101
|
Jeannet R, Cai Q, Liu H, Vu H, Kuo YH. Alcam regulates long-term hematopoietic stem cell engraftment and self-renewal. Stem Cells 2014; 31:560-71. [PMID: 23280653 DOI: 10.1002/stem.1309] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 12/29/2022]
Abstract
Hematopoietic stem cells (HSCs) reside in a specialized bone marrow (BM) microenvironment that supports the maintenance and functional integrity of long-term (LT)-HSCs throughout postnatal life. The objective of this work is to study the role of activated leukocyte cell adhesion molecule (Alcam) in HSC differentiation and self-renewal using an Alcam-null (Alcam(-/-) ) mouse model. We show here that Alcam is differentially regulated in adult hematopoiesis and is highly expressed in LT-HSCs where its level progressively increases with age. Young adult Alcam(-/-) mice had normal homeostatic hematopoiesis and normal numbers of phenotypic HSCs. However, Alcam(-/-) HSCs had reduced long-term replating capacity in vitro and reduced long-term engraftment potential upon transplantation. We show that Alcam(-/-) BM contain a markedly lower frequency of long-term repopulating cells than wild type. Further, the long-term repopulating potential and engraftment efficiency of Alcam(-/-) LT-HSCs was greatly compromised despite a progressive increase in phenotypic LT-HSC numbers during long-term serial transplantation. In addition, an age-associated increase in phenotypic LT-HSC cellularity was observed in Alcam(-/-) mice. This increase was predominately within the CD150(hi) fraction and was accompanied by significantly reduced leukocyte output. Consistent with an aging-like phenotype, older Alcam(-/-) LT-HSCs display myeloid-biased repopulation activity upon transplantation. Finally, Alcam(-/-) LT-HSCs display premature elevation of age-associated gene expression, including Selp, Clu, Cdc42, and Foxo3. Together, this study indicates that Alcam regulates functional integrity and self-renewal of LT-HSCs.
Collapse
Affiliation(s)
- Robin Jeannet
- Division of Hematopoietic Stem Cell and Leukemia Research, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | | | | | | | | |
Collapse
|
102
|
Wu L, Bluguermann C, Kyupelyan L, Latour B, Gonzalez S, Shah S, Galic Z, Ge S, Zhu Y, Petrigliano FA, Nsair A, Miriuka SG, Li X, Lyons KM, Crooks GM, McAllister DR, Van Handel B, Adams JS, Evseenko D. Human developmental chondrogenesis as a basis for engineering chondrocytes from pluripotent stem cells. Stem Cell Reports 2013; 1:575-89. [PMID: 24371811 PMCID: PMC3871393 DOI: 10.1016/j.stemcr.2013.10.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 10/18/2013] [Accepted: 10/30/2013] [Indexed: 12/18/2022] Open
Abstract
Joint injury and osteoarthritis affect millions of people worldwide, but attempts to generate articular cartilage using adult stem/progenitor cells have been unsuccessful. We hypothesized that recapitulation of the human developmental chondrogenic program using pluripotent stem cells (PSCs) may represent a superior approach for cartilage restoration. Using laser-capture microdissection followed by microarray analysis, we first defined a surface phenotype (CD166low/negCD146low/negCD73+CD44lowBMPR1B+) distinguishing the earliest cartilage committed cells (prechondrocytes) at 5–6 weeks of development. Functional studies confirmed these cells are chondrocyte progenitors. From 12 weeks, only the superficial layers of articular cartilage were enriched in cells with this progenitor phenotype. Isolation of cells with a similar immunophenotype from differentiating human PSCs revealed a population of CD166low/negBMPR1B+ putative cartilage-committed progenitors. Taken as a whole, these data define a developmental approach for the generation of highly purified functional human chondrocytes from PSCs that could enable substantial progress in cartilage tissue engineering. BMPR1B and LIFR mark immature primary chondrocytes throughout ontogeny LIF is highly expressed by synovial cells LIF inhibits chondrocyte maturation and hypertrophy Human development dictates how to generate chondrocyte-enriched progenitors from PSCs
Collapse
Affiliation(s)
- Ling Wu
- Department of Orthopaedic Surgery, Orthopedic Hospital Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Carolina Bluguermann
- Department of Orthopaedic Surgery, Orthopedic Hospital Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA ; Laboratorio de Biología del Desarrollo Celular, Laboratorios de Investigación Aplicada en Nuerociencias, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia, Escobar B1625XAF, Buenos Aires, Argentina
| | - Levon Kyupelyan
- Department of Orthopaedic Surgery, Orthopedic Hospital Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Brooke Latour
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Stephanie Gonzalez
- Department of Orthopaedic Surgery, Orthopedic Hospital Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Saumya Shah
- Department of Orthopaedic Surgery, Orthopedic Hospital Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Zoran Galic
- Broad Stem Cell Research Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Sundi Ge
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Yuhua Zhu
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Frank A Petrigliano
- Department of Orthopaedic Surgery, Orthopedic Hospital Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Ali Nsair
- Broad Stem Cell Research Center, University of California at Los Angeles, Los Angeles, CA 90095, USA ; Department of Medicine and Physiology, Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Santiago G Miriuka
- Laboratorio de Biología del Desarrollo Celular, Laboratorios de Investigación Aplicada en Nuerociencias, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia, Escobar B1625XAF, Buenos Aires, Argentina
| | - Xinmin Li
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Karen M Lyons
- Department of Orthopaedic Surgery, Orthopedic Hospital Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA ; Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Gay M Crooks
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA ; Broad Stem Cell Research Center, University of California at Los Angeles, Los Angeles, CA 90095, USA ; Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - David R McAllister
- Department of Orthopaedic Surgery, Orthopedic Hospital Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | - John S Adams
- Department of Orthopaedic Surgery, Orthopedic Hospital Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA ; Broad Stem Cell Research Center, University of California at Los Angeles, Los Angeles, CA 90095, USA ; Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Denis Evseenko
- Department of Orthopaedic Surgery, Orthopedic Hospital Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA ; Broad Stem Cell Research Center, University of California at Los Angeles, Los Angeles, CA 90095, USA ; Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
103
|
Differentiation of dental pulp stem cells into neuron-like cells in serum-free medium. Stem Cells Int 2013; 2013:250740. [PMID: 24348580 PMCID: PMC3852491 DOI: 10.1155/2013/250740] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 09/23/2013] [Accepted: 10/07/2013] [Indexed: 01/09/2023] Open
Abstract
Dental pulp tissue contains dental pulp stem cells (DPSCs). Dental pulp cells (also known as dental pulp-derived mesenchymal stem cells) are capable of differentiating into multilineage cells including neuron-like cells. The aim of this study was to examine the capability of DPSCs to differentiate into neuron-like cells without using any reagents or growth factors. DPSCs were isolated from teeth extracted from 6- to 8-week-old mice and maintained in complete medium. The cells from the fourth passage were induced to differentiate by culturing in medium without serum or growth factors. RT-PCR molecular analysis showed characteristics of Cd146(+) , Cd166(+) , and Cd31(-) in DPSCs, indicating that these cells are mesenchymal stem cells rather than hematopoietic stem cells. After 5 days of neuronal differentiation, the cells showed neuron-like morphological changes and expressed MAP2 protein. The activation of Nestin was observed at low level prior to differentiation and increased after 5 days of culture in differentiation medium, whereas Tub3 was activated only after 5 days of neuronal differentiation. The proliferation of the differentiated cells decreased in comparison to that of the control cells. Dental pulp stem cells are induced to differentiate into neuron-like cells when cultured in serum- and growth factor-free medium.
Collapse
|
104
|
Abstract
PURPOSE OF REVIEW Many surface antigens have been previously used to identify hematopoietic stem cells or cellular elements of the hematopoietic niche. However, to date, not a single surface marker has been identified as a common marker expressed on murine and human hematopoietic stem cells and on cells of the hematopoietic niche. Recently, a few laboratories, including ours, recognized the importance of CD166 as a functional marker on both stem cells and osteoblasts and have begun to characterize the role of CD166 in hematopoiesis. RECENT FINDINGS Expression of CD166 on hematopoietic cells and cells in the marrow microenvironment was first reported more than a decade ago. Lately, however, a more prominent role for CD166 in normal hematopoiesis and in cancer biology including metastasis began to emerge. This review will cover the significance of CD166 in identifying normal hematopoietic stem cells and cells of the hematopoietic niche and highlight how CD166-mediated homophilic interactions between both cell types may be critical for stem cell function. SUMMARY The conserved homology between murine and human CD166 and its involvement in metastasis provides an excellent bridge for translational investigations aimed at enhancing stem cell engraftment and clinical utility of stem cells and at using CD166 as a therapeutic target in cancer.
Collapse
|
105
|
Salamon A, Jonitz-Heincke A, Adam S, Rychly J, Müller-Hilke B, Bader R, Lochner K, Peters K. Articular cartilage-derived cells hold a strong osteogenic differentiation potential in comparison to mesenchymal stem cells in vitro. Exp Cell Res 2013; 319:2856-65. [PMID: 24055981 DOI: 10.1016/j.yexcr.2013.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/09/2013] [Accepted: 09/11/2013] [Indexed: 12/21/2022]
Abstract
Cartilaginous matrix-degenerative diseases like osteoarthritis (OA) are characterized by gradual cartilage erosion, and also by increased presence of cells with mesenchymal stem cell (MSC) character within the affected tissues. Moreover, primary chondrocytes long since are known to de-differentiate in vitro and to be chondrogenically re-differentiable. Since both findings appear to conflict with each other, we quantitatively assessed the mesenchymal differentiation potential of OA patient cartilage-derived cells (CDC) towards the osteogenic and adipogenic lineage in vitro and compared it to that of MSC isolated from adipose tissue (adMSC) of healthy donors. We analyzed expression of MSC markers CD29, CD44, CD105, and CD166, and, following osteogenic and adipogenic induction in vitro, quantified their expression of osteogenic and adipogenic differentiation markers. Furthermore, CDC phenotype and proliferation were monitored. We found that CDC exhibit an MSC CD marker expression pattern similar to adMSC and a similar increase in proliferation rate during osteogenic differentiation. In contrast, the marked reduction of proliferation observed during adipogenic differentiation of adMSC was absent in CDC. Quantification of differentiation markers revealed a strong osteogenic differentiation potential for CDC, however almost no capacity for adipogenic differentiation. Since in the pathogenesis of OA, cartilage degeneration coincides with high bone turnover rates, the high osteogenic differentiation potential of OA patient-derived CDC may affect clinical therapeutic regimens aiming at autologous cartilage regeneration in these patients.
