| | - Xiaorong Wang
- From the ‡Department of Physiology & Biophysics, University of California, Irvine, California 92697
| | - Anthony Burke
- ¶Department of Chemistry, University of California, Irvine, California 92697
| | - Clinton Yu
- From the ‡Department of Physiology & Biophysics, University of California, Irvine, California 92697
| | - Wynne Kandur
- ¶Department of Chemistry, University of California, Irvine, California 92697
| | - Yingying Yang
- From the ‡Department of Physiology & Biophysics, University of California, Irvine, California 92697
| | - Eric J Novtisky
- ¶Department of Chemistry, University of California, Irvine, California 92697
| | - Tonya Second
- ‖Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134
| | - Jicheng Duan
- From the ‡Department of Physiology & Biophysics, University of California, Irvine, California 92697
| | - Athit Kao
- From the ‡Department of Physiology & Biophysics, University of California, Irvine, California 92697
| | - Shenheng Guan
- **Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143
| | - Danielle Vellucci
- ¶Department of Chemistry, University of California, Irvine, California 92697
| | - Scott D Rychnovsky
- ¶Department of Chemistry, University of California, Irvine, California 92697
| | - Lan Huang
- From the ‡Department of Physiology & Biophysics, University of California, Irvine, California 92697;
| |
Collapse
|
115
|
Hu M, Liu Y, Yu K, Liu X. Decreasing the amount of trypsin in in-gel digestion leads to diminished chemical noise and improved protein identifications. J Proteomics 2014; 109:16-25. [DOI: 10.1016/j.jprot.2014.06.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/13/2014] [Accepted: 06/20/2014] [Indexed: 11/26/2022]
|
116
|
Subbotin RI, Chait BT. A pipeline for determining protein-protein interactions and proximities in the cellular milieu. Mol Cell Proteomics 2014; 13:2824-35. [PMID: 25172955 DOI: 10.1074/mcp.m114.041095] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It remains extraordinarily challenging to elucidate endogenous protein-protein interactions and proximities within the cellular milieu. The dynamic nature and the large range of affinities of these interactions augment the difficulty of this undertaking. Among the most useful tools for extracting such information are those based on affinity capture of target bait proteins in combination with mass spectrometric readout of the co-isolated species. Although highly enabling, the utility of affinity-based methods is generally limited by difficulties in distinguishing specific from nonspecific interactors, preserving and isolating all unique interactions including those that are weak, transient, or rapidly exchanging, and differentiating proximal interactions from those that are more distal. Here, we have devised and optimized a set of methods to address these challenges. The resulting pipeline involves flash-freezing cells in liquid nitrogen to preserve the cellular environment at the moment of freezing; cryomilling to fracture the frozen cells into intact micron chunks to allow for rapid access of a chemical reagent and to stabilize the intact endogenous subcellular assemblies and interactors upon thawing; and utilizing the high reactivity of glutaraldehyde to achieve sufficiently rapid stabilization at low temperatures to preserve native cellular interactions. In the course of this work, we determined that relatively low molar ratios of glutaraldehyde to reactive amines within the cellular milieu were sufficient to preserve even labile and transient interactions. This mild treatment enables efficient and rapid affinity capture of the protein assemblies of interest under nondenaturing conditions, followed by bottom-up MS to identify and quantify the protein constituents. For convenience, we have termed this approach Stabilized Affinity Capture Mass Spectrometry. Here, we demonstrate that Stabilized Affinity Capture Mass Spectrometry allows us to stabilize and elucidate local, distant, and transient protein interactions within complex cellular milieux, many of which are not observed in the absence of chemical stabilization.
Collapse
Affiliation(s)
- Roman I Subbotin
- From the ‡The Rockefeller University 1230 York Ave, New York, New York
| | - Brian T Chait
- From the ‡The Rockefeller University 1230 York Ave, New York, New York
| |
Collapse
|
117
|
Mukherjee C, Bakthavachalu B, Schoenberg DR. The cytoplasmic capping complex assembles on adapter protein nck1 bound to the proline-rich C-terminus of Mammalian capping enzyme. PLoS Biol 2014; 12:e1001933. [PMID: 25137142 PMCID: PMC4138027 DOI: 10.1371/journal.pbio.1001933] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 07/11/2014] [Indexed: 12/03/2022] Open
Abstract
mRNA capping and decapping requires a cytoplasmic complex to maintain and/or restore the 5′ cap on a subset of the mammalian transcriptome; Nck1, an SH2/SH3 adapter, creates a scaffold upon which the cytoplasmic capping complex forms. Cytoplasmic capping is catalyzed by a complex that contains capping enzyme (CE) and a kinase that converts RNA with a 5′-monophosphate end to a 5′ diphosphate for subsequent addition of guanylic acid (GMP). We identify the proline-rich C-terminus as a new domain of CE that is required for its participation in cytoplasmic capping, and show the cytoplasmic capping complex assembles on Nck1, an adapter protein with functions in translation and tyrosine kinase signaling. Binding is specific to Nck1 and is independent of RNA. We show by sedimentation and gel filtration that Nck1 and CE are together in a larger complex, that the complex can assemble in vitro on recombinant Nck1, and Nck1 knockdown disrupts the integrity of the complex. CE and the 5′ kinase are juxtaposed by binding to the adjacent domains of Nck1, and cap homeostasis is inhibited by Nck1 with inactivating mutations in each of these domains. These results identify a new domain of CE that is specific to its function in cytoplasmic capping, and a new role for Nck1 in regulating gene expression through its role as the scaffold for assembly of the cytoplasmic capping complex. We previously described a cyclical process of mRNA decapping and recapping termed “cap homeostasis.” Recapping is catalyzed by a complex of cytoplasmic proteins that includes the enzyme known to catalyze nuclear capping, and a kinase that converts RNA with a 5′-monophosphate end to a 5′-diphosphate capping substrate. The current study shows these two enzymatic activities are brought together in the cytoplasmic capping complex as both bind to adjacent domains of the adapter protein Nck1. Nck1 is a cytoplasmic protein best known for transducing receptor tyrosine kinase signaling. We identify a proline-rich sequence at the C-terminus of a human capping enzyme that is required for binding to Nck1, and we show that this interaction is required for integrity of the cytoplasmic capping complex. Depletion of Nck1 causes the cytoplasmic capping complex to dissociate. The inhibition of cytoplasmic capping by Nck1 with mutations in either the 5′-kinase or capping enzyme binding sites identified a functional role for Nck1 in cap homeostasis and a previously unknown function for Nck1 in cell biology.
