101
|
Gwizdek C, Iglesias N, Rodriguez MS, Ossareh-Nazari B, Hobeika M, Divita G, Stutz F, Dargemont C. Ubiquitin-associated domain of Mex67 synchronizes recruitment of the mRNA export machinery with transcription. Proc Natl Acad Sci U S A 2006; 103:16376-81. [PMID: 17056718 PMCID: PMC1637590 DOI: 10.1073/pnas.0607941103] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mRNA nuclear export receptor Mex67/Mtr2 is recruited to mRNAs through RNA-binding adaptors, including components of the THO/TREX complex that couple transcription to mRNA export. Here we show that the ubiquitin-associated (UBA) domain of Mex67 is not only required for proper nuclear export of mRNA but also contributes to recruitment of Mex67 to transcribing genes. Our results reveal that the UBA domain of Mex67 directly interacts with polyubiquitin chains and with Hpr1, a component of the THO/TREX complex, which is regulated by ubiquitylation in a transcription-dependent manner. This interaction transiently protects Hpr1 from ubiquitin/proteasome-mediated degradation and thereby coordinates recruitment of the mRNA export machinery with transcription and early messenger ribonucleoproteins assembly.
Collapse
Affiliation(s)
- Carole Gwizdek
- *Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Universités Paris VI and VII, 2 Place Jussieu, Tour 43, 75251 Paris Cedex 05, France
| | - Nahid Iglesias
- Department of Cell Biology, Sciences III, 30 Quai Ernest Ansermet, 1211 Geneva 4, Switzerland; and
| | - Manuel S. Rodriguez
- *Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Universités Paris VI and VII, 2 Place Jussieu, Tour 43, 75251 Paris Cedex 05, France
| | - Batool Ossareh-Nazari
- *Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Universités Paris VI and VII, 2 Place Jussieu, Tour 43, 75251 Paris Cedex 05, France
| | - Maria Hobeika
- *Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Universités Paris VI and VII, 2 Place Jussieu, Tour 43, 75251 Paris Cedex 05, France
| | - Gilles Divita
- Centre de Recherches de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique Formation de Recherche en Evolution-2593, Molecular Biophysics and Therapeutics, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Françoise Stutz
- Department of Cell Biology, Sciences III, 30 Quai Ernest Ansermet, 1211 Geneva 4, Switzerland; and
- To whom correspondence may be addressed. E-mail:
or
| | - Catherine Dargemont
- *Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Universités Paris VI and VII, 2 Place Jussieu, Tour 43, 75251 Paris Cedex 05, France
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
102
|
Röther S, Clausing E, Kieser A, Strässer K. Swt1, a novel yeast protein, functions in transcription. J Biol Chem 2006; 281:36518-25. [PMID: 17030511 DOI: 10.1074/jbc.m607510200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The conserved TREX complex couples transcription to nuclear mRNA export. Here, we report that the uncharacterized open reading frame YOR166c genetically interacts with TREX complex components and encodes a novel protein named Swt1 for "synthetically lethal with TREX." Co-immunoprecipitation experiments show that Swt1 also interacts with the TREX complex biochemically. Consistent with a potential role in transcription as suggested by its interaction with TREX, Swt1 localizes mainly to the nucleus. Importantly, deletion of Swt1 leads to decreased transcription. Taken together, these data suggest that Swt1 functions in gene expression in conjunction with the TREX complex.
Collapse
Affiliation(s)
- Susanne Röther
- Gene Center, Ludwig-Maximilians-University of Munich,Department of Chemistry and Biochemistry, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | |
Collapse
|
103
|
Abruzzi KC, Belostotsky DA, Chekanova JA, Dower K, Rosbash M. 3'-end formation signals modulate the association of genes with the nuclear periphery as well as mRNP dot formation. EMBO J 2006; 25:4253-62. [PMID: 16946703 PMCID: PMC1570430 DOI: 10.1038/sj.emboj.7601305] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Accepted: 08/02/2006] [Indexed: 11/09/2022] Open
Abstract
Multiple studies indicate that mRNA processing defects cause mRNAs to accumulate in discrete nuclear foci or dots, in mammalian cells as well as yeast. To investigate this phenomenon, we have studied a series of GAL reporter constructs integrated into the yeast genome adjacent to an array of TetR-GFP-bound TetO sites. mRNA within dots is predominantly post-transcriptional, and dots are adjacent to but distinct from their transcription site. These reporter genes also localize to the nuclear periphery upon gene induction, like their endogenous GAL counterparts. Surprisingly, this peripheral localization persists long after transcriptional shutoff, and there is a comparable persistence of the RNA in the dots. Moreover, dot disappearance and gene delocalization from the nuclear periphery occur with similar kinetics after transcriptional shutoff. Both kinetics depend in turn on reporter gene 3'-end formation signals. Our experiments indicate that gene association with the nuclear periphery does not require ongoing transcription and suggest that the mRNPs within dots may make a major contribution to the gene-nuclear periphery tether.
Collapse
Affiliation(s)
- Katharine C Abruzzi
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA, USA
| | - Dmitry A Belostotsky
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA, USA
- Department of Biological Sciences, State University of New York at Albany, Albany, NY, USA
| | - Julia A Chekanova
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA, USA
- Department of Biological Sciences, State University of New York at Albany, Albany, NY, USA
| | - Ken Dower
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA, USA
| | - Michael Rosbash
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA, USA
- Department of Biological Sciences, State University of New York at Albany, Albany, NY, USA
- Department of Biology, Howard Hughes Medical Institute, Brandeis University, 415 South Street, Waltham, MA 02454, USA. Tel.: +1 781 736 3160; Fax: +1 781 736 3164; E-mail:
| |
Collapse
|
104
|
|
105
|
Abstract
Viruses are replication competent genomes which are relatively gene-poor. Even the largest viruses (i.e. Herpesviruses) encode only slightly >200 open reading frames (ORFs). However, because viruses replicate obligatorily inside cells, and considering that evolution may be driven by a principle of economy of scale, it is reasonable to surmise that many viruses have evolved the ability to co-opt cell-encoded proteins to provide needed surrogate functions. An in silico survey of viral sequence databases reveals that most positive-strand and double-stranded RNA viruses have ORFs for RNA helicases. On the other hand, the genomes of retroviruses are devoid of virally-encoded helicase. Here, we review in brief the notion that the human immunodeficiency virus (HIV-1) has adopted the ability to use one or more cellular RNA helicases for its replicative life cycle.
Collapse
Affiliation(s)
- Kuan-Teh Jeang
- Molecular Virology Section, Laboratory of Molecular Medicine, NIAID, NIH, Bethesda, MD 20892, USA.
| | | |
Collapse
|
106
|
Bassler J, Kallas M, Hurt E. The NUG1 GTPase reveals and N-terminal RNA-binding domain that is essential for association with 60 S pre-ribosomal particles. J Biol Chem 2006; 281:24737-44. [PMID: 16803892 DOI: 10.1074/jbc.m604261200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The putative yeast GTPase Nug1, which is associated with several pre-60 S particles in the nucleolus and nucleoplasm, consists of an N-terminal domain, which is found only in eukaryotic orthologues, and middle and C-terminal domains that are conserved throughout eukaryotes, bacteria, and archaea. Here, we analyzed the role of the eukaryote-specific Nug1 N-domain (Nug1-N). We show that the essential Nug1-N is sufficient and necessary for nucle(ol)ar targeting and association with pre-60 S particles. Nug1-N exhibits RNA binding activity and is genetically linked in an allele-specific way to the pre-60 S factors Noc2, Noc3, and Dbp10. In contrast, the middle domain, which exhibits a circularly permuted GTPase fold and an intrinsic GTP hydrolysis activity in vitro, is not essential for cell growth. The conserved Nug1 C-domain, which has a yet uncharacterized fold, is also essential for ribosome biogenesis. Our findings suggest that Nug1 associates with pre-60 S subunits via its essential N-terminal RNA-binding domain and exerts a non-essential regulative role in pre-60 S subunit biogenesis via its central GTPase domain.
Collapse
Affiliation(s)
- Jochen Bassler
- Biochemie-Zentrum der Universität Heidelberg, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
107
|
Sasaki M, Takeda E, Takano K, Yomogida K, Katahira J, Yoneda Y. Molecular cloning and functional characterization of mouse Nxf family gene products. Genomics 2005; 85:641-53. [PMID: 15820316 DOI: 10.1016/j.ygeno.2005.01.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 01/14/2005] [Indexed: 11/29/2022]
Abstract
Tap, a member of the evolutionarily conserved nuclear RNA export factor (NXF) family of proteins, has been implicated in the nuclear export of bulk poly(A)+ RNAs. cDNAs encoding the mouse NXF proteins (Tap, NXF7, NXF2, and NXF3) were prepared and the gene products were characterized in terms of their genomic organization, expression patterns, and biochemical properties. Mouse Tap was found to be ubiquitously expressed, whereas tissue- and developmental stage specific expression of mouse Nxf2, Nxf3, and Nxf7 was observed. Although mouse Tap and NXF2 bound to the phenylalanine-glycine repeat sequences of nucleoporins, NXF7 and NXF3 did not. GFP-tagged mouse Tap and NXF2 were localized predominantly in the nucleus. In contrast, GFP-tagged NXF7 and NXF3 were localized exclusively in the cytoplasm. As shown for the human counterpart, disruption of the leucine-rich nuclear export signal or leptomycin B treatment abolishes the cytoplasmic localization of mouse NXF3. p15/NXT1, an essential cofactor for human Tap in the export of mRNAs, was able to bind to mouse Tap, NXF2, and NXF3, but NXF7 did not form a stable heterodimeric complex. Transient transfection experiments indicated that only mouse Tap and NXF2 enhance the nuclear export of an otherwise inefficiently exported mRNA substrate. The orthologous relationship between human and mouse Nxf genes is discussed on the basis of these data.
