101
|
Gut Metabolites Are More Predictive of Disease and Cohoused States than Gut Bacterial Features in a Polycystic Ovary Syndrome-Like Mouse Model. mSystems 2021; 6:e0114920. [PMID: 34519532 PMCID: PMC8547464 DOI: 10.1128/msystems.01149-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) impacts ∼10% of reproductive-aged women worldwide. In addition to infertility, women with PCOS suffer from metabolic dysregulation which increases their risk of developing type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease. Studies have shown differences in the gut microbiome of women with PCOS compared to controls, a pattern replicated in PCOS-like mouse models. Recently, using a letrozole (LET)-induced mouse model of PCOS, we demonstrated that cohousing was protective against development of metabolic and reproductive phenotypes and showed via 16S amplicon sequencing that this protection correlated with time-dependent shifts in gut bacteria. Here, we applied untargeted metabolomics and shotgun metagenomics approaches to further analyze the longitudinal samples from the cohousing experiment. Analysis of beta diversity found that untargeted metabolites had the strongest correlation to both disease and cohoused states and that shifts in metabolite diversity were detected prior to shifts in bacterial diversity. In addition, log2 fold analyses found numerous metabolite features, particularly bile acids (BAs), to be highly differentiated between placebo and LET, as well as LET cohoused with placebo versus LET. Our results indicate that changes in gut metabolites, particularly BAs, are associated with a PCOS-like phenotype as well as with the protective effect of cohousing. Our results also suggest that transfer of metabolites via coprophagy occurs rapidly and may precipitate changes in bacterial diversity. This study joins a growing body of research linking changes in primary and secondary BAs to host metabolism and gut microbes relevant to the pathology of PCOS. IMPORTANCE Using a combination of untargeted metabolomics and metagenomics, we performed a comparative longitudinal analysis of the feces collected in a cohousing study with a PCOS-like mouse model. Our results showed that gut metabolite composition experienced earlier and more pronounced differentiation in both the disease model and cohoused mice compared with the microbial composition. Notably, statistical and machine learning approaches identified shifts in the relative abundance of primary and secondary BAs, which have been implicated as modifiers of gut microbial growth and diversity. Network correlation analysis showed strong associations between particular BAs and bacterial species, particularly members of Lactobacillus, and that these correlations were time and treatment dependent. Our results provide novel insights into host-microbe relationships related to hyperandrogenism in females and indicate that focused research into small-molecule control of gut microbial diversity and host physiology may provide new therapeutic options for the treatment of PCOS.
Collapse
|
102
|
Choudhuri S, Klaassen CD. MOLECULAR REGULATION OF BILE ACID HOMEOSTASIS. Drug Metab Dispos 2021; 50:425-455. [PMID: 34686523 DOI: 10.1124/dmd.121.000643] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022] Open
Abstract
Bile acids have been known for decades to aid in the digestion and absorption of dietary fats and fat-soluble vitamins in the intestine. The development of gene knockout mice models and transgenic humanized mouse models have helped us understand other function of bile acids, such as their role in modulating fat, glucose, and energy metabolism, and in the molecular regulation of the synthesis, transport, and homeostasis of bile acids. The G-protein coupled receptor TGR5 regulates the bile acid induced alterations of intermediary metabolism, while the nuclear receptor FXR regulates bile acid synthesis and homeostasis. However, this review indicates that unidentified factors in addition to FXR must exist to aid in the regulation of bile acid synthesis and homeostasis. Significance Statement This review captures the present understanding of bile acid synthesis, the role of bile acid transporters in the enterohepatic circulation of bile acids, the role of the nuclear receptor FXR on the regulation of bile acid synthesis and bile acid transporters, and the importance of bile acids in activating GPCR signaling via TGR5 to modify intermediary metabolism. This information is useful for developing drugs for the treatment of various hepatic and intestinal diseases, as well as the metabolic syndrome.
Collapse
Affiliation(s)
| | - Curtis D Klaassen
- Environmental & Occupational Health Sciences, Univ Washington, United States
| |
Collapse
|
103
|
Wang Q, Qi Y, Shen W, Xu J, Wang L, Chen S, Hou T, Si J. The Aged Intestine: Performance and Rejuvenation. Aging Dis 2021; 12:1693-1712. [PMID: 34631215 PMCID: PMC8460310 DOI: 10.14336/ad.2021.0202] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Owing to the growing elderly population, age-related problems are gaining increasing attention from the scientific community. With senescence, the intestine undergoes a spectrum of changes and infirmities that are likely the causes of overall aging. Therefore, identification of the aged intestine and the search for novel strategies to rescue it, are required. Although progress has been made in research on some components of the aged intestine, such as intestinal stem cells, the comprehensive understanding of intestinal aging is still limited, and this restricts the in-depth search for efficient strategies. In this concise review, we discuss several aspects of intestinal aging. More emphasis is placed on the appraisal of current and potential strategies to alleviate intestinal aging, as well as future targets to rejuvenate the aged intestine.
Collapse
Affiliation(s)
- Qiwen Wang
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Yadong Qi
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Weiyi Shen
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Jilei Xu
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Lan Wang
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Shujie Chen
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Tongyao Hou
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Jianmin Si
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| |
Collapse
|
104
|
Fernández-García V, González-Ramos S, Martín-Sanz P, García-Del Portillo F, Laparra JM, Boscá L. NOD1 in the interplay between microbiota and gastrointestinal immune adaptations. Pharmacol Res 2021; 171:105775. [PMID: 34273489 DOI: 10.1016/j.phrs.2021.105775] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023]
Abstract
Nucleotide-binding oligomerization domain 1 (NOD1), a pattern recognition receptor (PRR) that detects bacterial peptidoglycan fragments and other danger signals, has been linked to inflammatory pathologies. NOD1, which is expressed by immune and non-immune cells, is activated after recognizing microbe-associated molecular patterns (MAMPs). This recognition triggers host defense responses and both immune memory and tolerance can also be achieved during these processes. Since the gut microbiota is currently considered a master regulator of human physiology central in health and disease and the intestine metabolizes a wide range of nutrients, drugs and hormones, it is a fact that dysbiosis can alter tissues and organs homeostasis. These systemic alterations occur in response to gastrointestinal immune adaptations that are not yet fully understood. Even if previous evidence confirms the connection between the microbiota, the immune system and metabolic disorders, much remains to be discovered about the contribution of NOD1 to low-grade inflammatory pathologies such as obesity, diabetes and cardiovascular diseases. This review compiles the most recent findings in this area, while providing a dynamic and practical framework with future approaches for research and clinical applications on targeting NOD1. This knowledge can help to rate the consequences of the disease and to stratify the patients for therapeutic interventions.
