101
|
Dhamad AE, Greene E, Sales M, Nguyen P, Beer L, Liyanage R, Dridi S. 75-kDa glucose-regulated protein (GRP75) is a novel molecular signature for heat stress response in avian species. Am J Physiol Cell Physiol 2020; 318:C289-C303. [DOI: 10.1152/ajpcell.00334.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glucose-regulated protein 75 (GRP75) was first characterized in mammals as a heat shock protein-70 (HSP70) family stress chaperone based on its sequence homology. Extensive studies in mammals showed that GRP75 is induced by various stressors such as glucose deprivation, oxidative stress, and hypoxia, although it remained unresponsive to the heat shock. Such investigations are scarce in avian (nonmammalian) species. We here identified chicken GRP75 by using immunoprecipitation assay integrated with LC-MS/MS, and found that its amino acid sequence is conserved with high homology (52.5%) to the HSP70 family. Bioinformatics and 3D-structure prediction indicate that, like most HSPs, chicken GRP75 has two principal domains (the NH2-terminal ATPase and COOH-terminal region). Immunofluorescence staining shows that GRP75 is localized predominantly in the avian myoblast and hepatocyte mitochondria. Heat stress exposure upregulates GRP75 expression in a species-, genotype-, and tissue-specific manner. Overexpression of GRP75 reduces avian cell viability, and blockade of GRP75 by its small molecular inhibitor MKT-077 rescues avian cell viability during heat stress. Taken together, this is the first evidence showing that chicken GRP75, unlike its mammalian ortholog, is responsive to heat shock and plays a key role in cell survival/death pathways. Since modern avian species have high metabolic rates and are sensitive to high environmental temperature, GRP75 could open new vistas in mechanistic understanding of heat stress responses and thermotolerance in avian species.
Collapse
Affiliation(s)
- Ahmed Edan Dhamad
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas
| | - Elizabeth Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
| | - Marites Sales
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
| | - Phuong Nguyen
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
| | - Lesleigh Beer
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
| | - Rohana Liyanage
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
102
|
Deutsch EW, Bandeira N, Sharma V, Perez-Riverol Y, Carver JJ, Kundu DJ, García-Seisdedos D, Jarnuczak AF, Hewapathirana S, Pullman BS, Wertz J, Sun Z, Kawano S, Okuda S, Watanabe Y, Hermjakob H, MacLean B, MacCoss MJ, Zhu Y, Ishihama Y, Vizcaíno JA. The ProteomeXchange consortium in 2020: enabling 'big data' approaches in proteomics. Nucleic Acids Res 2020; 48:D1145-D1152. [PMID: 31686107 PMCID: PMC7145525 DOI: 10.1093/nar/gkz984] [Citation(s) in RCA: 356] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 11/24/2022] Open
Abstract
The ProteomeXchange (PX) consortium of proteomics resources (http://www.proteomexchange.org) has standardized data submission and dissemination of mass spectrometry proteomics data worldwide since 2012. In this paper, we describe the main developments since the previous update manuscript was published in Nucleic Acids Research in 2017. Since then, in addition to the four PX existing members at the time (PRIDE, PeptideAtlas including the PASSEL resource, MassIVE and jPOST), two new resources have joined PX: iProX (China) and Panorama Public (USA). We first describe the updated submission guidelines, now expanded to include six members. Next, with current data submission statistics, we demonstrate that the proteomics field is now actively embracing public open data policies. At the end of June 2019, more than 14 100 datasets had been submitted to PX resources since 2012, and from those, more than 9 500 in just the last three years. In parallel, an unprecedented increase of data re-use activities in the field, including 'big data' approaches, is enabling novel research and new data resources. At last, we also outline some of our future plans for the coming years.
Collapse
Affiliation(s)
| | - Nuno Bandeira
- Center for Computational Mass Spectrometry, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
- Department Computer Science and Engineering, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | | | - Yasset Perez-Riverol
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Jeremy J Carver
- Center for Computational Mass Spectrometry, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
- Department Computer Science and Engineering, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Deepti J Kundu
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - David García-Seisdedos
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Andrew F Jarnuczak
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Suresh Hewapathirana
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Benjamin S Pullman
- Center for Computational Mass Spectrometry, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
- Department Computer Science and Engineering, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Julie Wertz
- Center for Computational Mass Spectrometry, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
- Department Computer Science and Engineering, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Zhi Sun
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Shin Kawano
- Faculty of Contemporary Society, Toyama University of International Studies, Toyama 930–1292, Japan
- Database Center for Life Science (DBCLS), Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Chiba 277–0871, Japan
| | - Shujiro Okuda
- Niigata University Graduate School of Medical and Dental Sciences, Niigata 951–8510, Japan
| | - Yu Watanabe
- Niigata University Graduate School of Medical and Dental Sciences, Niigata 951–8510, Japan
| | - Henning Hermjakob
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing 102206, China
| | | | | | - Yunping Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing 102206, China
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606–8501, Japan
| | - Juan A Vizcaíno
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| |
Collapse
|
103
|
McRae EKS, Dupas SJ, Booy EP, Piragasam RS, Fahlman RP, McKenna SA. An RNA guanine quadruplex regulated pathway to TRAIL-sensitization by DDX21. RNA (NEW YORK, N.Y.) 2020; 26:44-57. [PMID: 31653714 PMCID: PMC6913123 DOI: 10.1261/rna.072199.119] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
DDX21 is a newly discovered RNA G-quadruplex (rG4) binding protein with no known biological rG4 targets. In this study we used label-free proteomic MS/MS to identify 26 proteins that are expressed at significantly different levels in cells expressing an rG4-binding deficient DDX21 (M4). MS data are available via ProteomeXchange with identifier PXD013501. From this list we validate MAGED2 as a protein that is regulated by DDX21 through rG4 in its 5'-UTR. MAGED2 protein levels, but not mRNA levels, are reduced by half in cells expressing DDX21 M4. MAGED2 has a repressive effect on TRAIL-R2 expression that is relieved under these conditions, resulting in elevated TRAIL-R2 mRNA and protein in MCF-7 cells, rendering them sensitive to TRAIL-mediated apoptosis. Our work identifies the role of DDX21 in regulation at the translational level through biologically relevant rG4 and shows that MAGED2 protein levels are regulated, at least in part, by the potential to form rG4 in their 5'-UTRs.
Collapse
Affiliation(s)
- Ewan K S McRae
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Steven J Dupas
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Evan P Booy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | | | - Richard P Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 2R7
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0J9
| |
Collapse
|
104
|
Ziveri J, Chhuon C, Jamet A, Rytter H, Prigent G, Tros F, Barel M, Coureuil M, Lays C, Henry T, Keep NH, Guerrera IC, Charbit A. Critical Role of a Sheath Phosphorylation Site On the Assembly and Function of an Atypical Type VI Secretion System. Mol Cell Proteomics 2019; 18:2418-2432. [PMID: 31578219 PMCID: PMC6885697 DOI: 10.1074/mcp.ra119.001532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
The bacterial pathogen Francisella tularensis possesses a noncanonical type VI secretion system (T6SS) that is required for phagosomal escape in infected macrophages. KCl stimulation has been previously used to trigger assembly and secretion of the T6SS in culture. By differential proteomics, we found here that the amounts of the T6SS proteins remained unchanged upon KCl stimulation, suggesting involvement of post-translational modifications in T6SS assembly. A phosphoproteomic analysis indeed identified a unique phosphorylation site on IglB, a key component of the T6SS sheath. Substitutions of Y139 with alanine or phosphomimetics prevented T6SS formation and abolished phagosomal escape whereas substitution with phenylalanine delayed but did not abolish phagosomal escape in J774-1 macrophages. Altogether our data demonstrated that the Y139 site of IglB plays a critical role in T6SS biogenesis, suggesting that sheath phosphorylation could participate to T6SS dynamics.Data are available via ProteomeXchange with identifier PXD013619; and on MS-Viewer, key lkaqkllxwx.
Collapse
Affiliation(s)
- Jason Ziveri
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogenesis of Systemic Infections, Paris 75015, France; Plateforme protéomique 3P5-Necker, Universit[c33c]zpi;● Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France
| | - Cerina Chhuon
- Plateforme protéomique 3P5-Necker, Universit[c33c]zpi;● Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France; Plateforme protéomique 3P5-Necker, Universit[c33c]zpi;● Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France
| | - Anne Jamet
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogenesis of Systemic Infections, Paris 75015, France; Plateforme protéomique 3P5-Necker, Universit[c33c]zpi;● Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France
| | - Héloïse Rytter
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogenesis of Systemic Infections, Paris 75015, France; Plateforme protéomique 3P5-Necker, Universit[c33c]zpi;● Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France
| | - Guénolé Prigent
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogenesis of Systemic Infections, Paris 75015, France; Plateforme protéomique 3P5-Necker, Universit[c33c]zpi;● Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France
| | - Fabiola Tros
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogenesis of Systemic Infections, Paris 75015, France; Plateforme protéomique 3P5-Necker, Universit[c33c]zpi;● Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France
| | - Monique Barel
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogenesis of Systemic Infections, Paris 75015, France; Plateforme protéomique 3P5-Necker, Universit[c33c]zpi;● Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France
| | - Mathieu Coureuil
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogenesis of Systemic Infections, Paris 75015, France; Plateforme protéomique 3P5-Necker, Universit[c33c]zpi;● Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France
| | - Claire Lays
- CIRI, Centre International de Recherche en Infectiologie, Université Lyon, Inserm, U1111, University Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Labex ECOFECT, Eco-evolutionary dynamics of infectious diseases, F-69007, LYON, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Université Lyon, Inserm, U1111, University Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Labex ECOFECT, Eco-evolutionary dynamics of infectious diseases, F-69007, LYON, France
| | - Nicholas H Keep
- Crystallography, Institute for Structural and Molecular Biology, Department of Biological Sciences Birkbeck, University of London, United Kingdom
| | - Ida Chiara Guerrera
- Plateforme protéomique 3P5-Necker, Universit[c33c]zpi;● Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France; Plateforme protéomique 3P5-Necker, Universit[c33c]zpi;● Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France.
| | - Alain Charbit
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogenesis of Systemic Infections, Paris 75015, France; Plateforme protéomique 3P5-Necker, Universit[c33c]zpi;● Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France.
| |
Collapse
|
105
|
Zhang Y, Wang H. Building an information infrastructure of spectroscopic profiling data for food-drug quality and safety management. ENTERP INF SYST-UK 2019. [DOI: 10.1080/17517575.2019.1684567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yinsheng Zhang
- School of Management and E-Business, Zhejiang Gongshang University, Hangzhou, China
- School of Information Sciences, University of Illinois at Urbana Champaign, Champaign, IL, USA
| | - Haiyan Wang
- School of Management and E-Business, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
106
|
Steckel A, Schlosser G. Citrulline Effect Is a Characteristic Feature of Deiminated Peptides in Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1586-1591. [PMID: 31300976 PMCID: PMC6695478 DOI: 10.1007/s13361-019-02271-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 05/05/2023]
Abstract
Tandem mass spectrometry of peptides is of utmost importance in proteomics. Collision-induced dissociation usually generates y type fragment ion series from tryptic peptides, carrying information on their primary structure. Amino acid side chains or differences in their basicity could alter fragmentation processes considerably. The well-known proline effect is a cleavage preference at the N-terminus of proline residues in peptides, usually yielding a very abundant y ion while suppressing others. Previously, we reported a similar phenomenon occurring at the C-terminus of citrulline residues and coined the term Cit effect. To confirm the presence of Cit effect in large proteomic datasets, we analyzed 293 peptides containing Cit residues based on the human proteome database mining work of Lee et al. (2018). The occurrence of Cit effect was found to be 44%. Comparing bond scissions at the amide linkage between Cit-Zzz (citrulline followed by a specified residue) to Aaa1-Aaa2 (Aaa can be any residue except Cit), 5 Cit-Zzz cleavages were significantly (CL = 95.0%) more frequent in > 85% of the cases in terms of relative sequential base beak occurrence. We used Pro effect to compare with Cit effect and obtained very similar results. On the other hand, our study showed that Cit effect is slightly inferior in the overall incidence to Pro effect (50% vs. 33%, CL = 95%) among deiminated peptides when Pro residues were also present in the sequence. Our results suggest that Cit effect is a characteristic feature and a possible biasing factor of deiminated peptides which can confirm the position of citrullination sites.
