101
|
HP1 cooperates with CAF-1 to compact heterochromatic transgene repeats in mammalian cells. Sci Rep 2018; 8:14141. [PMID: 30237539 PMCID: PMC6147918 DOI: 10.1038/s41598-018-32381-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 09/04/2018] [Indexed: 11/19/2022] Open
Abstract
The nuclear organization of tightly condensed heterochromatin plays important roles in regulating gene transcription and genome integrity. Heterochromatic domains are usually present at chromosomal regions containing a large array of repeated DNA sequences. We previously showed that integration of a 1,000-copy tandem array of an inducible reporter gene into the genome of mammalian cells induces the formation of a highly compact heterochromatic domain enriched in heterochromatin protein 1 (HP1). It remains to be determined how these DNA repeats are packaged into a heterochromatic form and are silenced. Here, we show that HP1-mediated transgene condensation and silencing require the interaction with PxVxL motif-containing proteins. The chromatin assembly factor 1 (CAF-1) complex concentrates at the transgenic locus through the interaction of its PxVxL motif-containing p150 subunit with HP1. Knockdown of p150 relieves HP1-mediated transgene compaction and repression. When targeted to the transgenic locus, p150 mutants defective in binding HP1 cause transgene decondensation and activation. Taken together, these results suggest that HP1 cooperates with CAF-1 to compact transgene repeats. This study provides important insight into how heterochromatin is maintained at chromosomal regions with abundant DNA repeats.
Collapse
|
102
|
Arifulin EA, Musinova YR, Vassetzky YS, Sheval EV. Mobility of Nuclear Components and Genome Functioning. BIOCHEMISTRY (MOSCOW) 2018; 83:690-700. [PMID: 30195325 DOI: 10.1134/s0006297918060068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell nucleus is characterized by strong compartmentalization of structural components in its three-dimensional space. Certain genomic functions are accompanied by changes in the localization of chromatin loci and nuclear bodies. Here we review recent data on the mobility of nuclear components and the role of this mobility in genome functioning.
Collapse
Affiliation(s)
- E A Arifulin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Y R Musinova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, Villejuif, 94805, France.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Y S Vassetzky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, Villejuif, 94805, France.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia.,UMR8126, CNRS, Université Paris-Sud, Institut de Cancérologie Gustave Roussy, Villejuif, 94805, France
| | - E V Sheval
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, Villejuif, 94805, France
| |
Collapse
|
103
|
Knoch TA. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization. Semin Cell Dev Biol 2018; 90:19-42. [PMID: 30125668 DOI: 10.1016/j.semcdb.2018.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/10/2018] [Indexed: 01/28/2023]
Abstract
Despite all the efforts the three-dimensional higher-order architecture and dynamics in the cell nucleus are still debated. The regulation of genes, their transcription, replication, as well as differentiation in Eukarya is, however, closely connected to this architecture and dynamics. Here, an evaluation and review framework is setup to investigate the folding of a 30 nm chromatin fibre into chromosome territories by comparing computer simulations of two different chromatin topologies to experiments: The Multi-Loop-Subcompartment (MLS) model, in which small loops form rosettes connected by chromatin linkers, and the Random-Walk/Giant-Loop (RW/GL) model, in which large loops are attached to a flexible non-protein backbone, were simulated for various loop, rosette, and linker sizes. The 30 nm chromatin fibre was modelled as a polymer chain with stretching, bending, and excluded volume interactions. A spherical boundary potential simulated the confinement by other chromosomes and the nuclear envelope. Monte Carlo and Brownian Dynamics methods were applied to generate chain configurations at thermodynamic equilibrium. Both the MLS and the RW/GL models form chromosome territories, with different morphologies: The MLS rosettes form distinct subchromosomal domains, compatible in size as those from light microscopic observations. In contrast, the big RW/GL loops lead to a more homogeneous chromatin distribution. Only the MLS model agrees with the low overlap of chromosomes, their arms, and subchromosomal domains found experimentally. A review of experimental spatial distance measurements between genomic markers labelled by FISH as a function of their genomic separation from different publications and comparison to simulated spatial distances also favours an MLS-like model with loops and linkers of 63 to 126 kbp. The chromatin folding topology also reduces the apparent persistence length of the chromatin fibre to a value significantly lower than the free solution persistence length, explaining the low persistence lengths found various experiments. The predicted large spaces between the chromatin fibres allow typically sized biological molecules to reach nearly every location in the nucleus by moderately obstructed diffusion and disagrees with the much simplified assumption that defined channels between territories for molecular transport as in the Interchromosomal Domain (ICD) hypothesis exist. All this is also in agreement with recent selective high-resolution chromosome interaction capture (T2C) experiments, the scaling behaviour of the DNA sequence, the dynamics of the chromatin fibre, the nuclear diffusion of molecules, as well as other experiments. In summary, this polymer simulation framework compared to experimental data clearly favours only a quasi-chromatin fibre forming a stable multi-loop aggregate/rosette like genome organization and dynamics whose local topology is tightly connected to the global morphology and dynamics of the cell nucleus.
Collapse
Affiliation(s)
- Tobias A Knoch
- Biophysical Genomics, Dept. Cell Biology & Genetics, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.
| |
Collapse
|
104
|
Pichon X, Lagha M, Mueller F, Bertrand E. A Growing Toolbox to Image Gene Expression in Single Cells: Sensitive Approaches for Demanding Challenges. Mol Cell 2018; 71:468-480. [DOI: 10.1016/j.molcel.2018.07.022] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/21/2022]
|
105
|
Ogawa S, Kido S, Handa T, Ogawa H, Asakawa H, Takahashi TS, Nakagawa T, Hiraoka Y, Masukata H. Shelterin promotes tethering of late replication origins to telomeres for replication-timing control. EMBO J 2018; 37:embj.201898997. [PMID: 29997179 DOI: 10.15252/embj.201898997] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/19/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022] Open
Abstract
DNA replication initiates at many discrete loci on eukaryotic chromosomes, and individual replication origins are regulated under a spatiotemporal program. However, the underlying mechanisms of this regulation remain largely unknown. In the fission yeast Schizosaccharomyces pombe, the telomere-binding protein Taz1, ortholog of human TRF1/TRF2, regulates a subset of late replication origins by binding to the telomere-like sequence near the origins. Here, we showed using a lacO/LacI-GFP system that Taz1-dependent late origins were predominantly localized at the nuclear periphery throughout interphase, and were localized adjacent to the telomeres in the G1/S phase. The peripheral localization that depended on the nuclear membrane protein Bqt4 was not necessary for telomeric association and replication-timing control of the replication origins. Interestingly, the shelterin components Rap1 and Poz1 were required for replication-timing control and telomeric association of Taz1-dependent late origins, and this requirement was bypassed by a minishelterin Tpz1-Taz1 fusion protein. Our results suggest that Taz1 suppresses replication initiation through shelterin-mediated telomeric association of the origins at the onset of S phase.
Collapse
Affiliation(s)
- Shiho Ogawa
- Graduate School of Science, Osaka University, Toyonaka Osaka, Japan
| | - Sayuri Kido
- Graduate School of Science, Osaka University, Toyonaka Osaka, Japan
| | - Tetsuya Handa
- Graduate School of Science, Osaka University, Toyonaka Osaka, Japan
| | - Hidesato Ogawa
- Graduate School of Frontier Biosciences, Osaka University, Suita Osaka, Japan
| | - Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University, Suita Osaka, Japan
| | | | - Takuro Nakagawa
- Graduate School of Science, Osaka University, Toyonaka Osaka, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita Osaka, Japan
| | - Hisao Masukata
- Graduate School of Science, Osaka University, Toyonaka Osaka, Japan .,Graduate School of Frontier Biosciences, Osaka University, Suita Osaka, Japan
| |
Collapse
|
106
|
Mechanistic insights in transcription-coupled nucleotide excision repair of ribosomal DNA. Proc Natl Acad Sci U S A 2018; 115:E6770-E6779. [PMID: 29967171 DOI: 10.1073/pnas.1716581115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleotide excision repair (NER) guarantees genome integrity against UV light-induced DNA damage. After UV irradiation, cells have to cope with a general transcriptional block. To ensure UV lesions repair specifically on transcribed genes, NER is coupled with transcription in an extremely organized pathway known as transcription-coupled repair. In highly metabolic cells, more than 60% of total cellular transcription results from RNA polymerase I activity. Repair of the mammalian transcribed ribosomal DNA has been scarcely studied. UV lesions severely block RNA polymerase I activity and the full transcription-coupled repair machinery corrects damage on actively transcribed ribosomal DNAs. After UV irradiation, RNA polymerase I is more bound to the ribosomal DNA and both are displaced to the nucleolar periphery. Importantly, the reentry of RNA polymerase I and the ribosomal DNA is dependent on the presence of UV lesions on DNA and independent of transcription restart.
