101
|
Loers G, Chen S, Grumet M, Schachner M. Signal transduction pathways implicated in neural recognition molecule L1 triggered neuroprotection and neuritogenesis. J Neurochem 2005; 92:1463-76. [PMID: 15748164 DOI: 10.1111/j.1471-4159.2004.02983.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The signal transduction pathways involved in adhesion molecule L1-triggered neuritogenesis and neuroprotection were investigated using the extracellular domain of mouse or human L1 in fusion with the Fc portion of human immunoglobulin G or L1 purified from mouse brain by affinity chromatography. Substrate L1-triggered neuritogenesis and neuroprotection depended on distinct but also overlapping signal transduction pathways and on the expression of L1 at the neuronal cell surface. PI3 kinase inhibitors, Src family kinase inhibitors as well as mitogen-activated protein kinase kinase inhibitors reduced both L1-triggered neuritogenesis and neuroprotection. In contrast, fibroblast growth factor receptor inhibitors, a protein kinase A inhibitor, and an inhibitor of cAMP-mediated signal transduction pathways, blocked neuritogenesis, but did not affect L1-triggered neuroprotection. Proteolytic cleavage of L1 or its interaction partners is necessary for both L1-mediated neuritogensis and neuroprotection. Furthermore, L1-triggered neuroprotection was found to be associated with increased phosphorylation of extracellular signal-regulated kinases 1/2, Akt and Bad, and inhibition of caspases. These observations suggest possibilities of differentially targeting signal transduction pathways for L1-dependent neuritogenesis and neuroprotection.
Collapse
Affiliation(s)
- Gabriele Loers
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Falkenried 94, D-20251 Hamburg, Germany
| | | | | | | |
Collapse
|
102
|
Taira E, Kohama K, Tsukamoto Y, Okumura S, Miki N. Gicerin/CD146 is involved in neurite extension of NGF-treated PC12 cells. J Cell Physiol 2005; 204:632-7. [PMID: 15880440 DOI: 10.1002/jcp.20365] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Gicerin/CD146 is a cell adhesion molecule, which belongs to the immunoglobulin (Ig) superfamily. We have reported that it has a homophilic binding activity, which participates in the neurite extension from embryonic neurons. To elucidate how gicerin is involved in the neurite extension mechanism, we employed PC12 cells, which expresses gicerin/CD146. PC12 cells extend longer neurites by nerve growth factor (NGF) on gicerin substrate than on without gicerin substrate, which indicates that gicerin participates in neurite extension by NGF. We also found that the expression of gicerin in PC12 cells is induced by NGF. Over-expression of gicerin also promotes neurite extension by gicerin-gicerin homophilic interaction. These findings suggested that increase of gicerin expression by NGF promotes the gicerin-gicerin homophilic interaction resulting in the neurite extension.
Collapse
Affiliation(s)
- Eiichi Taira
- Department of Pharmacology, Iwate Medical School, Uchimaru, Morioka, Iwate, Japan.
| | | | | | | | | |
Collapse
|
103
|
Galletta BJ, Chakravarti M, Banerjee R, Abmayr SM. SNS: adhesive properties, localization requirements and ectodomain dependence in S2 cells and embryonic myoblasts. Mech Dev 2004; 121:1455-68. [PMID: 15511638 DOI: 10.1016/j.mod.2004.08.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Revised: 07/20/2004] [Accepted: 08/04/2004] [Indexed: 11/30/2022]
Abstract
The body wall muscles in the Drosophila larva arise from interactions between Duf/Kirre and Irregular chiasm C-roughest (IrreC-rst)-expressing founder myoblasts and sticks-and-stones (SNS)-expressing fusion competent myoblasts in the embryo. Herein, we demonstrate that SNS mediates heterotypic adhesion of S2 cells with Duf/Kirre and IrreC-rst-expressing S2 cells, and colocalizes with these proteins at points of cell contact. These properties are independent of their transmembrane and cytoplasmic domains, and are observed quite readily with GPI-anchored forms of the ectodomains. Heterotypic interactions between Duf/Kirre and SNS-expressing S2 cells occur more rapidly and to a greater extent than homotypic interactions with other Duf/Kirre-expressing cells. In addition, Duf/Kirre and SNS are present in an immunoprecipitable complex from S2 cells. In the embryo, Duf/Kirre and SNS are present at points of contact between founder and fusion competent cells. Moreover, SNS clustering on the cell surface is dependent on Duf/Kirre and/or IrreC-rst. Finally, although the cytoplasmic and transmembrane domains of SNS are expendable for interactions in culture, they are essential for fusion of embryonic myoblasts.