Collapse
Affiliation(s)
- Victoria Fernández-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain.
| | - Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | | | - José Moisés Laparra
- Madrid Institute for Advanced Studies in Food (IMDEA Food), Ctra, Cantoblanco 8, 28049 Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain.
| |
Collapse
|
105
|
|
106
|
Iwamoto J, Honda A, Miyazaki T, Monma T, Ueda H, Morishita Y, Yara SI, Hirayama T, Ikegami T. Western Diet Changes Gut Microbiota and Ameliorates Liver Injury in a Mouse Model with Human-Like Bile Acid Composition. Hepatol Commun 2021; 5:2052-2067. [PMID: 34558859 PMCID: PMC8631099 DOI: 10.1002/hep4.1778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 12/12/2022] Open
Abstract
Western‐style high‐fat/high‐sucrose diet (HFHSD) changes gut microbiota and bile acid (BA) profiles. Because gut microbiota and BAs could influence each other, the mechanism of changes in both by HFHSD is complicated and remains unclear. We first aimed to clarify the roles of BAs in the HFHSD‐induced change of gut microbiota. Then, we studied the effects of the changed gut microbiota on BA composition and liver function. Male wild‐type (WT) and human‐like Cyp2a12/Cyp2c70 double knockout (DKO) mice derived from C57BL/6J were fed with normal chow or HFHSD for 4 weeks. Gut microbiomes were analyzed by fecal 16S ribosomal RNA gene sequencing, and BA composition was determined by liquid chromatography–tandem mass spectrometry. The DKO mice exhibited significantly reduced fecal BA concentration, lacked muricholic acids, and increased proportions of chenodeoxycholic and lithocholic acids. Despite the marked difference in the fecal BA composition, the profiles of gut microbiota in the two mouse models were quite similar. An HFHSD resulted in a significant increase in the BA pool and fecal BA excretion in WT mice but not in DKO mice. However, microbial composition in the two mouse models was drastically but similarly changed by the HFHSD. In addition, the HFHSD‐induced change of gut microbiota inhibited BA deconjugation and 7α‐dehydroxylation in both types of mice, which improved chronic liver injury observed in DKO mice. Conclusion: The HFHSD itself causes the change of gut microbiota due to HFHSD, and the altered composition or concentration of BAs by HFHSD is not the primary factor. On the contrary, the gut microbiota formed by HFHSD affects BA composition and ameliorates liver injury in the mouse model with human‐like hydrophobic BA composition.
Collapse
Affiliation(s)
- Junichi Iwamoto
- Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Akira Honda
- Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan.,Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Teruo Miyazaki
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Tadakuni Monma
- Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Hajime Ueda
- Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Yukio Morishita
- Diagnostic Pathology Division, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Sho-Ichiro Yara
- Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Takeshi Hirayama
- Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Tadashi Ikegami
- Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| |
Collapse
|
107
|
Li N, Zhan S, Tian Z, Liu C, Xie Z, Zhang S, Chen M, Zeng Z, Zhuang X. Alterations in Bile Acid Metabolism Associated With Inflammatory Bowel Disease. Inflamm Bowel Dis 2021; 27:1525-1540. [PMID: 33399195 DOI: 10.1093/ibd/izaa342] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disorder closely related to gut dysbiosis, which is associated with alterations in an important bacterial metabolite, bile acids (BAs). Although certain findings pertinent to BA changes in IBD vary among studies owing to the differences in sample type, quantitated BA species, study methodology, and patient characteristics, a specific trend concerning variations of BAs in IBD has been identified. In elaborating on this observation, it was noted that primary BAs and conjugated BAs are augmented in fecal samples but there is a reduction in secondary BAs in fecal samples. It is not entirely clear why patients with IBD manifest these changes and what role these changes play in the onset and development of IBD. Previous studies have shown that IBD-associated BA changes may be caused by alterations in BA absorption, synthesis, and bacterial modification. The complex relationship between bacteria and BAs may provide additional and deeper insight into host-gut microbiota interactions in the pathogenesis of IBD. The characteristic BA changes may generate profound effects in patients with IBD by shaping the gut microbiota community, affecting inflammatory processes, causing BA malabsorption associated with diarrhea, and even leading to intestinal dysplasia and cancer. Thus, therapeutic strategies correcting the alterations in the composition of BAs, including the elimination of excess BAs and the supplementation of deficient BAs, may prove promising in IBD.