Collapse
|
107
|
Schrank BR, Aparicio T, Li Y, Chang W, Chait BT, Gundersen GG, Gottesman ME, Gautier J. Nuclear ARP2/3 drives DNA break clustering for homology-directed repair. Nature 2018; 559:61-66. [PMID: 29925947 PMCID: PMC6145447 DOI: 10.1038/s41586-018-0237-5] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 04/17/2018] [Indexed: 11/18/2022]
Abstract
DNA double-strand breaks repaired by non-homologous end joining display limited DNA end-processing and chromosomal mobility. By contrast, double-strand breaks undergoing homology-directed repair exhibit extensive processing and enhanced motion. The molecular basis of this movement is unknown. Here, using Xenopus laevis cell-free extracts and mammalian cells, we establish that nuclear actin, WASP, and the actin-nucleating ARP2/3 complex are recruited to damaged chromatin undergoing homology-directed repair. We demonstrate that nuclear actin polymerization is required for the migration of a subset of double-strand breaks into discrete sub-nuclear clusters. Actin-driven movements specifically affect double-strand breaks repaired by homology-directed repair in G2 cell cycle phase; inhibition of actin nucleation impairs DNA end-processing and homology-directed repair. By contrast, ARP2/3 is not enriched at double-strand breaks repaired by non-homologous end joining and does not regulate non-homologous end joining. Our findings establish that nuclear actin-based mobility shapes chromatin organization by generating repair domains that are essential for homology-directed repair in eukaryotic cells.
Collapse
Affiliation(s)
- Benjamin R Schrank
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Tomas Aparicio
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Yinyin Li
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Wakam Chang
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Max E Gottesman
- Department of Biochemistry and Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jean Gautier
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
108
|
Observing DNA in live cells. Biochem Soc Trans 2018; 46:729-740. [PMID: 29871877 DOI: 10.1042/bst20170301] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/26/2018] [Accepted: 05/01/2018] [Indexed: 12/17/2022]
Abstract
The structural organization and dynamics of DNA are known to be of paramount importance in countless cellular processes, but capturing these events poses a unique challenge. Fluorescence microscopy is well suited for these live-cell investigations, but requires attaching fluorescent labels to the species under investigation. Over the past several decades, a suite of techniques have been developed for labeling and imaging DNA, each with various advantages and drawbacks. Here, we provide an overview of the labeling and imaging tools currently available for visualizing DNA in live cells, and discuss their suitability for various applications.
Collapse
|
109
|
Abstract
The health of an organism is intimately linked to its ability to repair damaged DNA. Importantly, DNA repair processes are highly dynamic. This highlights the necessity of characterizing DNA repair in live cells. Advanced genome editing and imaging approaches allow us to visualize damaged DNA and its associated factors in real time. Here, we summarize both established and recent methods that are used to induce DNA damage and visualize damaged DNA and its repair in live cells.
Collapse
Affiliation(s)
- Roxanne Oshidari
- Department of Laboratory Medicine and Pathobiology, University of Toronto, MaRS Centre, West Tower, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, University of Toronto, MaRS Centre, West Tower, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada; Canada Research Chairs Program, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
110
|
Shao S, Xue B, Sun Y. Intranucleus Single-Molecule Imaging in Living Cells. Biophys J 2018; 115:181-189. [PMID: 29861035 DOI: 10.1016/j.bpj.2018.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/19/2018] [Accepted: 05/11/2018] [Indexed: 12/26/2022] Open
Abstract
Many critical processes occurring in mammalian cells are stochastic and can be directly observed at the single-molecule level within their physiological environment, which would otherwise be obscured in an ensemble measurement. There are various fundamental processes in the nucleus, such as transcription, replication, and DNA repair, the study of which can greatly benefit from intranuclear single-molecule imaging. However, the number of such studies is relatively small mainly because of lack of proper labeling and imaging methods. In the past decade, tremendous efforts have been devoted to developing tools for intranuclear imaging. Here, we mainly describe the recent methodological developments of single-molecule imaging and their emerging applications in the live nucleus. We also discuss the remaining issues and provide a perspective on future developments and applications of this field.
Collapse
Affiliation(s)
- Shipeng Shao
- State Key Laboratory of Membrane Biology, BIOPIC, School of Life Sciences, Peking University, Beijing, China
| | - Boxin Xue
- State Key Laboratory of Membrane Biology, BIOPIC, School of Life Sciences, Peking University, Beijing, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, BIOPIC, School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
111
|
Iteratively improving Hi-C experiments one step at a time. Methods 2018; 142:47-58. [DOI: 10.1016/j.ymeth.2018.04.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/01/2018] [Accepted: 04/25/2018] [Indexed: 02/03/2023] Open
|
112
|
Pulecio J, Verma N, Mejía-Ramírez E, Huangfu D, Raya A. CRISPR/Cas9-Based Engineering of the Epigenome. Cell Stem Cell 2018; 21:431-447. [PMID: 28985525 DOI: 10.1016/j.stem.2017.09.006] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Determining causal relationships between distinct chromatin features and gene expression, and ultimately cell behavior, remains a major challenge. Recent developments in targetable epigenome-editing tools enable us to assign direct transcriptional and functional consequences to locus-specific chromatin modifications. This Protocol Review discusses the unprecedented opportunity that CRISPR/Cas9 technology offers for investigating and manipulating the epigenome to facilitate further understanding of stem cell biology and engineering of stem cells for therapeutic applications. We also provide technical considerations for standardization and further improvement of the CRISPR/Cas9-based tools to engineer the epigenome.
Collapse
Affiliation(s)
- Julian Pulecio
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, 3rd floor, Avenue Gran Via 199-203, Hospitalet de Llobregat, 08908 Barcelona, Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Nipun Verma
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA; Weill Graduate School of Medical Sciences at Cornell University/The Rockefeller University/Sloan Kettering Institute Tri-Institutional M.D.-Ph.D. Program, 1300 York Avenue, New York, NY 10065, USA
| | - Eva Mejía-Ramírez
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, 3rd floor, Avenue Gran Via 199-203, Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA.
| | - Angel Raya
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, 3rd floor, Avenue Gran Via 199-203, Hospitalet de Llobregat, 08908 Barcelona, Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
113
|
Anton T, Karg E, Bultmann S. Applications of the CRISPR/Cas system beyond gene editing. Biol Methods Protoc 2018; 3:bpy002. [PMID: 32161796 PMCID: PMC6994046 DOI: 10.1093/biomethods/bpy002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/28/2018] [Accepted: 04/03/2018] [Indexed: 12/26/2022] Open
Abstract
Since the discovery of the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system (Cas) as a tool for gene editing a plethora of locus-specific as well as genome-wide approaches have been developed that allow efficient and reproducible manipulation of genomic sequences. However, the seemingly unbound potential of CRISPR/Cas does not stop with its utilization as a site-directed nuclease. Mutations in its catalytic centers render Cas9 (dCas9) a universal recruitment platform that can be utilized to control transcription, visualize DNA sequences, investigate in situ proteome compositions and manipulate epigenetic modifications at user-defined genomic loci. In this review, we give a comprehensive introduction and overview of the development, improvement and application of recent dCas9-based approaches.
Collapse
Affiliation(s)
- Tobias Anton
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), LMU Munich, 82152 Martinsried, Germany
| | - Elisabeth Karg
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), LMU Munich, 82152 Martinsried, Germany
| | - Sebastian Bultmann
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), LMU Munich, 82152 Martinsried, Germany
| |
Collapse
|
114
|
Germier T, Audibert S, Kocanova S, Lane D, Bystricky K. Real-time imaging of specific genomic loci in eukaryotic cells using the ANCHOR DNA labelling system. Methods 2018; 142:16-23. [PMID: 29660486 DOI: 10.1016/j.ymeth.2018.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/28/2018] [Accepted: 04/11/2018] [Indexed: 01/01/2023] Open
Abstract
Spatio-temporal organization of the cell nucleus adapts to and regulates genomic processes. Microscopy approaches that enable direct monitoring of specific chromatin sites in single cells and in real time are needed to better understand the dynamics involved. In this chapter, we describe the principle and development of ANCHOR, a novel tool for DNA labelling in eukaryotic cells. Protocols for use of ANCHOR to visualize a single genomic locus in eukaryotic cells are presented. We describe an approach for live cell imaging of a DNA locus during the entire cell cycle in human breast cancer cells.
Collapse
Affiliation(s)
- Thomas Germier
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, 118 route de Narbonne, 31062 Toulouse, France
| | - Sylvain Audibert
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, 118 route de Narbonne, 31062 Toulouse, France
| | - Silvia Kocanova
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, 118 route de Narbonne, 31062 Toulouse, France
| | - David Lane
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, 118 route de Narbonne, 31062 Toulouse, France
| | - Kerstin Bystricky
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, 118 route de Narbonne, 31062 Toulouse, France.
| |
Collapse
|
115
|
Knight SC, Tjian R, Doudna JA. Genomes in Focus: Development and Applications of CRISPR-Cas9 Imaging Technologies. Angew Chem Int Ed Engl 2018; 57:4329-4337. [PMID: 29080263 PMCID: PMC6014596 DOI: 10.1002/anie.201709201] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 12/14/2022]
Abstract
The discovery of the CRISPR-Cas9 endonuclease has enabled facile genome editing in living cells and organisms. Catalytically inactive Cas9 (dCas9) retains the ability to bind DNA in an RNA-guided fashion, and has additionally been explored as a tool for transcriptional modulation, epigenetic editing, and genome imaging. This Review highlights recent progress and challenges in the development of dCas9 for imaging genomic loci. The emergence and maturation of this technology offers the potential to answer mechanistic questions about chromosome dynamics and three-dimensional genome organization in vivo.
