101
|
|
102
|
Pu Y, Peach ML, Garfield SH, Wincovitch S, Marquez VE, Blumberg PM. Effects on Ligand Interaction and Membrane Translocation of the Positively Charged Arginine Residues Situated along the C1 Domain Binding Cleft in the Atypical Protein Kinase C Isoforms. J Biol Chem 2006; 281:33773-88. [PMID: 16950780 DOI: 10.1074/jbc.m606560200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C1 domain zinc finger structure is highly conserved among the protein kinase C (PKC) superfamily members. As the interaction site for the second messenger sn-1,2-diacylglycerol (DAG) and for the phorbol esters, the C1 domain has been an important target for developing selective ligands for different PKC isoforms. However, the C1 domains of the atypical PKC members are DAG/phorbol ester-insensitive. Compared with the DAG/phorbol ester-sensitive C1 domains, the rim of the binding cleft of the atypical PKC C1 domains possesses four additional positively charged arginine residues (at positions 7, 10, 11, and 20). In this study, we showed that mutation to arginines of the four corresponding sites in the C1b domain of PKCdelta abolished its high potency for phorbol 12,13-dibutyrate in vitro, with only marginal remaining activity for phorbol 12-myristate 13-acetate in vivo. We also demonstrated both in vitro and in vivo that the loss of potency to ligands was cumulative with the introduction of the arginine residues along the rim of the binding cavity rather than the consequence of loss of a single, specific residue. Computer modeling reveals that these arginine residues reduce access of ligands to the binding cleft and change the electrostatic profile of the C1 domain surface, whereas the basic structure of the binding cleft is still maintained. Finally, mutation of the four arginine residues of the atypical PKC C1 domains to the corresponding residues in the deltaC1b domain conferred response to phorbol ester. We speculate that the arginine residues of the C1 domain of atypical PKCs may provide an opportunity for the design of ligands selective for the atypical PKCs.
Collapse
Affiliation(s)
- Yongmei Pu
- Laboratory of Cellular Carcinogenesis and Tumor Promotion, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
103
|
Oster H, Leitges M. Protein kinase C alpha but not PKCzeta suppresses intestinal tumor formation in ApcMin/+ mice. Cancer Res 2006; 66:6955-63. [PMID: 16849539 DOI: 10.1158/0008-5472.can-06-0268] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Members of the protein kinase C (PKC) family of serine/threonine kinases play key regulatory roles in numerous cellular processes, including differentiation and proliferation. Of the 11 mammalian PKC isoforms known, several have been implicated in tumor development and progression. However, in most cases, isotype specificity is poorly defined, and even contrary functions for a single PKC have been reported mostly because appropriate molecular and genetic tools were missing to specifically assess the contribution of single PKC isoforms in vivo. In this report, we therefore used PKC genetic targeting to study the role of PKCalpha and PKCzeta in colorectal cancer. Both isoforms were found to be strongly down-regulated in intestinal tumors of ApcMin/+ mice. A deletion of PKCzeta did not affect tumorigenesis in this animal model. In contrast, PKCalpha-deficient ApcMin/+ mice developed more aggressive tumors and died significantly earlier than their PKCalpha-proficient littermates. Even without an additional Apc mutation, PKCalpha knockout mice showed an elevated tendency to develop spontaneous intestinal tumors. Transcriptional profiling revealed a role for this kinase in regulating epidermal growth factor receptor (EGFR) signaling and proposed a synergistic mechanism for EGFR/activator protein and WNT/APC pathways in mediating intestinal tumor development.