Collapse
Affiliation(s)
- Brian J Galletta
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | | | | | | |
Collapse
|
104
|
Haas MA, Vickers JC, Dickson TC. Binding partners L1 cell adhesion molecule and the ezrin-radixin-moesin (ERM) proteins are involved in development and the regenerative response to injury of hippocampal and cortical neurons. Eur J Neurosci 2004; 20:1436-44. [PMID: 15355311 DOI: 10.1111/j.1460-9568.2004.03620.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Regeneration of the adult central nervous system may require recapitulation of developmental events and therefore involve the re-expression of developmentally significant proteins. We have investigated whether the L1 cell adhesion molecule, and its binding partner, the ezrin-radixin-moesin (ERM) proteins are involved in the neuronal regenerative response to injury. Hippocampal and cortical neurons were cultured in vitro on either an L1 substrate or poly-L-lysine, and ERM and other neuronal proteins were localized immunocytochemically both developmentally and following neurite transection of neurons maintained in long-term culture. Activated ERM was localized to growth cones up to 7 days in vitro but relatively mature cultures (21 days in vitro) were devoid of active ERM proteins. However, ERM proteins were localized to the growth cones of sprouting neuronal processes that formed several hours after neurite transection. In addition, the L1 substrate, relative to poly-L-lysine, resulted in significantly longer regenerative neurites, as well as larger growth cones with more filopodia. Furthermore, neurons derived from the cortex formed significantly longer post-injury neurite sprouts at 6 h post-injury than hippocampal derived neurons grown on both substrates. We have demonstrated that L1 and the ERM proteins are involved in the neuronal response to injury, and that neurons derived from the hippocampus and cortex may have different post-injury regenerative neurite sprouting abilities.
Collapse
Affiliation(s)
- Matilda A Haas
- NeuroRepair Group, University of Tasmania, 43 Collins Street, Hobart, Tasmania, 7000, Australia
| | | | | |
Collapse
|
105
|
Smith PM, Cowan A, White BA. The low-density lipoprotein receptor is regulated by estrogen and forms a functional complex with the estrogen-regulated protein ezrin in pituitary GH3 somatolactotropes. Endocrinology 2004; 145:3075-83. [PMID: 15044370 DOI: 10.1210/en.2004-0228] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estrogen regulates the function, growth, and proliferation of lactotropes in the pituitary. We report here that low-density lipoprotein (LDL) receptor (LDLR) gene expression and LDL uptake are strongly up-regulated by estrogen in pituitary somatolactotropic GH(3) cells. The uptake of LDL was significantly inhibited by the F-actin-severing drug, swinholide A, indicating that LDL uptake is dependent on the integrity of the cortical actin cytoskeleton in GH(3) cells. We examined whether the estrogen-inducible cytoskeletal linker protein, ezrin, interacts with the LDLR. The LDLR coimmunoprecipitated with ezrin, and fluorescently labeled LDL bound to regions of the cell membrane that colocalized with the active, phosphorylated form of ezrin (phosphoezrin). Evidence for a functional interaction between ezrin and the LDLR was obtained by transient transfection experiments using ezrin-green fluorescent protein (GFP) expression constructs. We observed that transient transfection of GH(3) cells with an ezrin N terminus-GFP dominant-negative construct prevented the uptake of LDL particles, whereas expression of GFP alone or an ezrin C terminus-GFP construct had no effect on LDL uptake. Transfection with the ezrin N terminus dominant- negative construct had no effect on the endocytosis of transferrin. Thus, estrogen stimulates the expression of ezrin and the LDLR in GH(3) cells, which interact physically and functionally to facilitate the endocytosis of LDL. We propose that the up-regulation and interaction of ezrin and the LDLR serves to augment the delivery of cholesterol and other lipids in support of the hypertrophic and proliferative response of cells to estrogen.