Collapse
Affiliation(s)
- Achim Salamon
- Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Chitteti BR, Cheng YH, Kacena MA, Srour EF. Hierarchical organization of osteoblasts reveals the significant role of CD166 in hematopoietic stem cell maintenance and function. Bone 2013; 54:58-67. [PMID: 23369988 PMCID: PMC3611238 DOI: 10.1016/j.bone.2013.01.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 01/07/2013] [Accepted: 01/22/2013] [Indexed: 11/15/2022]
Abstract
The role of osteoblasts (OB) in maintaining hematopoietic stem cells (HSC) in their niche is well elucidated, but the exact definition, both phenotypically and hierarchically of OB responsible for these functions is not clearly known. We previously demonstrated that OB maturational status influences HSC function whereby immature OB with high Runx2 expression promote hematopoietic expansion. Here, we show that Activated Leukocyte Cell Adhesion Molecule (ALCAM) or CD166 expression on OB is directly correlated with Runx2 expression and high hematopoiesis enhancing activity (HEA). Fractionation of OB with lineage markers: Sca1, osteopontin (OPN), CD166, CD44, and CD90 revealed that Lin-Sca1-OPN+CD166+ cells (CD166+) and their subpopulations fractionated with CD44 and CD90 expressed high levels of Runx2 and low levels of osteocalcin (OC) demonstrating the relatively immature status of these cells. Conversely, the majority of the Lin-Sca1-OPN+CD166- cells (CD166-) expressed high OC levels suggesting that CD166- OB are more mature. In vitro hematopoietic potential of LSK cells co-cultured for 7days with fresh OB or OB pre-cultured for 1, 2, or 3 weeks declined precipitously with increasing culture duration concomitant with loss of CD166 expression. Importantly, LSK cells co-cultured with CD166+CD44+CD90+ OB maintained their in vivo repopulating potential through primary and secondary transplantation, suggesting that robust HEA activity is best mediated by immature CD166+ OB with high Runx2 and low OC expression. These studies begin to define the hierarchical organization of osteoblastic cells and provide a more refined definition of OB that can mediate HEA.
Collapse
Affiliation(s)
| | - Ying-Hua Cheng
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis
| | - Edward F. Srour
- Department of Medicine, Indiana University School of Medicine, Indianapolis
| |
Collapse
|
107
|
Hansen AG, Freeman TJ, Arnold SA, Starchenko A, Jones-Paris CR, Gilger MA, Washington MK, Fan KH, Shyr Y, Beauchamp RD, Zijlstra A. Elevated ALCAM shedding in colorectal cancer correlates with poor patient outcome. Cancer Res 2013; 73:2955-64. [PMID: 23539446 DOI: 10.1158/0008-5472.can-12-2052] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Molecular biomarkers of cancer are needed to assist histologic staging in the selection of treatment, outcome risk stratification, and patient prognosis. This is particularly important for patients with early-stage disease. We show that shedding of the extracellular domain of activated leukocyte cell adhesion molecule (ALCAM) is prognostic for outcome in patients with colorectal cancer (CRC). Previous reports on the prognostic value of ALCAM expression in CRC have been contradictory and inconclusive. This study clarifies the prognostic value of ALCAM by visualizing ectodomain shedding using a dual stain that detects both the extracellular and the intracellular domains in formalin-fixed tissue. Using this novel assay, 105 patients with primary CRCs and 12 normal mucosa samples were evaluated. ALCAM shedding, defined as detection of the intracellular domain in the absence of the corresponding extracellular domain, was significantly elevated in patients with CRC and correlated with reduced survival. Conversely, retention of intact ALCAM was associated with improved survival, thereby confirming that ALCAM shedding is associated with poor patient outcome. Importantly, analysis of patients with stage II CRC showed that disease-specific survival is significantly reduced for patients with elevated ALCAM shedding (P = 0.01; HR, 3.0), suggesting that ALCAM shedding can identify patients with early-stage disease at risk of rapid progression.
Collapse
Affiliation(s)
- Amanda G Hansen
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Cancer stem cell markers in head and neck squamous cell carcinoma. Stem Cells Int 2013; 2013:319489. [PMID: 23533441 PMCID: PMC3603684 DOI: 10.1155/2013/319489] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/23/2013] [Indexed: 12/22/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the world's top ten most common cancers. Current survival rates are poor with only 50% of patients expected to survive five years after diagnosis. The poor survival rate of HNSCC is partly attributable to the tendency for diagnosis at the late stage of the disease. One of the reasons for treatment failure is thought to be related to the presence of a subpopulation of cells within the tumour called cancer stem cells (CSCs). CSCs display stem cell-like characteristics that impart resistance to conventional treatment modalities and promote tumour initiation, progression, and metastasis. Specific markers for this population have been investigated in the hope of developing a deeper understanding of their role in the pathogenesis of HNSCC and elucidating novel therapeutic strategies.
Collapse
|
109
|
Gilsanz A, Sánchez-Martín L, Gutiérrez-López MD, Ovalle S, Machado-Pineda Y, Reyes R, Swart GW, Figdor CG, Lafuente EM, Cabañas C. ALCAM/CD166 adhesive function is regulated by the tetraspanin CD9. Cell Mol Life Sci 2013; 70:475-93. [PMID: 23052204 PMCID: PMC11113661 DOI: 10.1007/s00018-012-1132-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 07/20/2012] [Accepted: 08/13/2012] [Indexed: 10/27/2022]
Abstract
ALCAM/CD166 is a member of the immunoglobulin superfamily of cell adhesion molecules (Ig-CAMs) which mediates intercellular adhesion through either homophilic (ALCAM-ALCAM) or heterophilic (ALCAM-CD6) interactions. ALCAM-mediated adhesion is crucial in different physiological and pathological phenomena, with particular relevance in leukocyte extravasation, stabilization of the immunological synapse, T cell activation and proliferation and tumor growth and metastasis. Although the functional implications of ALCAM in these processes is well established, the mechanisms regulating its adhesive capacity remain obscure. Using confocal microscopy colocalization, and biochemical and functional analyses, we found that ALCAM directly associates with the tetraspanin CD9 on the leukocyte surface in protein complexes that also include the metalloproteinase ADAM17/TACE. The functional relevance of these interactions is evidenced by the CD9-induced upregulation of both homophilic and heterophilic ALCAM interactions, as reflected by increased ALCAM-mediated cell adhesion and T cell migration, activation and proliferation. The enhancement of ALCAM function induced by CD9 is mediated by a dual mechanism involving (1) augmented clustering of ALCAM molecules, and (2) upregulation of ALCAM surface expression due to inhibition of ADAM17 sheddase activity.
Collapse
Affiliation(s)
- Alvaro Gilsanz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Lorena Sánchez-Martín
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | - Susana Ovalle
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Yesenia Machado-Pineda
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Raquel Reyes
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Guido W. Swart
- Department of Biomolecular Chemistry, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Carl G. Figdor
- Department of Tumor Immunology, University Medical Centre, Radboud University, Nijmegen, The Netherlands
| | - Esther M. Lafuente
- Departamento de Microbiología I (Inmunología), Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Carlos Cabañas
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain
- Departamento de Microbiología I (Inmunología), Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
110
|
Chaker S, Kak I, MacMillan C, Ralhan R, Walfish PG. Activated leukocyte cell adhesion molecule is a marker for thyroid carcinoma aggressiveness and disease-free survival. Thyroid 2013; 23:201-8. [PMID: 23148625 DOI: 10.1089/thy.2012.0405] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Currently, there are no protein biomarkers for aggressive subtypes of thyroid carcinomas (TC) in clinical use that would allow for early detection and patient management. We hypothesized that activated leukocyte cell adhesion molecule (ALCAM or CD166) expression in thyroid tissues will reveal ALCAM to be a potential diagnostic and/or prognostic marker for TC aggressiveness. METHODS Forty-five benign and 158 malignant thyroid tissues were analyzed for ALCAM expression using immunohistochemistry. ALCAM expression was correlated with different subtypes and clinicopathological features of TC, as well as patient disease-free survival. RESULTS Combined membranous and cytoplasmic (total) expression of ALCAM was significantly reduced in patients with poorly/undifferentiated (aggressive) TC as compared to well-differentiated (nonaggressive) tumors (p<0.001; area-under-curve=0.865, sensitivity=82%, specificity=74%). The decreased ALCAM expression in TC correlated significantly with extrathyroidal extension, distant metastasis, and TC histotype. Notably, Kaplan-Meier survival analysis for follow-up data of 134 patients revealed significantly reduced disease-free survival for patients with TC with decreased ALCAM membranous, cytoplasmic, and total expression. Median survival of patients with decreased cytoplasmic ALCAM expression was 6 years, as compared to 13.7 years for patients with higher ALCAM expression (p<0.001). CONCLUSION ALCAM has the potential to serve as a diagnostic and prognostic biomarker for aggressive TC. This protein can be taken forward for analysis in sera of patients with TC to determine its applicability as a minimally invasive serum biomarker for TC aggressiveness and patient disease-free survival.
Collapse
Affiliation(s)
- Seham Chaker
- Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | | | | | | | | |
Collapse
|
111
|
Gires O. Markers of Cancer Stem Cells and Their Functions. TRENDS IN STEM CELL PROLIFERATION AND CANCER RESEARCH 2013:533-558. [DOI: 10.1007/978-94-007-6211-4_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
112
|
Kaneko T, Arayatrakoollikit U, Yamanaka Y, Ito T, Okiji T. Immunohistochemical and gene expression analysis of stem-cell-associated markers in rat dental pulp. Cell Tissue Res 2012; 351:425-32. [DOI: 10.1007/s00441-012-1539-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 11/23/2012] [Indexed: 02/07/2023]
|
113
|
Carbotti G, Orengo AM, Mezzanzanica D, Bagnoli M, Brizzolara A, Emionite L, Puppo A, Centurioni MG, Bruzzone M, Marroni P, Rossello A, Canevari S, Ferrini S, Fabbi M. Activated leukocyte cell adhesion molecule soluble form: a potential biomarker of epithelial ovarian cancer is increased in type II tumors. Int J Cancer 2012; 132:2597-605. [PMID: 23169448 DOI: 10.1002/ijc.27948] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 11/07/2012] [Indexed: 02/06/2023]
Abstract
Activated leukocyte cell adhesion molecule (ALCAM) is involved in cell-cell interactions in cancer. Shedding of its ectodomain by the metalloprotease ADAM17/TACE generates a soluble form (sALCAM). Here, we show that serum sALCAM levels were significantly higher in epithelial ovarian cancer (EOC) (p < 0.005) than in controls. The performance of sALCAM as classifier, tested by receiver operating characteristic curve, resulted in an area under the curve (AUC) of 0.8067. Serum sALCAM levels showed direct correlation with Carbohydrate Antigen-125 (CA125/MUC16). Moreover, significantly higher levels were found in type II tumors, even in stage I/II, suggesting that elevated sALCAM is an early feature of aggressive EOC. In addition, sALCAM levels were higher in ascites than in sera, suggesting local processing of ALCAM in the peritoneal cavity. In immunodeficient mice, intraperitoneally implanted with a human EOC cell line, human sALCAM progressively increased in serum and was even higher in the ascites. The biochemical characterization of the sALCAM in EOC sera and ascites, showed two predominant forms of approximately 95 and 65 kDa but no EOC-specific isoform. In addition, full-length transmembrane ALCAM but no soluble form was detected in tumor-derived exosomes found in ascites. Finally, in vitro invasion assays showed that inhibition of ADAM17/TACE activity decreased EOC invasive properties, while opposite effects were mediated by a sALCAM-Fc chimera and by an antibody interfering with ALCAM/ALCAM interactions. Altogether these data suggest that sALCAM is a marker of EOC, which correlates with more aggressive type II tumors, and that ADAM17/TACE activity and sALCAM itself mediate enhanced invasiveness.