Collapse
Affiliation(s)
- Henrik Oster
- Laboratory for Signal Transduction, Max Planck Institute of Experimental Endocrinology and Department of Nephrology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
104
|
Erdogan E, Lamark T, Stallings-Mann M, Pellecchia M, Pellechia M, Thompson EA, Johansen T, Fields AP. Aurothiomalate inhibits transformed growth by targeting the PB1 domain of protein kinase Ciota. J Biol Chem 2006; 281:28450-9. [PMID: 16861740 DOI: 10.1074/jbc.m606054200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We recently identified the gold compound aurothiomalate (ATM) as a potent inhibitor of the Phox and Bem1p (PB1)-PB1 domain interaction between protein kinase C (PKC) iota and the adaptor molecule Par6. ATM also blocks oncogenic PKCiota signaling and the transformed growth of human lung cancer cells. Here we demonstrate that ATM is a highly selective inhibitor of PB1-PB1 domain interactions between PKCiota and the two adaptors Par6 and p62. ATM has no appreciable inhibitory effect on other PB1-PB1 domain interactions, including p62-p62, p62-NBR1, and MEKK3-MEK5 interactions. ATM can form thio-gold adducts with cysteine residues on target proteins. Interestingly, PKCiota (and PKCzeta) contains a unique cysteine residue, Cys-69, within its PB1 domain that is not present in other PB1 domain containing proteins. Cys-69 resides within the OPR, PC, and AID motif of PKCiota at the binding interface between PKCiota and Par6 where it interacts with Arg-28 on Par6. Molecular modeling predicts formation of a cysteinyl-aurothiomalate adduct at Cys-69 that protrudes into the binding cleft normally occupied by Par6, providing a plausible structural explanation for ATM inhibition. Mutation of Cys-69 of PKCiota to isoleucine or valine, residues frequently found at this position in other PB1 domains, has little or no effect on the affinity of PKCiota for Par6 but confers resistance to ATM-mediated inhibition of Par6 binding. Expression of the PKCiota C69I mutant in human non-small cell lung cancer cells confers resistance to the inhibitory effects of ATM on transformed growth. We conclude that ATM inhibits cellular transformation by selectively targeting Cys-69 within the PB1 domain of PKCiota.
Collapse
Affiliation(s)
- Eda Erdogan
- Department of Cancer Biology, Mayo Clinic College of Medicine, Jacksonville, Florida 32224, USA
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Kovac J, Oster H, Leitges M. Expression of the atypical protein kinase C (aPKC) isoforms iota/lambda and zeta during mouse embryogenesis. Gene Expr Patterns 2006; 7:187-96. [PMID: 16931174 DOI: 10.1016/j.modgep.2006.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 05/26/2006] [Accepted: 07/12/2006] [Indexed: 11/24/2022]
Abstract
The atypical C-type protein kinases (aPKCs) comprise the third subclass of the PKC family functionally defined by insensitivity to phorbol esters, diacylgylcerol and calcium. aPKCs have been implicated in numerous biological processes including cell proliferation and survival, cell polarity, migration and inflammation. However, only insufficient data exist with regard to aPKC isoform specificity, since both mammalian aPKCs, PKC iota/lambda and PKC zeta, exhibit a high structural homology and very similar biochemical properties. In this study, we therefore used isoform-specific riboprobes and antibodies to define the characteristic expression profile of each aPKC isoform during mouse embryogenesis. Both, PKC iota/lambda and zeta show highly specific temporal and spatial patterns of expression which may help in distinguishing physiological functions of these isoforms.
Collapse
Affiliation(s)
- Judit Kovac
- Max-Planck-Institute of Experimental Endocrinology, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany.
| | | | | |
Collapse
|
106
|
Abstract
Gliomas are the most common major subgroup of primary CNS tumours. Approximately 17,000 new cases are reported each year and, of these, 11,500 patients die. Glioblastoma multiforme (GBM) is highly proliferative and typically invades distal portions of the brain, thereby making complete surgical resection of these tumours nearly impossible. Moreover, GBMs are often resistant to current chemotherapy and radiation regimens. Therefore, there is a need for better therapeutic interventions. One class of proteins that is involved in the formation of malignant brain tumours is protein kinase C (PKC) and these kinases have not been thoroughly explored for their chemotherapeutic value in GBMs. The PKC isozyme, PKCeta (PKC-eta) increases cell proliferation and resistance to radiation of GBM cell lines. These properties make PKCeta an attractive target for chemotherapeutic intervention in the management of GBMs.