Collapse
Affiliation(s)
- Perry M Smith
- Department of Cell Biology, MC 3505, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | |
Collapse
|
106
|
Sowers JR. Estrogen-inducible cytoskeletal linker protein ezrin interaction with the low-density lipoprotein receptor. Endocrinology 2004; 145:3074. [PMID: 15198970 DOI: 10.1210/en.2004-0405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
107
|
Ramesh V. Merlin and the ERM proteins in Schwann cells, neurons and growth cones. Nat Rev Neurosci 2004; 5:462-70. [PMID: 15152196 DOI: 10.1038/nrn1407] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vijaya Ramesh
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA.
| |
Collapse
|
108
|
Zimmerman AW, Nelissen JMDT, van Emst-de Vries SE, Willems PHGM, de Lange F, Collard JG, van Leeuwen FN, Figdor CG. Cytoskeletal restraints regulate homotypic ALCAM-mediated adhesion through PKCα independently of Rho-like GTPases. J Cell Sci 2004; 117:2841-52. [PMID: 15169840 DOI: 10.1242/jcs.01139] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The activated leukocyte cell adhesion molecule (ALCAM) is dynamically regulated by the actin cytoskeleton. In this study we explored the molecular mechanisms and signaling pathways underlying the cytoskeletal restraints of this homotypic adhesion molecule. We observed that ALCAM-mediated adhesion induced by cytoskeleton-disrupting agents is accompanied by activation of the small GTPases RhoA, Rac1 and Cdc42. Interestingly, unlike adhesion mediated by integrins or cadherins, ALCAM-mediated adhesion appears to be independent of Rho-like GTPase activity. By contrast, we demonstrated that protein kinase C (PKC) plays a major role in ALCAM-mediated adhesion. PKC inhibition by chelerythrine chloride and myristoylated PKC pseudosubstrate, as well as PKC downregulation by PMA strongly reduce cytoskeleton-dependent ALCAM-mediated adhesion. Since serine and threonine residues are dispensable for ALCAM-mediated adhesion and ALCAM is not phosphorylated, we can rule out that ALCAM itself is a direct PKC substrate. We conclude that PKCα plays a dominant role in cytoskeleton-dependent avidity modulation of ALCAM.
Collapse
Affiliation(s)
- Aukje W Zimmerman
- Department of Tumor Immunology, University Medical Center St Radboud, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Nishimura K, Yoshihara F, Tojima T, Ooashi N, Yoon W, Mikoshiba K, Bennett V, Kamiguchi H. L1-dependent neuritogenesis involves ankyrinB that mediates L1-CAM coupling with retrograde actin flow. ACTA ACUST UNITED AC 2003; 163:1077-88. [PMID: 14657231 PMCID: PMC2173603 DOI: 10.1083/jcb.200303060] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cell adhesion molecule L1 (L1-CAM) plays critical roles in neurite growth. Its cytoplasmic domain (L1CD) binds to ankyrins that associate with the spectrin-actin network. This paper demonstrates that L1-CAM interactions with ankyrinB (but not with ankyrinG) are involved in the initial formation of neurites. In the membranous protrusions surrounding the soma before neuritogenesis, filamentous actin (F-actin) and ankyrinB continuously move toward the soma (retrograde flow). Bead-tracking experiments show that ankyrinB mediates L1-CAM coupling with retrograde F-actin flow in these perisomatic structures. Ligation of the L1-CAM ectodomain by an immobile substrate induces L1CD-ankyrinB binding and the formation of stationary ankyrinB clusters. Neurite initiation preferentially occurs at the site of these clusters. In contrast, ankyrinB is involved neither in L1-CAM coupling with F-actin flow in growth cones nor in L1-based neurite elongation. Our results indicate that ankyrinB promotes neurite initiation by acting as a component of the clutch module that transmits traction force generated by F-actin flow to the extracellular substrate via L1-CAM.