Collapse
Affiliation(s)
- Mitsuho Sasaki
- Department of Cell Biology and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
108
|
Kendirgi F, Rexer DJ, Alcázar-Román AR, Onishko HM, Wente SR. Interaction between the shuttling mRNA export factor Gle1 and the nucleoporin hCG1: a conserved mechanism in the export of Hsp70 mRNA. Mol Biol Cell 2005; 16:4304-15. [PMID: 16000379 PMCID: PMC1196339 DOI: 10.1091/mbc.e04-11-0998] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Translocation of messenger RNAs through the nuclear pore complex (NPC) requires coordinated physical interactions between stable NPC components, shuttling transport factors, and mRNA-binding proteins. In budding yeast (y) and human (h) cells, Gle1 is an essential mRNA export factor. Nucleocytoplasmic shuttling of hGle1 is required for mRNA export; however, the mechanism by which hGle1 associates with the NPC is unknown. We have previously shown that the interaction of hGle1 with the nucleoporin hNup155 is necessary but not sufficient for targeting hGle1 to NPCs. Here, we report that the unique C-terminal 43 amino acid region of the hGle1B isoform mediates binding to the C-terminal non-FG region of the nucleoporin hCG1/NPL1. Moreover, hNup155, hGle1B, and hCG1 formed a heterotrimeric complex in vitro. This suggested that these two nucleoporins were required for the NPC localization of hGle1. Using an siRNA-based approach, decreased levels of hCG1 resulted in hGle1 accumulation in cytoplasmic foci. This was coincident with inhibition of heat shock-induced production of Hsp70 protein and export of the Hsp70 mRNA in HeLa cells. Because this closely parallels the role of the hCG1 orthologue yNup42/Rip1, we speculate that hGle1-hCG1 function in the mRNA export mechanism is highly conserved.
Collapse
Affiliation(s)
- Frederic Kendirgi
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232-8240, USA
| | | | | | | | | |
Collapse
|
109
|
Chen IHB, Li L, Silva L, Sandri-Goldin RM. ICP27 recruits Aly/REF but not TAP/NXF1 to herpes simplex virus type 1 transcription sites although TAP/NXF1 is required for ICP27 export. J Virol 2005; 79:3949-61. [PMID: 15767397 PMCID: PMC1061567 DOI: 10.1128/jvi.79.7.3949-3961.2005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) protein ICP27 interacts with the cellular export adaptor protein Aly/REF, which is part of the exon junction complex implicated in cellular mRNA export. We previously reported that Aly/REF was no longer associated with splicing factor SC35 sites during infection but instead colocalized with ICP27 in distinct structures. Here we show that these structures colocalize with ICP4 and are sites of HSV-1 transcription. ICP27 mutants with lesions in the region required for the interaction with Aly/REF failed to recruit Aly/REF to viral transcription sites; however, ICP27 export to the cytoplasm was unimpaired, indicating that the interaction of ICP27 with Aly/REF is not required for ICP27 shuttling. ICP27 has also been shown to interact with the cellular mRNA export receptor TAP/NXF1. We report that ICP27 interacts directly with TAP/NXF1 and does not require Aly/REF to bridge the interaction. The C terminus of ICP27 is required; however, the N-terminal leucine-rich region also contributes to the interaction of ICP27 with TAP/NXF1. In contrast to the results found for Aly/REF, mutants that failed to interact with TAP/NXF1 were not exported to the cytoplasm, and TAP/NXF1 was not recruited to sites of HSV-1 transcription. Therefore, the interaction of ICP27 with TAP/NXF1 occurs after ICP27 leaves viral transcription sites. We conclude that ICP27 and the viral RNAs to which it binds are exported via the TAP/NXF1 export receptor.
Collapse
Affiliation(s)
- I-Hsiung Brandon Chen
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine, CA 92697-4025, USA
| | | | | | | |
Collapse
|
110
|
Gwizdek C, Hobeika M, Kus B, Ossareh-Nazari B, Dargemont C, Rodriguez MS. The mRNA nuclear export factor Hpr1 is regulated by Rsp5-mediated ubiquitylation. J Biol Chem 2005; 280:13401-5. [PMID: 15713680 DOI: 10.1074/jbc.c500040200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitin conjugation and in particular two distinct HECT ubiquitin ligases, Rsp5p and Tom1p, have been shown to participate in the regulation of mRNA export in Saccharomyces cerevisiae. The identification of the ubiquitin ligase substrates represents a major challenge in understanding how this modification may modulate mRNA export. Here, we identified Hpr1p, a member of the THO/TREX (transcription/export) complex that couples mRNA transcription to nuclear export as a target of the ubiquitin-proteasome pathway. Hpr1p degradation is enhanced at high temperature and appears linked to on-going RNA-polymeraseII-mediated transcription. Interestingly, the stability of the other THO complex components is not affected under these conditions indicating that Hpr1p turnover could control the formation of the THO/TREX complex and consequently mRNA export. Using in vivo and in vitro approaches we demonstrate that Rsp5p is responsible for the ubiquitylation of Hpr1p that also involves the ubiquitin-conjugating enzyme Ubc4p. Thus, Hpr1p represents the first nuclear export factor regulated by ubiquitylation, strongly suggesting that this post-translational modification participates in the coordination of transcription and mRNA export processes.
Collapse
Affiliation(s)
- Carole Gwizdek
- Institut Jacques Monod, Unité Mixte de Recherche 7592, CNRS, Universités Paris VI and VII, 75251 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
111
|
Windgassen M, Sturm D, Cajigas IJ, González CI, Seedorf M, Bastians H, Krebber H. Yeast shuttling SR proteins Npl3p, Gbp2p, and Hrb1p are part of the translating mRNPs, and Npl3p can function as a translational repressor. Mol Cell Biol 2004; 24:10479-91. [PMID: 15542855 PMCID: PMC529038 DOI: 10.1128/mcb.24.23.10479-10491.2004] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 07/08/2004] [Accepted: 09/07/2004] [Indexed: 11/20/2022] Open
Abstract
A major challenge in current molecular biology is to understand how sequential steps in gene expression are coupled. Recently, much attention has been focused on the linkage of transcription, processing, and mRNA export. Here we describe the cytoplasmic rearrangement for shuttling mRNA binding proteins in Saccharomyces cerevisiae during translation. While the bulk of Hrp1p, Nab2p, or Mex67p is not associated with polysome containing mRNAs, significant amounts of the serine/arginine (SR)-type shuttling mRNA binding proteins Npl3p, Gbp2p, and Hrb1p remain associated with the mRNA-protein complex during translation. Interestingly, a prolonged association of Npl3p with polysome containing mRNAs results in translational defects, indicating that Npl3p can function as a negative translational regulator. Consistent with this idea, a mutation in NPL3 that slows down translation suppresses growth defects caused by the presence of translation inhibitors or a mutation in eIF5A. Moreover, using sucrose density gradient analysis, we provide evidence that the import receptor Mtr10p, but not the SR protein kinase Sky1p, is involved in the timely regulated release of Npl3p from polysome-associated mRNAs. Together, these data shed light onto the transformation of an exporting to a translating mRNP.
Collapse
Affiliation(s)
- Merle Windgassen
- Institut für Molekularbiologie und Tumorforschung der Philipps-Universität Marburg, Emil-Mannkopff-Str. 2, 35037 Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
112
|
Yedavalli VSRK, Neuveut C, Chi YH, Kleiman L, Jeang KT. Requirement of DDX3 DEAD box RNA helicase for HIV-1 Rev-RRE export function. Cell 2004; 119:381-92. [PMID: 15507209 DOI: 10.1016/j.cell.2004.09.029] [Citation(s) in RCA: 436] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Revised: 08/18/2004] [Accepted: 08/23/2004] [Indexed: 01/19/2023]
Abstract
A single transcript in its unspliced and spliced forms directs the synthesis of all HIV-1 proteins. Although nuclear export of intron-containing cellular transcripts is restricted in mammalian cells, HIV-1 has evolved the viral Rev protein to overcome this restriction for viral transcripts. Previously, CRM1 was identified as a cellular cofactor for Rev-dependent export of intron-containing HIV-1 RNA. Here, we present evidence that Rev/CRM1 activity utilizes the ATP-dependent DEAD box RNA helicase, DDX3. We show that DDX3 is a nucleo-cytoplasmic shuttling protein, which binds CRM1 and localizes to nuclear membrane pores. Knockdown of DDX3 using either antisense vector or dominant-negative mutants suppressed Rev-RRE-function in the export of incompletely spliced HIV-1 RNAs. Plausibly, DDX3 is the human RNA helicase which functions in the CRM1 RNA export pathway analogously to the postulated role for Dbp5p in yeast mRNA export.