Collapse
Affiliation(s)
- Spencer C Knight
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, USA
- Li Ka Shing Biomedical and Health Sciences Center, University of California, Berkeley, Berkeley, CA, USA
- CIRM Center of Excellence, University of California, Berkeley, Berkeley, CA, USA
| | - Jennifer A Doudna
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, USA
- Li Ka Shing Biomedical and Health Sciences Center, University of California, Berkeley, Berkeley, CA, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
116
|
Brocken DJ, Tark-Dame M, Dame RT. The organization of bacterial genomes: Towards understanding the interplay between structure and function. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.coisb.2018.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
117
|
Developing novel methods to image and visualize 3D genomes. Cell Biol Toxicol 2018; 34:367-380. [PMID: 29577183 PMCID: PMC6133007 DOI: 10.1007/s10565-018-9427-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/11/2018] [Indexed: 02/07/2023]
Abstract
To investigate three-dimensional (3D) genome organization in prokaryotic and eukaryotic cells, three main strategies are employed, namely nuclear proximity ligation-based methods, imaging tools (such as fluorescence in situ hybridization (FISH) and its derivatives), and computational/visualization methods. Proximity ligation-based methods are based on digestion and re-ligation of physically proximal cross-linked chromatin fragments accompanied by massively parallel DNA sequencing to measure the relative spatial proximity between genomic loci. Imaging tools enable direct visualization and quantification of spatial distances between genomic loci, and advanced implementation of (super-resolution) microscopy helps to significantly improve the resolution of images. Computational methods are used to map global 3D genome structures at various scales driven by experimental data, and visualization methods are used to visualize genome 3D structures in virtual 3D space-based on algorithms. In this review, we focus on the introduction of novel imaging and visualization methods to study 3D genomes. First, we introduce the progress made recently in 3D genome imaging in both fixed cell and live cells based on long-probe labeling, short-probe labeling, RNA FISH, and the CRISPR system. As the fluorescence-capturing capability of a particular microscope is very important for the sensitivity of bioimaging experiments, we also introduce two novel super-resolution microscopy methods, SDOM and low-power super-resolution STED, which have potential for time-lapse super-resolution live-cell imaging of chromatin. Finally, we review some software tools developed recently to visualize proximity ligation-based data. The imaging and visualization methods are complementary to each other, and all three strategies are not mutually exclusive. These methods provide powerful tools to explore the mechanisms of gene regulation and transcription in cell nuclei.
Collapse
|
118
|
Gu B, Swigut T, Spencley A, Bauer MR, Chung M, Meyer T, Wysocka J. Transcription-coupled changes in nuclear mobility of mammalian cis-regulatory elements. Science 2018; 359:1050-1055. [PMID: 29371426 PMCID: PMC6590518 DOI: 10.1126/science.aao3136] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 01/16/2018] [Indexed: 12/15/2022]
Abstract
To achieve guide RNA (gRNA) multiplexing and an efficient delivery of tens of distinct gRNAs into single cells, we developed a molecular assembly strategy termed chimeric array of gRNA oligonucleotides (CARGO). We coupled CARGO with dCas9 (catalytically dead Cas9) imaging to quantitatively measure the movement of enhancers and promoters that undergo differentiation-associated activity changes in live embryonic stem cells. Whereas all examined functional elements exhibited subdiffusive behavior, their relative mobility increased concurrently with transcriptional activation. Furthermore, acute perturbation of RNA polymerase II activity can reverse these activity-linked increases in loci mobility. Through quantitative CARGO-dCas9 imaging, we provide direct measurements of cis-regulatory element dynamics in living cells and distinct cellular and activity states and uncover an intrinsic connection between cis-regulatory element mobility and transcription.
Collapse
Affiliation(s)
- Bo Gu
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tomek Swigut
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew Spencley
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew R Bauer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mingyu Chung
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
119
|
Knight SC, Tjian R, Doudna JA. Genome im Fokus: Entwicklung und Anwendungen von CRISPR-Cas9-Bildgebungstechnologien. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201709201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Robert Tjian
- Department of Molecular and Cell Biology; University of California; Berkeley CA USA
- Howard Hughes Medical Institute; USA
- Li Ka Shing Biomedical and Health Sciences Center; University of California; Berkeley CA USA
- CIRM Center of Excellence; University of California, Berkeley; Berkeley CA USA
| | - Jennifer A. Doudna
- Department of Chemistry; University of California; Berkeley CA USA
- Department of Molecular and Cell Biology; University of California; Berkeley CA USA
- Howard Hughes Medical Institute; USA
- Li Ka Shing Biomedical and Health Sciences Center; University of California; Berkeley CA USA
- MBIB Division; Lawrence Berkeley National Laboratory; Berkeley CA USA. Innovative Genomics Institute; University of California, Berkeley; Berkeley CA USA
| |
Collapse
|
120
|
Amitai A. Chromatin Configuration Affects the Dynamics and Distribution of a Transiently Interacting Protein. Biophys J 2018; 114:766-771. [PMID: 29395046 DOI: 10.1016/j.bpj.2017.12.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/13/2017] [Accepted: 12/27/2017] [Indexed: 01/20/2023] Open
Affiliation(s)
- Assaf Amitai
- Department of Chemical Engineering, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts; Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts.
| |
Collapse
|
121
|
Dekker J, Belmont AS, Guttman M, Leshyk VO, Lis JT, Lomvardas S, Mirny LA, O'Shea CC, Park PJ, Ren B, Politz JCR, Shendure J, Zhong S. The 4D nucleome project. Nature 2018; 549:219-226. [PMID: 28905911 DOI: 10.1038/nature23884] [Citation(s) in RCA: 445] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/27/2017] [Indexed: 12/19/2022]
Abstract
The 4D Nucleome Network aims to develop and apply approaches to map the structure and dynamics of the human and mouse genomes in space and time with the goal of gaining deeper mechanistic insights into how the nucleus is organized and functions. The project will develop and benchmark experimental and computational approaches for measuring genome conformation and nuclear organization, and investigate how these contribute to gene regulation and other genome functions. Validated experimental technologies will be combined with biophysical approaches to generate quantitative models of spatial genome organization in different biological states, both in cell populations and in single cells.
Collapse
Affiliation(s)
- Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Howard Hughes Medical Institute, Worcester, Massachusetts 01605, USA
| | - Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Illinois 61801, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Victor O Leshyk
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Stavros Lomvardas
- Department of Biochemistry and Molecular Biophysics, Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, New York 10027, USA
| | - Leonid A Mirny
- Institute for Medical Engineering and Science, and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Clodagh C O'Shea
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, Moores Cancer Center, University of California San Diego, La Jolla California 92093, USA
| | - Joan C Ritland Politz
- Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Howard Hughes Medical Institute, Seattle, Washington 98109, USA
| | - Sheng Zhong
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
122
|
Gothe HJ, Minneker V, Roukos V. Dynamics of Double-Strand Breaks: Implications for the Formation of Chromosome Translocations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1044:27-38. [PMID: 29956289 DOI: 10.1007/978-981-13-0593-1_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Illegitimate joining of chromosome breaks can lead to the formation of chromosome translocations, a catastrophic type of genome rearrangements that often plays key roles in tumorigenesis. Emerging evidence suggests that the mobility of broken DNA loci can be an important determinant in partner search and clustering of individual breaks, events that can influence translocation frequency. We summarize here the recent literature on the mechanisms that regulate chromatin movement, focusing on studies exploring the motion properties of double-strand breaks in the context of chromatin, the functional consequences for DNA repair, and the formation of chromosome fusions.
Collapse
|
123
|
Germier T, Kocanova S, Walther N, Bancaud A, Shaban HA, Sellou H, Politi AZ, Ellenberg J, Gallardo F, Bystricky K. Real-Time Imaging of a Single Gene Reveals Transcription-Initiated Local Confinement. Biophys J 2017; 113:1383-1394. [PMID: 28978433 PMCID: PMC5627313 DOI: 10.1016/j.bpj.2017.08.014] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/08/2017] [Accepted: 08/04/2017] [Indexed: 11/18/2022] Open
Abstract
Genome dynamics are intimately linked to the regulation of gene expression, the most fundamental mechanism in biology, yet we still do not know whether the very process of transcription drives spatial organization at specific gene loci. Here, we have optimized the ANCHOR/ParB DNA-labeling system for real-time imaging of a single-copy, estrogen-inducible transgene in human cells. Motion of an ANCHOR3-tagged DNA locus was recorded in the same cell before and during the appearance of nascent MS2-labeled mRNA. We found that transcription initiation by RNA polymerase 2 resulted in confinement of the mRNA-producing gene domain within minutes. Transcription-induced confinement occurred in each single cell independently of initial, highly heterogeneous mobility. Constrained mobility was maintained even when inhibiting polymerase elongation. Chromatin motion at constant step size within a largely confined area hence leads to increased collisions that are compatible with the formation of gene-specific chromatin domains, and reflect the assembly of functional protein hubs and DNA processing during the rate-limiting steps of transcription.
Collapse
Affiliation(s)
- Thomas Germier
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France
| | - Silvia Kocanova
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France
| | - Nike Walther
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Aurélien Bancaud
- Laboratoire des Automatismes et Architecture des Systèmes (LAAS), CNRS, UPS, Toulouse, France
| | - Haitham Ahmed Shaban
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France; Spectroscopy Department, Physics Division, National Research Centre, Dokki, Giza, Egypt
| | - Hafida Sellou
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France
| | - Antonio Zaccaria Politi
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Franck Gallardo
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France; Institut des Technologies Avancées du Vivant (ITAV), Université de Toulouse, CNRS, UPS, INSA; NeoVirTech S.A., Toulouse, France
| | - Kerstin Bystricky
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France; Institut des Technologies Avancées du Vivant (ITAV), Université de Toulouse, CNRS, UPS, INSA.
| |
Collapse
|
124
|
Ding DQ, Hiraoka Y. Visualization of a Specific Genome Locus by the lacO/LacI-GFP System. Cold Spring Harb Protoc 2017; 2017:pdb.prot091934. [PMID: 28733400 DOI: 10.1101/pdb.prot091934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Observing the dynamics of a specific chromosome locus in living cells can provide important information as to the molecular mechanisms underlying events such as chromosome segregation, homologous chromosome pairing, chromosome arrangement, and gene expression. The lacO/LacI-GFP system provides a simple and useful method in which a chromosome locus is visualized by inserting lacO repeat arrays and then expressing an LacI-GFP fusion that specifically binds to the lacO sequence. This system has been adapted for use in Schizosaccharomyces pombe by expressing the LacI-GFP under a promoter of the dis1+ gene. Furthermore, a two-step integration method has been developed that ensures high-efficiency integration of lacO arrays to a desired target position.