Collapse
Affiliation(s)
- Kazunari Nishimura
- Laboratory for Neuronal Growth Mechanisms, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Wisco D, Anderson ED, Chang MC, Norden C, Boiko T, Fölsch H, Winckler B. Uncovering multiple axonal targeting pathways in hippocampal neurons. ACTA ACUST UNITED AC 2003; 162:1317-28. [PMID: 14517209 PMCID: PMC2173963 DOI: 10.1083/jcb.200307069] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Neuronal polarity is, at least in part, mediated by the differential sorting of membrane proteins to distinct domains, such as axons and somata/dendrites. We investigated the pathways underlying the subcellular targeting of NgCAM, a cell adhesion molecule residing on the axonal plasma membrane. Following transport of NgCAM kinetically, surprisingly we observed a transient appearance of NgCAM on the somatodendritic plasma membrane. Down-regulation of endocytosis resulted in loss of axonal accumulation of NgCAM, indicating that the axonal localization of NgCAM was dependent on endocytosis. Our data suggest the existence of a dendrite-to-axon transcytotic pathway to achieve axonal accumulation. NgCAM mutants with a point mutation in a crucial cytoplasmic tail motif (YRSL) are unable to access the transcytotic route. Instead, they were found to travel to the axon on a direct route. Therefore, our results suggest that multiple distinct pathways operate in hippocampal neurons to achieve axonal accumulation of membrane proteins.
Collapse
Affiliation(s)
- Dolora Wisco
- Brookdale Department of Molecular, Cell, and Developmental Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
111
|
Rougon G, Hobert O. New insights into the diversity and function of neuronal immunoglobulin superfamily molecules. Annu Rev Neurosci 2003; 26:207-38. [PMID: 12598678 DOI: 10.1146/annurev.neuro.26.041002.131014] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immunoglobulin superfamily (IgSF) proteins are implicated in diverse steps of brain development, including neuronal migration, axon pathfinding, target recognition and synapse formation, as well as in the maintenance and function of neuronal networks in the adult. We provide here a review of recent findings on the diversity and the role of transmembrane and secreted members of IgSF proteins in the nervous system. We illustrate that the complexity of IgSF protein function results from various different levels of regulation including regulation of gene expression, protein localization, and protein interactions.
Collapse
Affiliation(s)
- Genevieve Rougon
- Laboratoire NMDA CNRS UMR 6156, Universite de la Mediterranee, Institut de Biologie du Developpement (IBDM), Marseille Cedex 9, 13288 France.
| | | |
Collapse
|
112
|
Mintz CD, Dickson TC, Gripp ML, Salton SRJ, Benson DL. ERMs colocalize transiently with L1 during neocortical axon outgrowth. J Comp Neurol 2003; 464:438-48. [PMID: 12900915 DOI: 10.1002/cne.10809] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
L1 is a member of the Ig superfamily of cell adhesion molecules (CAMs) that functions in many aspects of neuronal development including axonal outgrowth and neuronal migration. These functions require coordination between L1 and the actin cytoskeleton. Because CAMs and the cytoskeleton do not bind directly, membrane-cytoskeletal linkers (MCLs) such as ankyrin are thought to be crucial to their interactions, but data from a knockout mouse suggest that ankyrin is not necessary for the earliest events attributed to L1 function. Recent findings in hippocampal cell culture show that members of the ERM family of proteins (ezrin, radixin, and moesin) can also serve as MCLs between L1 and actin in neurons. Here, we demonstrate that ERM proteins are expressed in extending neuronal processes in the intermediate zone of the developing cortex, a region that is densely packed with migrating neurons and growing axons. ERMs and L1 are codistributed extensively over a transient time course that coincides with rapid axon growth and cortical expansion. This codistribution is strong at embryonic day 17 and 19 but diminishes by postnatal day 0, at which time ankyrin-L1 codistribution increases dramatically. These findings suggest that in the developing neocortex, ERMs are the predominant MCL for L1 during migration and axon extension, neither of which requires ankyrin function. Furthermore, these data suggest that there is a developmentally regulated switch in MCL function in the developing brain.