Collapse
Affiliation(s)
- Chandrama Mukherjee
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular & Cellular Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Baskar Bakthavachalu
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular & Cellular Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Daniel R. Schoenberg
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular & Cellular Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
118
|
Faoro C, Ataide SF. Ribonomic approaches to study the RNA-binding proteome. FEBS Lett 2014; 588:3649-64. [PMID: 25150170 DOI: 10.1016/j.febslet.2014.07.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/04/2014] [Accepted: 07/04/2014] [Indexed: 01/23/2023]
Abstract
Gene expression is controlled through a complex interplay among mRNAs, non-coding RNAs and RNA-binding proteins (RBPs), which all assemble along with other RNA-associated factors in dynamic and functional ribonucleoprotein complexes (RNPs). To date, our understanding of RBPs is largely limited to proteins with known or predicted RNA-binding domains. However, various methods have been recently developed to capture an RNA of interest and comprehensively identify its associated RBPs. In this review, we discuss the RNA-affinity purification methods followed by mass spectrometry analysis (AP-MS); RBP screening within protein libraries and computational methods that can be used to study the RNA-binding proteome (RBPome).
Collapse
Affiliation(s)
- Camilla Faoro
- School of Molecular Biosciences, University of Sydney, NSW, Australia
| | - Sandro F Ataide
- School of Molecular Biosciences, University of Sydney, NSW, Australia.
| |
Collapse
|
119
|
Akimov V, Henningsen J, Hallenborg P, Rigbolt KTG, Jensen SS, Nielsen MM, Kratchmarova I, Blagoev B. StUbEx: Stable tagged ubiquitin exchange system for the global investigation of cellular ubiquitination. J Proteome Res 2014; 13:4192-204. [PMID: 25093938 DOI: 10.1021/pr500549h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Post-translational modification of proteins with the small polypeptide ubiquitin plays a pivotal role in many cellular processes, altering protein lifespan, location, and function and regulating protein-protein interactions. Ubiquitination exerts its diverse functions through complex mechanisms by formation of different polymeric chains and subsequent recognition of the ubiquitin signal by specific protein interaction domains. Despite some recent advances in the analytical tools for the analysis of ubiquitination by mass spectrometry, there is still a need for additional strategies suitable for investigation of cellular ubiquitination at the proteome level. Here, we present a stable tagged ubiquitin exchange (StUbEx) cellular system in which endogenous ubiquitin is replaced with an epitope-tagged version, thereby allowing specific and efficient affinity purification of ubiquitinated proteins for global analyses of protein ubiquitination. Importantly, the overall level of ubiquitin in the cell remains virtually unchanged, thus avoiding ubiquitination artifacts associated with overexpression. The efficiency and reproducibility of the method were assessed through unbiased analysis of epidermal growth factor (EGF) signaling by quantitative mass spectrometry, covering over 3400 potential ubiquitinated proteins. The StUbEx system is applicable to virtually any cell line and can be readily adapted to any of the ubiquitin-like post-translational modifications.
Collapse
Affiliation(s)
- Vyacheslav Akimov
- Center for Experimental Bioinformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark , Campusvej 55, DK-5230 Odense, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Mousnier A, Schroeder GN, Stoneham CA, So EC, Garnett JA, Yu L, Matthews SJ, Choudhary JS, Hartland EL, Frankel G. A new method to determine in vivo interactomes reveals binding of the Legionella pneumophila effector PieE to multiple rab GTPases. mBio 2014; 5:e01148-14. [PMID: 25118235 PMCID: PMC4145681 DOI: 10.1128/mbio.01148-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/11/2014] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED Legionella pneumophila, the causative agent of Legionnaires' disease, uses the Dot/Icm type IV secretion system (T4SS) to translocate more than 300 effectors into host cells, where they subvert host cell signaling. The function and host cell targets of most effectors remain unknown. PieE is a 69-kDa Dot/Icm effector containing three coiled-coil (CC) regions and 2 transmembrane (TM) helices followed by a fourth CC region. Here, we report that PieE dimerized by an interaction between CC3 and CC4. We found that ectopically expressed PieE localized to the endoplasmic reticulum (ER) and induced the formation of organized smooth ER, while following infection PieE localized to the Legionella-containing vacuole (LCV). To identify the physiological targets of PieE during infection, we established a new purification method for which we created an A549 cell line stably expressing the Escherichia coli biotin ligase BirA and infected the cells with L. pneumophila expressing PieE fused to a BirA-specific biotinylation site and a hexahistidine tag. Following tandem Ni(2+) nitrilotriacetic acid (NTA) and streptavidin affinity chromatography, the effector-target complexes were analyzed by mass spectrometry. This revealed interactions of PieE with multiple host cell proteins, including the Rab GTPases 1a, 1b, 2a, 5c, 6a, 7, and 10. Binding of the Rab GTPases, which was validated by yeast two-hybrid binding assays, was mediated by the PieE CC1 and CC2. In summary, using a novel, highly specific strategy to purify effector complexes from infected cells, which is widely applicable to other pathogens, we identified PieE as a multidomain LCV protein with promiscuous Rab GTPase-binding capacity. IMPORTANCE The respiratory pathogen Legionella pneumophila uses the Dot/Icm type IV secretion system to translocate more than 300 effector proteins into host cells. The function of most effectors in infection remains unknown. One of the bottlenecks for their characterization is the identification of target proteins. Frequently used in vitro approaches are not applicable to all effectors and suffer from high rates of false positives or missed interactions, as they are not performed in the context of an infection. Here, we determine key functional domains of the effector PieE and describe a new method to identify host cell targets under physiological infection conditions. Our approach, which is applicable to other pathogens, uncovered the interaction of PieE with several proteins involved in membrane trafficking, in particular Rab GTPases, revealing new details of the Legionella infection strategy and demonstrating the potential of this method to greatly advance our understanding of the molecular basis of infection.
Collapse
Affiliation(s)
- Aurélie Mousnier
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Gunnar N Schroeder
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Charlotte A Stoneham
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Ernest C So
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Lu Yu
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | | | - Jyoti S Choudhary
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Elizabeth L Hartland
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Gad Frankel
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
121
|
Williams C. Going against the flow: A case for peroxisomal protein export. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1386-92. [DOI: 10.1016/j.bbamcr.2014.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/03/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
|
122
|
Abstract
Ubiquitin is a small 8.5 kDa protein that is conjugated to a target protein in a concerted three step enzymatic process. Ubiquitin addition can drastically affect function or target the modified protein for degradation. Ubiquitin modifications have important regulatory roles in disease progression, such as in cancer and neurodegenerative diseases to name a few. As a consequence, it is imperative to identify important ubiquitin targets to elucidate the role of the modification. Proteomic studies have sought to understand this role by identifying proteome-wide ubiquitylated proteins. Two central ideas have developed to characterize the ubiquitylome: affinity purification of ubiquitylated proteins and optimization of GG-peptide enrichment. In this review, we will discuss recent advances in both approaches and discuss how these studies are essential to pharmacoproteomics.