Collapse
Affiliation(s)
- Da-Qiao Ding
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan
| | - Yasushi Hiraoka
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan; .,Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
125
|
Zaidi H, Hoffman EA, Shetty SJ, Bekiranov S, Auble DT. Second-generation method for analysis of chromatin binding with formaldehyde-cross-linking kinetics. J Biol Chem 2017; 292:19338-19355. [PMID: 28972159 DOI: 10.1074/jbc.m117.796441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/21/2017] [Indexed: 11/06/2022] Open
Abstract
Formaldehyde-cross-linking underpins many of the most commonly used experimental approaches in the chromatin field, especially in capturing site-specific protein-DNA interactions. Extending such assays to assess the stability and binding kinetics of protein-DNA interactions is more challenging, requiring absolute measurements with a relatively high degree of physical precision. We previously described an experimental framework called the cross-linking kinetics (CLK) assay, which uses time-dependent formaldehyde-cross-linking data to extract kinetic parameters of chromatin binding. Many aspects of formaldehyde behavior in cells are unknown or undocumented, however, and could potentially affect CLK data analyses. Here, we report biochemical results that better define the properties of formaldehyde-cross-linking in budding yeast cells. These results have the potential to inform interpretations of "standard" chromatin assays, including chromatin immunoprecipitation. Moreover, the chemical complexity we uncovered resulted in the development of an improved method for measuring binding kinetics with the CLK approach. Optimum conditions included an increased formaldehyde concentration and more robust glycine-quench conditions. Notably, we observed that formaldehyde-cross-linking rates can vary dramatically for different protein-DNA interactions in vivo Some interactions were cross-linked much faster than the in vivo macromolecular interactions, making them suitable for kinetic analysis. For other interactions, we found the cross-linking reaction occurred on the same time scale or slower than binding dynamics; for these interactions, it was sometimes possible to compute the in vivo equilibrium-binding constant but not binding on- and off-rates. This improved method yields more accurate in vivo binding kinetics estimates on the minute time scale.
Collapse
Affiliation(s)
- Hussain Zaidi
- From the School of Medicine Research Computing, University of Virginia and
| | - Elizabeth A Hoffman
- the Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Savera J Shetty
- the Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Stefan Bekiranov
- the Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908
| | - David T Auble
- the Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908
| |
Collapse
|
126
|
Chiu YF, Sugden AU, Fox K, Hayes M, Sugden B. Kaposi's sarcoma-associated herpesvirus stably clusters its genomes across generations to maintain itself extrachromosomally. J Cell Biol 2017; 216:2745-2758. [PMID: 28696226 PMCID: PMC5584176 DOI: 10.1083/jcb.201702013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/23/2017] [Accepted: 05/31/2017] [Indexed: 02/08/2023] Open
Abstract
Genetic elements that replicate extrachromosomally are rare in mammals; however, several human tumor viruses, including the papillomaviruses and the gammaherpesviruses, maintain their plasmid genomes by tethering them to cellular chromosomes. We have uncovered an unprecedented mechanism of viral replication: Kaposi's sarcoma-associated herpesvirus (KSHV) stably clusters its genomes across generations to maintain itself extrachromosomally. To identify and characterize this mechanism, we developed two complementary, independent approaches: live-cell imaging and a predictive computational model. The clustering of KSHV requires the viral protein, LANA1, to bind viral genomes to nucleosomes arrayed on both cellular and viral DNA. Clustering affects both viral partitioning and viral genome numbers of KSHV. The clustering of KSHV plasmids provides it with an effective evolutionary strategy to rapidly increase copy numbers of genomes per cell at the expense of the total numbers of cells infected.
Collapse
MESH Headings
- Antigens, Viral/genetics
- Antigens, Viral/metabolism
- Chromosomes
- Computer Simulation
- DNA Replication
- DNA, Viral/biosynthesis
- DNA, Viral/genetics
- Evolution, Molecular
- Gene Expression Regulation, Viral
- Genome, Viral
- Genomic Instability
- HEK293 Cells
- HeLa Cells
- Herpesvirus 4, Human/genetics
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/growth & development
- Herpesvirus 8, Human/metabolism
- Host-Pathogen Interactions
- Humans
- In Situ Hybridization, Fluorescence
- Microscopy, Confocal
- Microscopy, Video
- Models, Genetic
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Protein Binding
- Time Factors
- Time-Lapse Imaging
- Transfection
- Virus Replication
Collapse
Affiliation(s)
- Ya-Fang Chiu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI
- Research Center for Emerging Viral Infections, Chang-Gung University, Taoyuan, Taiwan
- Department of Microbiology and Immunology, Chang-Gung University, Taoyuan, Taiwan
- Department of Medical Laboratory, Chang-Gung Memorial Hospital, Taoyuan, Taiwan
| | - Arthur U Sugden
- Department of Neuroscience, Brown University, Providence, RI
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Kathryn Fox
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI
- Flow Cytometry Laboratory, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Mitchell Hayes
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI
| | - Bill Sugden
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
127
|
Herbert S, Brion A, Arbona JM, Lelek M, Veillet A, Lelandais B, Parmar J, Fernández FG, Almayrac E, Khalil Y, Birgy E, Fabre E, Zimmer C. Chromatin stiffening underlies enhanced locus mobility after DNA damage in budding yeast. EMBO J 2017; 36:2595-2608. [PMID: 28694242 PMCID: PMC5579376 DOI: 10.15252/embj.201695842] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 12/31/2022] Open
Abstract
DNA double-strand breaks (DSBs) induce a cellular response that involves histone modifications and chromatin remodeling at the damaged site and increases chromosome dynamics both locally at the damaged site and globally in the nucleus. In parallel, it has become clear that the spatial organization and dynamics of chromosomes can be largely explained by the statistical properties of tethered, but randomly moving, polymer chains, characterized mainly by their rigidity and compaction. How these properties of chromatin are affected during DNA damage remains, however, unclear. Here, we use live cell microscopy to track chromatin loci and measure distances between loci on yeast chromosome IV in thousands of cells, in the presence or absence of genotoxic stress. We confirm that DSBs result in enhanced chromatin subdiffusion and show that intrachromosomal distances increase with DNA damage all along the chromosome. Our data can be explained by an increase in chromatin rigidity, but not by chromatin decondensation or centromeric untethering only. We provide evidence that chromatin stiffening is mediated in part by histone H2A phosphorylation. Our results support a genome-wide stiffening of the chromatin fiber as a consequence of DNA damage and as a novel mechanism underlying increased chromatin mobility.
Collapse
Affiliation(s)
- Sébastien Herbert
- Unité Imagerie et Modélisation, Institut Pasteur, Paris, France
- CNRS UMR 3691, C3BI, USR 3756 IP CNRS, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Alice Brion
- Equipe Biologie et Dynamique des Chromosomes, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris, France
- CNRS UMR 7212, INSERM U944, IUH, Université Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Jean-Michel Arbona
- Unité Imagerie et Modélisation, Institut Pasteur, Paris, France
- CNRS UMR 3691, C3BI, USR 3756 IP CNRS, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Mickaël Lelek
- Unité Imagerie et Modélisation, Institut Pasteur, Paris, France
- CNRS UMR 3691, C3BI, USR 3756 IP CNRS, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Adeline Veillet
- Equipe Biologie et Dynamique des Chromosomes, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris, France
- CNRS UMR 7212, INSERM U944, IUH, Université Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Benoît Lelandais
- Unité Imagerie et Modélisation, Institut Pasteur, Paris, France
- CNRS UMR 3691, C3BI, USR 3756 IP CNRS, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Jyotsana Parmar
- Unité Imagerie et Modélisation, Institut Pasteur, Paris, France
- CNRS UMR 3691, C3BI, USR 3756 IP CNRS, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Fabiola García Fernández
- Equipe Biologie et Dynamique des Chromosomes, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris, France
- CNRS UMR 7212, INSERM U944, IUH, Université Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Etienne Almayrac
- Equipe Biologie et Dynamique des Chromosomes, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris, France
- CNRS UMR 7212, INSERM U944, IUH, Université Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Yasmine Khalil
- Equipe Biologie et Dynamique des Chromosomes, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris, France
- CNRS UMR 7212, INSERM U944, IUH, Université Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Eleonore Birgy
- Equipe Biologie et Dynamique des Chromosomes, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris, France
- CNRS UMR 7212, INSERM U944, IUH, Université Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Emmanuelle Fabre
- Equipe Biologie et Dynamique des Chromosomes, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris, France
- CNRS UMR 7212, INSERM U944, IUH, Université Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Christophe Zimmer
- Unité Imagerie et Modélisation, Institut Pasteur, Paris, France
- CNRS UMR 3691, C3BI, USR 3756 IP CNRS, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
128
|
Mulla WA, Seidel CW, Zhu J, Tsai HJ, Smith SE, Singh P, Bradford WD, McCroskey S, Nelliat AR, Conkright J, Peak A, Malanowski KE, Perera AG, Li R. Aneuploidy as a cause of impaired chromatin silencing and mating-type specification in budding yeast. eLife 2017; 6:27991. [PMID: 28841138 PMCID: PMC5779231 DOI: 10.7554/elife.27991] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/24/2017] [Indexed: 01/12/2023] Open
Abstract
Aneuploidy and epigenetic alterations have long been associated with carcinogenesis, but it was unknown whether aneuploidy could disrupt the epigenetic states required for cellular differentiation. In this study, we found that ~3% of random aneuploid karyotypes in yeast disrupt the stable inheritance of silenced chromatin during cell proliferation. Karyotype analysis revealed that this phenotype was significantly correlated with gains of chromosomes III and X. Chromosome X disomy alone was sufficient to disrupt chromatin silencing and yeast mating-type identity as indicated by a lack of growth response to pheromone. The silencing defect was not limited to cryptic mating type loci and was associated with broad changes in histone modifications and chromatin localization of Sir2 histone deacetylase. The chromatin-silencing defect of disome X can be partially recapitulated by an extra copy of several genes on chromosome X. These results suggest that aneuploidy can directly cause epigenetic instability and disrupt cellular differentiation.