Collapse
Affiliation(s)
- Na Li
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shukai Zhan
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhenyi Tian
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Caiguang Liu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zonglin Xie
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shenghong Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhirong Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaojun Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
108
|
Rashid SA, Norman N, Teo SH, Tong WY, Leong CR, Tan WN, Noor MAM. Cholic acid: a novel steroidal uncompetitive inhibitor against β-lactamase produced by multidrug-resistant isolates. World J Microbiol Biotechnol 2021; 37:152. [PMID: 34398332 DOI: 10.1007/s11274-021-03118-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 08/02/2021] [Indexed: 11/30/2022]
Abstract
β-lactam antibiotics are the most frequently prescribed class of drugs worldwide, due to its efficacy and good safety profile. However, the emergence of β-lactamase producing bacterial strains eliminated the use of β-lactam antibiotics as a chemotherapeutic choice. To restore their usability, a non-antibiotic adjuvant in conjunction with β-lactam antibiotics is now being utilised. Cholic acid potentially acts as an adjuvant since it can blunt the pro-inflammatory activity in human. Our main objective is to scrutinise the inhibition of β-lactamase-producing bacteria by adjuvant cholic acid, synergism of the test drugs and the primary mechanism of enzymatic reaction. Antibacterial effect of the cholic acid-ampicillin (CA-AMP) on 7 β-lactamase positive isolates were evaluated accordingly to disc diffusion assay, antibiotic susceptibility test, as well as checkerboard analysis. Then, all activities were compared with ampicillin alone, penicillin alone, cholic acid alone and cholic acid-penicillin combination. The CA-AMP displayed notable antibiotic activity on all test bacteria and depicted synergistic influence by representing low fractional inhibitory concentration index (FIC ≤ 0.5). According to kinetic analyses, CA-AMP behaved as an uncompetitive inhibitor against beta lactamase, with reducing values of Michaelis constant (Km) and maximal velocity (Vmax) recorded. The inhibitor constant (Ki) of CA-AMP was equal to 4.98 ± 0.3 µM, which slightly lower than ampicillin (5.00 ± 0.1 µM).
Collapse
Affiliation(s)
- Syarifah Ab Rashid
- Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Lot 1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning, 78000, Alor Gajah, Melaka, Malaysia
| | - Norhaswanie Norman
- Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Lot 1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning, 78000, Alor Gajah, Melaka, Malaysia
| | - Siew Hway Teo
- Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Lot 1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning, 78000, Alor Gajah, Melaka, Malaysia
| | - Woei Yenn Tong
- Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Lot 1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning, 78000, Alor Gajah, Melaka, Malaysia.
| | - Chean Ring Leong
- Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Lot 1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning, 78000, Alor Gajah, Melaka, Malaysia
| | - Wen-Nee Tan
- Chemistry Section, School of Distance Education, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Mohd Azizan Mohd Noor
- Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Lot 1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning, 78000, Alor Gajah, Melaka, Malaysia
| |
Collapse
|
109
|
Abstract
Pruritus (itch) is a debilitating symptom in liver diseases with cholestasis, which severely affects patients' quality of life. Limited treatment options are available for cholestatic itch, largely due to the incomplete understanding of the underlying molecular mechanisms. Several factors have been proposed as pruritogens for cholestatic itch, such as bile acids, bilirubin, lysophosphatidic acid, and endogenous opioids. Recently, two research groups independently identified Mas-related G protein-coupled receptor X4 (MRGPRX4) as a receptor for bile acids and bilirubin and demonstrated its likely role in cholestatic itch. This discovery not only opens new avenues for understanding the molecular mechanisms in cholestatic itch but provides a promising target for developing novel anti-itch treatments. In this review, we summarize the current theories and knowledge of cholestatic itch, emphasizing MRGPRX4 as a bile acid and bilirubin receptor mediating cholestatic itch in humans. We also discuss some future perspectives in cholestatic itch research.
Collapse
Affiliation(s)
- Huasheng Yu
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kirk Wangensteen
- Gastroenterology Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tong Deng
- Department of Pathology, Sidney Sussex College, University of Cambridge, Cambridge, United Kingdom
| | - Yulong Li
- School of Life Sciences, Peking University, Beijing, China
| | - Wenqin Luo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
110
|
Fernández-García V, González-Ramos S, Martín-Sanz P, Laparra JM, Boscá L. Beyond classic concepts in thyroid homeostasis: Immune system and microbiota. Mol Cell Endocrinol 2021; 533:111333. [PMID: 34048865 DOI: 10.1016/j.mce.2021.111333] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
It has long been known that thyroid hormones have implications for multiple physiological processes and can lead to serious illness when there is an imbalance in its metabolism. The connections between thyroid hormone metabolism and the immune system have been extensively described, as they can participate in inflammation, autoimmunity, or cancer progression. In addition, changes in the normal intestinal microbiota involve the activation of the immune system while triggering different pathophysiological disorders. Recent studies have linked the microbiota and certain bacterial fragments or metabolites to the regulation of thyroid hormones and the general response in the endocrine system. Even if the biology and function of the thyroid gland has attracted more attention due to its pathophysiological importance, there are essential mechanisms and issues related to it that are related to the interplay between the intestinal microbiota and the immune system and must be further investigated. Here we summarize additional information to uncover these relationships, the knowledge of which would help establish new personalized medical strategies.
Collapse
Affiliation(s)
- Victoria Fernández-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029, Madrid, Spain
| | - Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029, Madrid, Spain.
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Melchor Fernández Almagro 6, 28029, Madrid, Spain
| | - José M Laparra
- Madrid Institute for Advanced Studies in Food (IMDEA Food), Ctra. Cantoblanco 8, 28049, Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029, Madrid, Spain.
| |
Collapse
|
111
|
Zhao J, Ran M, Yang T, Chen L, Ji P, Xu X, Zhang L, Sun S, Liu X, Zhou S, Zhou L, Zhang J. Bicyclol Alleviates Signs of BDL-Induced Cholestasis by Regulating Bile Acids and Autophagy-Mediated HMGB1/p62/Nrf2 Pathway. Front Pharmacol 2021; 12:686502. [PMID: 34366845 PMCID: PMC8334002 DOI: 10.3389/fphar.2021.686502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Cholestasis is a liver disease characterized by the accumulation of toxic bile salts, bilirubin, and cholesterol, resulting in hepatocellular damage. Recent findings have revealed several key steps of cholestasis liver injury including the toxicity of bile acids and accumulation of proinflammatory mediator. In this study, we investigated the protective effect of bicyclol in cholestasis caused by bile duct ligation (BDL), as well as relevant mechanisms. Bicyclol attenuated liver damage in BDL mice by increasing the levels of hydrophilic bile acid such as α-MCA and β-MCA, regulating bile acid-related pathways and improving histopathological indexes. High-mobility group box 1 (HMGB1) is an extracellular damage-associated molecular pattern molecule which can be used as biomarkers of cells and host defense. Bicyclol treatment decreased extracellular release of HMGB1. In addition, HMGB1 is also involved in regulating autophagy in response to oxidative stress. Bicyclol promoted the lipidation of LC3 (microtubule-associated protein 1 light chain 3)-Ⅱ to activate autophagy. The nuclear factor, E2-related factor 2 (Nrf2) and its antioxidant downstream genes were also activated. Our results indicate that bicyclol is a promising therapeutic strategy for cholestasis by regulating the bile acids and autophagy-mediated HMGB1/p62/Nrf2 pathway.