Collapse
Affiliation(s)
- Venkat S R K Yedavalli
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institutes of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
113
|
Miller AL, Suntharalingam M, Johnson SL, Audhya A, Emr SD, Wente SR. Cytoplasmic inositol hexakisphosphate production is sufficient for mediating the Gle1-mRNA export pathway. J Biol Chem 2004; 279:51022-32. [PMID: 15459192 DOI: 10.1074/jbc.m409394200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Production of inositol hexakisphosphate (IP6) by Ipk1, the inositol-1,3,4,5,6-pentakisphosphate 2-kinase, is required for Gle1-mediated mRNA export in Saccharomyces cerevisiae cells. To examine the network of interactions that require IP6 production, an analysis of fitness defects was conducted in mutants harboring both an ipk1 null allele and a mutant allele in genes encoding nucleoporins or transport factors. Enhanced lethality was observed with a specific subset of mutants, including nup42, nup116, nup159, dbp5, and gle2, all of which had been previously connected to Gle1 function. Complementation of the nup116Deltaipk1Delta and nup42Deltaipk1Delta double mutants did not require the Phe-Gly repeat domains in the respective nucleoporins, suggesting that IP6 was acting subsequent to heterogeneous nuclear ribonucleoprotein targeting to the nuclear pore complex. With Nup42 and Nup159 localized exclusively to the nuclear pore complex cytoplasmic side, we speculated that IP6 may regulate a cytoplasmic step in mRNA export. To test this prediction, the spatial requirements for the production of IP6 were investigated. Restriction of Ipk1 to the cytoplasm did not block IP6 production. Moreover, coincident sequestering of both Ipk1 and Mss4 (an enzyme required for phosphatidylinositol 4,5-bisphosphate production) to the cytoplasm also did not block IP6 production. Given that the kinase required for inositol 1,3,4,5,6-pentakisphosphate production (Ipk2) is localized in the nucleus, these results indicated that soluble inositides were diffusing between the nucleus and the cytoplasm. Additionally, the cytoplasmic production of IP6 by plasma membrane-anchored Ipk1 rescued a gle1-2 ipk1-4 synthetic lethal mutant. Thus, cytoplasmic IP6 production is sufficient for mediating the Gle1-mRNA export pathway.
Collapse
Affiliation(s)
- Aimee L Miller
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-8240, USA
| | | | | | | | | | | |
Collapse
|
114
|
Abruzzi KC, Lacadie S, Rosbash M. Biochemical analysis of TREX complex recruitment to intronless and intron-containing yeast genes. EMBO J 2004; 23:2620-31. [PMID: 15192704 PMCID: PMC449771 DOI: 10.1038/sj.emboj.7600261] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 05/10/2004] [Indexed: 11/09/2022] Open
Abstract
The TREX complex is involved in both transcription elongation and mRNA export and is recruited to nascent transcription complexes. We have examined Yra1p, Sub2p and Hpr1p recruitment to nine genes of varying lengths and transcription frequencies. All three proteins increase from the 5' to the 3' ends of the four intronless genes examined. A modified chromatin immunoprecipitation assay that includes an RNase step indicates that Sub2p is bound to nascent RNA, Yra1p is associated with both RNA and DNA, and Hpr1p is associated with DNA. Although Hpr1p is recruited similarly to both intronless and intron-containing genes, low Yra1p and Sub2p levels are present on a subset of intron-containing genes. The residual Yra1p and Sub2p recruitment is less RNA-associated, and this correlates with high levels of U1 SnRNP on these genes. These experiments support a model in which TREX is recruited via the transcription machinery and then Yra1p and Sub2p are transferred to the nascent RNA. On some intron-containing genes, retention and/or transfer of Yra1p and Sub2p to nascent RNA are inhibited.
Collapse
Affiliation(s)
| | - Scott Lacadie
- Department of Biology, Howard Hughes Medical Institute, Brandeis University, Waltham, MA, USA
| | - Michael Rosbash
- Department of Biology, Howard Hughes Medical Institute, Brandeis University, Waltham, MA, USA
| |
Collapse
|
115
|
Malik P, Blackbourn DJ, Clements JB. The Evolutionarily Conserved Kaposi's Sarcoma-associated Herpesvirus ORF57 Protein Interacts with REF Protein and Acts as an RNA Export Factor. J Biol Chem 2004; 279:33001-11. [PMID: 15155762 DOI: 10.1074/jbc.m313008200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ORF57 (MTA) one of the earliest Kaposi's sarcoma-associated herpesvirus (KSHV) regulatory proteins to be expressed is essential for virus lytic replication. A counterpart is present in every herpesvirus sequenced, indicating the importance of this signature viral protein and those examined act post-transcriptionally, affecting RNA splicing and transport. In KSHV-infected cells, ORF57 protein was present in a complex with REF (Aly) and TAP (NXF1), factors involved in cellular mRNA export. The ORF57 N-terminal region interacts with REF, whereas both N- and C-terminal domains of REF interact with ORF57. The ORF57-REF interaction was direct, whereas TAP appeared to be recruited via REF. In somatic cells, ectopically expressed ORF57 protein was shown to function as a CRM1-independent nuclear mRNA export factor, promoting export of mRNAs that are poor substrates for splicing. The gamma-herpesvirus ORF57 protein, and its alpha-1 herpesvirus ICP27 counterpart both export RNA through pathways involving REF and TAP proteins, although divergence of these herpesvirus subfamilies occurred some 180-210 million years ago. The TAP-mediated cellular mRNA export pathway is CRM1-independent. However, human immunodeficiency virus type 1 Rev protein-mediated RNA export, which is CRM1-dependent, was considerably inhibited by ORF57, suggesting that Rev and ORF57 compete for a common export component. These data strengthen arguments that TAP and CRM1 pathways converge in accessing similar components of the nuclear pore complex. We propose that ORF57-mediated RNA export may use different export factors to accommodate the KSHV-infected host cell environments, for example, in B-cells or endothelial cells and during the different phases of lytic virus replication.
Collapse
Affiliation(s)
- Poonam Malik
- Division of Virology, Institute of Biomedical and Life Sciences, University of Glasgow, Church Street, Glasgow, G11 5JR, Scotland, United Kingdom
| | | | | |
Collapse
|
116
|
Suntharalingam M, Alcázar-Román AR, Wente SR. Nuclear export of the yeast mRNA-binding protein Nab2 is linked to a direct interaction with Gfd1 and to Gle1 function. J Biol Chem 2004; 279:35384-91. [PMID: 15208322 DOI: 10.1074/jbc.m402044200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear export of mRNA is mediated by interactions between soluble factors and nuclear pore complex (NPC) proteins. In Saccharomyces cerevisiae, Nab2 is an essential RNA-binding protein that shuttles between the nucleus and cytoplasm. The mechanism for trafficking of Nab2-bound mRNA through the NPC has not been defined. Gle1 is also required for mRNA export, and Gle1 interactions with NPC proteins, the RNA helicase Dbp5, and Gfd1 have been reported. Here we report that Nab2, Gfd1, and Gle1 associate in a complex. By using immobilized recombinant Gfd1, Nab2 was isolated from total yeast lysate. A similar biochemical assay with immobilized recombinant Nab2 resulted in coisolation of Gfd1 and Gle1. A Nab2-Gfd1 complex was also identified by coimmunoprecipitation from yeast lysates. In vitro binding assays with recombinant proteins revealed a direct association between Nab2 and Gfd1, and two-hybrid assays delineated Gfd1 binding to the N-terminal Nab2 domain. This N-terminal Nab2 domain is distinct from its RNA binding domains suggesting Nab2 could bind Gfd1 and RNA simultaneously. As Nab2 export was blocked in a gle1 mutant at the restrictive temperature, we propose a model wherein Gfd1 serves as a bridging factor between Gle1 and Nab2-bound mRNA during export.
Collapse
Affiliation(s)
- Mythili Suntharalingam
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
117
|
Affiliation(s)
- Rozanne M Sandri-Goldin
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California 92697-4025, USA.
| |
Collapse
|
118
|
Dimaano C, Ullman KS. Nucleocytoplasmic transport: integrating mRNA production and turnover with export through the nuclear pore. Mol Cell Biol 2004; 24:3069-76. [PMID: 15060131 PMCID: PMC381686 DOI: 10.1128/mcb.24.8.3069-3076.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Christian Dimaano
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
119
|
Strawn LA, Shen T, Shulga N, Goldfarb DS, Wente SR. Minimal nuclear pore complexes define FG repeat domains essential for transport. Nat Cell Biol 2004; 6:197-206. [PMID: 15039779 DOI: 10.1038/ncb1097] [Citation(s) in RCA: 301] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Accepted: 01/15/2004] [Indexed: 11/08/2022]
Abstract
Translocation through nuclear pore complexes (NPCs) requires interactions between receptor-cargo complexes and phenylalanine-glycine (FG) repeats in multiple FG domain-containing NPC proteins (FG-Nups). We have systematically deleted the FG domains of 11 Saccharomyces cerevisiae FG-Nups in various combinations. All five asymmetrically localized FG domains deleted together were non-essential. However, specific combinations of symmetrically localized FG domains were essential. Over half the total mass of FG domains could be deleted without loss of viability or the NPC's normal permeability barrier. Significantly, symmetric deletions caused mild reductions in Kap95-Kap60-mediated import rates, but virtually abolished Kap104 import. These results suggest the existence of multiple translocation pathways.