Collapse
Affiliation(s)
- C David Mintz
- Fishberg Research Center for Neurobiology, The Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | |
Collapse
|
113
|
Gil OD, Sakurai T, Bradley AE, Fink MY, Cassella MR, Kuo JA, Felsenfeld DP. Ankyrin binding mediates L1CAM interactions with static components of the cytoskeleton and inhibits retrograde movement of L1CAM on the cell surface. J Cell Biol 2003; 162:719-30. [PMID: 12925712 PMCID: PMC2173803 DOI: 10.1083/jcb.200211011] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The function of adhesion receptors in both cell adhesion and migration depends critically on interactions with the cytoskeleton. During cell adhesion, cytoskeletal interactions stabilize receptors to strengthen adhesive contacts. In contrast, during cell migration, adhesion proteins are believed to interact with dynamic components of the cytoskeleton, permitting the transmission of traction forces through the receptor to the extracellular environment. The L1 cell adhesion molecule (L1CAM), a member of the Ig superfamily, plays a crucial role in both the migration of neuronal growth cones and the static adhesion between neighboring axons. To understand the basis of L1CAM function in adhesion and migration, we quantified directly the diffusion characteristics of L1CAM on the upper surface of ND-7 neuroblastoma hybrid cells as an indication of receptor-cytoskeleton interactions. We find that cell surface L1CAM engages in diffusion, retrograde movement, and stationary behavior, consistent with interactions between L1CAM and two populations of cytoskeleton proteins. We provide evidence that the cytoskeletal adaptor protein ankyrin mediates stationary behavior while inhibiting the actin-dependent retrograde movement of L1CAM. Moreover, inhibitors of L1CAM-ankyrin interactions promote L1CAM-mediated axon growth. Together, these results suggest that ankyrin binding plays a crucial role in the anti-coordinate regulation of L1CAM-mediated adhesion and migration.
Collapse
Affiliation(s)
- Orlando D Gil
- Dept. of Pharmacology and Biological Chemistry, Box 1215, One Gustave L. Levy Place, Mt. Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
114
|
Granés F, Berndt C, Roy C, Mangeat P, Reina M, Vilaró S. Identification of a novel Ezrin-binding site in syndecan-2 cytoplasmic domain. FEBS Lett 2003; 547:212-6. [PMID: 12860416 DOI: 10.1016/s0014-5793(03)00712-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
ERM (Ezrin/Radixin/Moesin) proteins are crosslinkers between plasma membrane proteins and the actin cytoskeleton, thereby involved in the formation of cell adhesion sites. Earlier work showed that Ezrin links syndecan-2 to the actin cytoskeleton. Here we provide evidence that the Ezrin N-terminal domain binds to the syndecan-2 cytoplasmic domain with an estimated K(D) of 0.71 microM and without the requirement of other proteins. We also studied the regions in the syndecan-2 cytoplasmic domain implicated in the binding to Ezrin. By truncating the syndecan-2 cytoplasmic domain and by oligopeptide competition assays we show that the Ezrin-binding sequence is not located in the positively charged juxtamembrane region (RMRKK), but in the neighboring sequence DEGSYD. We therefore conclude that the consensus sequence for Ezrin binding is unique among membrane proteins, suggesting a distinct regulation.