Collapse
Affiliation(s)
- Patrick M Martin
- Department of Pathology, University of Virginia, Charlottesville, VA, USA.
| | | |
Collapse
|
107
|
Zhang L, Huang J, Yang N, Liang S, Barchetti A, Giannakakis A, Cadungog MG, O'Brien-Jenkins A, Massobrio M, Roby KF, Katsaros D, Gimotty P, Butzow R, Weber BL, Coukos G. Integrative genomic analysis of protein kinase C (PKC) family identifies PKCiota as a biomarker and potential oncogene in ovarian carcinoma. Cancer Res 2006; 66:4627-35. [PMID: 16651413 DOI: 10.1158/0008-5472.can-05-4527] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The protein kinase C (PKC) family plays a key regulatory role in a wide range of cellular functions as well as in various cancer-associated signal transduction pathways. Here, we investigated the genomic alteration and gene expression of most known PKC family members in human ovarian cancer. The DNA copy number of PKC family genes was screened by a high-resolution array-based comparative genomic hybridization in 89 human ovarian cancer specimens. Five PKC genes exhibited significant DNA copy number gains, including PKCiota (43.8%), PKCbeta1 (37.1%), PKCgamma (27.6%), PKCzeta (22.5%), and PKCtheta (21.3%). None of the PKC genes exhibited copy number loss. The mRNA expression level of PKC genes was analyzed by microarray retrieval approach. Two of the amplified PKC genes, PKCiota and PKCtheta, were significantly up-regulated in ovarian cancer compared with normal ovary. Increased PKCiota expression correlated with tumor stage or grade, and PKCiota overexpression was seen mostly in ovarian carcinoma but not in other solid tumors. The above results were further validated by real-time reverse transcription-PCR with 54 ovarian cancer specimens and 24 cell lines; overexpression of PKCiota protein was also confirmed by tissue array and Western blot. Interestingly, overexpressed PKCiota did not affect ovarian cancer cell proliferation or apoptosis in vitro. However, decreased PKCiota expression significantly reduced anchorage-independent growth of ovarian cancer cells, whereas overexpression of PKCiota contributed to murine ovarian surface epithelium transformation in cooperation with mutant Ras. We propose that PKCiota may serve as an oncogene and a biomarker of aggressive disease in human ovarian cancer.
Collapse
Affiliation(s)
- Lin Zhang
- Center for Research on Reproduction and Women's Health, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Stallings-Mann M, Jamieson L, Regala RP, Weems C, Murray NR, Fields AP. A novel small-molecule inhibitor of protein kinase Ciota blocks transformed growth of non-small-cell lung cancer cells. Cancer Res 2006; 66:1767-74. [PMID: 16452237 DOI: 10.1158/0008-5472.can-05-3405] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We recently showed that atypical protein kinase Ciota (PKCiota) is required for transformed growth of human non-small-cell lung cancer (NSCLC) cells by activating Rac1. Genetic disruption of PKCiota signaling blocks Rac1 activity and transformed growth, indicating that PKCiota is a viable target for development of novel therapeutics for NSCLC. Here, we designed and implemented a novel fluorescence resonance energy transfer-based assay to identify inhibitors of oncogenic PKCiota signaling. This assay was used to identify compounds that disrupt the interaction between PKCiota and its downstream effector Par6, which links PKCiota to Rac1. We identified aurothioglucose (ATG), a gold compound used clinically to treat rheumatoid arthritis, and the related compound, aurothiomalate (ATM), as potent inhibitors of PKCiota-Par6 interactions in vitro (IC(50) approximately 1 micromol/L). ATG blocks PKCiota-dependent signaling to Rac1 and inhibits transformed growth of NSCLC cells. ATG-mediated inhibition of transformation is relieved by expression of constitutively active Rac1, consistent with a mechanism at the level of the interaction between PKCiota and Par6. ATG inhibits A549 cell tumor growth in nude mice, showing efficacy against NSCLC in a relevant preclinical model. Our data show the utility of targeting protein-protein interactions involving PKCiota for antitumor drug development and provide proof of concept that chemical disruption of PKCiota signaling can be an effective treatment for NSCLC. ATG and ATM will be useful reagents for studying PKCiota function in transformation and represent promising new agents for the clinical treatment of NSCLC.