Collapse
Affiliation(s)
- Lisa A Strawn
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 3120A MRBIII, 465 21st Avenue South, Nashville, TN 37232-8240, USA
| | | | | | | | | |
Collapse
|
120
|
Senay C, Ferrari P, Rocher C, Rieger KJ, Winter J, Platel D, Bourne Y. The Mtr2-Mex67 NTF2-like Domain Complex. J Biol Chem 2003; 278:48395-403. [PMID: 14504280 DOI: 10.1074/jbc.m308275200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The formation of the Mtr2-Mex67 heterodimer is essential for yeast mRNA export as it constitutes a key nuclear component for shuttling mRNA between the nuclear and cytoplasm compartments through the nuclear pore complex. We report the crystal structures of apo-Mtr2 from the human pathogen Candida albicans and of its complex with the Mex67 NTF2-like domain. Compared with other members of the NTF2 fold family, Mtr2 displays novel structural features involved in the nuclear export of the large ribosomal subunit and consistent with a dual functional role of Mtr2 during yeast nuclear export events. The structure of the Mtr2-Mex67 NTF2-like domain complex, which overall is similar to those of the human and Saccharomyces cerevisiae homologs, unveils three putative Phe-Gly repeat binding sites, of which one contributes to the heterodimer interface. These structures exemplify an unrecognized adaptability of the NTF2 building block in evolution, identify novel structural determinants associated with key biological functions at the molecular surface of the yeast Mtr2-Mex67 complex, and suggest that the yeast and human mRNA export machineries may differ.
Collapse
Affiliation(s)
- Claire Senay
- AFMB CNRS, UMR 6098, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | | | | | |
Collapse
|
121
|
Rondón AG, Jimeno S, García-Rubio M, Aguilera A. Molecular evidence that the eukaryotic THO/TREX complex is required for efficient transcription elongation. J Biol Chem 2003; 278:39037-43. [PMID: 12871933 DOI: 10.1074/jbc.m305718200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
THO/TREX is a conserved eukaryotic complex formed by the core THO complex plus proteins involved in mRNA metabolism and export such as Sub2 and Yra1. Mutations in any of the THO/TREX structural genes cause pleiotropic phenotypes such as transcription impairment, increased transcription-associated recombination, and mRNA export defects. To assay the relevance of THO/TREX complex in transcription, we performed in vitro transcription elongation assays in mutant cell extracts using supercoiled DNA templates containing two G-less cassettes. With these assays, we demonstrate that hpr1delta, tho2delta, and mft1delta mutants of the THO complex and sub2 mutants show significant reductions in the efficiency of transcription elongation. The mRNA expression defect of hpr1delta mutants was not due to an increase in mRNA decay, as determined by mRNA half-life measurements and mRNA time course accumulation experiments in the absence of Rrp6p exoribonuclease. This work demonstrates that THO and Sub2 are required for efficient transcription elongation, providing further evidence for the coupling between transcription and mRNA metabolism and export.
Collapse
Affiliation(s)
- Ana G Rondón
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012 Sevilla, Spain
| | | | | | | |
Collapse
|
122
|
Hiriart E, Bardouillet L, Manet E, Gruffat H, Penin F, Montserret R, Farjot G, Sergeant A. A region of the Epstein-Barr virus (EBV) mRNA export factor EB2 containing an arginine-rich motif mediates direct binding to RNA. J Biol Chem 2003; 278:37790-8. [PMID: 12857728 DOI: 10.1074/jbc.m305925200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Epstein-Barr virus (EBV) protein EB2 (also called Mta, SM, or BMLF1) has properties in common with mRNA export factors and is essential for the production of EBV infectious virions. However, to date no RNA-binding motif essential for EB2-mediated mRNA export has been located in the protein. We show here by Northwestern blot analysis that the EB2 protein purified from mammalian cells binds directly to RNA. Furthermore, using overlapping glutathione S-transferase (GST)-EB2 peptides, we have, by RNA electrophoretic mobility shift assays (REMSAs) and Northwestern blotting, located an RNA-binding motif in a 33-amino acid segment of EB2 that has structural features of the arginine-rich RNA-binding motifs (ARMs) also found in many RNA-binding proteins. A synthetic peptide (called Da), which contains this EB2 ARM, bound RNA in REMSA. A GST-Da fusion protein also bound RNA in REMSA without apparent RNA sequence specificity, because approximately 10 GST-Da molecules bound at multiple sites on a 180-nucleotide RNA fragment. Importantly, a short deletion in the ARM region impaired both EB2 binding to RNA in vivo and in vitro and EB2-mediated mRNA export without affecting the shuttling of EB2 between the nucleus and the cytoplasm. Moreover, ectopic expression of ARM-deleted EB2 did not rescue the production of infectious virions by 293 cells carrying an EBVDeltaEB2 genome, which suggests that the binding of EB2 to RNA plays an essential role in the EBV productive cycle.
Collapse
Affiliation(s)
- Edwige Hiriart
- Laboratoire de Virologie, Ens-Lyon, INSERM U 412, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Fribourg S, Conti E. Structural similarity in the absence of sequence homology of the messenger RNA export factors Mtr2 and p15. EMBO Rep 2003; 4:699-703. [PMID: 12835756 PMCID: PMC1326322 DOI: 10.1038/sj.embor.embor883] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2003] [Revised: 05/15/2003] [Accepted: 05/20/2003] [Indexed: 11/09/2022] Open
Abstract
The association between Mtr2 and Mex67 is essential for the nuclear export of bulk messenger RNA in yeast. In metazoans, the analogous function is carried out by the TAP-p15 heterodimer. Whereas Mex67 and TAP are highly conserved proteins, their binding partners, Mtr2 and p15, share no sequence similarity, but are nevertheless functionally homologous. Here, we report the 2.8-A resolution crystal structure of Mtr2 in complex with the NTF2-like domain of Mex67. Mtr2 is a novel member of the NTF2-like family and interacts with Mex67, forming a complex with a similar structural architecture to that of TAP-p15. Mtr2 fulfils an analogous function to that of human p15 in maintaining the structural integrity of the heterodimer. In addition, Mtr2 presents a long internal loop, which contains residues that affect the export of the large ribosomal subunit.
Collapse
Affiliation(s)
- Sébastien Fribourg
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | |
Collapse
|
124
|
Gallardo M, Luna R, Erdjument-Bromage H, Tempst P, Aguilera A. Nab2p and the Thp1p-Sac3p complex functionally interact at the interface between transcription and mRNA metabolism. J Biol Chem 2003; 278:24225-32. [PMID: 12702719 DOI: 10.1074/jbc.m302900200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
THP1 is a conserved eukaryotic gene whose null mutations confer, in yeast, transcription and genetic instability phenotypes and RNA export defects similar to those of the THO/TREX complex null mutations. In a search for multicopy suppressors of the transcription defect of thp1Delta cells, we identified the poly(A)+ RNA-binding heterogeneous nuclear ribonucleoprotein Nab2p. Multicopy NAB2 also suppressed the RNA export defect of thp1Delta cells. This result suggests a functional relationship between Thp1p and Nab2p. Consistently, the leaky mutation nab2-1 conferred a transcription defect and hyper-recombination phenotype similar to those of thp1Delta, although to a minor degree. Reciprocally, a purified His6-tagged Thp1p fusion bound RNA in vitro. In a different approach, we show by Western analyses that a highly purified Thp1p-Sac3p complex does not contain components of THO/TREX and that sac3Delta confers a transcription defect and hyper-recombination phenotype identical to those of thp1Delta. mRNA degradation was not affected in thp1Delta mutants, implying that their expression defects are not due to mRNA decay. This indicates that Thp1p-Sac3p is a structural and functional unit. Altogether, our results suggest that Thp1p-Sac3p and Nab2p are functionally related heterogeneous nuclear ribonucleoproteins that define a further link between mRNA metabolism and transcription.
Collapse
Affiliation(s)
- Mercedes Gallardo
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012 Sevilla, Spain
| | | | | | | | | |
Collapse
|
125
|
Abstract
Nuclear pore complexes (NPCs) are large proteinaceous assemblies that provide the only known portals for exchanging macromolecules between the nucleus and cytoplasm. This includes the movement of small molecules and the selective, facilitated transport of large proteins and RNAs. Faithful, continuous NPC assembly is key for maintaining normal physiological function and is closely tied to proper cell division. This review focuses on the most outstanding issues involving NPC structure, assembly, and function.
Collapse
Affiliation(s)
- Mythili Suntharalingam
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 3120A MRBIII, 465 21st Avenue South, Nashville, TN 37232, USA
| | | |
Collapse
|
126
|
Lei EP, Stern CA, Fahrenkrog B, Krebber H, Moy TI, Aebi U, Silver PA. Sac3 is an mRNA export factor that localizes to cytoplasmic fibrils of nuclear pore complex. Mol Biol Cell 2003; 14:836-47. [PMID: 12631707 PMCID: PMC151563 DOI: 10.1091/mbc.e02-08-0520] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In eukaryotes, mRNAs are transcribed in the nucleus and exported to the cytoplasm for translation to occur. Messenger RNAs complexed with proteins referred to as ribonucleoparticles are recognized for nuclear export in part by association with Mex67, a key Saccharomyces cerevisiae mRNA export factor and homolog of human TAP/NXF1. Mex67, along with its cofactor Mtr2, is thought to promote ribonucleoparticle translocation by interacting directly with components of the nuclear pore complex (NPC). Herein, we show that the nuclear pore-associated protein Sac3 functions in mRNA export. Using a mutant allele of MTR2 as a starting point, we have identified a mutation in SAC3 in a screen for synthetic lethal interactors. Loss of function of SAC3 causes a strong nuclear accumulation of mRNA and synthetic lethality with a number of mRNA export mutants. Furthermore, Sac3 can be coimmunoprecipitated with Mex67, Mtr2, and other factors involved in mRNA export. Immunoelectron microscopy analysis shows that Sac3 localizes exclusively to cytoplasmic fibrils of the NPC. Finally, Mex67 accumulates at the nuclear rim when SAC3 is mutated, suggesting that Sac3 functions in Mex67 translocation through the NPC.