Collapse
Affiliation(s)
- Arnold Steckel
- Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE Research Group of Peptide Chemistry, Department of Organic Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Gitta Schlosser
- MTA-ELTE Research Group of Peptide Chemistry, Department of Organic Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary.
- Department of Analytical Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, 1117, Hungary.
| |
Collapse
|
107
|
Borja T, Karim N, Goecker Z, Salemi M, Phinney B, Naeem M, Rice R, Parker G. Proteomic genotyping of fingermark donors with genetically variant peptides. Forensic Sci Int Genet 2019; 42:21-30. [DOI: 10.1016/j.fsigen.2019.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/09/2019] [Accepted: 05/26/2019] [Indexed: 01/31/2023]
|
108
|
Ghisaura S, Melis R, Biosa G, Pagnozzi D, Slavski H, Uzzau S, Anedda R, Addis MF. Liver proteome dataset of Sparus aurata exposed to low temperatures. Data Brief 2019; 26:104419. [PMID: 31528672 PMCID: PMC6742852 DOI: 10.1016/j.dib.2019.104419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/29/2019] [Accepted: 08/12/2019] [Indexed: 11/20/2022] Open
Abstract
We report the proteomic dataset of livers from Sparus aurata exposed to low temperature during growth. Gilthead sea bream juveniles were reared in Recirculating Aquaculture Systems (RAS) and exposed to a temperature ramp made of two phases of four weeks each: a Cooling phase from 18 °C (t0) to 11 °C (t1) and a Cold Maintenance phase at 11 °C (t1-t2) in a 8 week feeding trial. At the end of the experiment, sea bream livers were collected and analyzed with a shotgun proteomics approach based on filter-aided sample preparation followed by tandem mass spectrometry, peptide identification carried out using Sequest-HT as search engine within the Proteome Discoverer informatic platform, and label-free differential analysis. The mass spectrometry data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD011059 (Vizcaíno et al., 2016; Deutsch et al., 2017; Perez-Riverol et al., 2016). The dataset described here is also related to the research article entitled “Liver proteomics of gilthead sea bream (Sparus aurata) exposed to cold stress” (Ghisaura et al., 2019).
Collapse
Affiliation(s)
- S Ghisaura
- Porto Conte Ricerche, SP 55 Porto Conte/Capo Caccia, Km 8.400, Loc. Tramariglio, 07041 Alghero, Italy
| | - R Melis
- Porto Conte Ricerche, SP 55 Porto Conte/Capo Caccia, Km 8.400, Loc. Tramariglio, 07041 Alghero, Italy
| | - G Biosa
- Porto Conte Ricerche, SP 55 Porto Conte/Capo Caccia, Km 8.400, Loc. Tramariglio, 07041 Alghero, Italy
| | - D Pagnozzi
- Porto Conte Ricerche, SP 55 Porto Conte/Capo Caccia, Km 8.400, Loc. Tramariglio, 07041 Alghero, Italy
| | - H Slavski
- Aller Aqua, Allervej 130, DK-6070, Christiansfeld, Denmark
| | - S Uzzau
- Porto Conte Ricerche, SP 55 Porto Conte/Capo Caccia, Km 8.400, Loc. Tramariglio, 07041 Alghero, Italy.,Università degli Studi di Sassari, Dipartimento di Scienze Biomediche, Viale S. Pietro 43/B, 07100 Sassari, Italy
| | - R Anedda
- Porto Conte Ricerche, SP 55 Porto Conte/Capo Caccia, Km 8.400, Loc. Tramariglio, 07041 Alghero, Italy
| | - M F Addis
- Porto Conte Ricerche, SP 55 Porto Conte/Capo Caccia, Km 8.400, Loc. Tramariglio, 07041 Alghero, Italy.,Università degli Studi di Milano, Dipartimento di Medicina Veterinaria, Via Celoria 10, 20133 Milano, Italy
| |
Collapse
|
109
|
Uyaniker S, van der Spek SJF, Reinders NR, Xiong H, Li KW, Bossers K, Smit AB, Verhaagen J, Kessels HW. The Effects of Sindbis Viral Vectors on Neuronal Function. Front Cell Neurosci 2019; 13:362. [PMID: 31440143 PMCID: PMC6694438 DOI: 10.3389/fncel.2019.00362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/25/2019] [Indexed: 11/16/2022] Open
Abstract
Viral vectors are attractive tools to express genes in neurons. Transduction of neurons with a recombinant, replication-deficient Sindbis viral vector is a method of choice for studying the effects of short-term protein overexpression on neuronal function. However, to which extent Sindbis by itself may affect neurons is not fully understood. We assessed effects of neuronal transduction with a Sindbis viral vector on the transcriptome and proteome in organotypic hippocampal slice cultures, and analyzed the electrophysiological properties of individual CA1 neurons, at 24 h and 72 h after viral vector injection. Whereas Sindbis caused substantial gene expression alterations, changes at the protein level were less pronounced. Alterations in transcriptome and proteome were predominantly limited to proteins involved in mediating anti-viral innate immune responses. Sindbis transduction did not affect the intrinsic electrophysiological properties of individual neurons: the membrane potential and neuronal excitability were similar between transduced and non-transduced CA1 neurons up to 72 h after Sindbis injection. Synaptic currents also remained unchanged upon Sindbis transduction, unless slices were massively infected for 72 h. We conclude that Sindbis viral vectors at low transduction rates are suitable for studying short-term effects of a protein of interest on electrophysiological properties of neurons, but not for studies on the regulation of gene expression.
Collapse
Affiliation(s)
- Seçil Uyaniker
- Laboratory for Neuroregeneration, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Sophie J F van der Spek
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands
| | - Niels R Reinders
- Laboratory for Neuroregeneration, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands.,Department of Cellular and Computational Neuroscience, Swammerdam Institute for Life Sciences, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| | - Hui Xiong
- Laboratory for Neuroregeneration, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands.,Department of Cellular and Computational Neuroscience, Swammerdam Institute for Life Sciences, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands
| | - Koen Bossers
- Laboratory for Neuroregeneration, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands
| | - Joost Verhaagen
- Laboratory for Neuroregeneration, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands.,Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands
| | - Helmut W Kessels
- Laboratory for Neuroregeneration, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands.,Department of Cellular and Computational Neuroscience, Swammerdam Institute for Life Sciences, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
110
|
Gutsch A, Sergeant K, Keunen E, Prinsen E, Guerriero G, Renaut J, Hausman JF, Cuypers A. Does long-term cadmium exposure influence the composition of pectic polysaccharides in the cell wall of Medicago sativa stems? BMC PLANT BIOLOGY 2019; 19:271. [PMID: 31226937 PMCID: PMC6588869 DOI: 10.1186/s12870-019-1859-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/30/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND The heavy metal cadmium (Cd) accumulates in the environment due to anthropogenic influences. It is unessential and harmful to all life forms. The plant cell wall forms a physical barrier against environmental stress and changes in the cell wall structure have been observed upon Cd exposure. In the current study, changes in the cell wall composition and structure of Medicago sativa stems were investigated after long-term exposure to Cd. Liquid chromatography coupled to mass spectrometry (LC-MS) for quantitative protein analysis was complemented with targeted gene expression analysis and combined with analyses of the cell wall composition. RESULTS Several proteins determining for the cell wall structure changed in abundance. Structural changes mainly appeared in the composition of pectic polysaccharides and data indicate an increased presence of xylogalacturonan in response to Cd. Although a higher abundance and enzymatic activity of pectin methylesterase was detected, the total pectin methylation was not affected. CONCLUSIONS An increased abundance of xylogalacturonan might hinder Cd binding in the cell wall due to the methylation of its galacturonic acid backbone. Probably, the exclusion of Cd from the cell wall and apoplast limits the entry of the heavy metal into the symplast and is an important factor during tolerance acquisition.
Collapse
Affiliation(s)
- Annelie Gutsch
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg
- Centre for Environmental Sciences, Hasselt University, Agoralaan building D, 3590 Diepenbeek, Belgium
| | - Kjell Sergeant
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg
| | - Els Keunen
- Centre for Environmental Sciences, Hasselt University, Agoralaan building D, 3590 Diepenbeek, Belgium
| | - Els Prinsen
- Integrated Molecular Plant Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg
| | - Jenny Renaut
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg
| | - Jean-Francois Hausman
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, Agoralaan building D, 3590 Diepenbeek, Belgium
| |
Collapse
|
111
|
Janschitz M, Romanov N, Varnavides G, Hollenstein DM, Gérecová G, Ammerer G, Hartl M, Reiter W. Novel interconnections of HOG signaling revealed by combined use of two proteomic software packages. Cell Commun Signal 2019; 17:66. [PMID: 31208443 PMCID: PMC6572760 DOI: 10.1186/s12964-019-0381-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
Modern quantitative mass spectrometry (MS)-based proteomics enables researchers to unravel signaling networks by monitoring proteome-wide cellular responses to different stimuli. MS-based analysis of signaling systems usually requires an integration of multiple quantitative MS experiments, which remains challenging, given that the overlap between these datasets is not necessarily comprehensive. In a previous study we analyzed the impact of the yeast mitogen-activated protein kinase (MAPK) Hog1 on the hyperosmotic stress-affected phosphorylome. Using a combination of a series of hyperosmotic stress and kinase inhibition experiments, we identified a broad range of direct and indirect substrates of the MAPK. Here we re-evaluate this extensive MS dataset and demonstrate that a combined analysis based on two software packages, MaxQuant and Proteome Discoverer, increases the coverage of Hog1-target proteins by 30%. Using protein-protein proximity assays we show that the majority of new targets gained by this analysis are indeed Hog1-interactors. Additionally, kinetic profiles indicate differential trends of Hog1-dependent versus Hog1-independent phosphorylation sites. Our findings highlight a previously unrecognized interconnection between Hog1 signaling and the RAM signaling network, as well as sphingolipid homeostasis.