Collapse
Affiliation(s)
- Melody Stallings-Mann
- Department of Cancer Biology, Comprehensive Cancer Center, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | | | | | | | | | | |
Collapse
|
109
|
Regala RP, Weems C, Jamieson L, Khoor A, Edell ES, Lohse CM, Fields AP. Atypical protein kinase C iota is an oncogene in human non-small cell lung cancer. Cancer Res 2005; 65:8905-11. [PMID: 16204062 DOI: 10.1158/0008-5472.can-05-2372] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protein kinase C (PKC) isozymes have long been implicated in carcinogenesis. However, little is known about the functional significance of these enzymes in human cancer. We recently showed that the atypical PKC (aPKC) isozyme PKCiota is overexpressed in human non-small cell lung cancer (NSCLC) cells and that PKCiota plays a critical role in the transformed growth of the human lung adenocarcinoma A549 cell line in vitro and tumorigenicity in vivo. Here we provide compelling evidence that PKCiota is an oncogene in NSCLC based on the following criteria: (a) aPKCiota is overexpressed in the vast majority of primary NSCLC tumors; (b) tumor PKCiota expression levels predict poor survival in patients with NSCLC; (c) the PKCiota gene is frequently amplified in established NSCLC cell lines and primary NSCLC tumors; (d) gene amplification drives PKCiota expression in NSCLC cell lines and primary NSCLC tumors; and (e) disruption of PKCiota signaling with a dominant negative PKCiota allele blocks the transformed growth of human NSCLC cells harboring PKCiota gene amplification. Taken together, our data provide conclusive evidence that PKCiota is required for the transformed growth of NSCLC cells and that the PKCiota gene is a target for tumor-specific genetic alteration by amplification. Interestingly, PKCiota expression predicts poor survival in NSCLC patients independent of tumor stage. Therefore, PKCiota expression profiling may be useful in identifying early-stage NSCLC patients at elevated risk of relapse. Our functional data indicate that PKCiota is an attractive target for development of novel, mechanism-based therapeutics to treat NSCLC.
Collapse
Affiliation(s)
- Roderick P Regala
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, FL 32224, USA
| | | | | | | | | | | | | |
Collapse
|
110
|
Messerschmidt A, Macieira S, Velarde M, Bädeker M, Benda C, Jestel A, Brandstetter H, Neuefeind T, Blaesse M. Crystal structure of the catalytic domain of human atypical protein kinase C-iota reveals interaction mode of phosphorylation site in turn motif. J Mol Biol 2005; 352:918-31. [PMID: 16125198 DOI: 10.1016/j.jmb.2005.07.060] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 07/20/2005] [Accepted: 07/21/2005] [Indexed: 11/22/2022]
Abstract
Atypical protein kinases C (aPKCs) play critical roles in signaling pathways that control cell growth, differentiation and survival. Therefore, they constitute attractive targets for the development of novel therapeutics against cancer. The crystal structure of the catalytic domain of atypical PKCiota in complex with the bis(indolyl)maleimide inhibitor BIM1 has been determined at 3.0A resolution within the frame of the European Structural Proteomics Project SPINE. The overall structure exhibits the classical bilobal kinase fold and is in its fully activated form. Both phosphorylation sites (Thr403 in the activation loop, and Thr555 in the turn motif) are well defined in the structure and form intramolecular ionic contacts that make an important contribution in stabilizing the active conformation of the catalytic subunit. The phosphorylation site in the hydrophobic motif of atypical PKCs is replaced by the phosphorylation mimic glutamate and this is also clearly seen in the structure of PKCiota (residue 574). This structure determination for the first time provides the architecture of the turn motif phosphorylation site, which is characteristic for PKCs and PKB/AKT, and is completely different from that in PKA. The bound BIM1 inhibitor blocks the ATP-binding site and puts the kinase domain into an intermediate open conformation. The PKCiota-BIM1 complex is the first kinase domain crystal structure of any atypical PKC and constitutes the basis for rational drug design for selective PKCiota inhibitors.