Collapse
Affiliation(s)
- Tanya R Porras-Yakushi
- California Institute of Technology, Beckman Institute, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | | |
Collapse
|
123
|
Histone H2B ubiquitination promotes the function of the anaphase-promoting complex/cyclosome in Schizosaccharomyces pombe. G3-GENES GENOMES GENETICS 2014; 4:1529-38. [PMID: 24948786 PMCID: PMC4132182 DOI: 10.1534/g3.114.012625] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ubiquitination and deubiquitination of proteins are reciprocal events involved in many cellular processes, including the cell cycle. During mitosis, the metaphase to anaphase transition is regulated by the ubiquitin ligase activity of the anaphase-promoting complex/cyclosome (APC/C). Although the E3 ubiquitin ligase function of the APC/C has been well characterized, it is not clear whether deubiquitinating enzymes (DUBs) play a role in reversing APC/C substrate ubiquitination. Here we performed a genetic screen to determine what DUB, if any, antagonizes the function of the APC/C in the fission yeast Schizosaccharomyces pombe. We found that deletion of ubp8, encoding the Spt-Ada-Gcn5-Acetyl transferase (SAGA) complex associated DUB, suppressed temperature-sensitive phenotypes of APC/C mutants cut9-665, lid1-6, cut4-533, and slp1-362. Our analysis revealed that Ubp8 antagonizes APC/C function in a mechanism independent of the spindle assembly checkpoint and proteasome activity. Notably, suppression of APC/C mutants was linked to loss of Ubp8 catalytic activity and required histone H2B ubiquitination. On the basis of these data, we conclude that Ubp8 antagonizes APC/C function indirectly by modulating H2B ubiquitination status.
Collapse
|
124
|
Rachfall N, Johnson AE, Mehta S, Chen JS, Gould KL. Cdk1 promotes cytokinesis in fission yeast through activation of the septation initiation network. Mol Biol Cell 2014; 25:2250-9. [PMID: 24920823 PMCID: PMC4116299 DOI: 10.1091/mbc.e14-04-0936] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In Schizosaccharomyces pombe, late mitotic events are coordinated with cytokinesis by the septation initiation network (SIN), an essential spindle pole body (SPB)-associated kinase cascade, which controls the formation, maintenance, and constriction of the cytokinetic ring. It is not fully understood how SIN initiation is temporally regulated, but it depends on the activation of the GTPase Spg1, which is inhibited during interphase by the essential bipartite GTPase-activating protein Byr4-Cdc16. Cells are particularly sensitive to the modulation of Byr4, which undergoes cell cycle-dependent phosphorylation presumed to regulate its function. Polo-like kinase, which promotes SIN activation, is partially responsible for Byr4 phosphorylation. Here we show that Byr4 is also controlled by cyclin-dependent kinase (Cdk1)-mediated phosphorylation. A Cdk1 nonphosphorylatable Byr4 phosphomutant displays severe cell division defects, including the formation of elongated, multinucleate cells, failure to maintain the cytokinetic ring, and compromised SPB association of the SIN kinase Cdc7. Our analyses show that Cdk1-mediated phosphoregulation of Byr4 facilitates complete removal of Byr4 from metaphase SPBs in concert with Plo1, revealing an unexpected role for Cdk1 in promoting cytokinesis through activation of the SIN pathway.
Collapse
Affiliation(s)
- Nicole Rachfall
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Alyssa E Johnson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Sapna Mehta
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
125
|
Insect stage-specific receptor adenylate cyclases are localized to distinct subdomains of the Trypanosoma brucei Flagellar membrane. EUKARYOTIC CELL 2014; 13:1064-76. [PMID: 24879126 DOI: 10.1128/ec.00019-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increasing evidence indicates that the Trypanosoma brucei flagellum (synonymous with cilium) plays important roles in host-parasite interactions. Several studies have identified virulence factors and signaling proteins in the flagellar membrane of bloodstream-stage T. brucei, but less is known about flagellar membrane proteins in procyclic, insect-stage parasites. Here we report on the identification of several receptor-type flagellar adenylate cyclases (ACs) that are specifically upregulated in procyclic T. brucei parasites. Identification of insect stage-specific ACs is novel, as previously studied ACs were constitutively expressed or confined to bloodstream-stage parasites. We show that procyclic stage-specific ACs are glycosylated, surface-exposed proteins that dimerize and possess catalytic activity. We used gene-specific tags to examine the distribution of individual AC isoforms. All ACs examined localized to the flagellum. Notably, however, while some ACs were distributed along the length of the flagellum, others specifically localized to the flagellum tip. These are the first transmembrane domain proteins to be localized specifically at the flagellum tip in T. brucei, emphasizing that the flagellum membrane is organized into specific subdomains. Deletion analysis reveals that C-terminal sequences are critical for targeting ACs to the flagellum, and sequence comparisons suggest that differential subflagellar localization might be specified by isoform-specific C termini. Our combined results suggest insect stage-specific roles for a subset of flagellar adenylate cyclases and support a microdomain model for flagellar cyclic AMP (cAMP) signaling in T. brucei. In this model, cAMP production is compartmentalized through differential localization of individual ACs, thereby allowing diverse cellular responses to be controlled by a common signaling molecule.
Collapse
|
126
|
Abstract
Protein ubiquitination is an important post-translational modification that regulates almost every aspect of cellular function and many cell signaling pathways in eukaryotes. Alterations of protein ubiquitination have been linked to many diseases, such as cancer, neurodegenerative diseases, cardiovascular diseases, immunological disorders and inflammatory diseases. To understand the roles of protein ubiquitination in these diseases and in cell signaling pathways, it is necessary to identify ubiquitinated proteins and their modification sites. However, owing to the nature of protein ubiquitination, it is challenging to identify the exact modification sites under physiological conditions. Recently, ubiquitin-remnant profiling, an immunoprecipitation approach, which uses monoclonal antibodies specifically to enrich for peptides derived from the ubiquitinated portion of proteins and mass spectrometry for their identification, was developed to determine ubiquitination events from cell lysates. This approach has now been widely applied to profile protein ubiquitination in several cellular contexts. In this review, we discuss mass-spectrometry-based methods for the identification of protein ubiquitination sites, analyze their advantages and disadvantages, and discuss their application for proteomic analysis of ubiquitination.
