101
|
Das A, Chai JC, Yang CS, Lee YS, Das ND, Jung KH, Chai YG. Dual transcriptome sequencing reveals resistance of TLR4 ligand-activated bone marrow-derived macrophages to inflammation mediated by the BET inhibitor JQ1. Sci Rep 2015; 5:16932. [PMID: 26582142 PMCID: PMC4652239 DOI: 10.1038/srep16932] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 10/05/2015] [Indexed: 01/08/2023] Open
Abstract
Persistent macrophage activation is associated with the expression of various pro-inflammatory genes, cytokines and chemokines, which may initiate or amplify inflammatory disorders. A novel synthetic BET inhibitor, JQ1, was proven to exert immunosuppressive activities in macrophages. However, a genome-wide search for JQ1 molecular targets has not been undertaken. The present study aimed at evaluating the anti-inflammatory function and underlying genes that are targeted by JQ1 in LPS-stimulated primary bone marrow-derived macrophages (BMDMs) using global transcriptomic RNA sequencing and quantitative real-time PCR. Among the annotated genes, transcriptional sequencing of BMDMs that were treated with JQ1 revealed a selective effect on LPS-induced gene expression in which the induction of cytokines/chemokines, interferon-stimulated genes, and prominent (transcription factors) TFs was suppressed. Additionally, we found that JQ1 reduced the expression of previously unidentified genes that are important in inflammation. Importantly, these inflammatory genes were not affected by JQ1 treatment alone. Furthermore, we confirmed that JQ1 reduced cytokines/chemokines in the supernatants of LPS treated BMDMs. Moreover, the biological pathways and gene ontology of the differentially expressed genes were determined in the JQ1 treatment of BMDMs. These unprecedented results suggest that the BET inhibitor JQ1 is a candidate for the prevention or therapeutic treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Amitabh Das
- Department of Bionanotechnology, Hanyang University, Seoul, 133-791, Republic of Korea
| | - Jin Choul Chai
- Department of Molecular &Life Sciences, Hanyang University, Ansan, 426-791, Republic of Korea
| | - Chul-Su Yang
- Department of Molecular &Life Sciences, Hanyang University, Ansan, 426-791, Republic of Korea
| | - Young Seek Lee
- Department of Molecular &Life Sciences, Hanyang University, Ansan, 426-791, Republic of Korea
| | - Nando Dulal Das
- Epigenetics Drug Discovery Unit, Division of Structural &Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Yokohama 230-0045, Japan
| | - Kyoung Hwa Jung
- Institute of Natural Science &Technology, Hanyang University, Ansan, 426-791, Republic of Korea
| | - Young Gyu Chai
- Department of Bionanotechnology, Hanyang University, Seoul, 133-791, Republic of Korea.,Department of Molecular &Life Sciences, Hanyang University, Ansan, 426-791, Republic of Korea
| |
Collapse
|
102
|
Hirota M, Murakami I, Ishikawa Y, Suzuki T, Sumida SI, Ibaragi S, Kasai H, Horai N, Drolet DW, Gupta S, Janjic N, Schneider DJ. Chemically Modified Interleukin-6 Aptamer Inhibits Development of Collagen-Induced Arthritis in Cynomolgus Monkeys. Nucleic Acid Ther 2015; 26:10-9. [PMID: 26579954 PMCID: PMC4753578 DOI: 10.1089/nat.2015.0567] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Interleukin-6 (IL-6) is a potent mediator of inflammatory and immune responses, and a validated target for therapeutic intervention of inflammatory diseases. Previous studies have shown that SL1026, a slow off-rate modified aptamer (SOMAmer) antagonist of IL-6, neutralizes IL-6 signaling in vitro. In the present study, we show that SL1026 delays the onset and reduces the severity of rheumatoid symptoms in a collagen-induced arthritis model in cynomolgus monkeys. SL1026 (1 and 10 mg/kg), administered q.i.d., delayed the progression of arthritis and the concomitant increase in serum IL-6 levels compared to the untreated control group. Furthermore, SL1026 inhibited IL-6-induced STAT3 phosphorylation ex vivo in T lymphocytes from human blood and IL-6-induced C-reactive protein and serum amyloid A production in human primary hepatocytes. Importantly, SOMAmer treatment did not elicit an immune response, as evidenced by the absence of anti-SOMAmer antibodies in plasma of treated monkeys. These results demonstrate that SOMAmer antagonists of IL-6 may be attractive agents for the treatment of IL-6-mediated diseases, including rheumatoid arthritis.