Collapse
Affiliation(s)
- Elissa P Lei
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
127
|
Grant RP, Neuhaus D, Stewart M. Structural basis for the interaction between the Tap/NXF1 UBA domain and FG nucleoporins at 1A resolution. J Mol Biol 2003; 326:849-58. [PMID: 12581645 DOI: 10.1016/s0022-2836(02)01474-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The mRNA nuclear export function of Tap/NXF1 requires interactions with nuclear pore proteins (nucleoporins) that contain characteristic Phe-Gly repeats based on FG, GLFG or FxFG cores separated by hydrophilic linkers. FG-nucleoporins bind the two most C-terminal domains of Tap, which have NTF2 and UBA folds, respectively. We used a combination of NMR and X-ray crystallography to define the interaction interface between Tap UBA and FxFG nucleoporins and show that it involves primarily the two aromatic rings of the FxFG core that bind in a hydrophobic surface depression centred on Tap Cys588. NMR evidence indicates that the same depression mediates the binding of GLFG nucleoporins, which we confirmed by demonstrating competition between the two classes of repeat for binding to Tap UBA. Moreover, modification of Cys588 reduced the binding of Tap UBA to both GLFG and FxFG nucleoporins as well as to nuclear envelopes. These data underscore the central role of the conserved FG-nucleoporin repeat cores in binding to Tap UBA and indicate that functional differences between different classes of nucleoporins depend more on their spatial distribution in nuclear pores than on their binding to different sites on Tap UBA.
Collapse
Affiliation(s)
- Richard P Grant
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | |
Collapse
|
128
|
Abstract
Eukaryotic cells export several different classes of RNA molecule from the nucleus, where they are transcribed, to the cytoplasm, where the majority participate in different aspects of protein synthesis. It is now clear that these different classes of RNA, including rRNAs, tRNAs, mRNAs and snRNAs, are specifically directed into distinct but in some cases partially overlapping nuclear export pathways. All non-coding RNAs are now known to depend on members of the karyopherin family of Ran-dependent nucleocytoplasmic transport factors for their nuclear export. In contrast, mRNA export is generally mediated by a distinct, Ran-independent nuclear export pathway that is both complex and, as yet, incompletely understood. However, for all classes of RNA molecules, nuclear export is dependent on the assembly of the RNA into the appropriate ribonucleoprotein complex, and nuclear export therefore also appears to function as an important proofreading mechanism.
Collapse
Affiliation(s)
- Bryan R Cullen
- Howard Hughes Medical Institute and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
129
|
Hieronymus H, Silver PA. Genome-wide analysis of RNA-protein interactions illustrates specificity of the mRNA export machinery. Nat Genet 2003; 33:155-61. [PMID: 12524544 DOI: 10.1038/ng1080] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2002] [Accepted: 12/05/2002] [Indexed: 11/09/2022]
Abstract
Nuclear export of mRNA is mediated by a complex machinery of RNA-binding proteins that recognizes and routes mRNAs through a messenger ribonucleoprotein (mRNP) network. The full spectrum of mRNA cargoes for any dedicated mRNA export factor is unknown. We identified the mRNAs that bind two conserved yeast mRNA export factors, Yra1 (refs. 1-5) and Mex67 (refs. 6,7), on a genome-wide scale and determined their level of binding. Yra1 and Mex67 bind approximately 1,000 and 1,150 mRNAs, respectively, corresponding to almost 20% of the yeast genome and roughly 36% of all transcriptional events each. The binding level of Yra1 targets is related to their transcriptional frequency, but that of Mex67 targets is not. Yra1-bound transcripts are enriched in mRNAs that are regulated by a number of transcription factors. Yra1- and Mex67-bound populations also show enrichment of mRNAs encoding distinct functional classes of proteins, some of which are regulated by these transcription factors. We determined that one such transcription factor, Abf1 (refs. 8-10), associates with Yra1. These results indicate a previously unidentified specificity of mRNA export factors, which coordinates the export of transcriptionally co-regulated, functional classes of transcripts, perhaps through interactions with the transcriptional machinery.
Collapse
Affiliation(s)
- Haley Hieronymus
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and the Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
130
|
Libri D, Dower K, Boulay J, Thomsen R, Rosbash M, Jensen TH. Interactions between mRNA export commitment, 3'-end quality control, and nuclear degradation. Mol Cell Biol 2002; 22:8254-66. [PMID: 12417728 PMCID: PMC134070 DOI: 10.1128/mcb.22.23.8254-8266.2002] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several aspects of eukaryotic mRNA processing are linked to transcription. In Saccharomyces cerevisiae, overexpression of the mRNA export factor Sub2p suppresses the growth defect of hpr1 null cells, yet the protein Hpr1p and the associated THO protein complex are implicated in transcriptional elongation. Indeed, we find that a pool of heat shock HSP104 transcripts are 3'-end truncated in THO complex mutant as well as sub2 mutant backgrounds. Surprisingly, however, this defect can be suppressed by deletion of the 3'-5' exonuclease Rrp6p. This indicates that incomplete RNAs result from nuclear degradation rather than from a failure to efficiently elongate transcription. RNAs that are not degraded are retained at the transcription site in a Rrp6p-dependent manner. Interestingly, the addition of a RRP6 deletion to sub2 or to THO complex mutants shows a strong synthetic growth phenotype, suggesting that the failure to retain and/or degrade defective mRNAs is deleterious. mRNAs produced in the 3'-end processing mutants rna14-3 and rna15-2, as well as an RNA harboring a 3' end generated by a self-cleaving hammerhead ribozyme, are also retained in Rrp6p-dependent transcription site foci. Taken together, our results show that several classes of defective RNPs are subject to a quality control step that impedes release from transcription site foci and suggest that suboptimal messenger ribonucleoprotein assembly leads to RNA degradation by Rrp6p.
Collapse
Affiliation(s)
- Domenico Libri
- Centre National de la Recherche Scientifique, Centre de Genetique Moleculaire, 91190 Gif-sur-Yvette, France.
| | | | | | | | | | | |
Collapse
|
131
|
Allen NPC, Patel SS, Huang L, Chalkley RJ, Burlingame A, Lutzmann M, Hurt EC, Rexach M. Deciphering networks of protein interactions at the nuclear pore complex. Mol Cell Proteomics 2002; 1:930-46. [PMID: 12543930 DOI: 10.1074/mcp.t200012-mcp200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nuclear pore complex (NPC) gates the only known conduit for molecular exchange between the nucleus and cytoplasm of eukaryotic cells. Macromolecular transport across the NPC is mediated by nucleocytoplasmic shuttling receptors termed karyopherins (Kaps). Kaps interact with NPC proteins (nucleoporins) that contain FG peptide repeats (FG Nups) and altogether carry hundreds of different cargoes across the NPC. Previously we described a biochemical strategy to identify proteins that interact with individual components of the nucleocytoplasmic transport machinery. We used bacterially expressed fusions of glutathione S-transferase with nucleoporins or karyopherins as bait to capture interacting proteins from yeast extracts. Forty-five distinct proteins were identified as binding to one or several FG Nups and Kaps. Most of the detected interactions were expected, such as Kap-Nup interactions, but others were unexpected, such as the interactions of the multisubunit Nup84p complex with several of the FG Nups. Also unexpected were the interactions of various FG Nups with the nucleoporins Nup2p and Nup133p, the Gsp1p-GTPase-activating protein Rna1p, and the mRNA-binding protein Pab1p. Here we resolve how these interactions occur. We show that Pab1p associates nonspecifically with immobilized baits via RNA. More interestingly, we demonstrate that the Nup84p complex contains Nup133p as a subunit and binds to the FG repeat regions of Nups directly via the Nup85p subunit. Binding of Nup85p to the GLFG region of Nup116p was quantified in vitro (K(D) = 1.5 micro M) and was confirmed in vivo using the yeast two-hybrid assay. We also demonstrate that Nup2p and Rna1p can be tethered directly to FG Nups via the importin Kap95p-Kap60p and the exportin Crm1p, respectively. We discuss possible roles of these novel interactions in the mechanisms of nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Nadia P C Allen
- Department of Biological Sciences, Stanford University, Stanford, California 94305-0155, USA
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Fischer T, Sträßer K, Rácz A, Rodriguez-Navarro S, Oppizzi M, Ihrig P, Lechner J, Hurt E. The mRNA export machinery requires the novel Sac3p-Thp1p complex to dock at the nucleoplasmic entrance of the nuclear pores. EMBO J 2002; 21:5843-52. [PMID: 12411502 PMCID: PMC131087 DOI: 10.1093/emboj/cdf590] [Citation(s) in RCA: 226] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Yra1p and Sub2p are components of the TREX complex, which couples transcription elongation with nuclear export of mRNAs. Here, we report a genetic interaction between Yra1p and a conserved protein Sac3p, which previously was found to interact with Sub2p. In vivo, Sac3p forms a stable complex with Thp1p, which was reported to function in transcription elongation. In addition, Sac3p binds to the mRNA exporter Mex67p-Mtr2p and requires the nucleoporin Nup1p to dock at the nuclear side of the nuclear pore complex (NPC). Significantly, mutations in Sac3p or Thp1p lead to strong mRNA export defects. Taken together, our data suggest that the novel Sac3p-Thp1p complex functions by docking the mRNP to specific nucleoporins at the nuclear entrance of the NPC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ed Hurt
- Biochemie-Zentrum Heidelberg (BZH), Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
Corresponding author e-mail: T.Fischer and K.Sträßer contributed equally to this work
| |
Collapse
|
133
|
Izaurralde E. A novel family of nuclear transport receptors mediates the export of messenger RNA to the cytoplasm. Eur J Cell Biol 2002; 81:577-84. [PMID: 12498157 DOI: 10.1078/0171-9335-00273] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fully processed mRNAs are exported to the cytoplasm where they direct protein synthesis. A general feature of mRNA export is that it is an active, receptor-mediated process. The mRNA export receptors are thought to recognize and bind to the mRNA-export cargoes either directly or indirectly (via adaptor proteins) and facilitate their translocation across the central channel of the nuclear pore complex (NPC). On the cytoplasmic side of the NPC, the exported mRNA is released and the receptor returns to the nucleoplasm, without the cargo, to initiate additional rounds of export. Recent, studies in yeast and in higher eukaryotes have led to the elucidation of an evolutionarily conserved pathway for the export of bulk mRNA to the cytoplasm.