Collapse
Affiliation(s)
- Guoqiang Xu
- a Laboratory of Chemical Biology, Department of Pharmacology , College of Pharmaceutical Sciences, Soochow University , Suzhou , China
| | | |
Collapse
|
127
|
Guillen-Ahlers H, Shortreed MR, Smith LM, Olivier M. Advanced methods for the analysis of chromatin-associated proteins. Physiol Genomics 2014; 46:441-7. [PMID: 24803678 DOI: 10.1152/physiolgenomics.00041.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
DNA-protein interactions are central to gene expression and chromatin regulation and have become one of the main focus areas of the ENCODE consortium. Advances in mass spectrometry and associated technologies have facilitated studies of these interactions, revealing many novel DNA-interacting proteins and histone posttranslational modifications. Proteins interacting at a single locus or at multiple loci have been targeted in these recent studies, each requiring a separate analytical strategy for isolation and analysis of DNA-protein interactions. The enrichment of target chromatin fractions occurs via a number of methods including immunoprecipitation, affinity purification, and hybridization, with the shared goal of using proteomics approaches as the final readout. The result of this is a number of exciting new tools, with distinct strengths and limitations that can enable highly robust and novel chromatin studies when applied appropriately. The present review compares and contrasts these methods to help the reader distinguish the advantages of each approach.
Collapse
Affiliation(s)
- Hector Guillen-Ahlers
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas; and
| | | | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin
| | - Michael Olivier
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas; and
| |
Collapse
|
128
|
Li C, Peart N, Xuan Z, Lewis DE, Xia Y, Jin J. PMA induces SnoN proteolysis and CD61 expression through an autocrine mechanism. Cell Signal 2014; 26:1369-78. [PMID: 24637302 DOI: 10.1016/j.cellsig.2014.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 02/19/2014] [Accepted: 03/06/2014] [Indexed: 10/25/2022]
Abstract
Phorbol-12-myristate-13-acetate, also called PMA, is a small molecule that activates protein kinase C and functions to differentiate hematologic lineage cells. However, the mechanism of PMA-induced cellular differentiation is not fully understood. We found that PMA triggers global enhancement of protein ubiquitination in K562, a myelogenous leukemia cell line and one of the enhanced-ubiquitination targets is SnoN, an inhibitor of the Smad signaling pathway. Our data indicated that PMA stimulated the production of Activin A, a cytokine of the TGF-β family. Activin A then activated the phosphorylation of both Smad2 and Smad3. In consequence, SnoN is ubiquitinated by the APC(Cdh1) ubiquitin ligase with the help of phosphorylated Smad2. Furthermore, we found that SnoN proteolysis is important for the expression of CD61, a marker of megakaryocyte. These results indicate that protein ubiquitination promotes megakaryopoiesis via degrading SnoN, an inhibitor of CD61 expression, strengths the roles of ubiquitination in cellular differentiation.
Collapse
Affiliation(s)
- Chonghua Li
- Department of Biochemistry and Molecular Biology, Medical School, United States
| | - Natoya Peart
- Department of Biochemistry and Molecular Biology, Medical School, United States; Program of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Zhenyu Xuan
- Department of Molecular and Cellular Biology, The University of Texas at Dallas, Dallas, TX, United States
| | - Dorothy E Lewis
- Department of Internal Medicine, Medical School, United States
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, Medical School, United States; Program of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Jianping Jin
- Department of Biochemistry and Molecular Biology, Medical School, United States; Program of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States.
| |
Collapse
|
129
|
Genome-wide identification and quantification of protein synthesis in cultured cells and whole tissues by puromycin-associated nascent chain proteomics (PUNCH-P). Nat Protoc 2014; 9:751-60. [PMID: 24603934 DOI: 10.1038/nprot.2014.051] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Regulation of mRNA translation has a pivotal role in modulating protein levels, and the genome-wide identification of proteins synthesized at a given time is indispensable to our understanding of gene expression. This protocol describes the mass-spectrometric analysis of newly synthesized proteins from cultured cells or whole tissues by using a biotinylated derivative of puromycin, which becomes incorporated into nascent polypeptide chains by ribosome catalysis. In this method, termed puromycin-associated nascent chain proteomics (PUNCH-P), intact ribosome-nascent chain complexes are first recovered from cells by ultracentrifugation, followed by biotin-puromycin labeling of newly synthesized proteins, streptavidin affinity purification and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Unlike methods that require in vivo labeling, the sensitivity and coverage of PUNCH-P depend only on the amount of starting material and not on the duration of labeling, thus enabling the measurement of rapid fluctuations in protein synthesis. The protocol requires 3 d for sample preparation and analysis.
Collapse
|
130
|
Wang X, Guerrero C, Kaiser P, Huang L. Proteomics of proteasome complexes and ubiquitinated proteins. Expert Rev Proteomics 2014; 4:649-65. [DOI: 10.1586/14789450.4.5.649] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
131
|
An efficient fluorescent protein-based multifunctional affinity purification approach in mammalian cells. Methods Mol Biol 2014; 1177:175-91. [PMID: 24943323 DOI: 10.1007/978-1-4939-1034-2_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Knowledge of an individual protein's modifications, binding partners, and localization is essential for understanding complex biological networks. We recently described a fluorescent protein-based (mVenus) multifunctional affinity purification (MAP) tag that can be used both to purify a given protein and determine its localization (Ma et al., Mol Cell Proteomics 11:501-511, 2012). MAP purified protein complexes can be further analyzed to identify binding partners and posttranslational modifications by LC-MS/MS. The MAP approach offers rapid FACS-selection of stable clonal cell lines based on the expression level/fluorescence of the MAP-protein fusion. The MAP tag is highly efficient and shows little variability between proteins. Here we describe the general MAP purification method in detail, and show how it can be applied to a specific protein using the human Cdc14B phosphatase as an example.
Collapse
|
132
|
Defining dynamic protein interactions using SILAC-based quantitative mass spectrometry. Methods Mol Biol 2014; 1188:191-205. [PMID: 25059613 DOI: 10.1007/978-1-4939-1142-4_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Protein-protein interactions are essential to various physiological processes in living cells. A full characterization of protein interactions is critical to our understanding of their roles in the regulation of protein functions. Affinity purification coupled with mass spectrometry (AP-MS) has become one of the most effective approaches to systematically study protein-protein interactions. In combination with quantitative mass spectrometry, specific interacting proteins can be efficiently distinguished from nonspecific background proteins. Based on interaction affinity and kinetics, protein interactions can be classified into different categories such as stable and dynamic interactions. Standard biochemical methods are effective in capturing and identifying stable protein interactions but are not sufficient enough to identify dynamic interactors. In this chapter, we describe integrated strategies to allow the identification of dynamic interactors of protein complexes by incorporating new sample preparation methods with SILAC-based quantitation.