Collapse
Affiliation(s)
- Wahid A Mulla
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Medicine, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Chris W Seidel
- Stowers Institute for Medical Research, Missouri, United States
| | - Jin Zhu
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Hung-Ji Tsai
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Sarah E Smith
- Stowers Institute for Medical Research, Missouri, United States
| | - Pushpendra Singh
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, United States
| | | | - Scott McCroskey
- Stowers Institute for Medical Research, Missouri, United States
| | - Anjali R Nelliat
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, United States
| | | | - Allison Peak
- Stowers Institute for Medical Research, Missouri, United States
| | | | - Anoja G Perera
- Stowers Institute for Medical Research, Missouri, United States
| | - Rong Li
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
129
|
Rieder LE, Koreski KP, Boltz KA, Kuzu G, Urban JA, Bowman SK, Zeidman A, Jordan WT, Tolstorukov MY, Marzluff WF, Duronio RJ, Larschan EN. Histone locus regulation by the Drosophila dosage compensation adaptor protein CLAMP. Genes Dev 2017; 31:1494-1508. [PMID: 28838946 PMCID: PMC5588930 DOI: 10.1101/gad.300855.117] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/25/2017] [Indexed: 01/13/2023]
Abstract
Rieder et al. report that conserved GA repeat cis elements within the bidirectional histone3–histone4 promoter direct histone locus body (HLB) formation in Drosophila. In addition, the CLAMP zinc finger protein binds these GA repeat motifs, increases chromatin accessibility, enhances histone gene transcription, and promotes HLB formation. The conserved histone locus body (HLB) assembles prior to zygotic gene activation early during development and concentrates factors into a nuclear domain of coordinated histone gene regulation. Although HLBs form specifically at replication-dependent histone loci, the cis and trans factors that target HLB components to histone genes remained unknown. Here we report that conserved GA repeat cis elements within the bidirectional histone3–histone4 promoter direct HLB formation in Drosophila. In addition, the CLAMP (chromatin-linked adaptor for male-specific lethal [MSL] proteins) zinc finger protein binds these GA repeat motifs, increases chromatin accessibility, enhances histone gene transcription, and promotes HLB formation. We demonstrated previously that CLAMP also promotes the formation of another domain of coordinated gene regulation: the dosage-compensated male X chromosome. Therefore, CLAMP binding to GA repeat motifs promotes the formation of two distinct domains of coordinated gene activation located at different places in the genome.
Collapse
Affiliation(s)
- Leila E Rieder
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Kaitlin P Koreski
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Kara A Boltz
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Guray Kuzu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Jennifer A Urban
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Sarah K Bowman
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Anna Zeidman
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - William T Jordan
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Michael Y Tolstorukov
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - William F Marzluff
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Department of Biology, University of North Carolina at Chapel Hill, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Department of Biology, University of North Carolina at Chapel Hill, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Erica N Larschan
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
130
|
Sellars LE, Bryant JA, Sánchez-Romero MA, Sánchez-Morán E, Busby SJW, Lee DJ. Development of a new fluorescent reporter:operator system: location of AraC regulated genes in Escherichia coli K-12. BMC Microbiol 2017; 17:170. [PMID: 28774286 PMCID: PMC5543585 DOI: 10.1186/s12866-017-1079-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/18/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In bacteria, many transcription activator and repressor proteins regulate multiple transcription units that are often distally distributed on the bacterial genome. To investigate the subcellular location of DNA bound proteins in the folded bacterial nucleoid, fluorescent reporters have been developed which can be targeted to specific DNA operator sites. Such Fluorescent Reporter-Operator System (FROS) probes consist of a fluorescent protein fused to a DNA binding protein, which binds to an array of DNA operator sites located within the genome. Here we have developed a new FROS probe using the Escherichia coli MalI transcription factor, fused to mCherry fluorescent protein. We have used this in combination with a LacI repressor::GFP protein based FROS probe to assess the cellular location of commonly regulated transcription units that are distal on the Escherichia coli genome. RESULTS We developed a new DNA binding fluorescent reporter, consisting of the Escherichia coli MalI protein fused to the mCherry fluorescent protein. This was used in combination with a Lac repressor:green fluorescent protein fusion to examine the spatial positioning and possible co-localisation of target genes, regulated by the Escherichia coli AraC protein. We report that induction of gene expression with arabinose does not result in co-localisation of AraC-regulated transcription units. However, measurable repositioning was observed when gene expression was induced at the AraC-regulated promoter controlling expression of the araFGH genes, located close to the DNA replication terminus on the chromosome. Moreover, in dividing cells, arabinose-induced expression at the araFGH locus enhanced chromosome segregation after replication. CONCLUSION Regions of the chromosome regulated by AraC do not colocalise, but transcription events can induce movement of chromosome loci in bacteria and our observations suggest a role for gene expression in chromosome segregation.
Collapse
Affiliation(s)
- Laura E. Sellars
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Jack A. Bryant
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | | | | | - Stephen J. W. Busby
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - David J. Lee
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
- Department of Life Sciences, Birmingham City University, Edgbaston, Birmingham, B15 3TN UK
| |
Collapse
|
131
|
Sequential eviction of crowded nucleoprotein complexes by the exonuclease RecBCD molecular motor. Proc Natl Acad Sci U S A 2017; 114:E6322-E6331. [PMID: 28716908 DOI: 10.1073/pnas.1701368114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In physiological settings, all nucleic acids motor proteins must travel along substrates that are crowded with other proteins. However, the physical basis for how motor proteins behave in these highly crowded environments remains unknown. Here, we use real-time single-molecule imaging to determine how the ATP-dependent translocase RecBCD travels along DNA occupied by tandem arrays of high-affinity DNA binding proteins. We show that RecBCD forces each protein into its nearest adjacent neighbor, causing rapid disruption of the protein-nucleic acid interaction. This mechanism is not the same way that RecBCD disrupts isolated nucleoprotein complexes on otherwise naked DNA. Instead, molecular crowding itself completely alters the mechanism by which RecBCD removes tightly bound protein obstacles from DNA.
Collapse
|
132
|
Pankert T, Jegou T, Caudron-Herger M, Rippe K. Tethering RNA to chromatin for fluorescence microscopy based analysis of nuclear organization. Methods 2017; 123:89-101. [DOI: 10.1016/j.ymeth.2017.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/23/2017] [Accepted: 01/30/2017] [Indexed: 12/22/2022] Open
|
133
|
Ly P, Cleveland DW. Interrogating cell division errors using random and chromosome-specific missegregation approaches. Cell Cycle 2017. [PMID: 28650219 DOI: 10.1080/15384101.2017.1325047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Accurate segregation of the duplicated genome in mitosis is essential for maintaining genetic stability. Errors in this process can cause numerical and/or structural chromosome abnormalities - hallmark genomic features commonly associated with both tumorigenesis and developmental disorders. A cell-based approach was recently developed permitting inducible missegregation of the human Y chromosome by selectively disrupting kinetochore assembly onto the Y centromere. Although this strategy initially requires several steps of genetic manipulation, it is easy to use, highly efficient and specific for the Y without affecting the autosomes or the X, and does not require cell cycle synchronization or mitotic perturbation. Here we describe currently available tools for studying chromosome segregation errors, aneuploidy, and micronuclei, as well as discuss how the Y-specific missegregation system has been used to elucidate how chromosomal micronucleation can trigger a class of extensive rearrangements termed chromothripsis. The combinatorial use of these different tools will allow unresolved aspects of cell division defects and chromosomal instability to be experimentally explored.