Collapse
Affiliation(s)
- Jingwen Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Maojuan Ran
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
- Department of Gastroenterology and Hepatology, Chengdu Second People’s Hospital, Chengdu, China
| | - Ting Yang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Liwei Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Peixu Ji
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiuxiu Xu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Lu Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Siyuan Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Simin Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jie Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
112
|
Fernandez-Cantos MV, Garcia-Morena D, Iannone V, El-Nezami H, Kolehmainen M, Kuipers OP. Role of microbiota and related metabolites in gastrointestinal tract barrier function in NAFLD. Tissue Barriers 2021; 9:1879719. [PMID: 34280073 PMCID: PMC8489918 DOI: 10.1080/21688370.2021.1879719] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 11/06/2022] Open
Abstract
The Gastrointestinal (GI) tract is composed of four main barriers: microbiological, chemical, physical and immunological. These barriers play important roles in maintaining GI tract homeostasis. In the crosstalk between these barriers, microbiota and related metabolites have been shown to influence GI tract barrier integrity, and alterations of the gut microbiome might lead to an increase in intestinal permeability. As a consequence, translocation of bacteria and their products into the circulatory system increases, reaching proximal and distal tissues, such as the liver. One of the most prevalent chronic liver diseases, Nonalcoholic Fatty Liver Disease (NAFLD), has been associated with an altered gut microbiota and barrier integrity. However, the causal link between them has not been fully elucidated yet. In this review, we aim to highlight relevant bacterial taxa and their related metabolites affecting the GI tract barriers in the context of NAFLD, discussing their implications in gut homeostasis and in disease.
Collapse
Affiliation(s)
- Maria Victoria Fernandez-Cantos
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Diego Garcia-Morena
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Valeria Iannone
- Institute of Public Health and Clinical Nutrition, Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Hani El-Nezami
- Molecular and Cell Biology Division, School of Biological Sciences, University of Hong Kong, Hong Kong SAR
| | - Marjukka Kolehmainen
- Institute of Public Health and Clinical Nutrition, Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Oscar P. Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
113
|
Zhang Q, Lin Y, Zhang T, Wu Y, Fang P, Wang S, Wu Z, Hao J, Li A. Etiological characteristics of "tail blister disease" of Australian redclaw crayfish (Cherax quadricarinatus). J Invertebr Pathol 2021; 184:107643. [PMID: 34224726 DOI: 10.1016/j.jip.2021.107643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/07/2021] [Accepted: 06/28/2021] [Indexed: 11/30/2022]
Abstract
In November 2019, an acute disease outbreak in Australian redclaw crayfish (Cherax quadricarinatus) occurred in a farm in Hubei, China, with a cumulative mortality rate of over 80%. One of the characteristic symptoms of the disease was blisters on the tail. This symptom is also common in diseased Procambarus clarkii every year in this country, but the causative agent has not been determined. This study analyzed the etiological characteristics of this disease. Bacterial isolation and identification combined with high-throughput sequencing analysis were conducted to obtain the microbiota characteristics in the hemolymph, hepatopancreas, and intestines. Results showed that this outbreak was caused by infection from Aeromonas hydrophila and Aeromonas veronii. The underlying cause was stress imposed on crayfish during transferring from outdoor pond to indoor pond because of temperature drops. Aeromonas infection caused remarkable changes in the structure of the microbial composition in the hemolymph, hepatopancreas, and intestines of the crayfish. The abundance of Aeromonas in the hemolymph of the sick crayfish was as high as 99.33%. In particular, KEGG metabolic pathway analysis showed that some antibiotic synthesis, enterobactin biosynthesis, and myo-inositol degradation pathways were abundant in healthy crayfish hemolymphs, which may be the mechanism of maintaining crayfish health. Conversely, inhibition of these pathways led to the disorder of microbiota structure, finally leading to the occurrence of diseases. To the knowledge of the authors, this study was the first to use high-throughput amplicon sequencing targeting the 16S rRNA gene to find the causative bacteria in aquatic animals. This protocol can provide more comprehensive and reliable evidence for pathogen identification, even if the pathogenic bacteria are anaerobes or other hard-to-culture bacteria.
Collapse
Affiliation(s)
- Qianqian Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, China; National Aquatic Biological Resource Center, NABRC, Wuhan, China
| | - Yaoyao Lin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Tanglin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yafeng Wu
- Fisheries Technical Extension Centre of Jiangsu Province, Nanjing, China
| | - Ping Fang
- Fisheries Technical Extension Centre of Jiangsu Province, Nanjing, China
| | - Shuyi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jingwen Hao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Aihua Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, China; National Aquatic Biological Resource Center, NABRC, Wuhan, China.
| |
Collapse
|
114
|
Stellaard F, Lütjohann D. Dynamics of the enterohepatic circulation of bile acids in healthy humans. Am J Physiol Gastrointest Liver Physiol 2021; 321:G55-G66. [PMID: 33978477 DOI: 10.1152/ajpgi.00476.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Regulation of bile acid metabolism is normally discussed as the regulation of bile acid synthesis, which serves to compensate for intestinal loss in order to maintain a constant pool size. After a meal, bile acids start cycling in the enterohepatic circulation. Farnesoid X receptor-dependent ileal and hepatic processes lead to negative feedback inhibition of bile acid synthesis. When the intestinal bile acid flux decreases, the inhibition of synthesis is released. The degree of inhibition of synthesis and the mechanism and degree of activation are still unknown. Moreover, in humans, a biphasic diurnal expression pattern of bile acid synthesis has been documented, indicating maximal synthesis around 3 PM and 9 PM. Quantitative data on the hourly synthesis schedule as compensation for intestinal loss are lacking. In this review, we describe the classical view on bile acid metabolism and present alternative concepts that are based on the overlooked feature that bile acids transit through the enterohepatic circulation very rapidly. A daily profile of the cycling and total bile acid pool sizes and potential controlled and uncontrolled mechanisms for synthesis are predicted. It remains to be elucidated by which mechanism clock genes interact with the Farnesoid X receptor-controlled regulation of bile acid synthesis. This mechanism could become an attractive target to enhance bile acid synthesis at night, when cholesterol synthesis is high, thus lowering serum LDL-cholesterol.