Collapse
|
134
|
Hammell CM, Gross S, Zenklusen D, Heath CV, Stutz F, Moore C, Cole CN. Coupling of termination, 3' processing, and mRNA export. Mol Cell Biol 2002; 22:6441-57. [PMID: 12192043 PMCID: PMC135649 DOI: 10.1128/mcb.22.18.6441-6457.2002] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2001] [Revised: 01/22/2002] [Accepted: 06/13/2002] [Indexed: 11/20/2022] Open
Abstract
In a screen to identify genes required for mRNA export in Saccharomyces cerevisiae, we isolated an allele of poly(A) polymerase (PAP1) and novel alleles encoding several other 3' processing factors. Many newly isolated and some previously described mutants (rna14-48, rna14-49, rna14-64, rna15-58, and pcf11-1 strains) are defective in polymerase II (Pol II) termination but, interestingly, retain the ability to polyadenylate these improperly processed transcripts at the nonpermissive temperature. Deletion of the cis-acting sequences required to couple 3' processing and termination also produces transcripts that fail to exit the nucleus, suggesting that all of these processes (cleavage, termination, and export) are coupled. We also find that several but not all mRNA export mutants produce improperly 3' processed transcripts at the nonpermissive temperature. 3' maturation defects in mRNA export mutants include improper Pol II termination and/or the previously characterized hyperpolyadenylation of transcripts. Importantly, not all mRNA export mutants have defects in 3' processing. The similarity of the phenotypes of some mRNA export mutants and 3' processing mutants indicates that some factors from each process may mechanistically interact to couple mRNA processing and export. Consistent with this assumption, we present evidence that Xpo1p interacts in vivo with several 3' processing factors and that the addition of recombinant Xpo1p to in vitro processing reaction mixtures stimulates 3' maturation. Of the core 3' processing factors tested (Rna14p, Rna15p, Pcf11p, Hrp1p, Fip1p, and Cft1p), only Hrp1p shuttles. Overexpression of Rat8p/Dbp5p suppresses both 3' processing and mRNA export defects found in xpo1-1 cells.
Collapse
Affiliation(s)
- C M Hammell
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | |
Collapse
|
135
|
Braun IC, Herold A, Rode M, Izaurralde E. Nuclear export of mRNA by TAP/NXF1 requires two nucleoporin-binding sites but not p15. Mol Cell Biol 2002; 22:5405-18. [PMID: 12101235 PMCID: PMC133933 DOI: 10.1128/mcb.22.15.5405-5418.2002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metazoan NXF1/p15 heterodimers promote export of bulk mRNA through nuclear pore complexes (NPC). NXF1 interacts with the NPC via two distinct structural domains, the UBA-like domain and the NTF2-like scaffold, which results from the heterodimerization of the NTF2-like domain of NXF1 with p15. Both domains feature a single nucleoporin-binding site, and they act synergistically to promote NPC translocation. Whether the NTF2-like scaffold (and thereby p15) contributes only to NXF1/NPC association or is also required for other functions, e.g., to impart directionality to the export process by regulating NXF1/NPC or NXF1/cargo interactions, remains unresolved. Here we show that a minimum of two nucleoporin-binding sites is required for NXF1-mediated export of cellular mRNA. These binding sites can be provided by an NTF2-like scaffold followed by a UBA-like domain (as in the wild-type protein) or by two NTF2-like scaffolds or two UBA-like domains in tandem. In the latter case, the export activity of NXF1 is independent of p15. Thus, as for the UBA-like domain, the function of the NTF2-like scaffold is confined to nucleoporin binding. More importantly, two copies of either of these domains are sufficient to promote directional transport of mRNA cargoes across the NPC.
Collapse
Affiliation(s)
- Isabelle C Braun
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
136
|
Thakurta AG, Whalen WA, Yoon JH, Bharathi A, Kozak L, Whiteford C, Love DC, Hanover JA, Dhar R. Crp79p, like Mex67p, is an auxiliary mRNA export factor in Schizosaccharomyces pombe. Mol Biol Cell 2002; 13:2571-84. [PMID: 12181330 PMCID: PMC117926 DOI: 10.1091/mbc.e01-11-0133] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The export of mRNA from the nucleus to the cytoplasm involves interactions of proteins with mRNA and the nuclear pore complex. We isolated Crp79p, a novel mRNA export factor from the same synthetic lethal screen that led to the identification of spMex67p in Schizosaccharomyces pombe. Crp79p is a 710-amino-acid-long protein that contains three RNA recognition motif domains in tandem and a distinct C-terminus. Fused to green fluorescent protein (GFP), Crp79p localizes to the cytoplasm. Like Mex67p, Crp79-GFP binds poly(A)(+) RNA in vivo, shuttles between the nucleus and the cytoplasm, and contains a nuclear export activity at the C-terminus that is Crm1p-independent. All of these properties are essential for Crp79p to promote mRNA export. Crp79p import into the nucleus depends on the Ran system. A domain of spMex67p previously identified as having a nuclear export activity can functionally substitute for the nuclear export activity at the C-terminus of Crp79p. Although both Crp79p and spMex67p function to export mRNA, Crp79p does not substitute for all of spMex67p functions and probably is not a functional homologue of spMex67p. We propose that Crp79p is a nonessential mRNA export carrier in S. pombe.
Collapse
Affiliation(s)
- Anjan G Thakurta
- Basic Research Laboratory, National Cancer Institute, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Ribbeck K, Görlich D. The permeability barrier of nuclear pore complexes appears to operate via hydrophobic exclusion. EMBO J 2002; 21:2664-71. [PMID: 12032079 PMCID: PMC126029 DOI: 10.1093/emboj/21.11.2664] [Citation(s) in RCA: 444] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nuclear pore complexes (NPCs) restrict the nucleocytoplasmic flux of most macromolecules, but permit facilitated passage of nuclear transport receptors and their cargo complexes. We found that a simple hydrophobic interaction column can mimic the selectivity of NPCs surprisingly well and that nuclear transport receptors appear to be the most hydrophobic soluble proteins. This suggests that surface hydrophobicity represents a major sorting criterion of NPCs. The rate of NPC passage of cargo-receptor complexes is, however, not dominated just by properties of the receptors. We found that large cargo domains drastically hinder NPC passage and require more than one receptor molecule for rapid translocation. This argues against a rigid translocation channel and instead suggests that NPC passage involves a partitioning of the entire translocating species into a hydrophobic phase, whereby the receptor:cargo ratio determines the solubility in that permeability barrier. Finally, we show that interfering with hydrophobic interactions causes a reversible collapse of the permeability barrier of NPCs, which is consistent with the assumption that the barrier is formed by phenylalanine-rich nucleoporin repeats that attract each other through hydrophobic interactions.
Collapse
Affiliation(s)
| | - Dirk Görlich
- ZMBH, INF 282, D-69120 Heidelberg, Germany
Corresponding author e-mail:
| |
Collapse
|
138
|
Rodríguez-Navarro S, Strässer K, Hurt E. An intron in the YRA1 gene is required to control Yra1 protein expression and mRNA export in yeast. EMBO Rep 2002; 3:438-42. [PMID: 11964382 PMCID: PMC1084104 DOI: 10.1093/embo-reports/kvf091] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Yra1p is an essential and conserved mRNA export factor in yeast. Strikingly, removal of the intron from YRA1 causes a dominant-negative growth phenotype and a concomitant inhibition of mRNA export. However, both defects are neutralized by replacement of the intron of YRA1 by a different intron. Significantly, Yra1p is overproduced in yeast when expressed from its intronless gene, but Yra1p levels are the same as the wild type when expressed from an intron-containing YRA1 gene. Thus, an intron in YRA1 controls Yra1p expression and mRNA export.