Collapse
Affiliation(s)
- Peter Ly
- a Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine , University of California at San Diego , La Jolla , CA , USA
| | - Don W Cleveland
- a Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine , University of California at San Diego , La Jolla , CA , USA
| |
Collapse
|
134
|
Epigenetic Transcriptional Memory of GAL Genes Depends on Growth in Glucose and the Tup1 Transcription Factor in Saccharomyces cerevisiae. Genetics 2017; 206:1895-1907. [PMID: 28607146 DOI: 10.1534/genetics.117.201632] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/09/2017] [Indexed: 01/01/2023] Open
Abstract
Previously expressed inducible genes can remain poised for faster reactivation for multiple cell divisions, a conserved phenomenon called epigenetic transcriptional memory. The GAL genes in Saccharomyces cerevisiae show faster reactivation for up to seven generations after being repressed. During memory, previously produced Gal1 protein enhances the rate of reactivation of GAL1, GAL10, GAL2, and GAL7 These genes also interact with the nuclear pore complex (NPC) and localize to the nuclear periphery both when active and during memory. Peripheral localization of GAL1 during memory requires the Gal1 protein, a memory-specific cis-acting element in the promoter, and the NPC protein Nup100 However, unlike other examples of transcriptional memory, the interaction with NPC is not required for faster GAL gene reactivation. Rather, downstream of Gal1, the Tup1 transcription factor and growth in glucose promote GAL transcriptional memory. Cells only show signs of memory and only benefit from memory when growing in glucose. Tup1 promotes memory-specific chromatin changes at the GAL1 promoter: incorporation of histone variant H2A.Z and dimethylation of histone H3, lysine 4. Tup1 and H2A.Z function downstream of Gal1 to promote binding of a preinitiation form of RNA Polymerase II at the GAL1 promoter, poising the gene for faster reactivation. This mechanism allows cells to integrate a previous experience (growth in galactose, reflected by Gal1 levels) with current conditions (growth in glucose, potentially through Tup1 function) to overcome repression and to poise critical GAL genes for future reactivation.
Collapse
|
135
|
Abstract
Double-strand breaks (DSBs) are among the most lethal DNA lesions, and a variety of pathways have evolved to manage their repair in a timely fashion. One such pathway is homologous recombination (HR), in which information from an undamaged donor site is used as a template for repair. Although many of the biochemical steps of HR are known, the physical movements of chromosomes that must underlie the pairing of homologous sequence during mitotic DSB repair have remained mysterious. Recently, several groups have begun to use a variety of genetic and cell biological tools to study this important question. These studies reveal that both damaged and undamaged loci increase the volume of the nuclear space that they explore after the formation of DSBs. This DSB-induced increase in chromosomal mobility is regulated by many of the same factors that are important during HR, such as ATR-dependent checkpoint activation and the recombinase Rad51, suggesting that this phenomenon may facilitate the search for homology. In this perspective, we review current research into the mobility of chromosomal loci during HR, as well as possible underlying mechanisms, and discuss the critical questions that remain to be answered. Although we focus primarily on recent studies in the budding yeast, Saccharomyces cerevisiae, examples of experiments performed in higher eukaryotes are also included, which reveal that increased mobility of damaged loci is a process conserved throughout evolution.
Collapse
Affiliation(s)
- Michael J Smith
- Columbia University Medical Center, Department of Genetics and Development, New York, NY 10032, USA
| | - Rodney Rothstein
- Columbia University Medical Center, Department of Genetics and Development, New York, NY 10032, USA.
| |
Collapse
|
136
|
BiFCROS: A Low-Background Fluorescence Repressor Operator System for Labeling of Genomic Loci. G3-GENES GENOMES GENETICS 2017; 7:1969-1977. [PMID: 28450375 PMCID: PMC5473772 DOI: 10.1534/g3.117.040782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fluorescence-based methods are widely used to analyze elementary cell processes such as DNA replication or chromosomal folding and segregation. Labeling DNA with a fluorescent protein allows the visualization of its temporal and spatial organization. One popular approach is FROS (fluorescence repressor operator system). This method specifically labels DNA in vivo through binding of a fusion of a fluorescent protein and a repressor protein to an operator array, which contains numerous copies of the repressor binding site integrated into the genomic site of interest. Bound fluorescent proteins are then visible as foci in microscopic analyses and can be distinguished from the background fluorescence caused by unbound fusion proteins. Even though this method is widely used, no attempt has been made so far to decrease the background fluorescence to facilitate analysis of the actual signal of interest. Here, we present a new method that greatly reduces the background signal of FROS. BiFCROS (Bimolecular Fluorescence Complementation and Repressor Operator System) is based on fusions of repressor proteins to halves of a split fluorescent protein. Binding to a hybrid FROS array results in fluorescence signals due to bimolecular fluorescence complementation. Only proteins bound to the hybrid FROS array fluoresce, greatly improving the signal to noise ratio compared to conventional FROS. We present the development of BiFCROS and discuss its potential to be used as a fast and single-cell readout for copy numbers of genetic loci.
Collapse
|
137
|
Kim S, Liachko I, Brickner DG, Cook K, Noble WS, Brickner JH, Shendure J, Dunham MJ. The dynamic three-dimensional organization of the diploid yeast genome. eLife 2017; 6. [PMID: 28537556 PMCID: PMC5476426 DOI: 10.7554/elife.23623] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 05/22/2017] [Indexed: 12/14/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae is a long-standing model for the three-dimensional organization of eukaryotic genomes. However, even in this well-studied model, it is unclear how homolog pairing in diploids or environmental conditions influence overall genome organization. Here, we performed high-throughput chromosome conformation capture on diverged Saccharomyces hybrid diploids to obtain the first global view of chromosome conformation in diploid yeasts. After controlling for the Rabl-like orientation using a polymer model, we observe significant homolog proximity that increases in saturated culture conditions. Surprisingly, we observe a localized increase in homologous interactions between the HAS1-TDA1 alleles specifically under galactose induction and saturated growth. This pairing is accompanied by relocalization to the nuclear periphery and requires Nup2, suggesting a role for nuclear pore complexes. Together, these results reveal that the diploid yeast genome has a dynamic and complex 3D organization. DOI:http://dx.doi.org/10.7554/eLife.23623.001 Most of the DNA in human, yeast and other eukaryotic cells is packaged into long thread-like structures called chromosomes within a compartment of the cell called the nucleus. The chromosomes are folded to fit inside the nucleus and this organization influences how the DNA is read, copied, and repaired. The folding of chromosomes must be robust in order to protect the organism’s genetic material and yet be flexible enough to allow different parts of the DNA to be accessed in response to different signals. A biochemical technique called Hi-C can be used to detect the points of contact between different regions of a chromosome and between different chromosomes, thereby providing information on how the chromosomes are folded and arranged inside the nucleus. However, most animal cells contain two copies of each chromosome, and the Hi-C method is not able to distinguish between identical copies of chromosomes. As such, it remains unclear how much the chromosomes that can form pairs actually stick together in a cell’s nucleus. Unlike humans and most organisms, two distantly related budding yeast species can mate to produce a “hybrid” in which the chromosome copies can easily be distinguished from each other. Kim et al. now use Hi-C to analyze how chromosomes are organized in hybrid budding yeast cells. The experiments reveal that the copies of a chromosome contact each other more frequently than would be expected by chance. This is especially true for certain chromosomal regions and in hybrid yeast cells that are running out of their preferred nutrient, glucose. In these cells, the regions of both copies of chromosome 13 near a gene called TDA1 are pulled to the edge of the nucleus, which helps the copies to pair up and the gene to become active. The protein encoded by TDA1 then helps turn on other genes that allow the yeast to use nutrients other than glucose. Many questions remain about how and why DNA is organized the way it is, both in yeast and in other organisms. These findings will help guide future experiments testing how the two copies of each chromosome pair, as well as what purpose, if any, this pairing might serve for the cell. A better understanding of the fundamental process of DNA organization and its implications may ultimately lead to improved treatments for genetic diseases including developmental disorders and cancers. DOI:http://dx.doi.org/10.7554/eLife.23623.002
Collapse
Affiliation(s)
- Seungsoo Kim
- Department of Genome Sciences, University of Washington, Seattle, United States
| | - Ivan Liachko
- Department of Genome Sciences, University of Washington, Seattle, United States
| | - Donna G Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Kate Cook
- Department of Genome Sciences, University of Washington, Seattle, United States
| | - William S Noble
- Department of Genome Sciences, University of Washington, Seattle, United States
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, United States.,Howard Hughes Medical Institute, University of Washington, Seattle, United States
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, United States
| |
Collapse
|
138
|
Nie M, Moser BA, Nakamura TM, Boddy MN. SUMO-targeted ubiquitin ligase activity can either suppress or promote genome instability, depending on the nature of the DNA lesion. PLoS Genet 2017; 13:e1006776. [PMID: 28475613 PMCID: PMC5438191 DOI: 10.1371/journal.pgen.1006776] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/19/2017] [Accepted: 04/24/2017] [Indexed: 11/19/2022] Open
Abstract
The posttranslational modifiers SUMO and ubiquitin critically regulate the DNA damage response (DDR). Important crosstalk between these modifiers at DNA lesions is mediated by the SUMO-targeted ubiquitin ligase (STUbL), which ubiquitinates SUMO chains to generate SUMO-ubiquitin hybrids. These SUMO-ubiquitin hybrids attract DDR proteins able to bind both modifiers, and/or are degraded at the proteasome. Despite these insights, specific roles for SUMO chains and STUbL in the DDR remain poorly defined. Notably, fission yeast defective in SUMO chain formation exhibit near wild-type resistance to genotoxins and moreover, have a greatly reduced dependency on STUbL activity for DNA repair. Based on these and other data, we propose that a critical role of STUbL is to antagonize DDR-inhibitory SUMO chain formation at DNA lesions. In this regard, we identify a SUMO-binding Swi2/Snf2 translocase called Rrp2 (ScUls1) as a mediator of the DDR defects in STUbL mutant cells. Therefore, in support of our proposal, SUMO chains attract activities that can antagonize STUbL and other DNA repair factors. Finally, we find that Taz1TRF1/TRF2-deficiency triggers extensive telomeric poly-SUMOylation. In this setting STUbL, together with its cofactor Cdc48p97, actually promotes genomic instability caused by the aberrant processing of taz1Δ telomeres by DNA repair factors. In summary, depending on the nature of the initiating DNA lesion, STUbL activity can either be beneficial or harmful. Since its discovery in 2007, SUMO-targeted ubiquitin ligase (STUbL) activity has been identified as a key regulator of diverse cellular processes such as DNA repair, mitosis and DNA replication. In each of these processes, STUbL has been shown to promote the chromatin extraction and/or degradation of SUMO chain modified proteins. However, it remains unclear whether STUbL acts as part of a "programmed" cascade to remove specific proteins, or antagonizes localized SUMO chain formation that otherwise impedes each process. Here we determine that SUMO chains, the major recruitment signal for STUbL, are largely dispensable for genotoxin resistance in fission yeast. Moreover, when SUMO chain formation is compromised, the need for STUbL activity in DNA repair is strongly reduced. These results indicate a primary role for STUbL in antagonizing localized SUMO chain formation. Interestingly, we also find that STUbL activity can be toxic at certain genomic lesions that induce extensive local SUMOylation. For example, STUbL promotes the chromosome instability and cell death caused by deprotected telomeres following Taz1TRF1/2 deletion. Together, our data suggest that STUbL limits DNA repair-inhibitory SUMO chain formation, and depending on the nature of the genomic lesion, can either suppress or cause genome instability.