Collapse
Affiliation(s)
- Grazia Carbotti
- Department of Integrated Oncological Therapies, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Thelen K, Jaehrling S, Spatz JP, Pollerberg GE. Depending on its nano-spacing, ALCAM promotes cell attachment and axon growth. PLoS One 2012; 7:e40493. [PMID: 23251325 PMCID: PMC3518477 DOI: 10.1371/journal.pone.0040493] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 06/08/2012] [Indexed: 11/21/2022] Open
Abstract
ALCAM is a member of the cell adhesion molecule (CAM) family which plays an important role during nervous system formation. We here show that the two neuron populations of developing dorsal root ganglia (DRG) display ALCAM transiently on centrally and peripherally projecting axons during the two phases of axon outgrowth. To analyze the impact of ALCAM on cell adhesion and axon growth, DRG single cells were cultured on ALCAM-coated coverslips or on nanopatterns where ALCAM is presented in physiological amino-carboxyl terminal orientation at highly defined distances (29, 54, 70, 86, and 137 nm) and where the interspaces are passivated to prevent unspecific protein deposition. Some axonal features (branching, lateral deviation) showed density dependence whereas others (number of axons per neuron, various axon growth parameters) turned out to be an all-or-nothing reaction. Time-lapse analyses revealed that ALCAM density has an impact on axon velocity and advance efficiency. The behavior of the sensory axon tip, the growth cone, partially depended on ALCAM density in a dose-response fashion (shape, dynamics, detachment) while other features did not (size, complexity). Whereas axon growth was equally promoted whether ALCAM was presented at high (29 nm) or low densities (86 nm), the attachment of non-neuronal cells depended on high ALCAM densities. The attachment of non-neuronal cells to the rather unspecific standard proteins presented by conventional implants designed to enhance axonal regeneration is a severe problem. Our findings point to ALCAM, presented as 86 nm pattern, for a promising candidate for the improvement of such implants since this pattern drives axon growth to its full extent while at the same time non-neuronal cell attachment is clearly reduced.
Collapse
Affiliation(s)
- Karsten Thelen
- Department of Developmental Neurobiology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Steffen Jaehrling
- Department of Developmental Neurobiology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Joachim P. Spatz
- Department of New Materials and Biosystems, Max-Planck-Institute for Intelligent Systems, Stuttgart, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - G. Elisabeth Pollerberg
- Department of Developmental Neurobiology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
115
|
Surface markers for chondrogenic determination: a highlight of synovium-derived stem cells. Cells 2012; 1:1107-20. [PMID: 24710545 PMCID: PMC3901147 DOI: 10.3390/cells1041107] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 10/31/2012] [Accepted: 11/12/2012] [Indexed: 02/06/2023] Open
Abstract
Cartilage tissue engineering is a promising field in regenerative medicine that can provide substantial relief to people suffering from degenerative cartilage disease. Current research shows the greatest chondrogenic potential for healthy articular cartilage growth with minimal hypertrophic differentiation to be from mesenchymal stem cells (MSCs) of synovial origin. These stem cells have the capacity for differentiation into multiple cell lineages related to mesenchymal tissue; however, evidence exists for cell surface markers that specify a greater potential for chondrogenesis than other differentiation fates. This review will examine relevant literature to summarize the chondrogenic differentiation capacities of tested synovium-derived stem cell (SDSC) surface markers, along with a discussion about various other markers that may hold potential, yet require further investigation. With this information, a potential clinical benefit exists to develop a screening system for SDSCs that will produce the healthiest articular cartilage possible.
Collapse
|
116
|
Activated leukocyte cell-adhesion molecule (ALCAM) promotes malignant phenotypes of malignant mesothelioma. J Thorac Oncol 2012; 7:890-9. [PMID: 22722789 DOI: 10.1097/jto.0b013e31824af2db] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Cell-adhesion molecules play important roles involving the malignant phenotypes of human cancer cells. However, detailed characteristics of aberrant expression status of cell-adhesion molecules in malignant mesothelioma (MM) cells and their possible biological roles for MM malignancy remain poorly understood. METHODS DNA microarray analysis was employed to identify aberrantly expressing genes using 20 MM cell lines. Activated leukocyte cell-adhesion molecule (ALCAM) expression in MM cell lines was analyzed with quantitative reverse transcription-polymerase chain reaction and Western blot analyses in 47 primary MM specimens with immunohistochemistry. ALCAM knockdown in MM cell lines was performed with lentivirus-mediated short hairpin RNA (shRNA) transduction. Purified soluble ALCAM (sALCAM) protein was used for in vitro experiments, whereas MM cell lines infected with the sALCAM-expressing lentivirus were tested for tumorigenicity in vivo. RESULTS ALCAM, a member of the immunoglobulin superfamily, was detected as one of the most highly upregulated genes among 103 cell-adhesion molecules with microarray analysis. Elevated expression levels of ALCAM messenger RNA and protein were detected in all 20 cell lines. Positive staining of ALCAM was detected in 26 of 47 MM specimens (55%) with immunohistochemistry. ALCAM knockdown with shRNA suppressed cell migration and invasion of MM cell lines. Purified sALCAM protein impaired the migration and invasion of MM cells in vitro, and the infection of sALCAM-expressing virus into MM cells significantly prolonged survival periods of MM-transplanted nude mice in vivo. CONCLUSION Our study suggests that overexpression of ALCAM contributes to tumor progression in MM and that ALCAM might be a potential therapeutic target of MM.
Collapse
|
117
|
Enhanced growth inhibition of osteosarcoma by cytotoxic polymerized liposomal nanoparticles targeting the alcam cell surface receptor. Sarcoma 2012; 2012:126906. [PMID: 23024593 PMCID: PMC3447386 DOI: 10.1155/2012/126906] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 07/03/2012] [Indexed: 11/17/2022] Open
Abstract
Osteosarcoma is the most common primary malignancy of bone in children, adolescents, and adults. Despite extensive surgery and adjuvant aggressive high-dose systemic chemotherapy with potentially severe bystander side effects, cure is attainable in about 70% of patients with localized disease and only 20%-30% of those patients with metastatic disease. Targeted therapies clearly are warranted in improving our treatment of this adolescent killer. However, a lack of osteosarcoma-associated/specific markers has hindered development of targeted therapeutics. We describe a novel osteosarcoma-associated cell surface antigen, ALCAM. We, then, create an engineered anti-ALCAM-hybrid polymerized liposomal nanoparticle immunoconjugate (α-AL-HPLN) to specifically target osteosarcoma cells and deliver a cytotoxic chemotherapeutic agent, doxorubicin. We have demonstrated that α-AL-HPLNs have significantly enhanced cytotoxicity over untargeted HPLNs and over a conventional liposomal doxorubicin formulation. In this way, α-AL-HPLNs are a promising new strategy to specifically deliver cytotoxic agents in osteosarcoma.
Collapse
|
118
|
Cloning of the human activated leukocyte cell adhesion molecule promoter and identification of its tissue-independent transcriptional activation by Sp1. Cell Mol Biol Lett 2012; 17:571-85. [PMID: 22941204 PMCID: PMC3683579 DOI: 10.2478/s11658-012-0028-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 08/23/2012] [Indexed: 11/20/2022] Open
Abstract
Activated leukocyte cell adhesion molecule (ALCAM) belongs to the immunoglobulin cell adhesion molecule super family. ALCAM is implicated in tumor progression, inflammation, and the differentiation of hematopoietic stem cells. Hitherto, the identity of regulatory DNA elements and cognate transcription factors responsible for ALCAM gene expression remained unknown. In this report, the human ALCAM promoter was cloned and its transcriptional mechanisms elucidated. The promoter is TATA-less and contains multiple GC-boxes. A proximal 650-bp promoter fragment conferred tissue-independent activation, whereas two contiguous regions upstream of this region negatively influenced promoter activity in a tissue-specific manner. The positive regulatory promoter region was mapped to a core 50 base pair sequence containing a conical Sp1 element. Mutation analysis revealed that this element alone or in tandem with elements immediately upstream was required for maximal promoter activity. Chromatin analysis revealed that Sp1 binds exclusively to the canonical binding sequence in vivo, but not to DNA sequence immediately upstream. Finally, we showed that over-expression of Sp1 significantly increased the basal promoter activity. Thus, Sp1 activated the ALCAM promoter in most cells. These findings have important ramifications for unraveling the roles of ALCAM in inflammation and tumorigenesis.
Collapse
|
119
|
Expression and regulation of activated leukocyte cell adhesion molecule in human retinal vascular endothelial cells. Exp Eye Res 2012; 104:89-93. [PMID: 22940369 DOI: 10.1016/j.exer.2012.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 08/10/2012] [Accepted: 08/15/2012] [Indexed: 11/20/2022]
Abstract
Activated leukocyte cell adhesion molecule (ALCAM; CD166) is an immunoglobulin superfamily member that has been described in several non-ocular endothelial populations, but not in relation to endothelium within the eye. Studies in extraocular systems have implicated ALCAM in angiogenesis and leukocyte transendothelial migration, which are key processes in retinal vascular diseases. We investigated the expression of ALCAM in human retinal endothelium, and studied the regulation of expression by established angiogenic and inflammatory stimuli. Retinal endothelial expression of ALCAM was detected in primary retinal endothelial cultures isolated from human cadavers by RT-PCR (n = 4 donors) and Western blot (n = 4 donors), and in intact human retina by immunohistochemistry (n = 3 donors). In the 4 donors studied by RT-PCR, transcript encoding the truncated soluble isoform, sALCAM, was also detected. Quantitative real-time RT-PCR demonstrated significant up-regulation of ALCAM and sALCAM in response to stimulation with master cytokine, tumor necrosis factor (TNF)-α. However, general inflammatory stimulus, lipopolysaccharide (LPS), and the prototype Th1, Th2 and Th17 cytokines, interferon (IFN)-γ, interleukin (IL)-4 and IL-17A, respectively, did not impact ALCAM or sALCAM expression. In contrast, expression of ALCAM was significantly up-regulated by vascular endothelial growth factor (VEGF)(165). Up-regulation in the presence of VEGF and TNF-α, but not LPS, IFN-γ, IL-4 and IL-17A, suggests a potential role for ALCAM in human retinal angiogenesis in some settings.