Collapse
Affiliation(s)
- Francesc Granés
- Department of Cellular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
115
|
Buhusi M, Midkiff BR, Gates AM, Richter M, Schachner M, Maness PF. Close homolog of L1 is an enhancer of integrin-mediated cell migration. J Biol Chem 2003; 278:25024-31. [PMID: 12721290 DOI: 10.1074/jbc.m303084200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Close homolog of L1 (CHL1) is a member of the L1 family of cell adhesion molecules expressed by subpopulations of neurons and glia in the central and peripheral nervous system. It promotes neurite outgrowth and neuronal survival in vitro. This study describes a novel function for CHL1 in potentiating integrin-dependent cell migration toward extracellular matrix proteins. Expression of CHL1 in HEK293 cells stimulated their haptotactic migration toward collagen I, fibronectin, laminin, and vitronectin substrates in Transwell assays. CHL1-potentiated cell migration to collagen I was dependent on alpha1beta1 and alpha2beta1 integrins, as shown with function blocking antibodies. Potentiated migration relied on the early integrin signaling intermediates c-Src, phosphatidylinositol 3-kinase, and mitogen-activated protein kinase. Enhancement of migration was disrupted by mutation of a potential integrin interaction motif Asp-Gly-Glu-Ala (DGEA) in the sixth immunoglobulin domain of CHL1, suggesting that CHL1 functionally interacts with beta1 integrins through this domain. CHL1 was shown to associate with beta1 integrins on the cell surface by antibody-induced co-capping. Through a cytoplasmic domain sequence containing a conserved tyrosine residue (Phe-Ile-Gly-Ala-Tyr), CHL1 recruited the actin cytoskeletal adapter protein ankyrin to the plasma membrane, and this sequence was necessary for promoting integrin-dependent migration to extracellular matrix proteins. These results support a role for CHL1 in integrin-dependent cell migration that may be physiologically important in regulating cell migration in nerve regeneration and cortical development.
Collapse
Affiliation(s)
- Mona Buhusi
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill 27599-7260, USA
| | | | | | | | | | | |
Collapse
|
116
|
Alberts P, Rudge R, Hinners I, Muzerelle A, Martinez-Arca S, Irinopoulou T, Marthiens V, Tooze S, Rathjen F, Gaspar P, Galli T. Cross talk between tetanus neurotoxin-insensitive vesicle-associated membrane protein-mediated transport and L1-mediated adhesion. Mol Biol Cell 2003; 14:4207-20. [PMID: 14517330 PMCID: PMC207012 DOI: 10.1091/mbc.e03-03-0147] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The membrane-trafficking pathway mediated by tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP) in neurons is still unknown. We show herein that TI-VAMP expression is necessary for neurite outgrowth in PC12 cells and hippocampal neurons in culture. TI-VAMP interacts with plasma membrane and endosomal target soluble N-ethylmaleimide-sensitive factor attachment protein receptors, suggesting that TI-VAMP mediates a recycling pathway. L1, a cell-cell adhesion molecule involved in axonal outgrowth, colocalized with TI-VAMP in the developing brain, neurons in culture, and PC12 cells. Plasma membrane L1 was internalized into the TI-VAMP-containing compartment. Silencing of TI-VAMP resulted in reduced expression of L1 at the plasma membrane. Finally, using the extracellular domain of L1 and N-cadherin immobilized on beads, we found that the silencing of TI-VAMP led to impaired L1- but not N-cadherin-mediated adhesion. Furthermore, TI-VAMP- but not synaptobrevin 2-containing vesicles accumulated at the site of the L1 bead-cell junction. We conclude that TI-VAMP mediates the intracellular transport of L1 and that L1-mediated adhesion controls this membrane trafficking, thereby suggesting an important cross talk between membrane trafficking and cell-cell adhesion.