Collapse
Affiliation(s)
- Frans Stellaard
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| |
Collapse
|
115
|
Faden H. Review and Commentary on the Importance of Bile Acids in the Life Cycle of Clostridioides difficile in Children and Adults. J Pediatric Infect Dis Soc 2021; 10:659-664. [PMID: 33626138 DOI: 10.1093/jpids/piaa150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022]
Abstract
Clostridioides difficile, a spore-forming anaerobe, resides in the intestine. The life cycle of C. difficile illustrates an interdependent relationship between bile acids, commensal microbiota, and C. difficile. Primary bile acids are critical for the germination of C. difficile spores in the small intestine, while secondary bile acids serve as a counterbalance to inhibit the growth of the organism in the colon. Many commensal bacteria especially Clostridium spp. are responsible for transforming primary bile acids into secondary bile acids. Antibiotics eliminate bacteria that convert primary bile acids into secondary bile acids and, thus, allow C. difficile to flourish and cause diarrhea. In children younger than 2 years of age, who normally only produce primary bile acids, colonization with toxin-producing C. difficile is exceedingly common. The reason for the absence of C. difficile diarrhea in the children remains unexplained.
Collapse
Affiliation(s)
- Howard Faden
- Department of Pediatrics, Division of Infectious Diseases, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York, USA
| |
Collapse
|
116
|
Bile acids LCA and CDCA inhibited porcine deltacoronavirus replication in vitro. Vet Microbiol 2021; 257:109097. [PMID: 33933854 DOI: 10.1016/j.vetmic.2021.109097] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/25/2021] [Indexed: 12/12/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging enteric coronavirus that causes gastroenteritis in pigs and no vaccines or antiviral drugs are available. Bile acids are active factors in intestines and influence the replication of enteric viruses. Currently, the role of bile acids on PDCoV replication is unknown. In this study, we tested the effects of different types of bile acids on the replication of PDCoV in cell culture. We found that physiological concentrations of bile acids chenodeoxycholic acid (CDCA) and lithocholic acid (LCA) had antiviral activity against PDCoV in porcine kidney cell line (LLC-PK1) and porcine small intestinal epithelial cell line (IPEC-J2). In IPEC-J2 cells, CDCA and LCA inhibited PDCoV replication at post-entry stages by inducing the production of interferon (IFN)-λ3 and IFN-stimulated gene 15 (ISG15) via G protein-coupled receptor (GPCR). In summary, bile acids CDCA and LCA restricted PDCoV infection and LCA functioned through a GPCR-IFN-λ3-ISG15 signaling axis in IPEC-J2 cells. Our results may open new avenues for the development of antiviral drugs to treat PDCoV infection in pigs.
Collapse
|
117
|
Manipulating the Microbiome: An Alternative Treatment for Bile Acid Diarrhoea. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bile acid diarrhoea (BAD) is a widespread gastrointestinal disease that is often misdiagnosed as irritable bowel syndrome and is estimated to affect 1% of the United Kingdom (UK) population alone. BAD is associated with excessive bile acid synthesis secondary to a gastrointestinal or idiopathic disorder (also known as primary BAD). Current licensed treatment in the UK has undesirable effects and has been the same since BAD was first discovered in the 1960s. Bacteria are essential in transforming primary bile acids into secondary bile acids. The profile of an individual’s bile acid pool is central in bile acid homeostasis as bile acids regulate their own synthesis. Therefore, microbiome dysbiosis incurred through changes in diet, stress levels and the introduction of antibiotics may contribute to or be the cause of primary BAD. This literature review focuses on primary BAD, providing an overview of bile acid metabolism, the role of the human gut microbiome in BAD and the potential options for therapeutic intervention in primary BAD through manipulation of the microbiome.
Collapse
|
118
|
Functional and Phylogenetic Diversity of BSH and PVA Enzymes. Microorganisms 2021; 9:microorganisms9040732. [PMID: 33807488 PMCID: PMC8066178 DOI: 10.3390/microorganisms9040732] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Bile salt hydrolase (BSH) and penicillin V acylase (PVA) are related enzymes that are classified as choloylglycine hydrolases (CGH). BSH enzymes have attracted significant interest for their ability to modulate the composition of the bile acid pool, alter bile acid signaling events mediated by the host bile acid receptors FXR and TGR5 and influence cholesterol homeostasis in the host, while PVA enzymes have been widely utilised in an industrial capacity in the production of semi-synthetic antibiotics. The similarities between BSH and PVA enzymes suggest common evolution of these enzymes and shared mechanisms for substrate binding and catalysis. Here, we compare BSH and PVA through analysis of the distribution, phylogeny and biochemistry of these microbial enzymes. The development of new annotation approaches based upon functional enzyme analyses and the potential implications of BSH enzymes for host health are discussed.
Collapse
|
119
|
Bayer G, Ganobis CM, Allen-Vercoe E, Philpott DJ. Defined gut microbial communities: promising tools to understand and combat disease. Microbes Infect 2021; 23:104816. [PMID: 33785422 DOI: 10.1016/j.micinf.2021.104816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Defined gut microbial communities are emerging tools that allow detailed studies of microbial ecosystems and their interactions with the host. In this article, we review strategies underlying the design of defined consortia and summarize the efforts to introduce simplified communities into in vitro and in vivo models. We conclude by highlighting the potential of defined microbial ecosystems as effective modulation strategies for health benefits.