Collapse
Affiliation(s)
- Albrecht Messerschmidt
- Department of Structural Research, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
di Pietro M, Sabates Bellver J, Menigatti M, Bannwart F, Schnider A, Russell A, Truninger K, Jiricny J, Marra G. Defective DNA mismatch repair determines a characteristic transcriptional profile in proximal colon cancers. Gastroenterology 2005; 129:1047-59. [PMID: 16143142 DOI: 10.1053/j.gastro.2005.06.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 06/02/2005] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Colon cancers with defective DNA mismatch repair (MMR) have peculiar molecular, pathologic, and clinical features, including high-level microsatellite instability, conspicuous lymphocytic infiltration, preferential location in the proximal colon, and better prognosis. Our aim was to characterize the transcriptional profile of this colon cancer subset. METHODS An oligonucleotide microarray containing 12,625 probes was used to evaluate gene expression in 25 proximal colon cancers, 10 samples of normal colon mucosa, and 14 colon cancer cell lines. Transcriptional profiles of MMR-deficient cancers and cell lines were compared with those of their MMR-proficient counterparts. RESULTS Unsupervised analysis of microarray data showed that MMR status exerts a predominant influence on the gene expression profile of proximal colon cancers. Hierarchical clustering divided the cancers into 2 groups corresponding almost perfectly with their MMR status. Supervised analysis identified numerous gene expression changes that represent a genetic signature of MMR-deficient colon cancers. Changes in genes involved in apoptosis and the immune response were consistent with the better prognosis of MMR-deficient cancers. In MMR-deficient cancers and cell lines, 4-1BBL, a crucial gene in the anti-tumor immune response, was, respectively, 2.4 and 6.0 times more expressed than in their MMR-proficient counterparts. This difference was confirmed by quantitative reverse-transcription polymerase chain reaction and flow cytometric assessment of 4-1BBL protein expression in colon cancer cell lines. Our analysis also showed novel possible gene targets of microsatellite instability. CONCLUSIONS MMR inactivation produces distinct changes in the cellular messenger RNA pool, which is consistent with a unique tumorigenesis pathway.
Collapse
|
112
|
Toker A. The biology and biochemistry of diacylglycerol signalling. Meeting on molecular advances in diacylglycerol signalling. EMBO Rep 2005; 6:310-4. [PMID: 15791268 PMCID: PMC1299288 DOI: 10.1038/sj.embor.7400378] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Accepted: 01/31/2005] [Indexed: 01/25/2023] Open
Affiliation(s)
- Alex Toker
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts 02215, USA.
| |
Collapse
|
113
|
Nakagawa M, Oliva JL, Kothapalli D, Fournier A, Assoian RK, Kazanietz MG. Phorbol ester-induced G1 phase arrest selectively mediated by protein kinase Cdelta-dependent induction of p21. J Biol Chem 2005; 280:33926-34. [PMID: 16055435 DOI: 10.1074/jbc.m505748200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although protein kinase C (PKC) has been widely implicated in the positive and negative control of proliferation, the underlying cell cycle mechanisms regulated by individual PKC isozymes are only partially understood. In this report, we show that PKCdelta mediates phorbol ester-induced G1 arrest in lung adenocarcinoma cells and establish an essential role for this novel PKC in controlling the expression of the cell cycle inhibitor p21. Activation of PKC with phorbol 12-myristate 13-acetate (PMA) in early G1 phase impaired progression of lung adenocarcinoma cells into S phase, an effect that was completely abolished by specific depletion of PKCdelta, but not PKCalpha. Although the PKC effect was unrelated to the inhibition of cyclin D1 expression, PKC activation significantly up-regulated p21 and down-regulated Rb hyperphosphorylation and cyclin A expression. Elevations in p21 mRNA and protein by PMA were mediated by PKCdelta but not PKCalpha. Studies using luciferase reporters also revealed an essential role for PKCdelta in the PMA-induced inhibition of Rb-dependent cyclin A promoter activity. Finally, we showed that the cell cycle inhibitory effect of PKCdelta is greatly attenuated by RNA interference-mediated knock-down of p21. Our results identify a novel link between PKCdelta and G1 arrest via p21 up-regulation and highlight the complexities in the downstream effectors of PKC isozymes in the context of cell cycle progression and proliferation.