Collapse
Affiliation(s)
- Marion Janschitz
- Department of Biochemistry, Max F. Perutz Laboratories, Vienna BioCenter, Vienna, Austria
- Children’s Cancer Research Institute, St. Anna Kinderspital, Vienna, Austria
| | - Natalie Romanov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Current Address: Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Gina Varnavides
- Mass Spectrometry Facility, Max F. Perutz Laboratories, University of Vienna, Vienna BioCenter, Vienna, Austria
| | | | - Gabriela Gérecová
- Department of Biochemistry, Max F. Perutz Laboratories, Vienna BioCenter, Vienna, Austria
| | - Gustav Ammerer
- Department of Biochemistry, Max F. Perutz Laboratories, Vienna BioCenter, Vienna, Austria
| | - Markus Hartl
- Department of Biochemistry, Max F. Perutz Laboratories, Vienna BioCenter, Vienna, Austria
- Mass Spectrometry Facility, Max F. Perutz Laboratories, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Wolfgang Reiter
- Mass Spectrometry Facility, Max F. Perutz Laboratories, University of Vienna, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
112
|
Combined transcriptomic and proteomic analysis reveals a diversity of venom-related and toxin-like peptides expressed in the mat anemone Zoanthus natalensis (Cnidaria, Hexacorallia). Arch Toxicol 2019; 93:1745-1767. [PMID: 31203412 DOI: 10.1007/s00204-019-02456-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022]
Abstract
Venoms from marine animals have been recognized as a new emerging source of peptide-based therapeutics. Several peptide toxins from sea anemone have been investigated as therapeutic leads or pharmacological tools. Venom complexity should be further highlighted using combined strategies of large-scale sequencing and data analysis which integrated transcriptomics and proteomics to elucidate new proteins or peptides to be compared among species. In this work, transcriptomic and proteomic analyses were combined to identify six groups of expressed peptide toxins in Zoanthus natalensis. These include neurotoxin, hemostatic and hemorrhagic toxin, protease inhibitor, mixed function enzymes, venom auxiliary proteins, allergen peptides, and peptides related to the innate immunity. Molecular docking analysis indicated that one expressed Zoanthus Kunitz-like peptide, ZoaKuz1, could be a voltage-gated potassium channels blocker and, hence, it was selected for functional studies. Functional bioassays revealed that ZoaKuz1 has an intrinsic neuroprotective activity in zebrafish model of Parkinson's disease. Since pharmacological blockade of KV channels is known to induce neuroprotective effects, ZoaKuz1 holds the potential to be developed in a therapeutic tool to control neural dysfunction by slowing or even halting neurodegeneration mediated by ion-channel hyperactivity.
Collapse
|
113
|
Panić‐Janković T, Mitulović G. Human chorionic gonadotrophin pharmaceutical formulations of urinary origin display high levels of contaminant proteins-A label-free quantitation proteomics study. Electrophoresis 2019; 40:1622-1629. [PMID: 30883802 PMCID: PMC6593423 DOI: 10.1002/elps.201900087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/17/2022]
Abstract
To determine whether there is a measurable protein background in different formulations of urinary and recombinant human chorionic gonadotropin (hCG). Primary outcome measures: identification of contaminant proteins in urinary-derived formulations of hCG; secondary outcome measures: quantitative values of contaminant proteins in different batches of urinary -derived hCG formulations. It was found that urinary-derived batches have high presence of contaminant proteins beside the active substance. The relative amount of contaminant proteins and hCG differs strongly between different batches.
Collapse
Affiliation(s)
- Tanja Panić‐Janković
- Clinical Department of Laboratory MedicineMedical University of ViennaViennaAustria
| | - Goran Mitulović
- Clinical Department of Laboratory MedicineMedical University of ViennaViennaAustria
- Proteomic Core FacilityMedical University of ViennaViennaAustria
| |
Collapse
|
114
|
Proteomic insight into the pathogenesis of CAPN5-vitreoretinopathy. Sci Rep 2019; 9:7608. [PMID: 31110225 PMCID: PMC6527583 DOI: 10.1038/s41598-019-44031-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
CAPN5 Neovascular Inflammatory Vitreoretinopathy (CAPN5-NIV; OMIM 193235) is a poorly-understood rare, progressive inflammatory intraocular disease with limited therapeutic options. To profile disease effector proteins in CAPN5-NIV patient vitreous, liquid vitreous biopsies were collected from two groups: eyes from control subjects (n = 4) with idiopathic macular holes (IMH) and eyes from test subjects (n = 12) with different stages of CAPN5-NIV. Samples were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Protein expression changes were evaluated by principal component analysis, 1-way ANOVA (significant p-value < 0.05), hierarchical clustering, gene ontology, and pathway representation. There were 216 differentially-expressed proteins (between CAPN5-NIV and control vitreous), including those unique to and abundant in each clinical stage. Gene ontology analysis revealed decreased synaptic signaling proteins in CAPN5-NIV vitreous compared to controls. Pathway analysis revealed that inflammatory mediators of the acute phase response and the complement cascade were highly-represented. The CAPN5-NIV vitreous proteome displayed characteristic enrichment of proteins and pathways previously-associated with non-infectious posterior uveitis, rhegmatogenous retinal detachment (RRD), age-related macular degeneration (AMD), proliferative diabetic retinopathy (PDR), and proliferative vitreoretinopathy (PVR). This study expands our knowledge of affected molecular pathways in CAPN5-NIV using unbiased, shotgun proteomic analysis rather than targeted detection platforms. The high-levels and representation of acute phase response proteins suggests a functional role for the innate immune system in CAPN5-NIV pathogenesis.
Collapse
|
115
|
Using proteins to study how microbes contribute to soil ecosystem services: The current state and future perspectives of soil metaproteomics. J Proteomics 2019; 198:50-58. [DOI: 10.1016/j.jprot.2018.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023]
|
116
|
Krutilin A, Maier S, Schuster R, Kruber S, Kwiatkowski M, Robertson WD, Hansen NO, Miller RJD, Schlüter H. Sampling of Tissues with Laser Ablation for Proteomics: Comparison of Picosecond Infrared Laser and Microsecond Infrared Laser. J Proteome Res 2019; 18:1451-1457. [PMID: 30669834 DOI: 10.1021/acs.jproteome.9b00009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It was recently shown that sampling of tissues with a picosecond infrared laser (PIRL) for analysis with bottom-up proteomics is advantageous compared to mechanical homogenization. Because the cold ablation of tissues with PIRL irradiation is soft, proteins remain intact and even enzymatic activities are detectable in PIRL homogenates. In contrast, it was observed that irradiation of tissues with a microsecond infrared laser (MIRL) heats the tissue, thereby causing significant damage. In this study, we investigated the question if sampling of tissues with a MIRL for analysis of their proteomes via bottom-up proteomics is possible and how the results are different from sampling of tissues with a PIRL. Comparison of the proteomes of the MIRL and PIRL tissue homogenates showed that the yield of proteins identified by bottom-up proteomics was larger in PIRL homogenates of liver tissue, whereas the yield was higher in MIRL homogenates of muscle tissue, which has a significantly higher content of connective tissue than liver tissue. In the PIRL homogenate of renal tissue, enzymatic activities were detectable, whereas in the corresponding MIRL homogenate, enzymatic activities were absent. In conclusion, MIRL and PIRL pulses are suited for sampling tissues for bottom-up proteomics. If it is important for bottom-up proteomic investigations to inactivate enzymatic activities already in the tissue before its ablation, MIRL tissue sampling is an option, because the proteins in the tissues are denatured and inactivated by the heating of the tissue during irradiation with MIRL irradiation prior to the ablation of the tissue. This heating effect is absent during irradiation of tissue with a PIRL; therefore, sampling of tissues with a PIRL is a choice for purifying enzymes, because their activities are maintained.
Collapse
Affiliation(s)
- Andrey Krutilin
- Atomically Resolved Dynamics Department, Center for Free Electron Laser Science , Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149 , 22761 Hamburg , Germany
| | - Stephanie Maier
- Atomically Resolved Dynamics Department, Center for Free Electron Laser Science , Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149 , 22761 Hamburg , Germany
| | - Raphael Schuster
- University of Hamburg , Martin-Luther-King-Platz 6 , 20146 Hamburg , Germany
| | - Sebastian Kruber
- Atomically Resolved Dynamics Department, Center for Free Electron Laser Science , Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149 , 22761 Hamburg , Germany
| | - Marcel Kwiatkowski
- Groningen Research Institute of Pharmacy, Pharmacokinetics, Toxicology and Targeting , University of Groningen , Antonius Deusinglaan 1 , 9713 AV Groningen , Netherlands
| | - Wesley D Robertson
- Atomically Resolved Dynamics Department, Center for Free Electron Laser Science , Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149 , 22761 Hamburg , Germany
| | - Nils-Owe Hansen
- Atomically Resolved Dynamics Department, Center for Free Electron Laser Science , Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149 , 22761 Hamburg , Germany
| | - R J Dwayne Miller
- Atomically Resolved Dynamics Department, Center for Free Electron Laser Science , Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149 , 22761 Hamburg , Germany.,Departments of Chemistry and Physics , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine , University Medical Center Hamburg-Eppendorf , Martinistraße 52 , 20246 Hamburg , Germany
| |
Collapse
|
117
|
Vicente CSL, Nemchinov LG, Mota M, Eisenback JD, Kamo K, Vieira P. Identification and characterization of the first pectin methylesterase gene discovered in the root lesion nematode Pratylenchus penetrans. PLoS One 2019; 14:e0212540. [PMID: 30794636 PMCID: PMC6386239 DOI: 10.1371/journal.pone.0212540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/05/2019] [Indexed: 02/04/2023] Open
Abstract
Similar to other plant-parasitic nematodes, root lesion nematodes possess an array of enzymes that are involved in the degradation of the plant cell wall. Here we report the identification of a gene encoding a cell wall-degrading enzyme, pectin methylesterase PME (EC 3.1.1.11), in the root lesion nematode Pratylenchus penetrans. Both genomic and coding sequences of the gene were cloned for this species, that included the presence of four introns which eliminated a possible contamination from bacteria. Expression of the Pp-pme gene was localized in the esophageal glands of P. penetrans as determined by in situ hybridization. Temporal expression of Pp-pme in planta was validated at early time points of infection. The possible function and activity of the gene were assessed by transient expression of Pp-pme in plants of Nicotiana benthamiana plants via a Potato virus X-based vector. To our knowledge, this is the first report on identification and characterization of a PME gene within the phylum Nematoda.