Collapse
|
139
|
Hector RE, Nykamp KR, Dheur S, Anderson JT, Non PJ, Urbinati CR, Wilson SM, Minvielle-Sebastia L, Swanson MS. Dual requirement for yeast hnRNP Nab2p in mRNA poly(A) tail length control and nuclear export. EMBO J 2002; 21:1800-10. [PMID: 11927564 PMCID: PMC125947 DOI: 10.1093/emboj/21.7.1800] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent studies of mRNA export factors have provided additional evidence for a mechanistic link between mRNA 3'-end formation and nuclear export. Here, we identify Nab2p as a nuclear poly(A)-binding protein required for both poly(A) tail length control and nuclear export of mRNA. Loss of NAB2 expression leads to hyperadenylation and nuclear accumulation of poly(A)(+) RNA but, in contrast to mRNA export mutants, these defects can be uncoupled in a nab2 mutant strain. Previous studies have implicated the cytoplasmic poly(A) tail-binding protein Pab1p in poly(A) tail length control during polyadenylation. Although cells are viable in the absence of NAB2 expression when PAB1 is overexpressed, Pab1p fails to resolve the nab2Delta hyperadenylation defect even when Pab1p is tagged with a nuclear localization sequence and targeted to the nucleus. These results indicate that Nab2p is essential for poly(A) tail length control in vivo, and we demonstrate that Nab2p activates polyadenylation, while inhibiting hyperadenylation, in the absence of Pab1p in vitro. We propose that Nab2p provides an important link between the termination of mRNA polyadenylation and nuclear export.
Collapse
Affiliation(s)
| | | | - Sonia Dheur
- Department of Molecular Genetics and Microbiology, Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL 32610-0266, USA and
IBGC-CNRS, University of Bordeaux 2, 1 Rue Camille Saint Saens, Bordeaux, France Present address: Department of Biology, Marquette University, Milwaukee, WI 53233, USA Present address: National Cancer Institute–Frederick Cancer Research Facility and Development Center, Frederick, MD 21702, USA Corresponding author e-mail:
| | - James T. Anderson
- Department of Molecular Genetics and Microbiology, Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL 32610-0266, USA and
IBGC-CNRS, University of Bordeaux 2, 1 Rue Camille Saint Saens, Bordeaux, France Present address: Department of Biology, Marquette University, Milwaukee, WI 53233, USA Present address: National Cancer Institute–Frederick Cancer Research Facility and Development Center, Frederick, MD 21702, USA Corresponding author e-mail:
| | | | | | - Scott M. Wilson
- Department of Molecular Genetics and Microbiology, Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL 32610-0266, USA and
IBGC-CNRS, University of Bordeaux 2, 1 Rue Camille Saint Saens, Bordeaux, France Present address: Department of Biology, Marquette University, Milwaukee, WI 53233, USA Present address: National Cancer Institute–Frederick Cancer Research Facility and Development Center, Frederick, MD 21702, USA Corresponding author e-mail:
| | - Lionel Minvielle-Sebastia
- Department of Molecular Genetics and Microbiology, Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL 32610-0266, USA and
IBGC-CNRS, University of Bordeaux 2, 1 Rue Camille Saint Saens, Bordeaux, France Present address: Department of Biology, Marquette University, Milwaukee, WI 53233, USA Present address: National Cancer Institute–Frederick Cancer Research Facility and Development Center, Frederick, MD 21702, USA Corresponding author e-mail:
| | - Maurice S. Swanson
- Department of Molecular Genetics and Microbiology, Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL 32610-0266, USA and
IBGC-CNRS, University of Bordeaux 2, 1 Rue Camille Saint Saens, Bordeaux, France Present address: Department of Biology, Marquette University, Milwaukee, WI 53233, USA Present address: National Cancer Institute–Frederick Cancer Research Facility and Development Center, Frederick, MD 21702, USA Corresponding author e-mail:
| |
Collapse
|
140
|
Griffis ER, Altan N, Lippincott-Schwartz J, Powers MA. Nup98 is a mobile nucleoporin with transcription-dependent dynamics. Mol Biol Cell 2002; 13:1282-97. [PMID: 11950939 PMCID: PMC102269 DOI: 10.1091/mbc.01-11-0538] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nucleoporin 98 (Nup98), a glycine-leucine-phenylalanine-glycine (GLFG) amino acid repeat-containing nucleoporin, plays a critical part in nuclear trafficking. Injection of antibodies to Nup98 into the nucleus blocks the export of most RNAs. Nup98 contains binding sites for several transport factors; however, the mechanism by which this nucleoporin functions has remained unclear. Multiple subcellular localizations have been suggested for Nup98. Here we show that Nup98 is indeed found both at the nuclear pore complex and within the nucleus. Inside the nucleus, Nup98 associates with a novel nuclear structure that we term the GLFG body because the GLFG domain of Nup98 is required for targeting to this structure. Photobleaching of green fluorescent protein-Nup98 in living cells reveals that Nup98 is mobile and moves between these different localizations. The rate of recovery after photobleaching indicates that Nup98 interacts with other, less mobile, components in the nucleoplasm. Strikingly, given the previous link to nuclear export, the mobility of Nup98 within the nucleus and at the pore is dependent on ongoing transcription by RNA polymerases I and II. These data give rise to a model in which Nup98 aids in direction of RNAs to the nuclear pore and provide the first potential mechanism for the role of a mobile nucleoporin.
Collapse
Affiliation(s)
- Eric R Griffis
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
141
|
Popa I, Harris ME, Donello JE, Hope TJ. CRM1-dependent function of a cis-acting RNA export element. Mol Cell Biol 2002; 22:2057-67. [PMID: 11884594 PMCID: PMC133666 DOI: 10.1128/mcb.22.7.2057-2067.2002] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2001] [Revised: 07/19/2001] [Accepted: 12/21/2001] [Indexed: 11/20/2022] Open
Abstract
Viruses often contain cis-acting RNA elements, which facilitate the posttranscriptional processing and export of their messages. These elements fall into two classes distinguished by the presence of either viral or cellular RNA binding proteins. To date, studies have indicated that the viral proteins utilize the CRM1-dependent export pathway, while the cellular factors generally function in a CRM1-independent manner. The cis-acting element found in the woodchuck hepatitis virus (WHV) (the WHV posttranscriptional regulatory element [WPRE]) has the ability to posttranscriptionally stimulate transgene expression and requires no viral proteins to function. Conventional wisdom suggests that the WPRE would function in a CRM1-independent manner. However, our studies on this element reveal that its efficient function is sensitive to the overexpression of the C terminus of CAN/Nup214 and treatment with the antimicrobial agent leptomycin B. Furthermore, the overexpression of CRM1 stimulates WPRE activity. These results suggest a direct role for CRM1 in the export function of the WPRE. This observation suggests that the WPRE is directing messages into a CRM1-dependent mRNA export pathway in somatic mammalian cells.
Collapse
Affiliation(s)
- Ileana Popa
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
142
|
Katahira J, Straesser K, Saiwaki T, Yoneda Y, Hurt E. Complex formation between Tap and p15 affects binding to FG-repeat nucleoporins and nucleocytoplasmic shuttling. J Biol Chem 2002; 277:9242-6. [PMID: 11756420 DOI: 10.1074/jbc.m110007200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian Tap-p15 and yeast Mex67p-Mtr2p are conserved and essential mRNA export factor complexes that transport mRNPs through the nuclear pore. Here, we report that the small subunit p15 affects the binding of the large subunit Tap to repeat nucleoporins. BIAcore measurements revealed that recombinant Tap binds with high affinity (K(d) in the nm range) to repeat nucleoporins and dissociates from them very slowly. In contrast, when recombinant Tap was bound to p15, the derived heterodimeric complex exhibited a significant lower affinity to FG-repeat nucleoporins (K(d) in the microm range). Furthermore, when recombinant Tap lacking the N-terminal nuclear localization sequences (TapDeltaNLS) was microinjected in mammalian cells, it did not shuttle; however, TapDeltaNLS with bound p15 efficiently shuttles between nucleus and cytoplasm. We conclude that heterodimerization of Tap and p15 is required for shuttling of the functional Tap-p15 mRNA exporter complex.
Collapse
Affiliation(s)
- Jun Katahira
- Division of Immunology, Section of Cellular Interactions and Morphogenesis, Institute for Molecular and Cellular Biology, Osaka University, 1-3 Yamadaoka Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
143
|
Abstract
Recent advances have led to a new understanding of how mRNAs are exported from the nucleus to the cytoplasm. This process requires a heterodimeric mRNA export receptor that is part of an elaborate machinery conserved from yeast to humans. Export of mRNAs is coupled to upstream steps in gene expression, such as pre-mRNA splicing, and to downstream events, including nonsense-mediated decay.
Collapse
Affiliation(s)
- Robin Reed
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
144
|
Lorković ZJ, Barta A. Genome analysis: RNA recognition motif (RRM) and K homology (KH) domain RNA-binding proteins from the flowering plant Arabidopsis thaliana. Nucleic Acids Res 2002; 30:623-35. [PMID: 11809873 PMCID: PMC100298 DOI: 10.1093/nar/30.3.623] [Citation(s) in RCA: 294] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2001] [Revised: 10/18/2001] [Accepted: 11/27/2001] [Indexed: 11/13/2022] Open
Abstract
Regulation of gene expression at the post-transcriptional level is mainly achieved by proteins containing well-defined sequence motifs involved in RNA binding. The most widely spread motifs are the RNA recognition motif (RRM) and the K homology (KH) domain. In this article, we survey the complete Arabidopsis thaliana genome for proteins containing RRM and KH RNA-binding domains. The Arabidopsis genome encodes 196 RRM-containing proteins, a more complex set than found in Caenorhabditis elegans and Drosophila melanogaster. In addition, the Arabidopsis genome contains 26 KH domain proteins. Most of the Arabidopsis RRM-containing proteins can be classified into structural and/or functional groups, based on similarity with either known metazoan or Arabidopsis proteins. Approximately 50% of Arabidopsis RRM-containing proteins do not have obvious homologues in metazoa, and for most of those that are predicted to be orthologues of metazoan proteins, no experimental data exist to confirm this. Additionally, the function of most Arabidopsis RRM proteins and of all KH proteins is unknown. Based on the data presented here, it is evident that among all eukaryotes, only those RNA-binding proteins that are involved in the most essential processes of post-transcriptional gene regulation are preserved in structure and, most probably, in function. However, the higher complexity of RNA-binding proteins in Arabidopsis, as evident in groups of SR splicing factors and poly(A)-binding proteins, may account for the observed differences in mRNA maturation between plants and metazoa. This survey provides a first systematic analysis of plant RNA-binding proteins, which may serve as a basis for functional characterisation of this important protein group in plants.
