101
|
Ojo JO, Crynen G, Reed JM, Ajoy R, Vallabhaneni P, Algamal M, Leary P, Rafi NG, Mouzon B, Mullan M, Crawford F. Unbiased Proteomic Approach Identifies Unique and Coincidental Plasma Biomarkers in Repetitive mTBI and AD Pathogenesis. Front Aging Neurosci 2018; 10:405. [PMID: 30618712 PMCID: PMC6305374 DOI: 10.3389/fnagi.2018.00405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022] Open
Abstract
The relationship between repetitive mild traumatic brain injury (r-mTBI) and Alzheimer's disease (AD) is well-recognized. However, the precise nature of how r-mTBI leads to or precipitates AD pathogenesis is currently not understood. Plasma biomarkers potentially provide non-invasive tools for detecting neurological changes in the brain, and can reveal overlaps between long-term consequences of r-mTBI and AD. In this study we address this by generating time-dependent molecular profiles of response to r-mTBI and AD pathogenesis in mouse models using unbiased proteomic analyses. To model AD, we used the well-validated hTau and PSAPP(APP/PS1) mouse models that develop age-related tau and amyloid pathological features, respectively, and our well-established model of r-mTBI in C57BL/6 mice. Plasma were collected at different ages (3, 9, and 15 months-old for hTau and PSAPP mice), encompassing pre-, peri- and post-"onset" of the cognitive and neuropathological phenotypes, or at different timepoints after r-mTBI (24 h, 3, 6, 9, and 12 months post-injury). Liquid chromatography/mass spectrometry (LC-MS) approaches coupled with Tandem Mass Tag labeling technology were applied to develop molecular profiles of protein species that were significantly differentially expressed as a consequence of mTBI or AD. Mixed model ANOVA after Benjamini-Hochberg correction, and a stringent cut-off identified 31 proteins significantly changing in r-mTBI groups over time and, when compared with changes over time in sham mice, 13 of these were unique to the injured mice. The canonical pathways predicted to be modulated by these changes were LXR/RXR activation, production of nitric oxide and reactive oxygen species and complement systems. We identified 18 proteins significantly changing in PSAPP mice and 19 proteins in hTau mice compared to their wild-type littermates with aging. Six proteins were found to be significantly regulated in all three models, i.e., r-mTBI, hTau, and PSAPP mice compared to their controls. The top canonical pathways coincidently changing in all three models were LXR/RXR activation, and production of nitric oxide and reactive oxygen species. This work suggests potential biomarkers for TBI and AD pathogenesis and for the overlap between these two, and warrant targeted investigation in human populations. Data are available via ProteomeXchange with identifier PXD010664.
Collapse
Affiliation(s)
- Joseph O. Ojo
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- James A. Haley Veterans’ Hospital, Tampa, FL, United States
- Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Gogce Crynen
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Jon M. Reed
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | - Rosa Ajoy
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
| | - Prashanthi Vallabhaneni
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
| | - Moustafa Algamal
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Paige Leary
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
| | - Naomi G. Rafi
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
| | - Benoit Mouzon
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- James A. Haley Veterans’ Hospital, Tampa, FL, United States
- Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Michael Mullan
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Fiona Crawford
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- James A. Haley Veterans’ Hospital, Tampa, FL, United States
- Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
102
|
Karnati HK, Garcia JH, Tweedie D, Becker RE, Kapogiannis D, Greig NH. Neuronal Enriched Extracellular Vesicle Proteins as Biomarkers for Traumatic Brain Injury. J Neurotrauma 2018; 36:975-987. [PMID: 30039737 DOI: 10.1089/neu.2018.5898] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of injury-related death throughout the world and lacks effective treatment. Surviving TBI patients often develop neuropsychiatric symptoms, and the molecular mechanisms underlying the neuronal damage and recovery following TBI are not well understood. Extracellular vesicles (EVs) are membranous nanoparticles that are divided into exosomes (originating in the endosomal/multi-vesicular body [MVB] system) and microvesicles (larger EVs produced through budding of the plasma membrane). Both types of EVs are generated by all cells and are secreted into the extracellular environment, and participate in cell-to-cell communication and protein and RNA delivery. EVs enriched for neuronal origin can be harvested from peripheral blood samples and their contents quantitatively examined as a window to follow potential changes occurring in brain. Recent studies suggest that the levels of exosomal proteins and microRNAs (miRNAs) may represent novel biomarkers to support the clinical diagnosis and potential response to treatment for neurological disorders. In this review, we focus on the biogenesis of EVs, their molecular composition, and recent advances in research of their contents as potential diagnostic tools for TBI.
Collapse
Affiliation(s)
- Hanuma Kumar Karnati
- 1 Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Joseph H Garcia
- 1 Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - David Tweedie
- 1 Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Robert E Becker
- 1 Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland.,2 Aristea Translational Medicine Corporation, Park City, Utah
| | - Dimitrios Kapogiannis
- 3 Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Nigel H Greig
- 1 Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|