Collapse
Affiliation(s)
- Cláudia S. L. Vicente
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - Lev G. Nemchinov
- Molecular Plant Pathology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Manuel Mota
- Departamento de Biologia & ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - Jonathan D. Eisenback
- School of Plant Environmental Science, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Kathryn Kamo
- Floral and Nursery Plants Research Unit, United States of National Arboretum, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Paulo Vieira
- Molecular Plant Pathology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
- School of Plant Environmental Science, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
118
|
Anjo SI, Melo MN, Loureiro LR, Sabala L, Castanheira P, Grãos M, Manadas B. oxSWATH: An integrative method for a comprehensive redox-centered analysis combined with a generic differential proteomics screening. Redox Biol 2019; 22:101130. [PMID: 30737169 PMCID: PMC6435957 DOI: 10.1016/j.redox.2019.101130] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 12/21/2022] Open
Abstract
Most of the redox proteomics strategies are focused on the identification and relative quantification of cysteine oxidation without considering the variation in the total levels of the proteins. However, protein synthesis and protein degradation also belong to the regulatory mechanisms of the cells, being therefore important to consider the changes in total protein levels in PTMs-focused analyses, such as cysteine redox characterization. Therefore, a novel integrative approach combining the SWATH-MS method with differential alkylation using a combination of commonly available alkylating reagents (oxSWATH) is presented, by which it is possible to integrate the information regarding relative cysteine oxidation with the analysis of the total protein levels in a cost-effective high-throughput approach. The proposed method was tested using a redox-regulated protein and further applied to a comparative analysis of secretomes obtained from cells cultured under control or oxidative stress conditions to strengthen the importance of considering the overall proteome changes. Using the OxSWATH method it was possible to determine both the relative proportion of reduced and reversible oxidized oxoforms, as well as the total levels of each oxoform by taking into consideration the total levels of the protein. Therefore, using OxSWATH the comparative analyses can be performed at two different levels by considering the relative proportion or the total levels at both peptide and protein level. Moreover, since samples are acquired in SWATH-MS mode, besides the redox centered analysis, a generic differential protein expression analysis can also be performed, allowing a truly comprehensive evaluation of proteomics changes upon the oxidative stimulus. Data are available via ProteomeXchange and SWATHAtlas with the identifiers PXD006802, PXD006802, and PASS01210. Determination of redox changes considering protein total levels. Integrative redoxomics and common differential proteomics in a single analysis. Differential alkylation strategy using commonly available alkylating agents. First untargeted label-free quantitative method to study cysteine oxidation.
Collapse
Affiliation(s)
- Sandra I Anjo
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| | - Matilde N Melo
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Liliana R Loureiro
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Lúcia Sabala
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | | - Mário Grãos
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Biocant, Technology Transfer Association, Cantanhede, Portugal
| | - Bruno Manadas
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
119
|
Jarnuczak AF, Ternent T, Vizcaíno JA. Quantitative Proteomics Data in the Public Domain: Challenges and Opportunities. Methods Mol Biol 2019; 1977:217-235. [PMID: 30980331 DOI: 10.1007/978-1-4939-9232-4_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mass spectrometry based proteomics is no longer only a qualitative discipline, and can be successfully employed to obtain a truly multidimensional view of the proteome. In particular, systematic protein expression profiling is now a routine part of many studies in the field and beyond. The large growth in the number of quantitative studies is accompanied by a trend to share publicly the associated analysis results and the underlying raw data. This trend, established and strongly supported by public repositories such as the PRIDE database at the European Bioinformatics Institute, opens up enormous possibilities to explore the data beyond the original publications, for instance by reusing, reanalyzing, and performing different flavors of meta-analysis studies. To help researchers and scientists realize about this potential, here we describe the mainstream public proteomics resources containing quantitative proteomics data, including the processed analysis results and/or the underlying raw data. We then present and discuss the most important points to consider when attempting to (re)use proteomics data in the public domain. We conclude by highlighting potential pitfalls of (re)using quantitative data and discuss some of our own experiences in this context.
Collapse
Affiliation(s)
- Andrew F Jarnuczak
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Tobias Ternent
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Juan Antonio Vizcaíno
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK.
| |
Collapse
|
120
|
Filippova A, Lyapina I, Kirov I, Zgoda V, Belogurov A, Kudriaeva A, Ivanov V, Fesenko I. Salicylic acid influences the protease activity and posttranslation modifications of the secreted peptides in the moss Physcomitrella patens. J Pept Sci 2018; 25:e3138. [PMID: 30575224 DOI: 10.1002/psc.3138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/18/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023]
Abstract
Plant secretome comprises dozens of secreted proteins. However, little is known about the composition of the whole secreted peptide pools and the proteases responsible for the generation of the peptide pools. The majority of studies focus on target detection and characterization of specific plant peptide hormones. In this study, we performed a comprehensive analysis of the whole extracellular peptidome, using moss Physcomitrella patens as a model. Hundreds of modified and unmodified endogenous peptides that originated from functional and nonfunctional protein precursors were identified. The plant proteases responsible for shaping the pool of endogenous peptides were predicted. Salicylic acid (SA) influenced peptide production in the secretome. The proteasome activity was altered upon SA treatment, thereby influencing the composition of the peptide pools. These results shed more light on the role of proteases and posttranslational modification in the "active management" of the extracellular peptide pool in response to stress conditions. It also identifies a list of potential peptide hormones in the moss secretome for further analysis.
Collapse
Affiliation(s)
- Anna Filippova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Irina Lyapina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Ilya Kirov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Victor Zgoda
- V.N. Orekhovich Research Institute of Biomedical Chemistry, Department of Proteomic Research and Mass Spectrometry, Moscow, Russian Federation
| | - Alexey Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Anna Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vadim Ivanov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Igor Fesenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
121
|
Aslebagh R, Channaveerappa D, Arcaro KF, Darie CC. Proteomics analysis of human breast milk to assess breast cancer risk. Electrophoresis 2018; 39:653-665. [PMID: 29193311 DOI: 10.1002/elps.201700123] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/19/2022]
Abstract
Detection of breast cancer (BC) in young women is challenging because mammography, the most common tool for detecting BC, is not effective on the dense breast tissue characteristic of young women. In addition to the limited means for detecting their BC, young women face a transient increased risk of pregnancy-associated BC. As a consequence, reproductively active women could benefit significantly from a tool that provides them with accurate risk assessment and early detection of BC. One potential method for detection of BC is biochemical monitoring of proteins and other molecules in bodily fluids such as serum, nipple aspirate, ductal lavage, tear, urine, saliva and breast milk. Of all these fluids, only breast milk provides access to a large volume of breast tissue, in the form of exfoliated epithelial cells, and to the local breast environment, in the form of molecules in the milk. Thus, analysis of breast milk is a non-invasive method with significant potential for assessing BC risk. Here we analyzed human breast milk by mass spectrometry (MS)-based proteomics to build a biomarker signature for early detection of BC. Ten milk samples from eight women provided five paired-groups (cancer versus control) for analysis of dysregulatedproteins: two within woman comparisons (milk from a diseased breast versus a healthy breast of the same woman) and three across women comparisons (milk from a woman with cancer versus a woman without cancer). Despite a wide range in the time between milk donation and cancer diagnosis (cancer diagnosis occurred from 1 month before to 24 months after milk donation), the levels of some proteins differed significantly between cancer and control in several of the five comparison groups. These pilot data are supportive of the idea that molecular analysis of breast milk will identify proteins informative for early detection and accurate assessment of BC risk, and warrant further research. Data are available via ProteomeXchange with identifier PXD007066.
Collapse
Affiliation(s)
- Roshanak Aslebagh
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Devika Channaveerappa
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Kathleen F Arcaro
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| |
Collapse
|
122
|
Gökmen-Polar Y, True JD, Vieth E, Gu Y, Gu X, Qi GD, Mosley AL, Badve SS. Quantitative phosphoproteomic analysis identifies novel functional pathways of tumor suppressor DLC1 in estrogen receptor positive breast cancer. PLoS One 2018; 13:e0204658. [PMID: 30278072 PMCID: PMC6168143 DOI: 10.1371/journal.pone.0204658] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 09/12/2018] [Indexed: 11/19/2022] Open
Abstract
Deleted in Liver Cancer-1 (DLC1), a member of the RhoGAP family of proteins, functions as a tumor suppressor in several cancers including breast cancer. However, its clinical relevance is unclear in breast cancer. In this study, expression of DLC1 was correlated with prognosis using publicly available breast cancer gene expression datasets and quantitative Reverse Transcription PCR in cohorts of Estrogen Receptor-positive (ER+) breast cancer. Low expression of DLC1 correlates with poor prognosis in patients with ER+ breast cancer with further decrease in metastatic lesions. The Cancer Genome Atlas (TCGA) data showed that down regulation of DLC1 is not due to methylation or mutations. To seek further insights in understanding the role of DLC1 in ER+ breast cancer, we stably overexpressed DLC1-full-length (DLC1-FL) in T-47D breast cancer cells; this inhibited cell colony formation significantly in vitro compared to its control counterpart. Label-free global proteomic and TiO2 phosphopeptide enrichment assays (ProteomeXchange identifier PXD008220) showed that 205 and 122 phosphopeptides were unique to DLC1-FL cells and T-47D-control cells, respectively, whereas 6,726 were quantified by phosphoproteomics analysis in both conditions. The top three significant clusters of differentially phosphopeptides identified by DAVID pathway analysis represent cell-cell adhesion, mRNA processing and splicing, and transcription regulation. Phosphoproteomics analysis documented an inverse relation between DLC1 expression and several phosphopeptides including epithelial cell transforming sequence 2 (ECT2). Decreased phosphorylation of ECT2 at the residue T359, critical for its active conformational change, was validated by western blot. In addition, the ECT2 T359-containing phosphopeptide was detected in both basal and luminal patient-derived breast cancers breast cancer phosphoproteomics data on the Clinical Proteomic Tumor Analysis Consortium (CPTAC) Assay portal. Together, for the first time, this implicates ECT2 phosphorylation in breast cancer, which has been proposed as a therapeutic target in lung cancer. In conclusion, this data suggests that low expression of DLC1 is associated with poor prognosis. Targeting ECT2 phosphopeptides could provide a promising mechanism for controlling poor prognosis seen in DLC1low ER+ breast cancer.