Collapse
Affiliation(s)
- Zdravko J Lorković
- Institute of Medical Biochemistry, Vienna University, Dr. Bohrgasse 9/3, 1030 Vienna, Austria.
| | | |
Collapse
|
145
|
Abstract
A central aspect of cellular function is the proper regulation of nucleocytoplasmic transport. In recent years, significant progress has been made in identifying and characterizing the essential components of the transport machinery. Despite these advances, some facets of this process are still unclear. Furthermore, recent work has uncovered novel molecules and mechanisms of nuclear transport. This review focuses on the unresolved and novel aspects of nuclear transport and explores issues in tRNA, snRNA, and mRNA export that highlight the diversity of nuclear transport mechanisms.
Collapse
Affiliation(s)
- A Komeili
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, California 94143, USA.
| | | |
Collapse
|
146
|
Wiegand HL, Coburn GA, Zeng Y, Kang Y, Bogerd HP, Cullen BR. Formation of Tap/NXT1 heterodimers activates Tap-dependent nuclear mRNA export by enhancing recruitment to nuclear pore complexes. Mol Cell Biol 2002; 22:245-56. [PMID: 11739738 PMCID: PMC134221 DOI: 10.1128/mcb.22.1.245-256.2002] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2001] [Revised: 08/15/2001] [Accepted: 09/28/2001] [Indexed: 11/20/2022] Open
Abstract
The Tap protein has been shown to activate the nuclear export of mRNA species bearing retroviral constitutive transport elements and is also believed to play an essential role in the sequence nonspecific export of cellular mRNAs. However, it has remained unclear how Tap activity is regulated in vivo. Here, we report that the small NXT1/p15-1 protein functions as a critical cofactor for Tap-mediated mRNA export in both human and invertebrate cells. In the absence of NXT1 binding, the Tap protein is unable to effectively interact with components of the nuclear pore complex and both Tap nucleocytoplasmic shuttling and the nuclear export of mRNA molecules tethered to Tap are therefore severely attenuated. Formation of a Tap/NXT1 heterodimer enhances nucleoporin binding both in vitro and in vivo and induces the formation of a Tap/NXT1/nucleoporin ternary complex that is likely to be a key intermediate in the process of nuclear mRNA export. The critical importance of NXT1 for the nuclear export of poly(A)(+) RNA is emphasized by the finding that specific inhibition of the expression of the Drosophila homolog of human NXT1, by using RNA interference, results in the nuclear accumulation of poly(A)(+) RNA in cultured insect cells. These data suggest that NXT1 may act as a molecular switch that regulates the ability of Tap to mediate nuclear mRNA export by controlling the interaction of Tap with components of the nuclear pore.
Collapse
Affiliation(s)
- Heather L Wiegand
- Howard Hughes Medical Institute and Department of Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
147
|
Gleizes PE, Noaillac-Depeyre J, Léger-Silvestre I, Teulières F, Dauxois JY, Pommet D, Azum-Gelade MC, Gas N. Ultrastructural localization of rRNA shows defective nuclear export of preribosomes in mutants of the Nup82p complex. J Cell Biol 2001; 155:923-36. [PMID: 11739405 PMCID: PMC2150900 DOI: 10.1083/jcb.200108142] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To study the nuclear export of preribosomes, ribosomal RNAs were detected by in situ hybridization using fluorescence and EM, in the yeast Saccharomyces cerevisiae. In wild-type cells, semiquantitative analysis shows that the distributions of pre-40S and pre-60S particles in the nucleolus and the nucleoplasm are distinct, indicating uncoordinated transport of the two subunits within the nucleus. In cells defective for the activity of the GTPase Gsp1p/Ran, ribosomal precursors accumulate in the whole nucleus. This phenotype is reproduced with pre-60S particles in cells defective in pre-rRNA processing, whereas pre-40S particles only accumulate in the nucleolus, suggesting a tight control of the exit of the small subunit from the nucleolus. Examination of nucleoporin mutants reveals that preribosome nuclear export requires the Nup82p-Nup159p-Nsp1p complex. In contrast, mutations in the nucleoporins forming the Nup84p complex yield very mild or no nuclear accumulation of preribosome. Interestingly, domains of Nup159p required for mRNP trafficking are not necessary for preribosome export. Furthermore, the RNA helicase Dbp5p and the protein Gle1p, which interact with Nup159p and are involved in mRNP trafficking, are dispensable for ribosomal transport. Thus, the Nup82p-Nup159p-Nsp1p nucleoporin complex is part of the nuclear export pathways of preribosomes and mRNPs, but with distinct functions in these two processes.
Collapse
Affiliation(s)
- P E Gleizes
- Laboratoire de Biologie Moléculaire Eucaryote, Centre Nationale de la Recherche Scientifique and Université Paul Sabatier, 31062 Toulouse cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Herold A, Klymenko T, Izaurralde E. NXF1/p15 heterodimers are essential for mRNA nuclear export in Drosophila. RNA (NEW YORK, N.Y.) 2001; 7:1768-1780. [PMID: 11780633 PMCID: PMC1370216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The conserved family of NXF proteins has been implicated in the export of messenger RNAs from the nucleus. In metazoans, NXFs heterodimerize with p15. The yeast genome encodes a single NXF protein (Mex67p), but there are multiple nxf genes in metazoans. Whether metazoan NXFs are functionally redundant, or their multiplication reflects an adaptation to a greater substrate complexity or to tissue-specific requirements has not been established. The Drosophila genome encodes one p15 homolog and four putative NXF proteins (NXF1 to NXF4). Here we show that depletion of the endogenous pools of NXF1 or p15 from Drosophila cells inhibits growth and results in a rapid and robust accumulation of polyadenylated RNAs within the nucleus. Fluorescence in situ hybridizations show that export of both heat-shock and non-heat-shock mRNAs, as well as intron-containing and intronless mRNAs is inhibited. Depleting endogenous NXF2 or NXF3 has no apparent phenotype. Moreover, NXF4 is not expressed at detectable levels in cultured Drosophila cells. We conclude that Dm NXF1/p15 heterodimers only (but not NXF2-NXF4) mediate the export of the majority of mRNAs in Drosophila cells and that the other members of the NXF family play more specialized or different roles.
Collapse
Affiliation(s)
- A Herold
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
149
|
Korey CA, Wilkie G, Davis I, Van Vactor D. small bristles is required for the morphogenesis of multiple tissues during Drosophila development. Genetics 2001; 159:1659-70. [PMID: 11779805 PMCID: PMC1461901 DOI: 10.1093/genetics/159.4.1659] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We found that mutations in small bristles (sbr) affect several tissues during the development of the fruit fly. In sbr embryos, neurons have defects in pathfinding and the body wall muscles have defective morphology. As adults, sbr flies have smaller and thinner bristles with a reduced diameter, suggesting a defective cytoskeleton within. The phenotypes we observe are consistent with defects in cell morphogenesis. We identified DmNXF1, the Drosophila homolog of a mRNA export protein that has been characterized in human (NXF1/TAP) and yeast (Mex67p) as the protein encoded by the small bristles locus. Given that a global decrease in mRNA export in these mutants is likely, the phenotypes we observe suggest that certain tissues are acutely sensitive to lower levels of cytoplasmic mRNA and the resultant decrease in protein synthesis during key stages of cellular morphogenesis.
Collapse
Affiliation(s)
- C A Korey
- Department of Cell Biology, The Program in Neuroscience and The Dana Farber Cancer Institute/Harvard Cancer Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
150
|
Abstract
A defining characteristic of eukaryotic cells is the possession of a nuclear envelope. Transport of macromolecules between the nuclear and cytoplasmic compartments occurs through nuclear pore complexes that span the double membrane of this envelope. The molecular basis for transport has been revealed only within the last few years. The transport mechanism lacks motors and pumps and instead operates by a process of facilitated diffusion of soluble carrier proteins, in which vectoriality is provided by compartment-specific assembly and disassembly of cargo-carrier complexes. The carriers recognize localization signals on the cargo and can bind to pore proteins. They also bind a small GTPase, Ran, whose GTP-bound form is predominantly nuclear. Ran-GTP dissociates import carriers from their cargo and promotes the assembly of export carriers with cargo. The ongoing discovery of numerous carriers, Ran-independent transport mechanisms, and cofactors highlights the complexity of the nuclear transport process. Multiple regulatory mechanisms are also being identified that control cargo-carrier interactions. Circadian rhythms, cell cycle, transcription, RNA processing, and signal transduction are all regulated at the level of nucleocytoplasmic transport. This review focuses on recent discoveries in the field, with an emphasis on the carriers and cofactors involved in transport and on possible mechanisms for movement through the nuclear pores.
Collapse
Affiliation(s)
- I G Macara
- Center for Cell Signaling, University of Virginia, Charlottesville, Virginia 22908-0577, USA.
| |
Collapse
|