Collapse
Affiliation(s)
- Motonori Nakagawa
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160, USA
| | | | | | | | | | | |
Collapse
|
114
|
Regala RP, Weems C, Jamieson L, Copland JA, Thompson EA, Fields AP. Atypical protein kinase Ciota plays a critical role in human lung cancer cell growth and tumorigenicity. J Biol Chem 2005; 280:31109-15. [PMID: 15994303 DOI: 10.1074/jbc.m505402200] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Atypical protein kinase C (aPKC) isozymes function in epithelial cell polarity, proliferation, and survival and have been implicated in cellular transformation. However, the role of these enzymes in human cancer is largely unexplored. Here, we report that aPKCiota is highly expressed in human non-small cell lung cancer cell lines, whereas the closely related aPKC isozyme PKCzeta is undetectable in these cells. Disruption of PKCiota signaling reveals that PKCiota is dispensable for adherent growth of non-small cell lung cancer cells but is required for transformed growth in soft agar in vitro and for tumorigenicity in vivo. Molecular dissection of signaling down-stream of PKCiota demonstrates that Rac1 is a critical molecular target for PKCiota-dependent transformation, whereas PKCiota is not necessary for NFkappaB activation in vitro or in vivo. Expression of the PB1 domain of PKCiota (PKCiota-(1-113)) blocks PKCiota-dependent Rac1 activity and inhibits cellular transformation indicating a role for this domain in the transforming activity of PKCiota. Taken together, our data demonstrate that PKCiota is a critical lung cancer gene that activates a Rac1-->Pak-->Mek1,2-->Erk1,2 signaling pathway required for transformed growth. Our data indicate that PKCiota may be an attractive molecular target for mechanism-based therapies for treatment of lung cancer.
Collapse
Affiliation(s)
- Roderick P Regala
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224, USA
| | | | | | | | | | | |
Collapse
|
115
|
Affiliation(s)
- John F Di Mari
- Department of Internal Medicine, University of Texas Medical Branch, Galveston 77555-1064, USA.
| | | | | |
Collapse
|
116
|
Yokoyama G, Fujii T, Tayama K, Yamana H, Kuwano M, Shirouzu K. PKCdelta and MAPK mediate G(1) arrest induced by PMA in SKBR-3 breast cancer cells. Biochem Biophys Res Commun 2005; 327:720-6. [PMID: 15649406 DOI: 10.1016/j.bbrc.2004.12.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Indexed: 10/26/2022]
Abstract
The effects of activating endogenous protein kinase C (PKC) on cell proliferation and the cell cycle were investigated by treating the breast cancer cell line SKBR-3 with phorbol 12-myristate 13 acetate (PMA). This inhibited cell growth in a concentration-dependent manner, causing a marked arrest of cells in G(1). Pre-treatment with GF109203X completely blocked the antiproliferative effect of PMA, and pre-treatment with the PKCdelta inhibitor rottlerin partially blocked it. Infecting SKBR-3 cells with an adenovirus vector containing wild-type PKCdelta, WTPKCdeltaAdV, had similar effects on PMA. Infecting the cells with a dominant-negative PKCdeltaAdV construct blocked the growth inhibition induced by PMA. Downstream of PKC, PMA treatment inhibited extracellular signal-regulated kinase mitogen-activated protein kinase phosphorylation, up-regulated c-jun NH(2)-terminal kinase phosphorylation, and inhibited retinoblastoma (Rb) phosphorylation. These results strongly implicated PKC (mainly PKCdelta) in the G(1) arrest induced by PMA and suggested PKC as a target for breast cancer treatment.