Collapse
Affiliation(s)
- Yesim Gökmen-Polar
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America
- * E-mail:
| | - Jason D. True
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Edyta Vieth
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Yuan Gu
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Xiaoping Gu
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Guihong D. Qi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Sunil S. Badve
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, United States of America
| |
Collapse
|
123
|
Liu C, Mao L, Zheng X, Yuan J, Hu B, Cai Y, Xie H, Peng X, Ding X. Comparative proteomic analysis of Methanothermobacter thermautotrophicus reveals methane formation from H 2 and CO 2 under different temperature conditions. Microbiologyopen 2018; 8:e00715. [PMID: 30260585 PMCID: PMC6528648 DOI: 10.1002/mbo3.715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 11/22/2022] Open
Abstract
The growth of all methanogens is limited to a specific temperature range. However, Methanothermobacter thermautotrophicus can be found in a variety of natural and artificial environments, the temperatures of which sometimes even exceed the temperature growth ranges of thermophiles. As a result, the extent to which methane production and survival are affected by temperature remains unclear. To investigate the mechanisms of methanogenesis that Archaea have evolved to cope with drastic temperature shifts, the responses of Methanothermobacter thermautotrophicus to temperature were investigated under a high temperature growth (71°C) and cold shock (4°C) using Isobaric tags for relative and absolute quantitation (iTRAQ). The results showed that methane formation is decreased and that protein folding and degradation are increased in both high‐ and low‐temperature treatments. In addition, proteins predicted to be involved in processing environmental information processing and in cell membrane/wall/envelope biogenesis may play key roles in affecting methane formation and enhancing the response of M. thermautotrophicus to temperature stress. Analysis of the genomic locations of the genes corresponding to these temperature‐dependent proteins predicted that 77 of the genes likely to form 32 gene clusters. Here, we assess the response of M. thermautotrophicus to different temperatures and provide a new level of understanding of methane formation and cellular putative adaptive responses.
Collapse
Affiliation(s)
- Cong Liu
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Lihui Mao
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Xiongmin Zheng
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Jiangan Yuan
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Beijuan Hu
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Yaohui Cai
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Hongwei Xie
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Xiaojue Peng
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Xia Ding
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China.,Biology Experimental Teaching Demonstration, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
124
|
Yi X, Wang B, An Z, Gong F, Li J, Fu Y. Quality control of single amino acid variations detected by tandem mass spectrometry. J Proteomics 2018; 187:144-151. [PMID: 30012419 DOI: 10.1016/j.jprot.2018.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/26/2018] [Accepted: 07/02/2018] [Indexed: 02/04/2023]
Abstract
Study of single amino acid variations (SAVs) of proteins, resulting from single nucleotide polymorphisms, is of great importance for understanding the relationships between genotype and phenotype. In mass spectrometry based shotgun proteomics, identification of peptides with SAVs often suffers from high error rates on the variant sites detected. These site errors are due to multiple reasons and can be confirmed by manual inspection or genomic sequencing. Here, we present a software tool, named SAVControl, for site-level quality control of variant peptide identifications. It mainly includes strict false discovery rate control of variant peptide identifications and variant site verification by unrestrictive mass shift relocalization. SAVControl was validated on three colorectal adenocarcinoma cell line datasets with genomic sequencing evidences and tested on a colorectal cancer dataset from The Cancer Genome Atlas. The results show that SAVControl can effectively remove false detections of SAVs. SIGNIFICANCE Protein sequence variations caused by single nucleotide polymorphisms (SNPs) are single amino acid variations (SAVs). The investigation of SAVs may provide a chance for understanding the relationships between genotype and phenotype. Mass spectrometry (MS) based proteomics provides a large-scale way to detect SAVs. However, using the current analysis strategy to detect SAVs may lead to high rate of false positives. The SAVControl we present here is a computational workflow and software tool for site-level quality control of SAVs detected by MS. It accesses the confidence of detected variant sites by relocating the mass shift responsible for an SAV to search for alternative interpretations. In addition, it uses a strict false discovery rate control method for variant peptide identifications. The advantages of SAVControl were demonstrated on three colorectal adenocarcinoma cell line datasets and a colorectal cancer dataset. We believe that SAVControl will be a powerful tool for computational proteomics and proteogenomics.
Collapse
Affiliation(s)
- Xinpei Yi
- NCMIS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Wang
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiwu An
- NCMIS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuzhou Gong
- NCMIS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jing Li
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yan Fu
- NCMIS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
125
|
Salunkhe V, De Cuyper IM, Papadopoulos P, van der Meer PF, Daal BB, Villa-Fajardo M, de Korte D, van den Berg TK, Gutiérrez L. A comprehensive proteomics study on platelet concentrates: Platelet proteome, storage time and Mirasol pathogen reduction technology. Platelets 2018; 30:368-379. [PMID: 29553857 DOI: 10.1080/09537104.2018.1447658] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Platelet concentrates (PCs) represent a blood transfusion product with a major concern for safety as their storage temperature (20-24°C) allows bacterial growth, and their maximum storage time period (less than a week) precludes complete microbiological testing. Pathogen inactivation technologies (PITs) provide an additional layer of safety to the blood transfusion products from known and unknown pathogens such as bacteria, viruses, and parasites. In this context, PITs, such as Mirasol Pathogen Reduction Technology (PRT), have been developed and are implemented in many countries. However, several studies have shown in vitro that Mirasol PRT induces a certain level of platelet shape change, hyperactivation, basal degranulation, and increased oxidative damage during storage. It has been suggested that Mirasol PRT might accelerate what has been described as the platelet storage lesion (PSL), but supportive molecular signatures have not been obtained. We aimed at dissecting the influence of both variables, that is, Mirasol PRT and storage time, at the proteome level. We present comprehensive proteomics data analysis of Control PCs and PCs treated with Mirasol PRT at storage days 1, 2, 6, and 8. Our workflow was set to perform proteomics analysis using a gel-free and label-free quantification (LFQ) approach. Semi-quantification was based on LFQ signal intensities of identified proteins using MaxQuant/Perseus software platform. Data are available via ProteomeXchange with identifier PXD008119. We identified marginal differences between Mirasol PRT and Control PCs during storage. However, those significant changes at the proteome level were specifically related to the functional aspects previously described to affect platelets upon Mirasol PRT. In addition, the effect of Mirasol PRT on the platelet proteome appeared not to be exclusively due to an accelerated or enhanced PSL. In summary, semi-quantitative proteomics allows to discern between proteome changes due to Mirasol PRT or PSL, and proves to be a methodology suitable to phenotype platelets in an unbiased manner, in various physiological contexts.
Collapse
Affiliation(s)
- Vishal Salunkhe
- a Department of Blood Cell Research , Sanquin Research and Landsteiner Laboratory, Academic Medical Centre (AMC), University of Amsterdam (UvA) , Amsterdam , The Netherlands
| | - Iris M De Cuyper
- a Department of Blood Cell Research , Sanquin Research and Landsteiner Laboratory, Academic Medical Centre (AMC), University of Amsterdam (UvA) , Amsterdam , The Netherlands
| | - Petros Papadopoulos
- b Department of Hematology , Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC) , Madrid , Spain
| | - Pieter F van der Meer
- c Department of Product and Process Development , Sanquin Blood Bank , Amsterdam , The Netherlands
| | - Brunette B Daal
- c Department of Product and Process Development , Sanquin Blood Bank , Amsterdam , The Netherlands
| | - María Villa-Fajardo
- b Department of Hematology , Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC) , Madrid , Spain
| | - Dirk de Korte
- a Department of Blood Cell Research , Sanquin Research and Landsteiner Laboratory, Academic Medical Centre (AMC), University of Amsterdam (UvA) , Amsterdam , The Netherlands.,c Department of Product and Process Development , Sanquin Blood Bank , Amsterdam , The Netherlands
| | - Timo K van den Berg
- a Department of Blood Cell Research , Sanquin Research and Landsteiner Laboratory, Academic Medical Centre (AMC), University of Amsterdam (UvA) , Amsterdam , The Netherlands
| | - Laura Gutiérrez
- a Department of Blood Cell Research , Sanquin Research and Landsteiner Laboratory, Academic Medical Centre (AMC), University of Amsterdam (UvA) , Amsterdam , The Netherlands.,b Department of Hematology , Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC) , Madrid , Spain
| |
Collapse
|
126
|
Misra BB. Updates on resources, software tools, and databases for plant proteomics in 2016-2017. Electrophoresis 2018; 39:1543-1557. [PMID: 29420853 DOI: 10.1002/elps.201700401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 01/23/2018] [Accepted: 02/02/2018] [Indexed: 11/05/2022]
Abstract
Proteomics data processing, annotation, and analysis can often lead to major hurdles in large-scale high-throughput bottom-up proteomics experiments. Given the recent rise in protein-based big datasets being generated, efforts in in silico tool development occurrences have had an unprecedented increase; so much so, that it has become increasingly difficult to keep track of all the advances in a particular academic year. However, these tools benefit the plant proteomics community in circumventing critical issues in data analysis and visualization, as these continually developing open-source and community-developed tools hold potential in future research efforts. This review will aim to introduce and summarize more than 50 software tools, databases, and resources developed and published during 2016-2017 under the following categories: tools for data pre-processing and analysis, statistical analysis tools, peptide identification tools, databases and spectral libraries, and data visualization and interpretation tools. Intended for a well-informed proteomics community, finally, efforts in data archiving and validation datasets for the community will be discussed as well. Additionally, the author delineates the current and most commonly used proteomics tools in order to introduce novice readers to this -omics discovery platform.
Collapse
Affiliation(s)
- Biswapriya B Misra
- Department of Internal Medicine, Section of Molecular Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| |
Collapse
|
127
|
Olexiouk V, Van Criekinge W, Menschaert G. An update on sORFs.org: a repository of small ORFs identified by ribosome profiling. Nucleic Acids Res 2018; 46:D497-D502. [PMID: 29140531 PMCID: PMC5753181 DOI: 10.1093/nar/gkx1130] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 12/13/2022] Open
Abstract
sORFs.org (http://www.sorfs.org) is a public repository of small open reading frames (sORFs) identified by ribosome profiling (RIBO-seq). This update elaborates on the major improvements implemented since its initial release. sORFs.org now additionally supports three more species (zebrafish, rat and Caenorhabditis elegans) and currently includes 78 RIBO-seq datasets, a vast increase compared to the three that were processed in the initial release. Therefore, a novel pipeline was constructed that also enables sORF detection in RIBO-seq datasets comprising solely elongating RIBO-seq data while previously, matching initiating RIBO-seq data was necessary to delineate the sORFs. Furthermore, a novel noise filtering algorithm was designed, able to distinguish sORFs with true ribosomal activity from simulated noise, consequently reducing the false positive identification rate. The inclusion of other species also led to the development of an inner BLAST pipeline, assessing sequence similarity between sORFs in the repository. Building on the proof of concept model in the initial release of sORFs.org, a full PRIDE-ReSpin pipeline was now released, reprocessing publicly available MS-based proteomics PRIDE datasets, reporting on true translation events. Next to reporting those identified peptides, sORFs.org allows visual inspection of the annotated spectra within the Lorikeet MS/MS viewer, thus enabling detailed manual inspection and interpretation.