Collapse
|
120
|
Sartoneva R, Haaparanta AM, Lahdes-Vasama T, Mannerström B, Kellomäki M, Salomäki M, Sándor G, Seppänen R, Miettinen S, Haimi S. Characterizing and optimizing poly-L-lactide-co-ε-caprolactone membranes for urothelial tissue engineering. J R Soc Interface 2012; 9:3444-54. [PMID: 22896571 DOI: 10.1098/rsif.2012.0458] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Different synthetic biomaterials such as polylactide (PLA), polycaprolactone and poly-l-lactide-co-ε-caprolactone (PLCL) have been studied for urothelial tissue engineering, with favourable results. The aim of this research was to further optimize the growth surface for human urothelial cells (hUCs) by comparing different PLCL-based membranes: smooth (s) and textured (t) PLCL and knitted PLA mesh with compression-moulded PLCL (cPLCL). The effects of topographical texturing on urothelial cell response and mechanical properties under hydrolysis were studied. The main finding was that both sPLCL and tPLCL supported hUC growth significantly better than cPLCL. Interestingly, tPLCL gave no significant advantage to hUC attachment or proliferation compared with sPLCL. However, during the 14 day assessment period, the majority of cells were viable and maintained phenotype on all the membranes studied. The material characterization exhibited potential mechanical characteristics of sPLCL and tPLCL for urothelial applications. Furthermore, the highest elongation of tPLCL supports the use of this kind of texturing. In conclusion, in light of our cell culture results and mechanical characterization, both sPLCL and tPLCL should be further studied for urothelial tissue engineering.
Collapse
Affiliation(s)
- Reetta Sartoneva
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Jiao J, Hindoyan A, Wang S, Tran LM, Goldstein AS, Lawson D, Chen D, Li Y, Guo C, Zhang B, Fazli L, Gleave M, Witte ON, Garraway IP, Wu H. Identification of CD166 as a surface marker for enriching prostate stem/progenitor and cancer initiating cells. PLoS One 2012; 7:e42564. [PMID: 22880034 PMCID: PMC3411798 DOI: 10.1371/journal.pone.0042564] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 07/09/2012] [Indexed: 12/29/2022] Open
Abstract
New therapies for late stage and castration resistant prostate cancer (CRPC) depend on defining unique properties and pathways of cell sub-populations capable of sustaining the net growth of the cancer. One of the best enrichment schemes for isolating the putative stem/progenitor cell from the murine prostate gland is Lin-;Sca1+;CD49fhi (LSChi), which results in a more than 10-fold enrichment for in vitro sphere-forming activity. We have shown previously that the LSChi subpopulation is both necessary and sufficient for cancer initiation in the Pten-null prostate cancer model. To further improve this enrichment scheme, we searched for cell surface molecules upregulated upon castration of murine prostate and identified CD166 as a candidate gene. CD166 encodes a cell surface molecule that can further enrich sphere-forming activity of WT LSChi and Pten null LSChi. Importantly, CD166 could enrich sphere-forming ability of benign primary human prostate cells in vitro and induce the formation of tubule-like structures in vivo. CD166 expression is upregulated in human prostate cancers, especially CRPC samples. Although genetic deletion of murine CD166 in the Pten null prostate cancer model does not interfere with sphere formation or block prostate cancer progression and CRPC development, the presence of CD166 on prostate stem/progenitors and castration resistant sub-populations suggest that it is a cell surface molecule with the potential for targeted delivery of human prostate cancer therapeutics.
Collapse
Affiliation(s)
- Jing Jiao
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Institute for Molecular Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Antreas Hindoyan
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Institute for Molecular Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Shunyou Wang
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Linh M. Tran
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Institute for Molecular Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Andrew S. Goldstein
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Devon Lawson
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Donghui Chen
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yunfeng Li
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Institute for Molecular Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Changyong Guo
- Department of Urology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Baohui Zhang
- Department of Urology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Ladan Fazli
- The Vancouver Prostate Centre and University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Gleave
- The Vancouver Prostate Centre and University of British Columbia, Vancouver, British Columbia, Canada
| | - Owen N. Witte
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Institute for Molecular Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California, United States of America
| | - Isla P. Garraway
- Department of Urology, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (IG); (HW)
| | - Hong Wu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Institute for Molecular Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (IG); (HW)
| |
Collapse
|
122
|
Tachezy M, Zander H, Marx AH, Stahl PR, Gebauer F, Izbicki JR, Bockhorn M. ALCAM (CD166) expression and serum levels in pancreatic cancer. PLoS One 2012; 7:e39018. [PMID: 22745698 PMCID: PMC3380038 DOI: 10.1371/journal.pone.0039018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/15/2012] [Indexed: 12/18/2022] Open
Abstract
Background This study was conducted to evaluate the expression of the activated leukocyte cell adhesion molecule (ALCAM) in pancreatic cancer (PAC) and to determine whether or not the ectodomain shedding of ALCAM (s-ALCAM) could serve as a biomarker in the peripheral blood of PAC patients. Material and Methods Tissue specimens and blood sera of patients with PAC (n = 264 and n = 116, respectively) and the sera of 115 patients with chronic pancreatitis (CP) were analyzed via ALCAM immunohistochemistry and s-ALCAM ELISA tests. Results were correlated with clinical, histopathological, and patient survival data (Chi-square test, Kaplan-Meier analysis, log-rank test, respectively). Results ALCAM was expressed in the majority of PAC lesions. Immunohistochemistry and serum ELISA tests revealed no association between ALCAM expression in primary tumors or s-ALCAM and clinical or histopathological data. Neither ALCAM nor s-ALCAM showed a significant impact regarding overall survival (p = 0.261 and p = 0.660, respectively). S-ALCAM serum levels were significantly elevated compared to the sera of CP patients (p<0.001). The sensitivity of s-ALCAM in detecting PAC was 58.6% at a specificity of 73.9% (AUC = 0.69). Conclusions ALCAM is expressed in the majority of PAC lesions, but statistical analysis revealed no association with clinical or pathological data. Although significantly elevated in patients with PAC, the sensitivity and specificity of the s-ALCAM serum quantification test was low. Therefore, its potential as a novel diagnostic marker for PAC remains elusive and further investigations are required.
Collapse
Affiliation(s)
- Michael Tachezy
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
123
|
Zepeda-Moreno A, Saffrich R, Walenda T, Hoang VT, Wuchter P, Sánchez-Enríquez S, Corona-Rivera A, Wagner W, Ho AD. Modeling SDF-1-induced mobilization in leukemia cell lines. Exp Hematol 2012; 40:666-74. [PMID: 22613469 DOI: 10.1016/j.exphem.2012.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/12/2012] [Accepted: 05/08/2012] [Indexed: 02/05/2023]
Abstract
The stromal cell-derived factor 1 (SDF-1) is essential for circulation, homing, and retention of hematopoietic stem cells in the bone marrow. Present evidence indicates that this factor might play an important role in leukemia cells as well. The aim of this study is to present a model of SDF-1-induced mobilization using leukemia cell lines. CXCR4 expression was compared in Kasumi-1, Jurkat, HL-60, KG-1a, and K562 cells by flow cytometry and Western blot. Migration was analyzed with Transwell assays, and adhesive cell-cell interaction was quantified with a standardized adhesion assay and flow cytometry. CXCR4 was expressed by all leukemic cell lines analyzed, although surface expression of this receptor was found in Kasumi-1 and Jurkat cells only. Correspondingly, SDF-1α effects on migration and cell-cell adhesion were observed in Kasumi-1 and Jurkat cells only, and this could be blocked by AMD3100 in a reversible manner. We have provided evidence that SDF-1α acts as a chemotactic and chemokinetic agent. In addition, surface expression of integrin-β2, activated leukocyte cell adhesion molecule and N-cadherin decreased after stimulation with SDF-1α. SDF-1α affects cell-cell adhesion and migration only in leukemia cells on which the CXCR4 receptor is present on the surface. An SDF-1 gradient is not necessarily required to induce migration, as chemokinesis can also occur. Upon stimulation with SDF-1, CXCR4 promotes modifications on the surface pattern of adhesion molecules, which have an influence on adhesion and migration.
Collapse
Affiliation(s)
- Abraham Zepeda-Moreno
- Department of Medicine V, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Gu MX, Fu Y, Sun XL, Ding YZ, Li CH, Pang W, Pan S, Zhu Y. Proteomic analysis of endothelial lipid rafts reveals a novel role of statins in antioxidation. J Proteome Res 2012; 11:2365-73. [PMID: 22428589 DOI: 10.1021/pr300098f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase, statins have pleiotropic vascular-protective effects, such as anti-inflammatory and antioxidative effects. We investigated the short-term beneficial effects of statins on modulating the translocation of lipid-raft-related proteins in endothelial cells (ECs). Human umbilical vein ECs were treated with atorvastatin for 30 min or 2 h; lipid-raft proteins were isolated and examined by quantitative proteome assay. Functional classification of identified proteins in lipid rafts revealed upregulated antioxidative proteins; downregulated proteins were associated with inflammation and cell adhesion. Among proteins verified by Western blot analysis, endoplasmic reticulum protein 46 (ERp46) showed increased level in lipid rafts with atorvastatin. Further, atorvastatin inhibited the activation of membrane-bound NADPH oxidase in both untreated and angiotensin II-treated ECs, as shown by reduced reactive oxygen species production. Co-immunoprecipitation and immunofluorescence experiments revealed that atorvastatin increased the association of ERp46 and Nox2, an NADPH oxidase isoform, in lipid rafts, thereby inhibiting Nox2 assembly with its regulatory subunits, such as p47phox and p67phox. Our results reveal a novel antioxidative role of atorvastatin by promoting the membrane translocation of ERp46 and its binding with Nox2 to inhibit Nox2 activity in ECs, which may offer another insight into the pleiotropic functions of statins.