Collapse
Affiliation(s)
- Goro Yokoyama
- Department of Surgery, Kurume University School of Medicine, 67 Asahimachi, Fukuoka 830-0011, Japan
| | | | | | | | | | | |
Collapse
|
117
|
Liu Y, Su W, Thompson EA, Leitges M, Murray NR, Fields AP. Protein kinase CbetaII regulates its own expression in rat intestinal epithelial cells and the colonic epithelium in vivo. J Biol Chem 2004; 279:45556-63. [PMID: 15322124 DOI: 10.1074/jbc.m407701200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Protein kinase C betaII (PKCbetaII) is induced early during colon carcinogenesis. Transgenic mice expressing elevated PKCbetaII in the colonic epithelium (transgenic PKCbetaII mice) exhibit hyperproliferation and enhanced colon carcinogenesis. Here we demonstrate that nullizygous PKCbeta (PKCbetaKO) mice are highly resistant to azoxymethane (AOM)-induced preneoplastic lesions, aberrant crypt foci. However, reexpression of PKCbetaII in the colon of PKCbetaKO mice by transgenesis restores susceptibility to AOM-induced colon carcinogenesis. Expression of human PKCbetaII in rat intestinal epithelial (RIE) cells induces expression of endogenous rat PKCbetaII mRNA and protein. Induction of PKCbetaII is dependent upon catalytically active PKCbetaII and does not appear to involve changes in alternative splicing of the PKCbeta gene. Two human PKCbeta promoter constructs are activated by expression of PKCbetaII in RIE cells. Both PKCbeta promoter activity and PKCbetaII mRNA levels are inhibited by the MEK1 and -2 inhibitor U0126, but not the Cox-2 inhibitor celecoxib in RIE/PKCbetaII cells. PKCbeta promoter activity correlates directly with expression of endogenous PKCbetaII mRNA and protein in HT29 and HCT116 human colon cancer cell lines. PKCbeta promoter activity and PKCbetaII mRNA expression in HCT116 cells are inhibited by the selective PKCbeta inhibitor LY317615 and by U0126, demonstrating autoregulation of PKCbetaII expression. Transgenic PKCbetaII mice exhibit specific induction of endogenous PKCbetaII, but not its splice variant PKCbetaI, in the colonic epithelium in vivo. Taken together, our results demonstrate that 1) expression of PKCbetaII in the colonic epithelium is both necessary and sufficient to confer susceptibility to AOM-induced colon carcinogenesis in transgenic mice, 2) PKCbetaII regulates its own expression in RIE and human colon cancer cells in vitro and in the colonic epithelium in vivo, and 3) PKCbetaII autoregulation is mediated through a MEK-dependent signaling pathway in RIE/PKCbetaII and HCT116 colon cancer cells.
Collapse
Affiliation(s)
- Yan Liu
- Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224, USA
| | | | | | | | | | | |
Collapse
|
118
|
Zhang J, Anastasiadis PZ, Liu Y, Thompson EA, Fields AP. Protein kinase C (PKC) betaII induces cell invasion through a Ras/Mek-, PKC iota/Rac 1-dependent signaling pathway. J Biol Chem 2004; 279:22118-23. [PMID: 15037605 DOI: 10.1074/jbc.m400774200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Protein kinase C betaII (PKCbetaII) promotes colon carcinogenesis. Expression of PKCbetaII in the colon of transgenic mice induces hyperproliferation and increased susceptibility to colon cancer. To determine molecular mechanisms by which PKCbetaII promotes colon cancer, we established rat intestinal epithelial (RIE) cells stably expressing PKCbetaII. Here we show that RIE/PKCbetaII cells acquire an invasive phenotype that is blocked by the PKCbeta inhibitor LY379196. Invasion is not observed in RIE cells expressing a kinase-deficient PKCbetaII, indicating that PKCbetaII activity is required for the invasive phenotype. PKCbetaII induces activation of K-Ras and the Ras effector, Rac1, in RIE/PKCbetaII cells. PKCbetaII-mediated invasion is blocked by the Mek inhibitor, U0126, and by expression of either dominant negative Rac1 or kinase-deficient atypical PKCiota. Expression of constitutively active Rac1 induces Mek activation and invasion in RIE cells, indicating that Rac1 is the critical downstream effector of PKCbetaII-mediated invasion. Taken together, our results define a novel PKCbetaII --> Ras --> PKCiota /Rac1 --> Mek signaling pathway that induces invasion in intestinal epithelial cells. This pathway provides a plausible mechanism by which PKCbetaII promotes colon carcinogenesis.
Collapse
Affiliation(s)
- Jie Zhang
- Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224, USA
| | | | | | | | | |
Collapse
|