Collapse
Affiliation(s)
- Minghua Nie
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Bettina A. Moser
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Toru M. Nakamura
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Michael N. Boddy
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
139
|
Garza de Leon F, Sellars L, Stracy M, Busby SJW, Kapanidis AN. Tracking Low-Copy Transcription Factors in Living Bacteria: The Case of the lac Repressor. Biophys J 2017; 112:1316-1327. [PMID: 28402875 PMCID: PMC5390046 DOI: 10.1016/j.bpj.2017.02.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/20/2017] [Accepted: 02/16/2017] [Indexed: 11/30/2022] Open
Abstract
Transcription factors control the expression of genes by binding to specific sites in DNA and repressing or activating transcription in response to stimuli. The lac repressor (LacI) is a well characterized transcription factor that regulates the ability of bacterial cells to uptake and metabolize lactose. Here, we study the intracellular mobility and spatial distribution of LacI in live bacteria using photoactivated localization microscopy combined with single-particle tracking. Since we track single LacI molecules in live cells by stochastically photoactivating and observing fluorescent proteins individually, there are no limitations on the copy number of the protein under study; as a result, we were able to study the behavior of LacI in bacterial strains containing the natural copy numbers (∼40 monomers), as well as in strains with much higher copy numbers due to LacI overexpression. Our results allowed us to determine the relative abundance of specific, near-specific, and non-specific DNA binding modes of LacI in vivo, showing that all these modes are operational inside living cells. Further, we examined the spatial distribution of LacI in live cells, confirming its specific binding to lac operator regions on the chromosome; we also showed that mobile LacI molecules explore the bacterial nucleoid in a way similar to exploration by other DNA-binding proteins. Our work also provides an example of applying tracking photoactivated localization microscopy to studies of low-copy-number proteins in living bacteria.
Collapse
Affiliation(s)
- Federico Garza de Leon
- Gene Machines Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
| | - Laura Sellars
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Mathew Stracy
- Gene Machines Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
| | - Stephen J W Busby
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Achillefs N Kapanidis
- Gene Machines Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
140
|
Thorn K. Genetically encoded fluorescent tags. Mol Biol Cell 2017; 28:848-857. [PMID: 28360214 PMCID: PMC5385933 DOI: 10.1091/mbc.e16-07-0504] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 12/25/2022] Open
Abstract
Genetically encoded fluorescent tags are protein sequences that can be fused to a protein of interest to render it fluorescent. These tags have revolutionized cell biology by allowing nearly any protein to be imaged by light microscopy at submicrometer spatial resolution and subsecond time resolution in a live cell or organism. They can also be used to measure protein abundance in thousands to millions of cells using flow cytometry. Here I provide an introduction to the different genetic tags available, including both intrinsically fluorescent proteins and proteins that derive their fluorescence from binding of either endogenous or exogenous fluorophores. I discuss their optical and biological properties and guidelines for choosing appropriate tags for an experiment. Tools for tagging nucleic acid sequences and reporter molecules that detect the presence of different biomolecules are also briefly discussed.
Collapse
Affiliation(s)
- Kurt Thorn
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158
| |
Collapse
|
141
|
Ren R, Deng L, Xue Y, Suzuki K, Zhang W, Yu Y, Wu J, Sun L, Gong X, Luan H, Yang F, Ju Z, Ren X, Wang S, Tang H, Geng L, Zhang W, Li J, Qiao J, Xu T, Qu J, Liu GH. Visualization of aging-associated chromatin alterations with an engineered TALE system. Cell Res 2017; 27:483-504. [PMID: 28139645 PMCID: PMC5385610 DOI: 10.1038/cr.2017.18] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/06/2016] [Accepted: 12/28/2016] [Indexed: 02/07/2023] Open
Abstract
Visualization of specific genomic loci in live cells is a prerequisite for the investigation of dynamic changes in chromatin architecture during diverse biological processes, such as cellular aging. However, current precision genomic imaging methods are hampered by the lack of fluorescent probes with high specificity and signal-to-noise contrast. We find that conventional transcription activator-like effectors (TALEs) tend to form protein aggregates, thereby compromising their performance in imaging applications. Through screening, we found that fusing thioredoxin with TALEs prevented aggregate formation, unlocking the full power of TALE-based genomic imaging. Using thioredoxin-fused TALEs (TTALEs), we achieved high-quality imaging at various genomic loci and observed aging-associated (epi) genomic alterations at telomeres and centromeres in human and mouse premature aging models. Importantly, we identified attrition of ribosomal DNA repeats as a molecular marker for human aging. Our study establishes a simple and robust imaging method for precisely monitoring chromatin dynamics in vitro and in vivo.
Collapse
Affiliation(s)
- Ruotong Ren
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liping Deng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhong Xue
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keiichiro Suzuki
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Weiqi Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yu
- Department of Gynecology and Obstetrics, Peking University Third Hospital, Beijing 100191, China
| | - Jun Wu
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Liang Sun
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Xiaojun Gong
- Department of Pediatrics, Beijing Shijitan Hospital Capital Medical University, Peking University Ninth School of Clinical Medicine, Beijing 100038, China
| | - Huiqin Luan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fan Yang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhenyu Ju
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, Zhejiang 311121, China
| | - Xiaoqing Ren
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Si Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Tang
- Department of Pediatrics, Beijing Shijitan Hospital Capital Medical University, Peking University Ninth School of Clinical Medicine, Beijing 100038, China
| | - Lingling Geng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Weizhou Zhang
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jian Li
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Jie Qiao
- Department of Gynecology and Obstetrics, Peking University Third Hospital, Beijing 100191, China
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Qu
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guang-Hui Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, Guangdong 510632, China
- Beijing Institute for Brain Disorders, Beijing 100069, China
| |
Collapse
|
142
|
T(ell)TALE signs of aging. Cell Res 2017; 27:453-454. [PMID: 28281540 DOI: 10.1038/cr.2017.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Transcriptional activator-like effectors (TALEs) have emerged as powerful tools for genome editing. A recent study published by Cell Research reports that fusion of thioredoxin to TALEs unlocks their full potential in live-cell imaging to accurately analyze genome instability, telomere attrition and epigenetic alterations that are hallmarks of aging.
Collapse
|
143
|
Hu H, Zhang H, Wang S, Ding M, An H, Hou Y, Yang X, Wei W, Sun Y, Tang C. Live visualization of genomic loci with BiFC-TALE. Sci Rep 2017; 7:40192. [PMID: 28074901 PMCID: PMC5225478 DOI: 10.1038/srep40192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/02/2016] [Indexed: 11/08/2022] Open
Abstract
Tracking the dynamics of genomic loci is important for understanding the mechanisms of fundamental intracellular processes. However, fluorescent labeling and imaging of such loci in live cells have been challenging. One of the major reasons is the low signal-to-background ratio (SBR) of images mainly caused by the background fluorescence from diffuse full-length fluorescent proteins (FPs) in the living nucleus, hampering the application of live cell genomic labeling methods. Here, combining bimolecular fluorescence complementation (BiFC) and transcription activator-like effector (TALE) technologies, we developed a novel method for labeling genomic loci (BiFC-TALE), which largely reduces the background fluorescence level. Using BiFC-TALE, we demonstrated a significantly improved SBR by imaging telomeres and centromeres in living cells in comparison with the methods using full-length FP.
Collapse
Affiliation(s)
- Huan Hu
- School of Life Sciences, Peking University, Beijing 100871, China
- Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Hongmin Zhang
- School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
- State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing 100871, People’s Republic of China
| | - Sheng Wang
- School of Life Sciences, Peking University, Beijing 100871, China
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Miao Ding
- School of Life Sciences, Peking University, Beijing 100871, China
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Hui An
- School of Life Sciences, Peking University, Beijing 100871, China
- Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Yingping Hou
- School of Life Sciences, Peking University, Beijing 100871, China
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Xiaojing Yang
- Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Wensheng Wei
- School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
- State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing 100871, People’s Republic of China
| | - Yujie Sun
- School of Life Sciences, Peking University, Beijing 100871, China
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
144
|
Schiklenk C, Petrova B, Haering CH. A Protocol for Measuring Mitotic Chromosome Condensation Quantitatively in Fission Yeast Cells. Methods Mol Biol 2017; 1515:245-255. [PMID: 27797084 DOI: 10.1007/978-1-4939-6545-8_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Even though the formation of compact cylindrical chromosomes early during mitosis or meiosis is a prerequisite for the successful segregation of eukaryotic genomes, little is known about the molecular basis of this chromosome condensation process. Here, we describe in detail the protocol for a quantitative chromosome condensation assay in fission yeast cells, which is based on precise time-resolved measurements of the distances between two fluorescently labeled positions on the same chromosome. In combination with an automated computational analysis pipeline, this assay enables the study of various candidate proteins for their roles in regulating genome topology during cell divisions.