Collapse
Affiliation(s)
- Ming-Xia Gu
- Department of Physiology and Pathophysiology, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Peking University Health Science Center, Beijing, 100191, China
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Wade A, Thomas C, Kalmar B, Terenzio M, Garin J, Greensmith L, Schiavo G. Activated leukocyte cell adhesion molecule modulates neurotrophin signaling. J Neurochem 2012; 121:575-86. [DOI: 10.1111/j.1471-4159.2012.07658.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Anna Wade
- Molecular NeuroPathobiology Laboratory, Cancer Research UK London Research Institute, London, UK
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, Queen Square, London, UK
| | - Claire Thomas
- Molecular NeuroPathobiology Laboratory, Cancer Research UK London Research Institute, London, UK
| | - Bernadett Kalmar
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, Queen Square, London, UK
| | - Marco Terenzio
- Molecular NeuroPathobiology Laboratory, Cancer Research UK London Research Institute, London, UK
| | - Jerome Garin
- CEA, IRTSV, Biologie à Grande Echelle, Grenoble, France
- INSERM, U1038, Grenoble, France
- Université Joseph Fourier, Grenoble 1, France
| | - Linda Greensmith
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, Queen Square, London, UK
| | - Giampietro Schiavo
- Molecular NeuroPathobiology Laboratory, Cancer Research UK London Research Institute, London, UK
| |
Collapse
|
126
|
Allmendinger O, Trautmann K, Mittelbronn M, Waidelich J, Meyermann R, Tatagiba M, Schittenhelm J. Activated leukocyte cell adhesion molecule is expressed in neuroepithelial neoplasms and decreases with tumor malignancy, matrix metalloproteinase 2 expression, and absence of IDH1R132H mutation. Hum Pathol 2012; 43:1289-99. [PMID: 22304788 DOI: 10.1016/j.humpath.2011.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/19/2011] [Accepted: 10/21/2011] [Indexed: 10/14/2022]
Abstract
Diffuse growth of gliomas is based on enhanced cell migration and remodeling of the extracellular matrix. Up-regulation of matrix metalloproteinases in gliomas is associated with a poor prognosis. The activated leukocyte adhesion molecule is considered to be indispensable for conversion of matrix metalloproteinase 2 into its active form. We therefore investigated the expression of activated leukocyte adhesion molecule in 9 malignant glial cell lines, 105 normal/reactive human brain specimens, 248 astrocytomas/glioblastomas, 98 ependymomas, 35 oligodendrogliomas, 10 neurocytomas, 10 primitive neuroectodermal tumors (PNET), and 36 medulloblastomas by immunohistochemistry and in selected cases by reverse transcriptase polymerase chain reaction. Correlation between activated leukocyte adhesion molecule expression and tumor grades and entities, proliferation activity, matrix metalloproteinase 2 expression, prognostic isocitrate dehydrogenase (IDH)1 mutation (R132H) status, O-6-methylguanine DNA-methyltransferase (MGMT) promoter status, or association with patient survival were analyzed. All oligodendrogliomas were strongly activated leukocyte adhesion molecule positive. Numbers of activated leukocyte adhesion molecule positive tumors were higher in glioblastomas (93%) than in diffuse astrocytomas (83%), but mean expression intensity was significantly reduced. Anaplastic ependymomas (68%) exhibited reduced numbers of activated leukocyte adhesion molecule-positive tumors and staining intensity compared with lower-grade ependymomas (85%). Activated leukocyte adhesion molecule expression in gliomas was independent of proliferative activity, MGMT status, patient survival, and age, whereas gliomas with IDH1 (R132H) mutation had significantly higher activated leukocyte adhesion molecule levels than their wild-type counterparts. Matrix metalloproteinase 2-negative glioblastomas exhibited significantly reduced activated leukocyte adhesion molecule expression levels compared with astrocytomas. In summary, our findings indicate that activated leukocyte adhesion molecule expression levels in gliomas are probably linked to other mechanisms than its supposed role as regulator of matrix metalloproteinase 2.
Collapse
Affiliation(s)
- Olga Allmendinger
- Department of Neuropathology, Institute of Pathology and Neuropathology, University of Tübingen, D-72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
127
|
Witzel I, Schröder C, Müller V, Zander H, Tachezy M, Ihnen M, Jänicke F, Milde-Langosch K. Detection of Activated Leukocyte Cell Adhesion Molecule in the Serum of Breast Cancer Patients and Implications for Prognosis. Oncology 2012; 82:305-12. [DOI: 10.1159/000337222] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 02/02/2012] [Indexed: 11/19/2022]
|
128
|
Gires O. Lessons from common markers of tumor-initiating cells in solid cancers. Cell Mol Life Sci 2011; 68:4009-22. [PMID: 21786143 PMCID: PMC11114982 DOI: 10.1007/s00018-011-0772-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 07/04/2011] [Accepted: 07/07/2011] [Indexed: 12/14/2022]
Abstract
Tumor-initiating cells (TICs) have emerged as the driving force of carcinomas, which appear as hierarchically structured. TICs as opposed to the tumor bulk display tumor forming potential, which is linked to a certain degree of self-renewal and differentiation, both major features of stem cells. Markers such as CD44, CD133, CD24, EpCAM, CD166, Lgr5, CD47, and ALDH have been described, which allow for the prospective enrichment of TICs. It is conspicuous that the same markers allow for an enrichment of TICs in various entities and, on the other hand, that different combinations of these markers were independently reported for the same tumor entity. Potential functions of these markers in the regulation of TIC phenotypes remained somewhat neglected although they might give insights in common molecular themes of TICs. The present review discusses major TIC markers with respect to their function and potential contributions to the tumorigenic phenotype of TICs.
Collapse
MESH Headings
- AC133 Antigen
- Aldehyde Dehydrogenase/metabolism
- Aldehyde Dehydrogenase/physiology
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Antigens, Neoplasm/metabolism
- Antigens, Neoplasm/physiology
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/physiology
- CD24 Antigen/metabolism
- CD24 Antigen/physiology
- CD47 Antigen/metabolism
- CD47 Antigen/physiology
- Cell Adhesion Molecules/metabolism
- Cell Adhesion Molecules/physiology
- Cell Adhesion Molecules, Neuronal/metabolism
- Cell Adhesion Molecules, Neuronal/physiology
- Epithelial Cell Adhesion Molecule
- Fetal Proteins/metabolism
- Fetal Proteins/physiology
- Glycoproteins/metabolism
- Glycoproteins/physiology
- Humans
- Hyaluronan Receptors/metabolism
- Hyaluronan Receptors/physiology
- Models, Biological
- Neoplasms/metabolism
- Neoplasms/pathology
- Peptides/metabolism
- Peptides/physiology
- Phenotype
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/physiology
Collapse
Affiliation(s)
- Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, 81377 Munich, Germany.
| |
Collapse
|
129
|
Maria OM, Maria AM, Cai Y, Tran SD. Cell surface markers CD44 and CD166 localized specific populations of salivary acinar cells. Oral Dis 2011; 18:162-8. [PMID: 21973167 DOI: 10.1111/j.1601-0825.2011.01858.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Experimental approaches tested to date for functional restoration of salivary glands (SGs) are tissue engineering, gene transfer, and cell therapy. To further develop these therapies, identifying specific cell surface markers for the isolation of salivary acinar cells is needed. To test a panel of cell surface markers [used in the isolation of mesenchymal stem cells, (MSCs)] for the localization of salivary acinar cells. MATERIALS Human submandibular and parotid glands were immunostained with a panel of MSC markers and co-localized with salivary acinar cell differentiation markers [α-amylase, Na-K-2Cl cotransporter-1, aquaporin-5 (AQP5)]. Additional cell markers were also used, such as α-smooth muscle actin (to identify myoepithelial cells), cytokeratin-5 (basal ductal cells), and c-Kit (progenitor cells). RESULTS CD44 identified serous acini, while CD166 identified mucous acini. Cytokeratin-5 identified basal duct cells and 50% of myoepithelial cells. None of the remaining cell surface markers (Stro-1, CD90, CD106, CD105, CD146, CD19, CD45, and c-Kit) were expressed in any human salivary cell. CONCLUSIONS CD44 and CD166 localized human salivary serous and mucous acinar cells, respectively. These two cell surface markers will be useful in the isolation of specific populations of salivary acinar cells.
Collapse
Affiliation(s)
- O M Maria
- Faculty of Dentistry, McGill University, Montreal, Canada
| | | | | | | |
Collapse
|
130
|
Tachezy M, Zander H, Marx AH, Gebauer F, Rawnaq T, Kaifi JT, Sauter G, Izbicki JR, Bockhorn M. ALCAM (CD166) Expression as Novel Prognostic Biomarker for Pancreatic Neuroendocrine Tumor Patients. J Surg Res 2011; 170:226-32. [DOI: 10.1016/j.jss.2011.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 05/20/2011] [Accepted: 06/01/2011] [Indexed: 12/12/2022]
|
131
|
Varadi V, Bevier M, Grzybowska E, Johansson R, Enquist-Olsson K, Henriksson R, Butkiewicz D, Pamula-Pilat J, Tecza K, Hemminki K, Lenner P, Försti A. Genetic variation in ALCAM and other chromosomal instability genes in breast cancer survival. Breast Cancer Res Treat 2011; 131:311-9. [DOI: 10.1007/s10549-011-1765-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 08/31/2011] [Indexed: 11/30/2022]
|
132
|
Activated leukocyte cell adhesion molecule expression is up-regulated in the development of endometrioid carcinoma. Int J Gynecol Cancer 2011; 21:523-8. [PMID: 21430457 DOI: 10.1097/igc.0b013e31820e135a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Activated leukocyte cell adhesion molecule (ALCAM/CD166) is a member of the immunoglobulin superfamily that contributes to cell migration. The present study investigated the potential role of ALCAM in the transition from normal endometrium to endometrioid adenocarcinoma (EEC). METHODS To clarify the role of ALCAM in endometrial tumorigenesis, we determined the levels of protein and messenger RNA expression of ALCAM in human endometrial tissue (proliferative phase [n = 20], secretory phase [n = 20], simple hyperplasia [n = 15], complex hyperplasia [n = 12], atypical hyperplasia [AH, n = 14], EEC [n = 42]) using immunohistochemistry, Western blot, and semiquantitative reverse transcription-polymerase chain reaction, respectively. RESULTS Expression of ALCAM detected by immunohistochemistry showed a gradual increase from normal endometrium to atypical hyperplasia in a membranous pattern; in addition, cytoplasmic staining emerged in a few cases of simple hyperplasia and complex hyperplasia, which also showed an increasing tendency. Most cases of EEC showed a homogenously strong staining in all parts of the tumor; other cases showed either membranous or cytoplasmic strong staining; heterogeneous loss of membranous staining was also found in some cases. Similar results of ALCAM expression were detected by reverse transcription-polymerase chain reaction and Western blot. In EEC, ALCAM expression was significantly increased in high-grade tumors and cases with myometrial invasion; however, no correlation was found between ALCAM expression and surgical pathological stages. CONCLUSIONS The up-regulation of ALCAM expression during endometrial carcinogenesis and the correlations of ALCAM expression with grade and myometrial invasion suggest its potential role as a diagnostic and prognostic biomarker.
Collapse
|
133
|
Sanders AJ, Jiang DG, Jiang WG, Harding KG, Patel GK. Activated leukocyte cell adhesion molecule impacts on clinical wound healing and inhibits HaCaT migration. Int Wound J 2011; 8:500-7. [PMID: 21816001 DOI: 10.1111/j.1742-481x.2011.00823.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Activated leukocyte cell adhesion molecule (ALCAM) is a glycoprotein of the immunoglobulin superfamily that has been implicated in the processes of cell adhesion and migration. The current study examines the importance of ALCAM in regulating HaCaT cell growth and migration and its potential to impact on wound healing. ALCAM levels were examined in a range of clinical wound and normal skin samples using Q-PCR and immunohistochemistry. ALCAM expression was targeted in HaCaT keratinocyte cells using a hammerhead ribozyme transgene system. Subsequently, the impact of ALCAM suppression on HaCaT migration and growth was assessed. ALCAM protein was detected mainly in keratinocytes. ALCAM transcript levels were found to be significantly higher in the non-healed chronic wound samples compared with healed samples (P = 0·026). In addition, targeting of ALCAM in HaCaT cells brought about a substantial increase in cellular migration and growth compared with HaCaT control cells.Our results suggest that ALCAM plays an important role in the migration of HaCaT keratinocyte cells. The data also suggests that higher levels of ALCAM may impair healing in chronic wounds. The impact of ALCAM in wound healing may thus be somewhat due to its impact on cell migration and growth.