Collapse
|
133
|
Tinnefeld V, Sickmann A, Ahrends R. Catch me if you can: challenges and applications of cross-linking approaches. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2014; 20:99-116. [PMID: 24881459 DOI: 10.1255/ejms.1259] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Biomolecular complexes are the groundwork of life and the basis for cell signaling, energy transfer, motion, stability and cellular metabolism. Understanding the underlying complex interactions on the molecular level is an essential step to obtain a comprehensive insight into cellular and systems biology. For the investigation of molecular interactions, various methods, including Förster resonance energy transfer, nuclear magnetic resonance spectroscopy, X-ray crystallography and yeast two-hybrid screening, can be utilized. Nevertheless, the most reliable approach for structural proteomics and the identification of novel protein-binding partners is chemical cross-linking. The rationale is that upon forming a covalent bond between a protein and its interaction partner (protein, lipid, RNA/DNA, carbohydrate) the native complex state is "frozen" and accessible for detailed mass spectrometric analysis. In this review we provide a synopsis on crosslinker design, chemistry, pitfalls, limitations and novel applications in the field, and feature an overview of current software applications.
Collapse
|
134
|
Xu G, Deglincerti A, Paige JS, Jaffrey SR. Profiling lysine ubiquitination by selective enrichment of ubiquitin remnant-containing peptides. Methods Mol Biol 2014; 1174:57-71. [PMID: 24947374 DOI: 10.1007/978-1-4939-0944-5_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protein ubiquitination plays critical roles in many biological processes. However, functional studies of protein ubiquitination in eukaryotic cells are limited by the ability to identify protein ubiquitination sites. Unbiased high-throughput screening methods are necessary to discover novel ubiquitination sites that play important roles in cellular regulation. Here, we describe an immunopurification approach that enriches ubiquitin remnant-containing peptides to facilitate downstream mass spectrometry (MS) identification of lysine ubiquitination sites. This approach can be utilized to identify ubiquitination sites from proteins in a complex mixture.
Collapse
Affiliation(s)
- Guoqiang Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | | | | | | |
Collapse
|
135
|
Heyman J, Cools T, Vandenbussche F, Heyndrickx KS, Van Leene J, Vercauteren I, Vanderauwera S, Vandepoele K, De Jaeger G, Van Der Straeten D, De Veylder L. ERF115 controls root quiescent center cell division and stem cell replenishment. Science 2013; 342:860-3. [PMID: 24158907 DOI: 10.1126/science.1240667] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The quiescent center (QC) plays an essential role during root development by creating a microenvironment that preserves the stem cell fate of its surrounding cells. Despite being surrounded by highly mitotic active cells, QC cells self-renew at a low proliferation rate. Here, we identified the ERF115 transcription factor as a rate-limiting factor of QC cell division, acting as a transcriptional activator of the phytosulfokine PSK5 peptide hormone. ERF115 marks QC cell division but is restrained through proteolysis by the APC/C(CCS52A2) ubiquitin ligase, whereas QC proliferation is driven by brassinosteroid-dependent ERF115 expression. Together, these two antagonistic mechanisms delimit ERF115 activity, which is called upon when surrounding stem cells are damaged, revealing a cell cycle regulatory mechanism accounting for stem cell niche longevity.
Collapse
Affiliation(s)
- Jefri Heyman
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Hwang PM, Pan JS, Sykes BD. Targeted expression, purification, and cleavage of fusion proteins from inclusion bodies in Escherichia coli. FEBS Lett 2013; 588:247-52. [PMID: 24076468 DOI: 10.1016/j.febslet.2013.09.028] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 09/20/2013] [Indexed: 01/24/2023]
Abstract
Today, proteins are typically overexpressed using solubility-enhancing fusion tags that allow for affinity chromatographic purification and subsequent removal by site-specific protease cleavage. In this review, we present an alternative approach to protein production using fusion partners specifically designed to accumulate in insoluble inclusion bodies. The strategy is appropriate for the mass production of short peptides, intrinsically disordered proteins, and proteins that can be efficiently refolded in vitro. There are many fusion protein systems now available for insoluble expression: TrpLE, ketosteroid isomerase, PurF, and PagP, for example. The ideal fusion partner is effective at directing a wide variety of target proteins into inclusion bodies, accumulates in large quantities in a highly pure form, and is readily solubilized and purified in commonly used denaturants. Fusion partner removal under denaturing conditions is biochemically challenging, requiring harsh conditions (e.g., cyanogen bromide in 70% formic acid) that can result in unwanted protein modifications. Recent advances in metal ion-catalyzed peptide bond cleavage allow for more mild conditions, and some methods involving nickel or palladium will likely soon appear in more biological applications.
Collapse
Affiliation(s)
- Peter M Hwang
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada; Division of General Internal Medicine, Department of Medicine, University of Alberta, Edmonton, AB, Canada.
| | - Jonathan S Pan
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Brian D Sykes
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
137
|
Streptavidin–biotin technology: improvements and innovations in chemical and biological applications. Appl Microbiol Biotechnol 2013; 97:9343-53. [DOI: 10.1007/s00253-013-5232-z] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 08/29/2013] [Accepted: 09/02/2013] [Indexed: 12/25/2022]
|
138
|
Aviner R, Geiger T, Elroy-Stein O. Novel proteomic approach (PUNCH-P) reveals cell cycle-specific fluctuations in mRNA translation. Genes Dev 2013; 27:1834-44. [PMID: 23934657 PMCID: PMC3759699 DOI: 10.1101/gad.219105.113] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Monitoring protein synthesis is required to understand gene expression regulation. Aviner et al. developed a system-wide proteomic approach for direct monitoring of translation, termed puromycin-associated nascent chain proteomics (PUNCH-P), which is based on incorporation of biotinylated puromycin into newly synthesized proteins followed by streptavidin affinity purification and LC-MS/MS analysis. Using PUNCH-P, cell cycle-specific fluctuations in synthesis for >5000 proteins were measured in mammalian cells. This approach also identified proteins not previously implicated in cell cycle processes and proteins that were not detected using other methods. Monitoring protein synthesis is essential to our understanding of gene expression regulation, as protein abundance is thought to be predominantly controlled at the level of translation. Mass-spectrometric and RNA sequencing methods have been recently developed for investigating mRNA translation at a global level, but these still involve technical limitations and are not widely applicable. In this study, we describe a novel system-wide proteomic approach for direct monitoring of translation, termed puromycin-associated nascent chain proteomics (PUNCH-P), which is based on incorporation of biotinylated puromycin into newly synthesized proteins under cell-free conditions followed by streptavidin affinity purification and liquid chromatography-tandem mass spectrometry analysis. Using PUNCH-P, we measured cell cycle-specific fluctuations in synthesis for >5000 proteins in mammalian cells, identified proteins not previously implicated in cell cycle processes, and generated the first translational profile of a whole mouse brain. This simple and economical technique is broadly applicable to any cell type and tissue, enabling the identification and quantification of rapid proteome responses under various biological conditions.