Collapse
Affiliation(s)
- Giuliano Bayer
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Caroline M Ganobis
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
120
|
di Gregorio MC, Cautela J, Galantini L. Physiology and Physical Chemistry of Bile Acids. Int J Mol Sci 2021; 22:1780. [PMID: 33579036 PMCID: PMC7916809 DOI: 10.3390/ijms22041780] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
Bile acids (BAs) are facial amphiphiles synthesized in the body of all vertebrates. They undergo the enterohepatic circulation: they are produced in the liver, stored in the gallbladder, released in the intestine, taken into the bloodstream and lastly re-absorbed in the liver. During this pathway, BAs are modified in their molecular structure by the action of enzymes and bacteria. Such transformations allow them to acquire the chemical-physical properties needed for fulling several activities including metabolic regulation, antimicrobial functions and solubilization of lipids in digestion. The versatility of BAs in the physiological functions has inspired their use in many bio-applications, making them important tools for active molecule delivery, metabolic disease treatments and emulsification processes in food and drug industries. Moreover, moving over the borders of the biological field, BAs have been largely investigated as building blocks for the construction of supramolecular aggregates having peculiar structural, mechanical, chemical and optical properties. The review starts with a biological analysis of the BAs functions before progressively switching to a general overview of BAs in pharmacology and medicine applications. Lastly the focus moves to the BAs use in material science.
Collapse
Affiliation(s)
- Maria Chiara di Gregorio
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jacopo Cautela
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy;
| | - Luciano Galantini
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
121
|
Xiang J, Zhang Z, Xie H, Zhang C, Bai Y, Cao H, Che Q, Guo J, Su Z. Effect of different bile acids on the intestine through enterohepatic circulation based on FXR. Gut Microbes 2021; 13:1949095. [PMID: 34313539 PMCID: PMC8346203 DOI: 10.1080/19490976.2021.1949095] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Farnesoid X receptor (FXR) is a nuclear receptor for bile acids (BAs) that is widely expressed in the intestine, liver and kidney. FXR has important regulatory impacts on a wide variety of metabolic pathways (such as glucose, lipid, and sterol metabolism) and has been recognized to ameliorate obesity, liver damage, cholestasis and chronic inflammatory diseases. The types of BAs are complex and diverse. BAs link the intestine with the liver through the enterohepatic circulation. BAs derivatives have entered clinical trials for liver disease. In addition to the liver, the intestine is also targeted by BAs. This article reviews the effects of different BAs on the intestinal tract through the enterohepatic circulation from the perspective of FXR, aiming to elucidate the effects of different BAs on the intestinal tract and lay a foundation for new treatment methods.
Collapse
Affiliation(s)
- Junwei Xiang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhengyan Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongyi Xie
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chengcheng Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hua Cao
- Guangdong Cosmetics Engineering & Technology Research Center, School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Board of Directors, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China
- CONTACT Zhengquan Su ; Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
122
|
Wang R, Tang R, Li B, Ma X, Schnabl B, Tilg H. Gut microbiome, liver immunology, and liver diseases. Cell Mol Immunol 2021; 18:4-17. [PMID: 33318628 PMCID: PMC7852541 DOI: 10.1038/s41423-020-00592-6] [Citation(s) in RCA: 219] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/08/2020] [Indexed: 02/08/2023] Open
Abstract
The gut microbiota is a complex and plastic consortium of microorganisms that are intricately connected with human physiology. The liver is a central immunological organ that is particularly enriched in innate immune cells and constantly exposed to circulating nutrients and endotoxins derived from the gut microbiota. The delicate interaction between the gut and liver prevents accidental immune activation against otherwise harmless antigens. Work on the interplay between the gut microbiota and liver has assisted in understanding the pathophysiology of various liver diseases. Of immense importance is the step from high-throughput sequencing (correlation) to mechanistic studies (causality) and therapeutic intervention. Here, we review the gut microbiota, liver immunology, and the interaction between the gut and liver. In addition, the impairment in the gut-liver axis found in various liver diseases is reviewed here, with an emphasis on alcohol-associated liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), and autoimmune liver disease (AILD). On the basis of growing evidence from these preclinical studies, we propose that the gut-liver axis paves the way for targeted therapeutic modalities for liver diseases.
Collapse
Affiliation(s)
- Rui Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Bo Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, 200001, Shanghai, China.
| | - Bernd Schnabl
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
123
|
Wang XJ, Chen BY, Yang BW, Yue TL, Guo CF. Short communication: Chemical structure, concentration, and pH are key factors influencing antimicrobial activity of conjugated bile acids against lactobacilli. J Dairy Sci 2020; 104:1524-1530. [PMID: 33246627 DOI: 10.3168/jds.2020-19293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/08/2020] [Indexed: 01/14/2023]
Abstract
Effects of chemical structure, concentration, and pH on antimicrobial activity of conjugated bile acids were investigated in 4 strains of lactobacilli. Considerable differences were observed in the antimicrobial activity between the 6 human conjugated bile acids, including glycocholic acid, taurocholic acid, glycodeoxycholic acid, taurodeoxycholic acid, glycochenodeoxycholic acid, and taurochenodeoxycholic acid. Glycodeoxycholic acid and glycochenodeoxycholic acid generally showed significantly higher antimicrobial activity against the lactobacilli, but glycocholic acid and taurocholic acid exhibited the significantly lower antimicrobial activity. Glycochenodeoxycholic acid was selected for further analysis, and the results showed its antimicrobial activity was concentration-dependent, and there was a significantly negative linear correlation (R2 > 0.98) between bile-antimicrobial index and logarithmic concentration of the bile acid for each strain of lactobacilli. Additionally, the antimicrobial activity of glycochenodeoxycholic acid was also observed to be pH-dependent, and it was significantly enhanced with the decreasing pH, with the result that all the strains of lactobacilli were unable to grow at pH 5.0. In conclusion, chemical structure, concentration, and pH are key factors influencing antimicrobial activity of conjugated bile acids against lactobacilli. This study provides theoretical guidance and technology support for developing a scientific method for evaluating the bile tolerance ability of potentially probiotic strains of lactobacilli.