Collapse
Affiliation(s)
- Philipp Alberts
- Membrane Traffic and Neuronal Plasticity, Institut National de la Santé et de la Recherche Médicale U536, F-75005 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Hamada K, Shimizu T, Yonemura S, Tsukita S, Tsukita S, Hakoshima T. Structural basis of adhesion-molecule recognition by ERM proteins revealed by the crystal structure of the radixin-ICAM-2 complex. EMBO J 2003; 22:502-14. [PMID: 12554651 PMCID: PMC140724 DOI: 10.1093/emboj/cdg039] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
ERM (ezrin/radixin/moesin) proteins recognize the cytoplasmic domains of adhesion molecules in the formation of the membrane-associated cytoskeleton. Here we report the crystal structure of the radixin FERM (4.1 and ERM) domain complexed with the ICAM-2 cytoplasmic peptide. The non-polar region of the ICAM-2 peptide contains the RxxTYxVxxA sequence motif to form a beta-strand followed by a short 3(10)-helix. It binds the groove of the phosphotyrosine-binding (PTB)-like subdomain C mediated by a beta-beta association and several side-chain interactions. The binding mode of the ICAM-2 peptide to the FERM domain is distinct from that of the NPxY motif-containing peptide binding to the canonical PTB domain. Mutation analyses based on the crystal structure reveal the determinant elements of recognition and provide the first insights into the physical link between adhesion molecules and ERM proteins.
Collapse
Affiliation(s)
- Keisuke Hamada
- Structural Biology Laboratory, Nara Institute of Science and Technology and CREST, Japan Science and Technology Corporation, 8916-5 Takayama, Ikoma, Nara 630-0101, Department of Cell Biology, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501 and College of Medical Technology, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan Present address: RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan Present address: Science of Biological Supramolecular Systems, Yokohama-city University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan Present address: RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan Corresponding author e-mail:
| | - Toshiyuki Shimizu
- Structural Biology Laboratory, Nara Institute of Science and Technology and CREST, Japan Science and Technology Corporation, 8916-5 Takayama, Ikoma, Nara 630-0101, Department of Cell Biology, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501 and College of Medical Technology, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan Present address: RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan Present address: Science of Biological Supramolecular Systems, Yokohama-city University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan Present address: RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan Corresponding author e-mail:
| | - Shigenobu Yonemura
- Structural Biology Laboratory, Nara Institute of Science and Technology and CREST, Japan Science and Technology Corporation, 8916-5 Takayama, Ikoma, Nara 630-0101, Department of Cell Biology, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501 and College of Medical Technology, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan Present address: RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan Present address: Science of Biological Supramolecular Systems, Yokohama-city University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan Present address: RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan Corresponding author e-mail:
| | - Shoichiro Tsukita
- Structural Biology Laboratory, Nara Institute of Science and Technology and CREST, Japan Science and Technology Corporation, 8916-5 Takayama, Ikoma, Nara 630-0101, Department of Cell Biology, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501 and College of Medical Technology, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan Present address: RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan Present address: Science of Biological Supramolecular Systems, Yokohama-city University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan Present address: RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan Corresponding author e-mail:
| | - Sachiko Tsukita
- Structural Biology Laboratory, Nara Institute of Science and Technology and CREST, Japan Science and Technology Corporation, 8916-5 Takayama, Ikoma, Nara 630-0101, Department of Cell Biology, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501 and College of Medical Technology, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan Present address: RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan Present address: Science of Biological Supramolecular Systems, Yokohama-city University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan Present address: RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan Corresponding author e-mail:
| | - Toshio Hakoshima
- Structural Biology Laboratory, Nara Institute of Science and Technology and CREST, Japan Science and Technology Corporation, 8916-5 Takayama, Ikoma, Nara 630-0101, Department of Cell Biology, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501 and College of Medical Technology, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan Present address: RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan Present address: Science of Biological Supramolecular Systems, Yokohama-city University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan Present address: RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan Corresponding author e-mail:
| |
Collapse
|