Collapse
Affiliation(s)
- Volodimir Olexiouk
- Lab of Bioinformatics and Computational Genomics (BioBix), Department of Mathematical Modelling, Statistics and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Wim Van Criekinge
- Lab of Bioinformatics and Computational Genomics (BioBix), Department of Mathematical Modelling, Statistics and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Gerben Menschaert
- Lab of Bioinformatics and Computational Genomics (BioBix), Department of Mathematical Modelling, Statistics and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
128
|
Kang T, Jensen P, Huang H, Lund Christensen G, Billestrup N, Larsen MR. Characterization of the Molecular Mechanisms Underlying Glucose Stimulated Insulin Secretion from Isolated Pancreatic β-cells Using Post-translational Modification Specific Proteomics (PTMomics). Mol Cell Proteomics 2017; 17:95-110. [PMID: 29113996 DOI: 10.1074/mcp.ra117.000217] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/20/2017] [Indexed: 01/01/2023] Open
Abstract
Normal pancreatic islet β-cells (PBCs) abundantly secrete insulin in response to elevated blood glucose levels, in order to maintain an adequate control of energy balance and glucose homeostasis. However, the molecular mechanisms underlying the insulin secretion are unclear. Improving our understanding of glucose-stimulated insulin secretion (GSIS) mechanisms under normal conditions is a prerequisite for developing better interventions against diabetes. Here, we aimed at identifying novel signaling pathways involved in the initial release of insulin from PBCs after glucose stimulation using quantitative strategies for the assessment of phosphorylated proteins and sialylated N-linked (SA) glycoproteins.Islets of Langerhans derived from newborn rats with a subsequent 9-10 days of maturation in vitro were stimulated with 20 mm glucose for 0 min (control), 5 min, 10 min, and 15 min. The isolated islets were subjected to time-resolved quantitative phosphoproteomics and sialiomics using iTRAQ-labeling combined with enrichment of phosphorylated peptides and formerly SA glycopeptides and high-accuracy LC-MS/MS. Using bioinformatics we analyzed the functional signaling pathways during GSIS, including well-known insulin secretion pathways. Furthermore, we identified six novel activated signaling pathways (e.g. agrin interactions and prolactin signaling) at 15 min GSIS, which may increase our understanding of the molecular mechanism underlying GSIS. Moreover, we validated some of the regulated phosphosites by parallel reaction monitoring, which resulted in the validation of eleven new phosphosites significantly regulated on GSIS. Besides protein phosphorylation, alteration in SA glycosylation was observed on several surface proteins on brief GSIS. Interestingly, proteins important for cell-cell interaction, cell movement, cell-ECM interaction and Focal Adhesion (e.g. integrins, semaphorins, and plexins) were found regulated at the level of sialylation, but not in protein expression. Collectively, we believe that this comprehensive Proteomics and PTMomics survey of signaling pathways taking place during brief GSIS of primary PBCs is contributing to understanding the complex signaling underlying GSIS.
Collapse
Affiliation(s)
- Taewook Kang
- From the ‡Department of Biochemistry and Molecular Biology, PR group, University of Southern Denmark, Odense, Denmark
| | - Pia Jensen
- From the ‡Department of Biochemistry and Molecular Biology, PR group, University of Southern Denmark, Odense, Denmark
| | - Honggang Huang
- From the ‡Department of Biochemistry and Molecular Biology, PR group, University of Southern Denmark, Odense, Denmark
| | - Gitte Lund Christensen
- §Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Nils Billestrup
- §Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Martin R Larsen
- From the ‡Department of Biochemistry and Molecular Biology, PR group, University of Southern Denmark, Odense, Denmark;
| |
Collapse
|
129
|
BioInfra.Prot: A comprehensive proteomics workflow including data standardization, protein inference, expression analysis and data publication. J Biotechnol 2017; 261:116-125. [DOI: 10.1016/j.jbiotec.2017.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/04/2017] [Accepted: 06/08/2017] [Indexed: 01/12/2023]
|
130
|
Perez‐Riverol Y, Ternent T, Koch M, Barsnes H, Vrousgou O, Jupp S, Vizcaíno JA. OLS Client and OLS Dialog: Open Source Tools to Annotate Public Omics Datasets. Proteomics 2017; 17:1700244. [PMID: 28792687 PMCID: PMC5707441 DOI: 10.1002/pmic.201700244] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 07/12/2017] [Indexed: 01/12/2023]
Abstract
The availability of user-friendly software to annotate biological datasets and experimental details is becoming essential in data management practices, both in local storage systems and in public databases. The Ontology Lookup Service (OLS, http://www.ebi.ac.uk/ols) is a popular centralized service to query, browse and navigate biomedical ontologies and controlled vocabularies. Recently, the OLS framework has been completely redeveloped (version 3.0), including enhancements in the data model, like the added support for Web Ontology Language based ontologies, among many other improvements. However, the new OLS is not backwards compatible and new software tools are needed to enable access to this widely used framework now that the previous version is no longer available. We here present the OLS Client as a free, open-source Java library to retrieve information from the new version of the OLS. It enables rapid tool creation by providing a robust, pluggable programming interface and common data model to programmatically access the OLS. The library has already been integrated and is routinely used by several bioinformatics resources and related data annotation tools. Secondly, we also introduce an updated version of the OLS Dialog (version 2.0), a Java graphical user interface that can be easily plugged into Java desktop applications to access the OLS. The software and related documentation are freely available at https://github.com/PRIDE-Utilities/ols-client and https://github.com/PRIDE-Toolsuite/ols-dialog.
Collapse
Affiliation(s)
- Yasset Perez‐Riverol
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI), Wellcome Trust Genome CampusHinxtonCambridgeUK
| | - Tobias Ternent
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI), Wellcome Trust Genome CampusHinxtonCambridgeUK
| | - Maximilian Koch
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI), Wellcome Trust Genome CampusHinxtonCambridgeUK
| | - Harald Barsnes
- Proteomics Unit, Department of BiomedicineUniversity of BergenBergenNorway
- Computational Biology Unit, Department of InformaticsUniversity of BergenBergenNorway
| | - Olga Vrousgou
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI), Wellcome Trust Genome CampusHinxtonCambridgeUK
| | - Simon Jupp
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI), Wellcome Trust Genome CampusHinxtonCambridgeUK
| | - Juan Antonio Vizcaíno
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI), Wellcome Trust Genome CampusHinxtonCambridgeUK
| |
Collapse
|
131
|
Khan MH, Salomaa SI, Jacquemet G, Butt U, Miihkinen M, Deguchi T, Kremneva E, Lappalainen P, Humphries MJ, Pouwels J. The Sharpin interactome reveals a role for Sharpin in lamellipodium formation via the Arp2/3 complex. J Cell Sci 2017; 130:3094-3107. [PMID: 28775156 PMCID: PMC5612173 DOI: 10.1242/jcs.200329] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 07/25/2017] [Indexed: 12/15/2022] Open
Abstract
Sharpin, a multifunctional adaptor protein, regulates several signalling pathways. For example, Sharpin enhances signal-induced NF-κB signalling as part of the linear ubiquitin assembly complex (LUBAC) and inhibits integrins, the T cell receptor, caspase 1 and PTEN. However, despite recent insights into Sharpin and LUBAC function, a systematic approach to identify the signalling pathways regulated by Sharpin has not been reported. Here, we present the first 'Sharpin interactome', which identifies a large number of novel potential Sharpin interactors in addition to several known ones. These data suggest that Sharpin and LUBAC might regulate a larger number of biological processes than previously identified, such as endosomal trafficking, RNA processing, metabolism and cytoskeleton regulation. Importantly, using the Sharpin interactome, we have identified a novel role for Sharpin in lamellipodium formation. We demonstrate that Sharpin interacts with Arp2/3, a protein complex that catalyses actin filament branching. We have identified the Arp2/3-binding site in Sharpin and demonstrate using a specific Arp2/3-binding deficient mutant that the Sharpin-Arp2/3 interaction promotes lamellipodium formation in a LUBAC-independent fashion.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Meraj H Khan
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku 20520, Finland
| | - Siiri I Salomaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Turku Drug Research Doctoral Programme, University of Turku, Turku 20520, Finland
| | - Guillaume Jacquemet
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Umar Butt
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku 20520, Finland
| | - Mitro Miihkinen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Turku Drug Research Doctoral Programme, University of Turku, Turku 20520, Finland
| | - Takahiro Deguchi
- Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku 20520, Finland
- Laboratory of Biophysics, University of Turku, Turku 20520, Finland
| | - Elena Kremneva
- Institute of Biotechnology, University of Helsinki, Helsinki 00790, Finland
| | - Pekka Lappalainen
- Institute of Biotechnology, University of Helsinki, Helsinki 00790, Finland
| | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Jeroen Pouwels
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
| |
Collapse
|
132
|
Jarnuczak AF, Vizcaíno JA. Using the PRIDE Database and ProteomeXchange for Submitting and Accessing Public Proteomics Datasets. ACTA ACUST UNITED AC 2017; 59:13.31.1-13.31.12. [PMID: 28902400 DOI: 10.1002/cpbi.30] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ProteomeXchange (PX) Consortium is the unifying framework for world-leading mass spectrometry (MS)-based proteomics repositories. Current members include the PRIDE database (U.K.), PeptideAtlas/PASSEL, and MassIVE (U.S.A.), and jPOST (Japan). The Consortium standardizes submission and dissemination of public proteomics data worldwide. This is achieved through implementing common data submission guidelines and enforcing metadata requirements by each of the members. Furthermore, the members use a common identifier space. Each dataset receives a unique (PXD) accession number and is publicly accessible as soon as the associated scientific publications are released. The two basic protocols provide a step-by-step guide on how to submit data to the PRIDE database, and describe how to access the PX portal (called ProteomeCentral), which can be used to search datasets available in any of the PX members. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Andrew F Jarnuczak
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Juan Antonio Vizcaíno
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| |
Collapse
|
133
|
Alexander WM, Ficarro SB, Adelmant G, Marto JA. multiplierz
v2.0: A Python-based ecosystem for shared access and analysis of native mass spectrometry data. Proteomics 2017; 17. [DOI: 10.1002/pmic.201700091] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/25/2017] [Accepted: 06/28/2017] [Indexed: 12/31/2022]
Affiliation(s)
- William M. Alexander
- Department of Cancer Biology and Blais Proteomics Center; Dana-Farber Cancer Institute; Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology; Harvard Medical School; Boston MA USA
| | - Scott B. Ficarro
- Department of Cancer Biology and Blais Proteomics Center; Dana-Farber Cancer Institute; Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology; Harvard Medical School; Boston MA USA
| | - Guillaume Adelmant
- Department of Cancer Biology and Blais Proteomics Center; Dana-Farber Cancer Institute; Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology; Harvard Medical School; Boston MA USA
| | - Jarrod A. Marto
- Department of Cancer Biology and Blais Proteomics Center; Dana-Farber Cancer Institute; Boston MA USA
- Department of Oncologic Pathology; Dana-Farber Cancer Institute; Boston MA USA
- Department of Pathology; Brigham and Women's Hospital; Harvard Medical School; Boston MA USA
| |
Collapse
|
134
|
Computational proteomics tools for identification and quality control. J Biotechnol 2017; 261:126-130. [PMID: 28676234 DOI: 10.1016/j.jbiotec.2017.06.1199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/13/2017] [Accepted: 06/21/2017] [Indexed: 11/21/2022]
Abstract
Computational proteomics is a constantly growing field to support end users with powerful and reliable tools for performing several computational steps within an analytics workflow for proteomics experiments. Typically, after capturing with a mass spectrometer, the proteins have to be identified and quantified. After certain follow-up analyses, an optional targeted approach is suitable for validating the results. The de.NBI (German network for bioinformatics infrastructure) service center in Dortmund provides several software applications and platforms as services to meet these demands. In this work, we present our tools and services, which is the combination of SearchGUI and PeptideShaker. SearchGUI is a managing tool for several search engines to find peptide spectra matches for one or more complex MS2 measurements. PeptideShaker combines all matches and creates a consensus list of identified proteins providing statistical confidence measures. In a next step, we are planning to release a web service for protein identification containing both tools. This system will be designed for high scalability and distributed computing using solutions like the Docker container system among others. As an additional service, we offer a web service oriented database providing all necessary high-quality and high-resolution data for starting targeted proteomics analyses. The user can easily select proteins of interest, review the according spectra and download both protein sequences and spectral library. All systems are designed to be intuitively and user-friendly operable.