Collapse
Affiliation(s)
- Xue-Jiao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Bing-Yan Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Bao-Wei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Tian-Li Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Chun-Feng Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
124
|
Baloni P, Funk CC, Yan J, Yurkovich JT, Kueider-Paisley A, Nho K, Heinken A, Jia W, Mahmoudiandehkordi S, Louie G, Saykin AJ, Arnold M, Kastenmüller G, Griffiths WJ, Thiele I, Kaddurah-Daouk R, Price ND. Metabolic Network Analysis Reveals Altered Bile Acid Synthesis and Metabolism in Alzheimer's Disease. CELL REPORTS MEDICINE 2020; 1:100138. [PMID: 33294859 PMCID: PMC7691449 DOI: 10.1016/j.xcrm.2020.100138] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 06/26/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022]
Abstract
Increasing evidence suggests Alzheimer's disease (AD) pathophysiology is influenced by primary and secondary bile acids, the end product of cholesterol metabolism. We analyze 2,114 post-mortem brain transcriptomes and identify genes in the alternative bile acid synthesis pathway to be expressed in the brain. A targeted metabolomic analysis of primary and secondary bile acids measured from post-mortem brain samples of 111 individuals supports these results. Our metabolic network analysis suggests that taurine transport, bile acid synthesis, and cholesterol metabolism differ in AD and cognitively normal individuals. We also identify putative transcription factors regulating metabolic genes and influencing altered metabolism in AD. Intriguingly, some bile acids measured in brain tissue cannot be explained by the presence of enzymes responsible for their synthesis, suggesting that they may originate from the gut microbiome and are transported to the brain. These findings motivate further research into bile acid metabolism in AD to elucidate their possible connection to cognitive decline.
Collapse
Affiliation(s)
| | - Cory C Funk
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Jingwen Yan
- Indiana Alzheimer Disease Center and Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Alexandra Kueider-Paisley
- Department of Psychiatry and Behavioral Medicine, Duke Institute for Brain Sciences, Duke University, Durham, NC 27708, USA
| | - Kwangsik Nho
- Indiana Alzheimer Disease Center and Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Almut Heinken
- School of Medicine, National University of Ireland, Galway, Ireland
| | - Wei Jia
- Cancer Biology Program, The University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Siamak Mahmoudiandehkordi
- Department of Psychiatry and Behavioral Medicine, Duke Institute for Brain Sciences, Duke University, Durham, NC 27708, USA
| | - Gregory Louie
- Department of Psychiatry and Behavioral Medicine, Duke Institute for Brain Sciences, Duke University, Durham, NC 27708, USA
| | - Andrew J Saykin
- Indiana Alzheimer Disease Center and Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Matthias Arnold
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Gabi Kastenmüller
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - William J Griffiths
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK
| | - Ines Thiele
- School of Medicine, National University of Ireland, Galway, Ireland.,Discipline of Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | | | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Medicine, Duke Institute for Brain Sciences, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
125
|
Tian Y, Gui W, Rimal B, Koo I, Smith PB, Nichols RG, Cai J, Liu Q, Patterson AD. Metabolic impact of persistent organic pollutants on gut microbiota. Gut Microbes 2020; 12:1-16. [PMID: 33295235 PMCID: PMC7734116 DOI: 10.1080/19490976.2020.1848209] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence supports that exposure to persistent organic pollutants (POPs) can impact the interaction between the gut microbiota and host. Recent efforts have characterized the relationship between gut microbiota and environment pollutants suggesting additional research is needed to understand potential new avenues for toxicity. Here, we systematically examined the direct effects of POPs including 2,3,7,8-tetrachlorodibenzofuran (TCDF), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and polychlorinated biphenyls (PCB-123 and PCB-156) on the microbiota using metatranscriptomics and NMR- and mass spectrometry-based metabolomics combined with flow cytometry and growth rate measurements (OD600). This study demonstrated that (1) POPs directly and rapidly affect isolated cecal bacterial global metabolism that is associated with significant decreases in microbial metabolic activity; (2) significant changes in cecal bacterial gene expression related to tricarboxylic acid (TCA) cycle as well as carbon metabolism, carbon fixation, pyruvate metabolism, and protein export were observed following most POP exposure; (3) six individual bacterial species show variation in lipid metabolism in response to POP exposure; and (4) PCB-153 (non-coplanar)has a greater impact on bacteria than PCB-126 (coplanar) at the metabolic and transcriptional levels. These data provide new insights into the direct role of POPs on gut microbiota and begins to establish possible microbial toxicity endpoints which may help to inform risk assessment.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Wei Gui
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Bipin Rimal
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Imhoi Koo
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Philip B. Smith
- Huck Institutes of the Life Sciences, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Robert G. Nichols
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Jingwei Cai
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Qing Liu
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA,CONTACT Andrew D. Patterson Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, PA16802, USA
| |
Collapse
|
126
|
Lee G, You HJ, Bajaj JS, Joo SK, Yu J, Park S, Kang H, Park JH, Kim JH, Lee DH, Lee S, Kim W, Ko G. Distinct signatures of gut microbiome and metabolites associated with significant fibrosis in non-obese NAFLD. Nat Commun 2020; 11:4982. [PMID: 33020474 PMCID: PMC7536225 DOI: 10.1038/s41467-020-18754-5] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/09/2020] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is associated with obesity but also found in non-obese individuals. Gut microbiome profiles of 171 Asians with biopsy-proven NAFLD and 31 non-NAFLD controls are analyzed using 16S rRNA sequencing; an independent Western cohort is used for external validation. Subjects are classified into three subgroups according to histological spectra of NAFLD or fibrosis severity. Significant alterations in microbiome diversity are observed according to fibrosis severity in non-obese, but not obese, subjects. Ruminococcaceae and Veillonellaceae are the main microbiota associated with fibrosis severity in non-obese subjects. Furthermore, stool bile acids and propionate are elevated, especially in non-obese subjects with significant fibrosis. Fibrosis-related Ruminococcaceae and Veillonellaceae species undergo metagenome sequencing, and four representative species are administered in three mouse NAFLD models to evaluate their effects on liver damage. This study provides the evidence for the role of the microbiome in the liver fibrosis pathogenesis, especially in non-obese subjects. Nonalcoholic fatty liver disease (NAFLD) is associated with obesity but also found in individuals without obesity. Here, gut microbiome analysis using a biopsy-proven NAFLD cohort reveal distinct signatures of microbiome-metabolites associated with significant fibrosis in patients with NAFLD without obesity.