Collapse
Affiliation(s)
- Andrew J Sanders
- Metastasis and Angiogenesis Research Group, Cardiff University School of Medicine, Cardiff, UK.
| | | | | | | | | |
Collapse
|
134
|
Palmer TD, Ashby WJ, Lewis JD, Zijlstra A. Targeting tumor cell motility to prevent metastasis. Adv Drug Deliv Rev 2011; 63:568-81. [PMID: 21664937 PMCID: PMC3132821 DOI: 10.1016/j.addr.2011.04.008] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 03/31/2011] [Accepted: 04/05/2011] [Indexed: 01/15/2023]
Abstract
Mortality and morbidity in patients with solid tumors invariably result from the disruption of normal biological function caused by disseminating tumor cells. Tumor cell migration is under intense investigation as the underlying cause of cancer metastasis. The need for tumor cell motility in the progression of metastasis has been established experimentally and is supported empirically by basic and clinical research implicating a large collection of migration-related genes. However, there are few clinical interventions designed to specifically target the motility of tumor cells and adjuvant therapy to specifically prevent cancer cell dissemination is severely limited. In an attempt to define motility targets suitable for treating metastasis, we have parsed the molecular determinants of tumor cell motility into five underlying principles including cell autonomous ability, soluble communication, cell-cell adhesion, cell-matrix adhesion, and integrating these determinants of migration on molecular scaffolds. The current challenge is to implement meaningful and sustainable inhibition of metastasis by developing clinically viable disruption of molecular targets that control these fundamental capabilities.
Collapse
Affiliation(s)
- Trenis D. Palmer
- Department of Pathology, Vanderbilt University, C2104A Medical Center North 1161 21 Ave. S., Nashville TN, 37232
| | - William J. Ashby
- Department of Pathology, Vanderbilt University, C2104A Medical Center North 1161 21 Ave. S., Nashville TN, 37232
| | - John D. Lewis
- London Regional Cancer Program, London Health Science Centre, A4-823 790 Commissioners Rd E London ON, N6A 4L6
| | - Andries Zijlstra
- Department of Pathology, Vanderbilt University, C2104A Medical Center North 1161 21 Ave. S., Nashville TN, 37232
| |
Collapse
|
135
|
Cocaine hijacks σ1 receptor to initiate induction of activated leukocyte cell adhesion molecule: implication for increased monocyte adhesion and migration in the CNS. J Neurosci 2011; 31:5942-55. [PMID: 21508219 DOI: 10.1523/jneurosci.5618-10.2011] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Human immunodeficiency virus (HIV)-associated increase in monocyte adhesion and trafficking is exacerbated by cocaine abuse. The underlying mechanisms involve cocaine-mediated upregulation of adhesion molecules with subsequent disruption of the blood-brain barrier (BBB). Recently, a novel activated leukocyte cell adhesion molecule (ALCAM) has been implicated in leukocyte transmigration across the endothelium. We now show that upregulation of ALCAM in the brain endothelium seen in HIV(+)/cocaine drug abusers paralleled increased CD68 immunostaining compared with HIV(+)/no cocaine or uninfected controls, suggesting the important role of ALCAM in promoting leukocyte infiltration across the BBB. Furthermore, ALCAM expression was increased in cocaine-treated mice with concomitant increase in monocyte adhesion and transmigration in vivo, which was ameliorated by pretreating with the neutralizing antibody to ALCAM, lending additional support to the role of ALCAM. This new concept was further confirmed by in vitro experiments. Cocaine-mediated induction of ALCAM in human brain microvascular endothelial cells through the translocation of σ receptor to the plasma membrane, followed by phosphorylation of PDGF-β (platelet-derived growth factor-β) receptor. Downstream activation of mitogen-activated protein kinases, Akt, and NF-κB (nuclear factor-κB) pathways resulted in induced expression of ALCAM. Functional implication of upregulated ALCAM was confirmed using cell adhesion and transmigration assays. Neutralizing antibody to ALCAM ameliorated this effect. Together, these findings implicate cocaine-mediated induction of ALCAM as a mediator of increased monocyte adhesion/transmigration into the CNS.
Collapse
|
136
|
Pretzel D, Linss S, Rochler S, Endres M, Kaps C, Alsalameh S, Kinne RW. Relative percentage and zonal distribution of mesenchymal progenitor cells in human osteoarthritic and normal cartilage. Arthritis Res Ther 2011; 13:R64. [PMID: 21496249 PMCID: PMC3132059 DOI: 10.1186/ar3320] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 02/15/2011] [Accepted: 04/15/2011] [Indexed: 01/22/2023] Open
Abstract
Introduction Mesenchymal stem cells (MSC) are highly attractive for use in cartilage regeneration. To date, MSC are usually recruited from subchondral bone marrow using microfracture. Recent data suggest that isolated cells from adult human articular cartilage, which express the combination of the cell-surface markers CD105 and CD166, are multi-potent mesenchymal progenitor cells (MPC) with characteristics similar to MSC. MPC within the cartilage matrix, the target of tissue regeneration, may provide the basis for in situ regeneration of focal cartilage defects. However, there is only limited information concerning the presence/abundance of CD105+/CD166+ MPC in human articular cartilage. The present study therefore assessed the relative percentage and particularly the zonal distribution of cartilage MPC using the markers CD105/CD166. Methods Specimens of human osteoarthritic (OA; n = 11) and normal (n = 3) cartilage were used for either cell isolation or immunohistochemistry. Due to low numbers, isolated cells were expanded for 2 weeks and then analyzed by flow cytometry (FACS) or immunofluorescence in chamber slides for the expression of CD105 and CD166. Following immunomagnetic separation of CD166+/- OA cells, multi-lineage differentiation assays were performed. Also, the zonal distribution of CD166+ cells within the matrix of OA and normal cartilage was analyzed by immunohistochemistry. Results FACS analysis showed that 16.7 ± 2.1% (mean ± SEM) of OA and 15.3 ± 2.3 of normal chondrocytes (n.s.) were CD105+/CD166+ and thus carried the established MPC marker combination. Similarly, 13.2% ± 0.9% and 11.7 ± 2.1 of CD105+/CD166+cells, respectively, were identified by immunofluorescence in adherent OA and normal chondrocytes. The CD166+ enriched OA cells showed a stronger induction of the chondrogenic phenotype in differentiation assays than the CD166+ depleted cell population, underlining the chondrogenic potential of the MPC. Strikingly, CD166+ cells in OA and normal articular cartilage sections (22.1 ± 1.7% and 23.6% ± 1.4%, respectively; n.s.) were almost exclusively located in the superficial and middle zone. Conclusions The present results underline the suitability of CD166 as a biomarker to identify and, in particular, localize and/or enrich resident MPC with a high chondrogenic potential in human articular cartilage. The percentage of MPC in both OA and normal cartilage is substantially higher than previously reported, suggesting a yet unexplored reserve capacity for regeneration.
Collapse
Affiliation(s)
- David Pretzel
- Experimental Rheumatology Unit, Department of Orthopedics, University Hospital Jena, Klosterlausnitzer Str, 81, Eisenberg, D-07607, Germany.
| | | | | | | | | | | | | |
Collapse
|
137
|
Activated leukocyte cell adhesion molecule expression and shedding in thyroid tumors. PLoS One 2011; 6:e17141. [PMID: 21364949 PMCID: PMC3043091 DOI: 10.1371/journal.pone.0017141] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 01/21/2011] [Indexed: 12/20/2022] Open
Abstract
Activated leukocyte cell adhesion molecule (ALCAM, CD166) is expressed in various tissues, cancers, and cancer-initiating cells. Alterations in expression of ALCAM have been reported in several human tumors, and cell adhesion functions have been proposed to explain its association with cancer. Here we documented high levels of ALCAM expression in human thyroid tumors and cell lines. Through proteomic characterization of ALCAM expression in the human papillary thyroid carcinoma cell line TPC-1, we identified the presence of a full-length membrane-associated isoform in cell lysate and of soluble ALCAM isoforms in conditioned medium. This finding is consistent with proteolytically shed ALCAM ectodomains. Nonspecific agents, such as phorbol myristate acetate (PMA) or ionomycin, provoked increased ectodomain shedding. Epidermal growth factor receptor stimulation also enhanced ALCAM secretion through an ADAM17/TACE-dependent pathway. ADAM17/TACE was expressed in the TPC-1 cell line, and ADAM17/TACE silencing by specific small interfering RNAs reduced ALCAM shedding. In addition, the CGS27023A inhibitor of ADAM17/TACE function reduced ALCAM release in a dose-dependent manner and inhibited cell migration in a wound-healing assay. We also provide evidence for the existence of novel O-glycosylated forms and of a novel 60-kDa soluble form of ALCAM, which is particularly abundant following cell stimulation by PMA. ALCAM expression in papillary and medullary thyroid cancer specimens and in the surrounding non-tumoral component was studied by western blot and immunohistochemistry, with results demonstrating that tumor cells overexpress ALCAM. These findings strongly suggest the possibility that ALCAM may have an important role in thyroid tumor biology.
Collapse
|
138
|
Handharyani E, Tsukamoto M, Tsukamoto Y. Expression of SC1, a cell adhesion molecule, promotes the metastatic activities of the Gallus gallus lymphoblastoid cell line MDCC-MSB1 derived from Marek's disease. Avian Pathol 2011; 40:111-5. [PMID: 21331955 DOI: 10.1080/03079457.2010.541901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
SC1 is an immunoglobulin superfamily cell adhesion molecule purified from the Gallus gallus spinal cord. SC1 is present in embryonic tissues and plays a role in chick development through its cell adhesive property. Interestingly, increased SC1 expression is observed in some sporadic tumours of the chicken, including Marek's disease-induced lymphomas and in nephroblastomas. To elucidate the possible functions of SC1 in tumour progression in the chicken, SC1 cDNA was introduced into the endogenous SC1-negative Marek's disease-derived chicken lymphoblastoid cell line MDCC-MSB1, and subsequently the metastatic potentials of these cell lines were analysed. The in vitro analyses revealed that the SC1-transfected MDCC-MSB1 cells were enhanced in their adhesive and migratory activities in the presence of the SC1 proteins. In addition, the metastatic potential of the SC1-transfected MDCC-MSB1 cells to the lung was enhanced after intravenous implantation into chickens. These findings suggest that the expression of SC1 contributes to the malignancy and metastatic properties of chicken Marek's disease-induced lymphomas.