Collapse
|
135
|
Vizcaíno JA, Mayer G, Perkins S, Barsnes H, Vaudel M, Perez-Riverol Y, Ternent T, Uszkoreit J, Eisenacher M, Fischer L, Rappsilber J, Netz E, Walzer M, Kohlbacher O, Leitner A, Chalkley RJ, Ghali F, Martínez-Bartolomé S, Deutsch EW, Jones AR. The mzIdentML Data Standard Version 1.2, Supporting Advances in Proteome Informatics. Mol Cell Proteomics 2017; 16:1275-1285. [PMID: 28515314 PMCID: PMC5500760 DOI: 10.1074/mcp.m117.068429] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/15/2017] [Indexed: 12/31/2022] Open
Abstract
The first stable version of the Proteomics Standards Initiative mzIdentML open data standard (version 1.1) was published in 2012-capturing the outputs of peptide and protein identification software. In the intervening years, the standard has become well-supported in both commercial and open software, as well as a submission and download format for public repositories. Here we report a new release of mzIdentML (version 1.2) that is required to keep pace with emerging practice in proteome informatics. New features have been added to support: (1) scores associated with localization of modifications on peptides; (2) statistics performed at the level of peptides; (3) identification of cross-linked peptides; and (4) support for proteogenomics approaches. In addition, there is now improved support for the encoding of de novo sequencing of peptides, spectral library searches, and protein inference. As a key point, the underlying XML schema has only undergone very minor modifications to simplify as much as possible the transition from version 1.1 to version 1.2 for implementers, but there have been several notable updates to the format specification, implementation guidelines, controlled vocabularies and validation software. mzIdentML 1.2 can be described as backwards compatible, in that reading software designed for mzIdentML 1.1 should function in most cases without adaptation. We anticipate that these developments will provide a continued stable base for software teams working to implement the standard. All the related documentation is accessible at http://www.psidev.info/mzidentml.
Collapse
Affiliation(s)
- Juan Antonio Vizcaíno
- From the ‡European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Gerhard Mayer
- §Medizinisches Proteom Center (MPC), Ruhr-Universität Bochum, D-44801 Bochum, Germany
| | - Simon Perkins
- ¶Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Harald Barsnes
- ‖Proteomics Unit, Department of Biomedicine, University of Bergen, Norway
- **Computational Biology Unit, Department of Informatics, University of Bergen, Norway
- ‡‡KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway
| | - Marc Vaudel
- ‖Proteomics Unit, Department of Biomedicine, University of Bergen, Norway
- ‡‡KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway
- §§Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Yasset Perez-Riverol
- From the ‡European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Tobias Ternent
- From the ‡European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Julian Uszkoreit
- §Medizinisches Proteom Center (MPC), Ruhr-Universität Bochum, D-44801 Bochum, Germany
| | - Martin Eisenacher
- §Medizinisches Proteom Center (MPC), Ruhr-Universität Bochum, D-44801 Bochum, Germany
| | - Lutz Fischer
- ¶¶Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Juri Rappsilber
- ¶¶Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
- ‖‖Chair of Bioanalytics, Institute of Biotechnology Technische Universität Berlin, 13355 Berlin, Germany
| | - Eugen Netz
- Biomolecular Interactions group, Max Planck Institute for Developmental Biology, Tübingen D-72076, Germany
| | - Mathias Walzer
- Center for Bioinformatics, University of Tübingen, 72076 Tübingen, Germany
| | - Oliver Kohlbacher
- Biomolecular Interactions group, Max Planck Institute for Developmental Biology, Tübingen D-72076, Germany
- Center for Bioinformatics, University of Tübingen, 72076 Tübingen, Germany
- Dept. of Computer Science, University of Tübingen, Germany
- Quantitative Biology Center, University of Tübingen, Germany
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Auguste-Piccard-Hof 1, 8093 Zurich, Switzerland
| | - Robert J Chalkley
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, 94143
| | - Fawaz Ghali
- ¶Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Salvador Martínez-Bartolomé
- Department of Chemical Physiology, The Scripps Research Institute, 10550, N. Torrey Pines Rd., La Jolla, California, 92037
| | | | - Andrew R Jones
- ¶Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK;
| |
Collapse
|
136
|
Groves JA, Maduka AO, O'Meally RN, Cole RN, Zachara NE. Fatty acid synthase inhibits the O-GlcNAcase during oxidative stress. J Biol Chem 2017; 292:6493-6511. [PMID: 28232487 DOI: 10.1074/jbc.m116.760785] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/10/2017] [Indexed: 01/01/2023] Open
Abstract
The dynamic post-translational modification O-linked β-N-acetylglucosamine (O-GlcNAc) regulates thousands of nuclear, cytoplasmic, and mitochondrial proteins. Cellular stress, including oxidative stress, results in increased O-GlcNAcylation of numerous proteins, and this increase is thought to promote cell survival. The mechanisms by which the O-GlcNAc transferase (OGT) and the O-GlcNAcase (OGA), the enzymes that add and remove O-GlcNAc, respectively, are regulated during oxidative stress to alter O-GlcNAcylation are not fully characterized. Here, we demonstrate that oxidative stress leads to elevated O-GlcNAc levels in U2OS cells but has little impact on the activity of OGT. In contrast, the expression and activity of OGA are enhanced. We hypothesized that this seeming paradox could be explained by proteins that bind to and control the local activity or substrate targeting of OGA, thereby resulting in the observed stress-induced elevations of O-GlcNAc. To identify potential protein partners, we utilized BioID proximity biotinylation in combination with stable isotopic labeling of amino acids in cell culture (SILAC). This analysis revealed 90 OGA-interacting partners, many of which exhibited increased binding to OGA upon stress. The associations of OGA with fatty acid synthase (FAS), filamin-A, heat shock cognate 70-kDa protein, and OGT were confirmed by co-immunoprecipitation. The pool of OGA bound to FAS demonstrated a substantial (∼85%) reduction in specific activity, suggesting that FAS inhibits OGA. Consistent with this observation, FAS overexpression augmented stress-induced O-GlcNAcylation. Although the mechanism by which FAS sequesters OGA remains unknown, these data suggest that FAS fine-tunes the cell's response to stress and injury by remodeling cellular O-GlcNAcylation.
Collapse
Affiliation(s)
- Jennifer A Groves
- From the Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185
| | - Austin O Maduka
- From the Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185.,the Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250, and
| | - Robert N O'Meally
- From the Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185.,the Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Robert N Cole
- From the Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185.,the Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Natasha E Zachara
- From the Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185,
| |
Collapse
|
137
|
A Golden Age for Working with Public Proteomics Data. Trends Biochem Sci 2017; 42:333-341. [PMID: 28118949 PMCID: PMC5414595 DOI: 10.1016/j.tibs.2017.01.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/13/2016] [Accepted: 01/02/2017] [Indexed: 11/23/2022]
Abstract
Data sharing in mass spectrometry (MS)-based proteomics is becoming a common scientific practice, as is now common in the case of other, more mature ‘omics’ disciplines like genomics and transcriptomics. We want to highlight that this situation, unprecedented in the field, opens a plethora of opportunities for data scientists. First, we explain in some detail some of the work already achieved, such as systematic reanalysis efforts. We also explain existing applications of public proteomics data, such as proteogenomics and the creation of spectral libraries and spectral archives. Finally, we discuss the main existing challenges and mention the first attempts to combine public proteomics data with other types of omics data sets. The field of proteomics has matured and diversified substantially over the past 10 years. Proteomics data are increasingly shared through centralized, public repositories. Standardization efforts have ensured that a large proportion of these public data can be read and processed by any interested researcher. Because any proteomics data set is only partially understood, there is great opportunity for (orthogonal) reuse of public data. While public proteomics data has so far remained outside ethics and privacy discussions, recent work indicates that there is an inherent risk.