Collapse
Affiliation(s)
- Giljae Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun Ju You
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea.,Institute of Health and Environment, Seoul National University, Seoul, 08826, Republic of Korea.,Center for Human and Environmental Microbiome, Institute of Health and Environment, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA, 23249, USA
| | - Sae Kyung Joo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Junsun Yu
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seoyeon Park
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyena Kang
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong Hwan Park
- Department of Pathology, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Jung Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Dong Hyeon Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Seonhwa Lee
- Department of Bio-convergence Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Won Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, 07061, Republic of Korea.
| | - GwangPyo Ko
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea. .,Center for Human and Environmental Microbiome, Institute of Health and Environment, Seoul National University, Seoul, 08826, Republic of Korea. .,KoBioLabs, Inc., Seoul, 08826, Republic of Korea. .,Bio-MAX/N-Bio, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
127
|
Zhang Q, Huang R, Hu H, Yu L, Tang Q, Tao Y, Liu Z, Li J, Wang G. Integrative Analysis of Hypoxia-Associated Signature in Pan-Cancer. iScience 2020; 23:101460. [PMID: 32861996 PMCID: PMC7476856 DOI: 10.1016/j.isci.2020.101460] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/18/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
Hypoxia is serving crucial roles in cancers. This study aims to comprehensively analyze the molecular features and clinical relevance of a well-defined hypoxia-associated signature in pan-cancer using multi-omics data. Data were acquired from TCGA, CCLE, GDSC, and GEO. RNA expression pattern, copy number variation (CNV), methylation, and mutation of the signature were analyzed. The majority of the 15 genes were upregulated in cancer tissues compared with normal tissue, and RNA expression was negatively associated with methylation level. CNV occurred in almost all the cancers, whereas mutation frequency was low across different cancer types. The signature was also closely related to cancer hallmarks and cancer-related metabolism pathways. NDRG1 was upregulated in kidney cancer tissues as indicated by immunohistochemistry. Besides, most of the 15 genes were risk factors for patients' overall survival. Our results provide a valuable resource that will guide both mechanistic and therapeutic analyses of the hypoxia signature in cancers.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Rui Huang
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Hanqing Hu
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Lei Yu
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Qingchao Tang
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Yangbao Tao
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Zheng Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100000, China
| | - Jiaying Li
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Guiyu Wang
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| |
Collapse
|
128
|
IL-13 as Target to Reduce Cholestasis and Dysbiosis in Abcb4 Knockout Mice. Cells 2020; 9:cells9091949. [PMID: 32846954 PMCID: PMC7564366 DOI: 10.3390/cells9091949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 01/13/2023] Open
Abstract
The Th2 cytokine IL-13 is involved in biliary epithelial injury and liver fibrosis in patients as well as in animal models. The aim of this study was to investigate IL-13 as a therapeutic target during short term and chronic intrahepatic cholestasis in an Abcb4-knockout mouse model (Abcb4-/-). Lack of IL-13 protected Abcb4-/- mice transiently from cholestasis. This decrease in serum bile acids was accompanied by an enhanced excretion of bile acids and a normalization of fecal bile acid composition. In Abcb4-/-/IL-13-/- double knockout mice, bacterial translocation to the liver was significantly reduced and the intestinal microbiome resembled the commensal composition in wild type animals. In addition, 52-week-old Abcb4-/-IL-13-/- mice showed significantly reduced hepatic fibrosis. Abcb4-/- mice devoid of IL-13 transiently improved cholestasis and converted the composition of the gut microbiota towards healthy conditions. This highlights IL-13 as a potential therapeutic target in biliary diseases.
Collapse
|
129
|
Li C, Zhang H, Li X. The Mechanism of Traditional Chinese Medicine for the Treatment of Obesity. Diabetes Metab Syndr Obes 2020; 13:3371-3381. [PMID: 33061498 PMCID: PMC7524185 DOI: 10.2147/dmso.s274534] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/02/2020] [Indexed: 12/25/2022] Open
Abstract
Obesity is the lipid deposition caused by the imbalance between energy intake and consumption caused by a variety of factors. Obesity can lead to multiple systemic complications. At present, the treatment of obesity is mainly lifestyle intervention, drug weight loss, and weight loss surgery, but the curative effect is limited or the side effects are serious. Traditional Chinese medicine plays a unique role in the treatment of obesity. Existing studies have found that traditional Chinese medicine can treat obesity in a variety of ways, such as regulating intestinal microflora, enhancing hormone level, regulating fat metabolism, and so on. In this review, we will introduce and summarize the mechanism of traditional Chinese medicine in the treatment of obesity.
Collapse
Affiliation(s)
- Chang Li
- Department of Endocrinology, Seventh People’s Hospital Affiliated to Shanghai University of TCM, Shanghai, People’s Republic of China
| | - Hongli Zhang
- Department of Endocrinology, Seventh People’s Hospital Affiliated to Shanghai University of TCM, Shanghai, People’s Republic of China
| | - Xiaohua Li
- Department of Endocrinology, Seventh People’s Hospital Affiliated to Shanghai University of TCM, Shanghai, People’s Republic of China
- Correspondence: Xiaohua Li Department of Endocrinology, Seventh People’s Hospital Affiliated to Shanghai University of TCM, Shanghai200137, People’s Republic of China Tel/Fax +86 021-58670561 Email
| |
Collapse
|