Collapse
Affiliation(s)
- Ekowati Handharyani
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Bogor Agriculture University, Bogor, Indonesia
| | | | | |
Collapse
|
139
|
Zhou P, Du LF, Lv GQ, Yu XM, Gu YL, Li JP, Zhang C. Functional polymorphisms in CD166/ALCAM gene associated with increased risk for breast cancer in a Chinese population. Breast Cancer Res Treat 2011; 128:527-34. [PMID: 21293922 DOI: 10.1007/s10549-011-1365-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 01/22/2011] [Indexed: 11/25/2022]
Abstract
Activated Leukocyte Cell Adhesion Molecules (ALCAM, also called CD166, MEMD) are cell surface immunoglobulins that are considered to be prognostic markers for breast cancer. CD166/ALCAM has gained increasing attention because of its significant association with tumor progression and the metastatic spread of breast cancer. Two polymorphisms have been identified in the CD166/ALCAM gene: 5'UTR C/T (rs6437585) and 3'UTR A/G (rs11559013). We analyzed the genotypes of 1033 individuals with breast cancer, and 1116 controls; odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using logistic regression. The effects and functions of polymorphisms were examined using luciferase gene expression assays and real-time PCR analyses. Our data demonstrated that individuals with the rs6437585 CT + TT genotype had an OR of 1.38 (95% CI, 1.11-1.72) for developing breast cancer, compared to those with the CC genotype. The T allele increased the risk of breast cancer in a dose-dependent manner (P (trend) < 0.001). However, there were no significant differences found between cases and controls at the rs11559013 A/G site. Additional experiments that we performed, which focused on reporter gene expression driven by CD166/ALCAM promoters, demonstrated that the presence of an rs6437585 T allele led to greater transcriptional activity than the rs6437585 C allele. This was consistent with the increased cancer risk that we observed in our case-control analysis.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antigens, CD/genetics
- Asian People/genetics
- Biomarkers, Tumor/genetics
- Breast Neoplasms/epidemiology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/epidemiology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/secondary
- Case-Control Studies
- Cell Adhesion Molecules, Neuronal/genetics
- China/epidemiology
- DNA, Neoplasm/genetics
- Female
- Fetal Proteins/genetics
- Genotype
- Humans
- Luciferases/metabolism
- Middle Aged
- Odds Ratio
- Polymerase Chain Reaction
- Polymorphism, Genetic/genetics
- Prognosis
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Neoplasm/genetics
- Risk Factors
- Young Adult
Collapse
Affiliation(s)
- Ping Zhou
- Department of Intensive Care Unite, The Third Affiliated Hospital to Nantong University, 585 Xing Yuan North Road, 214041 Wuxi, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
140
|
Snyder EM, Small CL, Bomgardner D, Xu B, Evanoff R, Griswold MD, Hinton BT. Gene expression in the efferent ducts, epididymis, and vas deferens during embryonic development of the mouse. Dev Dyn 2011; 239:2479-91. [PMID: 20652947 DOI: 10.1002/dvdy.22378] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The tissues of the male reproductive tract are characterized by distinct morphologies, from highly coiled to un-coiled. Global gene expression profiles of efferent ducts, epididymis, and vas deferens were generated from embryonic day 14.5 to postnatal day 1 as tissue-specific morphologies emerge. Expression of homeobox genes, potential mediators of tissue-specific morphological development, was assessed. Twenty homeobox genes were identified as either tissue-enriched, developmentally regulated, or both. Additionally, ontology analysis demonstrated cell adhesion to be highly regulated along the length of the reproductive tract. Regulators of cell adhesion with variable expression between the three tissues were identified including Alcam, various cadherins, and multiple integrins. Immunofluorescence localization of the cell adhesion regulators POSTN and CDH2 demonstrated cell adhesion in the epithelium and mesenchyme of the epididymis may change throughout development. These results suggest cell adhesion may be modulated in a tissue-specific manner, playing an important role in establishing each tissue's final morphology.
Collapse
Affiliation(s)
- Elizabeth M Snyder
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, Washington, USA.
| | | | | | | | | | | | | |
Collapse
|
141
|
Ishigami S, Ueno S, Arigami T, Arima H, Uchikado Y, Kita Y, Sasaki K, Nishizono Y, Omoto I, Kurahara H, Matsumoto M, Kijima Y, Natsugoe S. Clinical implication of CD166 expression in gastric cancer. J Surg Oncol 2011; 103:57-61. [PMID: 20886585 DOI: 10.1002/jso.21756] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND CD166 is one of the cell-surface immunoglobulins, and is well known to regulate leukocyte mobility. Its expression is associated with aggressive tumor behavior. CD166 expression is a prognostic marker in several cancers, but the predictive value of CD166 expression in gastric cancer has not been clarified yet. PATIENTS AND METHODS A total of 142 gastric cancer patients who consecutively received curative gastrectomy in Kagoshima University Hospital were enrolled in the current study. The patients were composed of 99 men and 43 women, ranging in age from 42 to 84 years (mean 63 years). Cancerous CD166 expression was evaluated immunohistochemically. RESULTS Cancerous CD166 expression was identified in not only cellular membrane but also cytoplasm. The rates of membranous and cytoplasmic CD166 positivities were 25.4% and 34.4%, respectively. Cytoplasmic and membranous CD166 positivities were significantly correlated with nodal involvement and vascular invasion. Survival analysis of the 142 gastric cancer patients revealed that membranous CD166-positive group (median survival 18.6 months, range 0.3-104.5 months) had a significantly poorer outcome than CD166-negative group (median 25.7 months range 1.4-106 months) (P < 0.05). CONCLUSIONS Membranous CD166-positivity may contribute to one of the promising prognostic markers in gastric cancer.
Collapse
Affiliation(s)
- Sumiya Ishigami
- Digestive Surgery, Surgical Oncology, Kagoshima University School of Medicine, Kagoshima, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Buckner CM, Calderon TM, Willams DW, Belbin TJ, Berman JW. Characterization of monocyte maturation/differentiation that facilitates their transmigration across the blood-brain barrier and infection by HIV: implications for NeuroAIDS. Cell Immunol 2010; 267:109-23. [PMID: 21292246 DOI: 10.1016/j.cellimm.2010.12.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 11/02/2010] [Accepted: 12/18/2010] [Indexed: 01/10/2023]
Abstract
The prevalence of human immunodeficiency virus 1 (HIV) associated neurocognitive disorders resulting from infection of the central nervous system (CNS) by HIV continues to increase despite the success of combination antiretroviral therapy. Although monocytes are known to transport HIV across the blood-brain barrier (BBB) into the CNS, there are few specific markers that identify monocyte subpopulations susceptible to HIV infection and/or capable of infiltrating the CNS. We cultured human peripheral blood monocytes and characterized the expression of the phenotypic markers CD14, CD16, CD11b, Mac387, CD163, CD44v6 and CD166 during monocyte/macrophage (Mo/Mac) maturation/differentiation. We determined that a CD14(+)CD16(+)CD11b(+)Mac387(+) Mo/Mac subpopulation preferentially transmigrates across our in vitro BBB model in response to CCL2. Genes associated with Mo/Mac subpopulations that transmigrate across the BBB and/or are infected by HIV were identified by cDNA microarray analyses. Our findings contribute to the understanding of monocyte maturation, infection and transmigration into the brain during the pathogenesis of NeuroAIDS.
Collapse
Affiliation(s)
- Clarisa M Buckner
- Departments of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
143
|
Jin Z, Selaru FM, Cheng Y, Kan T, Agarwal R, Mori Y, Olaru AV, Yang J, David S, Hamilton JP, Abraham JM, Harmon J, Duncan M, Montgomery EA, Meltzer SJ. MicroRNA-192 and -215 are upregulated in human gastric cancer in vivo and suppress ALCAM expression in vitro. Oncogene 2010; 30:1577-85. [PMID: 21119604 DOI: 10.1038/onc.2010.534] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The dismal outcome of gastric cancer patients highlights the need for diagnostic biomarkers and effective therapeutic targets, such as microRNAs. We sought to discover microRNAs involved in gastric cancer, and to elucidate their downstream target mechanisms. Both cultured gastric epithelial cells (HFE145 and NCI-N87) and primary human gastric tissues (31 non-neoplastic stomach (NS) and 25 gastric carcinomas (GC)) were studied. MicroRNA microarrays and quantitative RT-PCR were applied to discover and verify differentially expressed microRNAs. in vitro cell migration and invasion, cell proliferation, cell cycle and apoptosis assays were executed to elucidate biological effects of microRNA-192 and -215. Western blotting and luciferase assays were performed to confirm direct messenger RNA targeting by microRNA-192 and -215. MicroRNA microarray analyses revealed that 25 and 20 microRNAs were upregulated and downregulated in GC vs NS, respectively. Expression levels of both microRNA-192 and -215 were significantly higher in GC than in NS (P<0.05). Luciferase assays suggested that microRNA-215 inhibits activated leukocyte cell adhesion molecule (ALCAM) expression at the posttranscriptional level. In addition, expression levels of ALCAM were significantly lower in GC than in NS. Mimics and inhibitors, respectively, of microRNA-192 or -215 exerted no effect on cell cycle or apoptosis in the immortalized normal gastric cell line HFE145 or the gastric cancer cell line NCI-N87. However, mimics of microRNA-192 or -215 significantly increased growth rates in HFE145 cells, whereas inhibitors of microRNA-192 or -215 caused significant decreases in growth rates in NCI-N87 cells. ALCAM knockdown by an ALCAM-specific siRNA significantly increased cell growth in HFE145 cells. Both transfection of mimics of microRNA-192 or -215 and ALCAM knockdown by an ALCAM-specific siRNA significantly increased the migration of HFE145 cells. In conclusion, in gastric cancer, both microRNA-192 and -215 are overexpressed in vivo and exert cell growth and migration-promoting effects in vitro, thus representing potential microRNAs with a role in cancer in the human stomach.