Collapse
Affiliation(s)
- Ranen Aviner
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
139
|
Tran KD, Rodriguez-Contreras D, Vieira DP, Yates PA, David L, Beatty W, Elferich J, Landfear SM. KHARON1 mediates flagellar targeting of a glucose transporter in Leishmania mexicana and is critical for viability of infectious intracellular amastigotes. J Biol Chem 2013; 288:22721-33. [PMID: 23766511 PMCID: PMC3829357 DOI: 10.1074/jbc.m113.483461] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/12/2012] [Indexed: 01/05/2023] Open
Abstract
The LmxGT1 glucose transporter is selectively targeted to the flagellum of the kinetoplastid parasite Leishmania mexicana, but the mechanism for targeting this and other flagella-specific membrane proteins among the Kinetoplastida is unknown. To address the mechanism of flagellar targeting, we employed in vivo cross-linking, tandem affinity purification, and mass spectrometry to identify a novel protein, KHARON1 (KH1), which is important for the flagellar trafficking of LmxGT1. Kh1 null mutant parasites are strongly impaired in flagellar targeting of LmxGT1, and trafficking of the permease was arrested in the flagellar pocket. Immunolocalization revealed that KH1 is located at the base of the flagellum, within the flagellar pocket, where it associates with the proximal segment of the flagellar axoneme. We propose that KH1 mediates transit of LmxGT1 from the flagellar pocket into the flagellar membrane via interaction with the proximal portion of the flagellar axoneme. KH1 represents the first component involved in flagellar trafficking of integral membrane proteins among parasitic protozoa. Of considerable interest, Kh1 null mutants are strongly compromised for growth as amastigotes within host macrophages. Thus, KH1 is also important for the disease causing stage of the parasite life cycle.
Collapse
Affiliation(s)
- Khoa D. Tran
- From the Departments of Molecular Microbiology and Immunology
| | | | | | | | - Larry David
- Proteomics Shared Resource, Oregon Health & Science University, Portland, Oregon 97239 and
| | - Wandy Beatty
- the Molecular Microbiology Imaging Facility, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | |
Collapse
|
140
|
Černý M, Skalák J, Cerna H, Brzobohatý B. Advances in purification and separation of posttranslationally modified proteins. J Proteomics 2013; 92:2-27. [PMID: 23777897 DOI: 10.1016/j.jprot.2013.05.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 05/27/2013] [Accepted: 05/29/2013] [Indexed: 11/25/2022]
Abstract
Posttranslational modifications (PTMs) of proteins represent fascinating extensions of the dynamic complexity of living cells' proteomes. The results of enzymatically catalyzed or spontaneous chemical reactions, PTMs form a fourth tier in the gene - transcript - protein cascade, and contribute not only to proteins' biological functions, but also to challenges in their analysis. There have been tremendous advances in proteomics during the last decade. Identification and mapping of PTMs in proteins have improved dramatically, mainly due to constant increases in the sensitivity, speed, accuracy and resolution of mass spectrometry (MS). However, it is also becoming increasingly evident that simple gel-free shotgun MS profiling is unlikely to suffice for comprehensive detection and characterization of proteins and/or protein modifications present in low amounts. Here, we review current approaches for enriching and separating posttranslationally modified proteins, and their MS-independent detection. First, we discuss general approaches for proteome separation, fractionation and enrichment. We then consider the commonest forms of PTMs (phosphorylation, glycosylation and glycation, lipidation, methylation, acetylation, deamidation, ubiquitination and various redox modifications), and the best available methods for detecting and purifying proteins carrying these PTMs. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
Affiliation(s)
- Martin Černý
- Department of Molecular Biology and Radiobiology, Mendel University in Brno & CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | | | | | | |
Collapse
|
141
|
Marcilla M, Albar JP. Quantitative proteomics: A strategic ally to map protein interaction networks. IUBMB Life 2013; 65:9-16. [PMID: 23281033 DOI: 10.1002/iub.1081] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 07/27/2012] [Indexed: 12/12/2022]
Abstract
Many physiological processes are regulated by dynamic protein interaction networks whose characterization provides valuable information on cell biology. Several strategies can be used to analyze protein-protein interactions. Among them, affinity purification combined with mass spectrometry (AP-MS) is arguably the most widely employed technique, not only owing to its high throughput and sensitivity but also because it can answer critical questions such as where, when, and how protein-protein interactions occur. In AP-MS workflows, both the target protein and its interacting partners are isolated before being identified by MS. The main challenge of this approach is to distinguish bona fide binders from background contaminants. This review focuses on the different strategies designed to circumvent this limitation. In this regard, the combination of quantitative proteomics and affinity purification emerges as one of the most powerful, yet relatively simple, strategies to characterize protein-protein interactions.
Collapse
Affiliation(s)
- Miguel Marcilla
- Proteomics Unit, Centro Nacional de Biotecnología, CSIC, Madrid, Spain.
| | | |
Collapse
|
142
|
Schwertman P, Bezstarosti K, Laffeber C, Vermeulen W, Demmers JAA, Marteijn JA. An immunoaffinity purification method for the proteomic analysis of ubiquitinated protein complexes. Anal Biochem 2013; 440:227-36. [PMID: 23743150 DOI: 10.1016/j.ab.2013.05.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/25/2013] [Accepted: 05/13/2013] [Indexed: 01/04/2023]
Abstract
Protein ubiquitination plays an important role in the regulation of many cellular processes, including protein degradation, cell cycle regulation, apoptosis, and DNA repair. To study the ubiquitin proteome we have established an immunoaffinity purification method for the proteomic analysis of endogenously ubiquitinated protein complexes. A strong, specific enrichment of ubiquitinated factors was achieved using the FK2 antibody bound to protein G-beaded agarose, which recognizes monoubiquitinated and polyubiquitinated conjugates. Mass spectrometric analysis of two FK2 immunoprecipitations (IPs) resulted in the identification of 296 FK2-specific proteins in both experiments. The isolation of ubiquitinated and ubiquitination-related proteins was confirmed by pathway analyses (using Ingenuity Pathway Analysis and Gene Ontology-annotation enrichment). Additionally, comparing the proteins that specifically came down in the FK2 IP with databases of ubiquitinated proteins showed that a high percentage of proteins in our enriched fraction was indeed ubiquitinated. Finally, assessment of protein-protein interactions revealed that significantly more FK2-specific proteins were residing in protein complexes than in random protein sets. This method, which is capable of isolating both endogenously ubiquitinated proteins and their interacting proteins, can be widely used for unraveling ubiquitin-mediated protein regulation in various cell systems and tissues when comparing different cellular states.