Collapse
Affiliation(s)
- Christoph Schiklenk
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Boryana Petrova
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Christian H Haering
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
145
|
Abstract
In sexually reproducing organisms, the formation of healthy gametes (sperm and eggs) requires the proper establishment and release of meiotic sister chromatid cohesion (SCC). SCC tethers replicated sisters from their formation in premeiotic S phase until the stepwise removal of cohesion in anaphase of meiosis I and II allows the separation of homologs and then sisters. Defects in the establishment or release of meiotic cohesion cause chromosome segregation errors that lead to the formation of aneuploid gametes and inviable embryos. The nematode Caenorhabditis elegans is an attractive model for studies of meiotic sister chromatid cohesion due to its genetic tractability and the excellent cytological properties of the hermaphrodite gonad. Moreover, mutants defective in the establishment or maintenance of meiotic SCC nevertheless produce abundant gametes, allowing analysis of the pattern of chromosome segregation. Here I describe two approaches for analysis of meiotic cohesion in C. elegans. The first approach relies on cytology to detect and quantify defects in SCC. The second approach relies on PCR and restriction digests to identify embryos that inherited an incorrect complement of chromosomes due to aberrant meiotic chromosome segregation. Both approaches are sensitive enough to identify rare errors and precise enough to reveal distinctive phenotypes resulting from mutations that perturb meiotic SCC in different ways. The robust, quantitative nature of these assays should strengthen phenotypic comparisons of different meiotic mutants and enhance the reproducibility of data generated by different investigators.
Collapse
Affiliation(s)
- Aaron F Severson
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, 2121 Euclid Avenue SI 219, Cleveland, OH, 44115-2214, USA.
| |
Collapse
|
146
|
Barrey EJ, Heun P. Artificial Chromosomes and Strategies to Initiate Epigenetic Centromere Establishment. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 56:193-212. [PMID: 28840238 DOI: 10.1007/978-3-319-58592-5_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In recent years, various synthetic approaches have been developed to address the question of what directs centromere establishment and maintenance. In this chapter, we will discuss how approaches aimed at constructing synthetic centromeres have co-evolved with and contributed to shape the theory describing the determinants of centromere identity. We will first review lessons learned from artificial chromosomes created from "naked" centromeric sequences to investigate the role of the underlying DNA for centromere formation. We will then discuss how several studies, which applied removal of endogenous centromeres or over-expression of the centromere-specific histone CENP-A, helped to investigate the contribution of chromatin context to centromere establishment. Finally, we will examine various biosynthetic approaches taking advantage of targeting specific proteins to ectopic sites in the genome to dissect the role of many centromere-associated proteins and chromatin modifiers for centromere inheritance and function. Together, these studies showed that chromatin context matters, particularly proximity to heterochromatin or repetitive DNA sequences. Moreover, despite the important contribution of centromeric DNA, the centromere-specific histone H3-variant CENP-A emerges as a key epigenetic mark to establish and maintain functional centromeres on artificial chromosomes or at ectopic sites of the genome.
Collapse
Affiliation(s)
- Evelyne J Barrey
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Edinburgh, UK
| | - Patrick Heun
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
147
|
Schindler D, Milbredt S, Sperlea T, Waldminghaus T. Design and Assembly of DNA Sequence Libraries for Chromosomal Insertion in Bacteria Based on a Set of Modified MoClo Vectors. ACS Synth Biol 2016; 5:1362-1368. [PMID: 27306697 DOI: 10.1021/acssynbio.6b00089] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Efficient assembly of large DNA constructs is a key technology in synthetic biology. One of the most popular assembly systems is the MoClo standard in which restriction and ligation of multiple fragments occurs in a one-pot reaction. The system is based on a smart vector design and type IIs restriction enzymes, which cut outside their recognition site. While the initial MoClo vectors had been developed for the assembly of multiple transcription units of plants, some derivatives of the vectors have been developed over the last years. Here we present a new set of MoClo vectors for the assembly of fragment libraries and insertion of constructs into bacterial chromosomes. The vectors are accompanied by a computer program that generates a degenerate synthetic DNA sequence that excludes "forbidden" DNA motifs. We demonstrate the usability of the new approach by construction of a stable fluorescence repressor operator system (FROS).
Collapse
Affiliation(s)
- Daniel Schindler
- Chromosome Biology Group,
LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, D-35043 Marburg, Germany
| | - Sarah Milbredt
- Chromosome Biology Group,
LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, D-35043 Marburg, Germany
| | - Theodor Sperlea
- Chromosome Biology Group,
LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, D-35043 Marburg, Germany
| | - Torsten Waldminghaus
- Chromosome Biology Group,
LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, D-35043 Marburg, Germany
| |
Collapse
|
148
|
Matsuda A, Asakawa H, Haraguchi T, Hiraoka Y. Spatial organization of the Schizosaccharomyces pombe genome within the nucleus. Yeast 2016; 34:55-66. [PMID: 27766670 DOI: 10.1002/yea.3217] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/06/2016] [Accepted: 10/13/2016] [Indexed: 12/14/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe is a useful experimental system for studying the organization of chromosomes within the cell nucleus. S. pombe has a small genome that is organized into three chromosomes. The small size of the genome and the small number of chromosomes are advantageous for cytological and genome-wide studies of chromosomes; however, the small size of the nucleus impedes microscopic observations owing to limits in spatial resolution during imaging. Recent advances in microscopy, such as super-resolution microscopy, have greatly expanded the use of S. pombe as a model organism in a wide range of studies. In addition, biochemical studies, such as chromatin immunoprecipitation and chromosome conformation capture, have provided complementary approaches. Here, we review the spatial organization of the S. pombe genome as determined by a combination of cytological and biochemical studies. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Atsushi Matsuda
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| | - Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| |
Collapse
|
149
|
Choudhury SR, Singh AK, McLeod T, Blanchette M, Jang B, Badenhorst P, Kanhere A, Brogna S. Exon junction complex proteins bind nascent transcripts independently of pre-mRNA splicing in Drosophila melanogaster. eLife 2016; 5:e19881. [PMID: 27879206 PMCID: PMC5158136 DOI: 10.7554/elife.19881] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/21/2016] [Indexed: 12/16/2022] Open
Abstract
Although it is currently understood that the exon junction complex (EJC) is recruited on spliced mRNA by a specific interaction between its central protein, eIF4AIII, and splicing factor CWC22, we found that eIF4AIII and the other EJC core proteins Y14 and MAGO bind the nascent transcripts of not only intron-containing but also intronless genes on Drosophila polytene chromosomes. Additionally, Y14 ChIP-seq demonstrates that association with transcribed genes is also splicing-independent in Drosophila S2 cells. The association of the EJC proteins with nascent transcripts does not require CWC22 and that of Y14 and MAGO is independent of eIF4AIII. We also show that eIF4AIII associates with both polysomal and monosomal RNA in S2 cell extracts, whereas Y14 and MAGO fractionate separately. Cumulatively, our data indicate a global role of eIF4AIII in gene expression, which would be independent of Y14 and MAGO, splicing, and of the EJC, as currently understood.
Collapse
Affiliation(s)
| | - Anand K Singh
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Tina McLeod
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Marco Blanchette
- Stowers Institute for Medical Research, Kansas city, United States
| | - Boyun Jang
- Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Paul Badenhorst
- Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Aditi Kanhere
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Saverio Brogna
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
150
|
Fujimoto S, Sugano SS, Kuwata K, Osakabe K, Matsunaga S. Visualization of specific repetitive genomic sequences with fluorescent TALEs in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6101-6110. [PMID: 27811079 PMCID: PMC5100022 DOI: 10.1093/jxb/erw371] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Live imaging of the dynamics of nuclear organization provides the opportunity to uncover the mechanisms responsible for four-dimensional genome architecture. Here, we describe the use of fluorescent protein (FP) fusions of transcription activator-like effectors (TALEs) to visualize endogenous genomic sequences in Arabidopsis thaliana. The ability to engineer sequence-specific TALEs permits the investigation of precise genomic sequences. We could detect TALE-FP signals associated with centromeric, telomeric, and rDNA repeats and the signal distribution was consistent with that observed by fluorescent in situ hybridization. TALE-FPs are advantageous because they permit the observation of intact tissues. We used our TALE-FP method to investigate the nuclei of several multicellular plant tissues including roots, hypocotyls, leaves, and flowers. Because TALE-FPs permit live-cell imaging, we successfully observed the temporal dynamics of centromeres and telomeres in plant organs. Fusing TALEs to multimeric FPs enhanced the signal intensity when observing telomeres. We found that the mobility of telomeres was different in sub-nuclear regions. Transgenic plants stably expressing TALE-FPs will provide new insights into chromatin organization and dynamics in multicellular organisms.
Collapse
Affiliation(s)
- Satoru Fujimoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Shigeo S Sugano
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- PRESTO, JST, Saitama 332-0012, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
| | - Keishi Osakabe
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| |
Collapse
|