Collapse
Affiliation(s)
- Z Jin
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Sartoneva R, Haimi S, Miettinen S, Mannerström B, Haaparanta AM, Sándor GK, Kellomäki M, Suuronen R, Lahdes-Vasama T. Comparison of a poly-L-lactide-co-ε-caprolactone and human amniotic membrane for urothelium tissue engineering applications. J R Soc Interface 2010; 8:671-7. [PMID: 21106575 DOI: 10.1098/rsif.2010.0520] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The reconstructive surgery of urothelial defects, such as severe hypospadias is susceptible to complications. The major problem is the lack of suitable grafting materials. Therefore, finding alternative treatments such as reconstruction of urethra using tissue engineering is essential. The aim of this study was to compare the effects of naturally derived acellular human amniotic membrane (hAM) to synthetic poly-L-lactide-co-ε-caprolactone (PLCL) on human urothelial cell (hUC) viability, proliferation and urothelial differentiation level. The viability of cells was evaluated using live/dead staining and the proliferation was studied using WST-1 measurement. Cytokeratin (CK)7/8 and CK19 were used to confirm that the hUCs maintained their phenotype on different biomaterials. On the PLCL, the cell number significantly increased during the culturing period, in contrast to the hAM, where hUC proliferation was the weakest at 7 and 14 days. In addition, the majority of cells were viable and maintained their phenotype when cultured on PLCL and cell culture plastic, whereas on the hAM, the viability of hUCs decreased with time and the cells did not maintain their phenotype. The PLCL membranes supported the hUC proliferation significantly more than the hAM. These results revealed the significant potential of PLCL membranes in urothelial tissue engineering applications.
Collapse
Affiliation(s)
- Reetta Sartoneva
- Regea-Institute for Regenerative Medicine, University of Tampere, Tampere, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Chui K, Trivedi A, Cheng CY, Cherbavaz DB, Dazin PF, Huynh ALT, Mitchell JB, Rabinovich GA, Noble-Haeusslein LJ, John CM. Characterization and functionality of proliferative human Sertoli cells. Cell Transplant 2010; 20:619-35. [PMID: 21054948 DOI: 10.3727/096368910x536563] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It has long been thought that mammalian Sertoli cells are terminally differentiated and nondividing postpuberty. For most previous in vitro studies immature rodent testes have been the source of Sertoli cells and these have shown little proliferative ability when cultured. We have isolated and characterized Sertoli cells from human cadaveric testes from seven donors ranging from 12 to 36 years of age. The cells proliferated readily in vitro under the optimized conditions used with a doubling time of approximately 4 days. Nuclear 5-ethynyl-2'-deoxyuridine (EdU) incorporation confirmed that dividing cells represented the majority of the population. Classical Sertoli cell ultrastructural features, lipid droplet accumulation, and immunoexpression of GATA-4, Sox9, and the FSH receptor (FSHr) were observed by electron and fluorescence microscopy, respectively. Flow cytometry revealed the expression of GATA-4 and Sox9 by more than 99% of the cells, and abundant expression of a number of markers indicative of multipotent mesenchymal cells. Low detection of endogenous alkaline phosphatase activity after passaging showed that few peritubular myoid cells were present. GATA-4 and SOX9 expression were confirmed by reverse transcription polymerase chain reaction (RT-PCR), along with expression of stem cell factor (SCF), glial cell line-derived neurotrophic factor (GDNF), and bone morphogenic protein 4 (BMP4). Tight junctions were formed by Sertoli cells plated on transwell inserts coated with fibronectin as revealed by increased transepithelial electrical resistance (TER) and polarized secretion of the immunoregulatory protein, galectin-1. These primary Sertoli cell populations could be expanded dramatically in vitro and could be cryopreserved. The results show that functional human Sertoli cells can be propagated in vitro from testicular cells isolated from adult testis. The proliferative human Sertoli cells should have important applications in studying infertility, reproductive toxicology, testicular cancer, and spermatogenesis, and due to their unique biological properties potentially could be useful in cell therapy.
Collapse
Affiliation(s)
- Kitty Chui
- MandalMed, Inc., San Francisco, CA 94107, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Bhattacharya S, Mathew G, Ruban E, Epstein DBA, Krusche A, Hillert R, Schubert W, Khan M. Toponome imaging system: in situ protein network mapping in normal and cancerous colon from the same patient reveals more than five-thousand cancer specific protein clusters and their subcellular annotation by using a three symbol code. J Proteome Res 2010; 9:6112-25. [PMID: 20822185 DOI: 10.1021/pr100157p] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In a proof of principle study, we have applied an automated fluorescence toponome imaging system (TIS) to examine whether TIS can find protein network structures, distinguishing cancerous from normal colon tissue present in a surgical sample from the same patient. By using a three symbol code and a power of combinatorial molecular discrimination (PCMD) of 2(21) per subcellular data point in one single tissue section, we demonstrate an in situ protein network structure, visualized as a mosaic of 6813 protein clusters (combinatorial molecular phenotype or CMPs), in the cancerous part of the colon. By contrast, in the histologically normal colon, TIS identifies nearly 5 times the number of protein clusters as compared to the cancerous part (32 009). By subcellular visualization procedures, we found that many cell surface membrane molecules were closely associated with the cell cytoskeleton as unique CMPs in the normal part of the colon, while the same molecules were disassembled in the cancerous part, suggesting the presence of dysfunctional cytoskeleton-membrane complexes. As expected, glandular and stromal cell signatures were found, but interestingly also found were potentially TIS signatures identifying a very restricted subset of cells expressing several putative stem cell markers, all restricted to the cancerous tissue. The detection of these signatures is based on the extreme searching depth, high degree of dimensionality, and subcellular resolution capacity of TIS. These findings provide the technological rationale for the feasibility of a complete colon cancer toponome to be established by massive parallel high throughput/high content TIS mapping.
Collapse
|
147
|
Halfon S, Abramov N, Grinblat B, Ginis I. Markers distinguishing mesenchymal stem cells from fibroblasts are downregulated with passaging. Stem Cells Dev 2010; 20:53-66. [PMID: 20528146 DOI: 10.1089/scd.2010.0040] [Citation(s) in RCA: 248] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Expansion of plastic-adherent bone marrow-derived mesenchymal stem cells (MSCs) results in gradual loss of osteogenic potential after passage 5-6. One explanation is contamination of MSC cultures with mature cells including fibroblasts. Identification and elimination of fibroblasts from MSC cultures could improve MSC yield and differentiation potential and also prevent tumor formation after MSC transplantation. However, no specific markers currently exist that can reliably discriminate between MSCs and fibroblasts. Flow cytometry analysis demonstrated that markers currently used to define MSCs, such as CD105, CD166, CD90, CD44, CD29, CD73, and CD9, are also expressed on human skin or lung fibroblasts. However, the level of expression of CD166 was significantly higher and that of CD9 was significantly lower in MSCs than in fibroblasts. CD146 was expressed only in MSCs. Using small focused microarrays, new markers differentially expressed in MSCs and fibroblasts were identified. Real-time polymerase chain reaction confirmed that expression of CD106, integrin alpha 11, and insulin-like growth factor-2 in MSCs was at least 10-fold higher than in fibroblasts; whereas expression of matrix metalloproteinase 1 and matrix metalloproteinase 3 was almost 100-fold lower. Flow cytometry and immunostaining demonstrated that CD106 protein expression on cell surface could be upregulated in MSCs but not in fibroblasts by the treatment with tumor necrosis factor-alpha. Comparison of surface expression of commonly used and newly identified MSC markers in MSCs cultures of passage 2 and passage 6 demonstrated that CD106 (with and without tumor necrosis factor-alpha treatment), integrin alpha 11, and CD146 were downregulated in MSCs of passage 6, and CD9 was upregulated; whereas all other markers did not change. Newly identified markers that have robust differences of expression in MSCs and fibroblasts on gene and protein level could be used for quality control of MSC cultures after expansion, cryopreservation, gene transfection, and other manipulations.
Collapse
|
148
|
Hein S, Müller V, Köhler N, Wikman H, Krenkel S, Streichert T, Schweizer M, Riethdorf S, Assmann V, Ihnen M, Beck K, Issa R, Jänicke F, Pantel K, Milde-Langosch K. Biologic role of activated leukocyte cell adhesion molecule overexpression in breast cancer cell lines and clinical tumor tissue. Breast Cancer Res Treat 2010; 129:347-60. [DOI: 10.1007/s10549-010-1219-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 10/06/2010] [Indexed: 01/26/2023]
|
149
|
The effect of systemic corticosteroid treatment on the immunolocalisation of Notch-1, Delta, CD105 and CD166 in rat articular cartilage. Acta Histochem 2010; 112:424-31. [PMID: 19481784 DOI: 10.1016/j.acthis.2009.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 03/16/2009] [Accepted: 04/04/2009] [Indexed: 12/31/2022]
Abstract
We studied the immunolocalisation of the stem cell-specific markers Notch-1, Delta, CD105 and CD166 in rat articular cartilage and analysed the effect of systemic corticosteroid treatment on the patterns of distribution of cells labelling for these markers. Female Wistar rats were separated randomly into two groups: the control group (n=8) was injected with isotonic salt solution and the corticosteroid group (n=8) was injected with 10 mg/kg intramuscular corticosteroid (methylprednisolone) once a week for a period of 8 weeks. Femoral head specimens from each group were obtained at the end of the treatment and processed for routine histological and immunohistochemical examinations. Quantitative data were obtained by H-SCORE and statistical evaluations were performed. The immunolocalisation of all markers was more apparent in the superficial zone and decreased through the deeper zones in all groups. However, the intensity of labelling was much less obvious in the group treated with corticosteroid compared to control. H-SCORE analysis confirmed that in the group treated with corticosteroid, the intensity of Notch-1, Delta, CD105 and CD166 labelling had decreased significantly compared to control (p<0.05). In conclusion, based on the immunolocalisation of stem cell-specific markers Notch-1, Delta, CD105 and CD166, the data suggest that the stem cells may continue to exist in adult rat articular cartilage. It was also observed that systemic corticosteroid treatment may effect the immunolabelling intensity of these markers, suggesting that corticosteroid treatment may reduce the function and the regenerative capacity of these cells in articular cartilage.
Collapse
|
150
|
A novel human recombinant single-chain antibody targeting CD166/ALCAM inhibits cancer cell invasion in vitro and in vivo tumour growth. Cancer Immunol Immunother 2010; 59:1665-74. [PMID: 20635083 PMCID: PMC2929338 DOI: 10.1007/s00262-010-0892-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 06/30/2010] [Indexed: 11/17/2022]
Abstract
Screening a phage-display single-chain antibody library for binding to the breast cancer cell line PM-1 an antibody, scFv173, recognising activated leukocyte cell adhesion molecule (ALCAM, CD166) was isolated and its binding profile was characterized. Positive ALCAM immunohistochemical staining of frozen human tumour sections was observed. No ALCAM staining was observed in the majority of tested normal human tissues (nine of ten). Flow cytometry analyses revealed binding to 22 of 26 cancer cell lines of various origins and no binding to normal blood and bone marrow cells. Antibody binding inhibited invasion of the breast cancer cell line MDA-MB-231 by 50% in an in vitro Matrigel-coated membrane invasion assay. Reduced growth of tumours in nude mice was observed in an in vivo model in which the mice were injected subcutaneously with colorectal carcinoma HCT 116 cells and treated with scFv173 when compared to control. In summary, we have characterized a novel fully human scFv antibody recognising ALCAM on cancer cells and in tumour tissues that reduces cancer cell invasion and tumour growth in accordance with the hypothesised role for ALCAM in cell growth and migration control.
Collapse
|