Collapse
Affiliation(s)
- Petra Schwertman
- Department of Genetics and Netherlands Proteomics Centre, Centre for Biomedical Genetics, Erasmus University Medical Centre, 3015 GE Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
143
|
Carrano AC, Bennett EJ. Using the ubiquitin-modified proteome to monitor protein homeostasis function. Mol Cell Proteomics 2013; 12:3521-31. [PMID: 23704779 DOI: 10.1074/mcp.r113.029744] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ubiquitin system is essential for the maintenance of proper protein homeostasis function across eukaryotic species. Although the general enzymatic architecture for adding and removing ubiquitin from substrates is well defined, methods for the comprehensive investigation of cellular ubiquitylation targets have just started to emerge. Recent advances in ubiquitin-modified peptide enrichment have greatly increased the number of identified endogenous ubiquitylation targets, as well as the number of sites of ubiquitin attachment within these substrates. Herein we evaluate current strategies using mass-spectrometry-based proteomics to characterize ubiquitin and ubiquitin-like modifications. Using existing data, we describe the characteristics of the ubiquitin-modified proteome and discuss strategies for the biological interpretation of existing and future ubiquitin-based proteomic studies.
Collapse
Affiliation(s)
- Andrea C Carrano
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093
| | | |
Collapse
|
144
|
Kim DY, Scalf M, Smith LM, Vierstra RD. Advanced proteomic analyses yield a deep catalog of ubiquitylation targets in Arabidopsis. THE PLANT CELL 2013; 25:1523-40. [PMID: 23667124 PMCID: PMC3694690 DOI: 10.1105/tpc.112.108613] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 04/11/2013] [Accepted: 04/18/2013] [Indexed: 05/18/2023]
Abstract
The posttranslational addition of ubiquitin (Ub) profoundly controls the half-life, interactions, and/or trafficking of numerous intracellular proteins. Using stringent two-step affinity methods to purify Ub-protein conjugates followed by high-sensitivity mass spectrometry, we identified almost 950 ubiquitylation substrates in whole Arabidopsis thaliana seedlings. The list includes key factors regulating a wide range of biological processes, including metabolism, cellular transport, signal transduction, transcription, RNA biology, translation, and proteolysis. The ubiquitylation state of more than half of the targets increased after treating seedlings with the proteasome inhibitor MG132 (carbobenzoxy-Leu-Leu-Leu-al), strongly suggesting that Ub addition commits many to degradation by the 26S proteasome. Ub-attachment sites were resolved for a number of targets, including six of the seven Lys residues on Ub itself with a Lys-48>Lys-63>Lys-11>>>Lys-33/Lys-29/Lys-6 preference. However, little sequence consensus was detected among conjugation sites, indicating that the local environment has little influence on global ubiquitylation. Intriguingly, the level of Lys-11-linked Ub polymers increased substantially upon MG132 treatment, revealing that they might be important signals for proteasomal breakdown. Taken together, this proteomic analysis illustrates the breadth of plant processes affected by ubiquitylation and provides a deep data set of individual targets from which to explore the roles of Ub in various physiological and developmental pathways.
Collapse
Affiliation(s)
- Do-Young Kim
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Mark Scalf
- Department of Chemistry,University of Wisconsin, Madison, Wisconsin 53706
| | - Lloyd M. Smith
- Department of Chemistry,University of Wisconsin, Madison, Wisconsin 53706
| | - Richard D. Vierstra
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
- Address correspondence to
| |
Collapse
|
145
|
Williamson A, Werner A, Rape M. The Colossus of ubiquitylation: decrypting a cellular code. Mol Cell 2013; 49:591-600. [PMID: 23438855 DOI: 10.1016/j.molcel.2013.01.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/19/2013] [Accepted: 01/24/2013] [Indexed: 11/20/2022]
Abstract
Ubiquitylation is an essential posttranslational modification that can regulate the stability, activity, and localization of thousands of proteins. The reversible attachment of ubiquitin as well as interpretation of the ubiquitin signal depends on dynamic protein networks that are challenging to analyze. In this perspective, we discuss tools of the trade that have recently been developed to dissect mechanisms of ubiquitin-dependent signaling, thereby revealing the critical features of an important cellular code.
Collapse
Affiliation(s)
- Adam Williamson
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
146
|
Adler JJ, Heller BL, Bringman LR, Ranahan WP, Cocklin RR, Goebl MG, Oh M, Lim HS, Ingham RJ, Wells CD. Amot130 adapts atrophin-1 interacting protein 4 to inhibit yes-associated protein signaling and cell growth. J Biol Chem 2013; 288:15181-93. [PMID: 23564455 DOI: 10.1074/jbc.m112.446534] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The adaptor protein Amot130 scaffolds components of the Hippo pathway to promote the inhibition of cell growth. This study describes how Amot130 through binding and activating the ubiquitin ligase AIP4/Itch achieves these effects. AIP4 is found to bind and ubiquitinate Amot130 at residue Lys-481. This both stabilizes Amot130 and promotes its residence at the plasma membrane. Furthermore, Amot130 is shown to scaffold a complex containing overexpressed AIP4 and the transcriptional co-activator Yes-associated protein (YAP). Consequently, Amot130 promotes the ubiquitination of YAP by AIP4 and prevents AIP4 from binding to large tumor suppressor 1. Amot130 is found to reduce YAP stability. Importantly, Amot130 inhibition of YAP dependent transcription is reversed by AIP4 silencing, whereas Amot130 and AIP4 expression interdependently suppress cell growth. Thus, Amot130 repurposes AIP4 from its previously described role in degrading large tumor suppressor 1 to the inhibition of YAP and cell growth.