Collapse
|
138
|
Audain E, Uszkoreit J, Sachsenberg T, Pfeuffer J, Liang X, Hermjakob H, Sanchez A, Eisenacher M, Reinert K, Tabb DL, Kohlbacher O, Perez-Riverol Y. In-depth analysis of protein inference algorithms using multiple search engines and well-defined metrics. J Proteomics 2017; 150:170-182. [DOI: 10.1016/j.jprot.2016.08.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/30/2016] [Accepted: 08/02/2016] [Indexed: 12/24/2022]
|
139
|
Langella O, Valot B, Balliau T, Blein-Nicolas M, Bonhomme L, Zivy M. X!TandemPipeline: A Tool to Manage Sequence Redundancy for Protein Inference and Phosphosite Identification. J Proteome Res 2016; 16:494-503. [DOI: 10.1021/acs.jproteome.6b00632] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Olivier Langella
- PAPPSO,
GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Benoît Valot
- UMR
6249 Chrono-Environnement, CNRS, Université de Bourgogne Franche-Comté, 25030 Besançon, France
| | - Thierry Balliau
- PAPPSO,
GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Mélisande Blein-Nicolas
- PAPPSO,
GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Ludovic Bonhomme
- INRA/UBP, UMR 1095, Genetics, Diversity
and Ecophysiology of Cereals, F63100 Clermont-Ferrand, France
| | - Michel Zivy
- PAPPSO,
GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| |
Collapse
|
140
|
Lam MPY, Lau E, Ng DCM, Wang D, Ping P. Cardiovascular proteomics in the era of big data: experimental and computational advances. Clin Proteomics 2016; 13:23. [PMID: 27980500 PMCID: PMC5137214 DOI: 10.1186/s12014-016-9124-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 08/24/2016] [Indexed: 01/14/2023] Open
Abstract
Proteomics plays an increasingly important role in our quest to understand cardiovascular biology. Fueled by analytical and computational advances in the past decade, proteomics applications can now go beyond merely inventorying protein species, and address sophisticated questions on cardiac physiology. The advent of massive mass spectrometry datasets has in turn led to increasing intersection between proteomics and big data science. Here we review new frontiers in technological developments and their applications to cardiovascular medicine. The impact of big data science on cardiovascular proteomics investigations and translation to medicine is highlighted.
Collapse
Affiliation(s)
- Maggie P Y Lam
- NIH BD2K Center of Excellence at UCLA; Department of Physiology, University of California at Los Angeles, 675 Charles E. Young Drive, Los Angeles, CA 90095 USA
| | - Edward Lau
- NIH BD2K Center of Excellence at UCLA; Department of Physiology, University of California at Los Angeles, 675 Charles E. Young Drive, Los Angeles, CA 90095 USA
| | - Dominic C M Ng
- NIH BD2K Center of Excellence at UCLA; Department of Physiology, University of California at Los Angeles, 675 Charles E. Young Drive, Los Angeles, CA 90095 USA
| | - Ding Wang
- NIH BD2K Center of Excellence at UCLA; Department of Physiology, University of California at Los Angeles, 675 Charles E. Young Drive, Los Angeles, CA 90095 USA
| | - Peipei Ping
- NIH BD2K Center of Excellence at UCLA; Department of Physiology, University of California at Los Angeles, 675 Charles E. Young Drive, Los Angeles, CA 90095 USA ; Department of Medicine, University of California at Los Angeles, 675 Charles E. Young Drive, Los Angeles, CA 90095 USA ; Department of Bioinformatics, University of California at Los Angeles, 675 Charles E. Young Drive, Los Angeles, CA 90095 USA
| |
Collapse
|
141
|
Van Eyk JE, Corrales FJ, Aebersold R, Cerciello F, Deutsch EW, Roncada P, Sanchez JC, Yamamoto T, Yang P, Zhang H, Omenn GS. Highlights of the Biology and Disease-driven Human Proteome Project, 2015-2016. J Proteome Res 2016; 15:3979-3987. [PMID: 27573249 PMCID: PMC5129618 DOI: 10.1021/acs.jproteome.6b00444] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Biology and Disease-driven Human Proteome Project (B/D-HPP) is aimed at supporting and enhancing the broad use of state-of-the-art proteomic methods to characterize and quantify proteins for in-depth understanding of the molecular mechanisms of biological processes and human disease. Based on a foundation of the pre-existing HUPO initiatives begun in 2002, the B/D-HPP is designed to provide standardized methods and resources for mass spectrometry and specific protein affinity reagents and facilitate accessibility of these resources to the broader life sciences research and clinical communities. Currently there are 22 B/D-HPP initiatives and 3 closely related HPP resource pillars. The B/D-HPP groups are working to define sets of protein targets that are highly relevant to each particular field to deliver relevant assays for the measurement of these selected targets and to disseminate and make publicly accessible the information and tools generated. Major developments are the 2016 publications of the Human SRM Atlas and of "popular protein sets" for six organ systems. Here we present the current activities and plans of the BD-HPP initiatives as highlighted in numerous B/D-HPP workshops at the 14th annual HUPO 2015 World Congress of Proteomics in Vancouver, Canada.
Collapse
Affiliation(s)
- Jennifer E. Van Eyk
- Advanced Clinical BioSystems Research Institute, Department of Medicine, Cedars-Sinai Medical Centre, Los Angeles, California 90038, United States
| | - Fernando J. Corrales
- Department of Hepatology, Proteomics Laboratory, CIMA, University of Navarra; Ciberhed; PRB2, ProteoRed-ISCIII, 31008 Pamplona, Spain
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Ferdinando Cerciello
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Eric W. Deutsch
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Paola Roncada
- Istituto Sperimentale Italiano L. Spallanzani, 20133 Milano, Italy
| | - Jean-Charles Sanchez
- Centre Medicale Universitaire, Human Protein Sciences Department, CH-1211 Geneva, Switzerland
| | - Tadashi Yamamoto
- Niigata University, Department of Structural Pathology, Institute of Nephrology, Medical and Dental School, Asachimachidori Niigata 951-8510, Japan
| | - Pengyuan Yang
- Fudan University, Department of Chemistry, Shanghai 200433, P.R. China
| | - Hui Zhang
- Johns Hopkins University, Department of Pathology, Baltimore, Maryland 21287, United States
| | - Gilbert S. Omenn
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
142
|
Deutsch EW, Csordas A, Sun Z, Jarnuczak A, Perez-Riverol Y, Ternent T, Campbell DS, Bernal-Llinares M, Okuda S, Kawano S, Moritz RL, Carver JJ, Wang M, Ishihama Y, Bandeira N, Hermjakob H, Vizcaíno JA. The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition. Nucleic Acids Res 2016; 45:D1100-D1106. [PMID: 27924013 PMCID: PMC5210636 DOI: 10.1093/nar/gkw936] [Citation(s) in RCA: 692] [Impact Index Per Article: 76.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/07/2016] [Indexed: 11/13/2022] Open
Abstract
The ProteomeXchange (PX) Consortium of proteomics resources (http://www.proteomexchange.org) was formally started in 2011 to standardize data submission and dissemination of mass spectrometry proteomics data worldwide. We give an overview of the current consortium activities and describe the advances of the past few years. Augmenting the PX founding members (PRIDE and PeptideAtlas, including the PASSEL resource), two new members have joined the consortium: MassIVE and jPOST. ProteomeCentral remains as the common data access portal, providing the ability to search for data sets in all participating PX resources, now with enhanced data visualization components. We describe the updated submission guidelines, now expanded to include four members instead of two. As demonstrated by data submission statistics, PX is supporting a change in culture of the proteomics field: public data sharing is now an accepted standard, supported by requirements for journal submissions resulting in public data release becoming the norm. More than 4500 data sets have been submitted to the various PX resources since 2012. Human is the most represented species with approximately half of the data sets, followed by some of the main model organisms and a growing list of more than 900 diverse species. Data reprocessing activities are becoming more prominent, with both MassIVE and PeptideAtlas releasing the results of reprocessed data sets. Finally, we outline the upcoming advances for ProteomeXchange.
Collapse
Affiliation(s)
| | - Attila Csordas
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Zhi Sun
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Andrew Jarnuczak
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Yasset Perez-Riverol
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Tobias Ternent
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | | | - Manuel Bernal-Llinares
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Shujiro Okuda
- Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Shin Kawano
- Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Kashiwa 277-0871, Japan
| | | | - Jeremy J Carver
- Center for Computational Mass Spectrometry, University of California, San Diego (UCSD), La Jolla, CA 92093, USA.,Department Computer Science and Engineering, University of California, San Diego (UCSD), La Jolla, CA 92093, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Mingxun Wang
- Center for Computational Mass Spectrometry, University of California, San Diego (UCSD), La Jolla, CA 92093, USA.,Department Computer Science and Engineering, University of California, San Diego (UCSD), La Jolla, CA 92093, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Nuno Bandeira
- Center for Computational Mass Spectrometry, University of California, San Diego (UCSD), La Jolla, CA 92093, USA.,Department Computer Science and Engineering, University of California, San Diego (UCSD), La Jolla, CA 92093, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Henning Hermjakob
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.,National Center for Protein Sciences, Beijing, China
| | - Juan Antonio Vizcaíno
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| |
Collapse
|
143
|
Avtonomov D, Raskind A, Nesvizhskii AI. BatMass: a Java Software Platform for LC-MS Data Visualization in Proteomics and Metabolomics. J Proteome Res 2016; 15:2500-9. [PMID: 27306858 PMCID: PMC5583644 DOI: 10.1021/acs.jproteome.6b00021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mass spectrometry (MS) coupled to liquid chromatography (LC) is a commonly used technique in metabolomic and proteomic research. As the size and complexity of LC-MS-based experiments grow, it becomes increasingly more difficult to perform quality control of both raw data and processing results. In a practical setting, quality control steps for raw LC-MS data are often overlooked, and assessment of an experiment's success is based on some derived metrics such as "the number of identified compounds". The human brain interprets visual data much better than plain text, hence the saying "a picture is worth a thousand words". Here, we present the BatMass software package, which allows for performing quick quality control of raw LC-MS data through its fast visualization capabilities. It also serves as a testbed for developers of LC-MS data processing algorithms by providing a data access library for open mass spectrometry file formats and a means of visually mapping processing results back to the original data. We illustrate the utility of BatMass with several use cases of quality control and data exploration.
Collapse
Affiliation(s)
- Dmitry Avtonomov
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | | | - Alexey I. Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
144
|
Perez-Riverol Y, Gatto L, Wang R, Sachsenberg T, Uszkoreit J, Leprevost FDV, Fufezan C, Ternent T, Eglen SJ, Katz DS, Pollard TJ, Konovalov A, Flight RM, Blin K, Vizcaíno JA. Ten Simple Rules for Taking Advantage of Git and GitHub. PLoS Comput Biol 2016; 12:e1004947. [PMID: 27415786 PMCID: PMC4945047 DOI: 10.1371/journal.pcbi.1004947] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Yasset Perez-Riverol
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Laurent Gatto
- Computational Proteomics Unit, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Rui Wang
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Timo Sachsenberg
- Applied Bioinformatics and Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Julian Uszkoreit
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | | | - Christian Fufezan
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Tobias Ternent
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Stephen J. Eglen
- Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Daniel S. Katz
- National Center for Supercomputing Applications and Graduate School of Library and Information Science, University of Illinois, Urbana, Illinois, United States of America
| | - Tom J. Pollard
- MIT Laboratory for Computational Physiology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Alexander Konovalov
- Centre for Interdisciplinary Research in Computational Algebra, University of St Andrews, St Andrews, United Kingdom
| | - Robert M. Flight
- Department of Molecular Biology and Biochemistry, Markey Cancer Center, Resource Center for Stable Isotope-Resolved Metabolomics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Kai Blin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Juan Antonio Vizcaíno
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| |
Collapse
|