Collapse
Affiliation(s)
- Jacob J Adler
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Böhm S, Buchberger A. The budding yeast Cdc48(Shp1) complex promotes cell cycle progression by positive regulation of protein phosphatase 1 (Glc7). PLoS One 2013; 8:e56486. [PMID: 23418575 PMCID: PMC3572051 DOI: 10.1371/journal.pone.0056486] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 01/10/2013] [Indexed: 12/11/2022] Open
Abstract
The conserved, ubiquitin-selective AAA ATPase Cdc48 regulates numerous cellular processes including protein quality control, DNA repair and the cell cycle. Cdc48 function is tightly controlled by a multitude of cofactors mediating substrate specificity and processing. The UBX domain protein Shp1 is a bona fide substrate-recruiting cofactor of Cdc48 in the budding yeast S. cerevisiae. Even though Shp1 has been proposed to be a positive regulator of Glc7, the catalytic subunit of protein phosphatase 1 in S. cerevisiae, its cellular functions in complex with Cdc48 remain largely unknown. Here we show that deletion of the SHP1 gene results in severe growth defects and a cell cycle delay at the metaphase to anaphase transition caused by reduced Glc7 activity. Using an engineered Cdc48 binding-deficient variant of Shp1, we establish the Cdc48Shp1 complex as a critical regulator of mitotic Glc7 activity. We demonstrate that shp1 mutants possess a perturbed balance of Glc7 phosphatase and Ipl1 (Aurora B) kinase activities and show that hyper-phosphorylation of the kinetochore protein Dam1, a key mitotic substrate of Glc7 and Ipl1, is a critical defect in shp1. We also show for the first time a physical interaction between Glc7 and Shp1 in vivo. Whereas loss of Shp1 does not significantly affect Glc7 protein levels or localization, it causes reduced binding of the activator protein Glc8 to Glc7. Our data suggest that the Cdc48Shp1 complex controls Glc7 activity by regulating its interaction with Glc8 and possibly further regulatory subunits.
Collapse
Affiliation(s)
- Stefanie Böhm
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - Alexander Buchberger
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
148
|
The anaphase promoting complex contributes to the degradation of the S. cerevisiae telomerase recruitment subunit Est1p. PLoS One 2013; 8:e55055. [PMID: 23372810 PMCID: PMC3555863 DOI: 10.1371/journal.pone.0055055] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 12/17/2012] [Indexed: 11/19/2022] Open
Abstract
Telomerase is a multi-subunit enzyme that reverse transcribes telomere repeats onto the ends of linear eukaryotic chromosomes and is therefore critical for genome stability. S. cerevisiae telomerase activity is cell-cycle regulated; telomeres are not elongated during G1 phase. Previous work has shown that Est1 protein levels are low during G1 phase, preventing telomerase complex assembly. However, the pathway targeting Est1p for degradation remained uncharacterized. Here, we show that Est1p stability through the cell cycle mirrors that of Clb2p, a known target of the Anaphase Promoting Complex (APC). Indeed, Est1p is stabilized by mutations in both essential and non-essential components of the APC. Mutations of putative Destruction boxes (D-boxes), regions shown to be important for recognition of known APC substrates, stabilize Est1p, suggesting that Est1p is likely to be targeted for degradation directly by the APC. However, we do not detect degradation or ubiquitination of recombinant Est1p by the APC in vitro, suggesting either that the recombinant protein lacks necessary post-translational modification and/or conformation, or that the APC affects Est1p degradation by an indirect mechanism. Together, these studies shed light on the regulation of yeast telomerase assembly and demonstrate a new connection between telomere maintenance and cell cycle regulation pathways.
Collapse
|
149
|
Zhuang M, Guan S, Wang H, Burlingame AL, Wells JA. Substrates of IAP ubiquitin ligases identified with a designed orthogonal E3 ligase, the NEDDylator. Mol Cell 2013; 49:273-82. [PMID: 23201124 PMCID: PMC3557559 DOI: 10.1016/j.molcel.2012.10.022] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/24/2012] [Accepted: 10/18/2012] [Indexed: 11/23/2022]
Abstract
Inhibitors of Apoptosis Protein (IAPs) are guardian ubiquitin ligases that keep classic proapoptotic proteins in check. Systematic identification of additional IAP substrates is challenged by the heterogeneity and sheer number of ubiquitinated proteins (>5,000). Here we report a powerful catalytic tagging tool, the NEDDylator, which fuses a NEDD8 E2-conjugating enzyme, Ubc12, to the ubiquitin ligase, XIAP or cIAP1. This permits transfer of the rare ubiquitin homolog NEDD8 to the ubiquitin E3 substrates, allowing them to be efficiently purified for LC-MS/MS identification. We have identified >50 potential IAP substrates of both cytosolic and mitochondrial origin that bear hallmark N-terminal IAP binding motifs. These substrates include the recently discovered protein phosphatase PGAM5, which we show is proteolytically processed, accumulates in cytosol during apoptosis, and sensitizes cells to death. These studies reveal mechanisms and antagonistic partners for specific IAPs, and provide a powerful technology for labeling binding partners in transient protein-protein complexes.
Collapse
Affiliation(s)
- Min Zhuang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Shenheng Guan
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Haopeng Wang
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James A. Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
150
|
Wang CI, Alekseyenko AA, LeRoy G, Elia AEH, Gorchakov AA, Britton LMP, Elledge SJ, Kharchenko PV, Garcia BA, Kuroda MI. Chromatin proteins captured by ChIP-mass spectrometry are linked to dosage compensation in Drosophila. Nat Struct Mol Biol 2013; 20:202-9. [PMID: 23295261 DOI: 10.1038/nsmb.2477] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 11/21/2012] [Indexed: 12/28/2022]
Abstract
X-chromosome dosage compensation by the MSL (male-specific lethal) complex is required in Drosophila melanogaster to increase gene expression from the single male X to equal that of both female X chromosomes. Instead of focusing solely on protein complexes released from DNA, here we used chromatin-interacting protein MS (ChIP-MS) to identify MSL interactions on cross-linked chromatin. We identified MSL-enriched histone modifications, including histone H4 Lys16 acetylation and histone H3 Lys36 methylation, and CG4747, a putative Lys36-trimethylated histone H3 (H3K36me3)-binding protein. CG4747 is associated with the bodies of active genes, coincident with H3K36me3, and is mislocalized in the Set2 mutant lacking H3K36me3. CG4747 loss of function in vivo results in partial mislocalization of the MSL complex to autosomes, and RNA interference experiments confirm that CG4747 and Set2 function together to facilitate targeting of the MSL complex to active genes, validating the ChIP-MS approach.
Collapse
Affiliation(s)
- Charlotte I Wang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|