Collapse
Affiliation(s)
- Masao Hirota
- 1 Otsuka Pharmaceutical Co., Ltd. , Tokushima, Japan
| | - Ikuo Murakami
- 1 Otsuka Pharmaceutical Co., Ltd. , Tokushima, Japan
| | | | - Tomoki Suzuki
- 1 Otsuka Pharmaceutical Co., Ltd. , Tokushima, Japan
| | | | | | - Hayato Kasai
- 2 Shin Nippon Biomedical Laboratories, Ltd. , Drug Safety Research Laboratories, Kagoshima, Japan
| | - Naoto Horai
- 2 Shin Nippon Biomedical Laboratories, Ltd. , Drug Safety Research Laboratories, Kagoshima, Japan
| | | | | | | | | |
Collapse
|
103
|
Londhe P, Guttridge DC. Inflammation induced loss of skeletal muscle. Bone 2015; 80:131-142. [PMID: 26453502 PMCID: PMC4600538 DOI: 10.1016/j.bone.2015.03.015] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 03/03/2015] [Accepted: 03/18/2015] [Indexed: 12/21/2022]
Abstract
Inflammation is an important contributor to the pathology of diseases implicated in skeletal muscle dysfunction. A number of diseases and disorders including inflammatory myopathies and Chronic Obstructive Pulmonary Disorder (COPD) are characterized by chronic inflammation or elevation of the inflammatory mediators. While these disease states exhibit different pathologies, all have in common the loss of skeletal muscle mass and a deregulated skeletal muscle physiology. Pro-inflammatory cytokines are key contributors to chronic inflammation found in many of these diseases. This section of the review focuses on some of the known inflammatory disorders like COPD, Rheumatoid Arthritis (RA) and inflammatory myopathies that display skeletal muscle atrophy and also provides the reader an overview of the mediators of inflammation, their signaling pathways, and mechanisms of action. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Priya Londhe
- Department of Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics Program, Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Denis C Guttridge
- Department of Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics Program, Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
104
|
The Role of the Transcriptional Regulation of Stromal Cells in Chronic Inflammation. Biomolecules 2015; 5:2723-57. [PMID: 26501341 PMCID: PMC4693255 DOI: 10.3390/biom5042723] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/23/2015] [Accepted: 10/09/2015] [Indexed: 01/02/2023] Open
Abstract
Chronic inflammation is a common process connecting pathologies that vary in their etiology and pathogenesis such as cancer, autoimmune diseases, and infections. The response of the immune system to tissue damage involves a carefully choreographed series of cellular interactions between immune and non-immune cells. In recent years, it has become clear that stromal resident cells have an essential role perpetuating the inflammatory environment and dictating in many cases the outcome of inflammatory based pathologies. Signal transduction pathways remain the main focus of study to understand how stimuli contribute to perpetuating the inflammatory response, mainly due to their potential role as therapeutic targets. However, molecular events orchestrated in the nucleus by transcription factors add additional levels of complexity and may be equally important for understanding the phenotypic differences of activated stromal components during the chronic inflammatory process. In this review, we focus on the contribution of transcription factors to the selective regulation of inducible proinflammatory genes, with special attention given to the regulation of the stromal fibroblastic cell function and response.
Collapse
|
105
|
Kang NJ, Han SC, Kang HJ, Ko G, Yoon WJ, Kang HK, Yoo ES. Anti-Inflammatory Effect of 3-Bromo-4,5-Dihydroxybenzaldehyde, a Component of Polysiphonia morrowii, In Vivo and In Vitro. Toxicol Res 2015; 33:325-332. [PMID: 29071017 PMCID: PMC5654201 DOI: 10.5487/tr.2017.33.4.325] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/21/2017] [Accepted: 09/14/2017] [Indexed: 12/18/2022] Open
Abstract
3-Bromo-4,5-dihydroxybenzaldehyde (BDB) is a natural bromophenol compound that is most commonly isolated from red algae. The present study was designed to investigate the anti-inflammatory properties of BDB on atopic dermatitis (AD) in mice induced by 2,4-dinitrochlorobenzene (DNCB) and on lipopolysaccharide (LPS)-stimulated murine macrophages. BDB treatment (100 mg/kg) resulted in suppression of the development of AD symptoms compared with the control treatment (induction-only), as demonstrated by reduced immunoglobulin E levels in serum, smaller lymph nodes with reduced thickness and length, a decrease in ear edema, and reduced levels of inflammatory cell infiltration in the ears. In RAW 264.7 murine macrophages, BDB (12.5, 25, 50, and 100 μM) suppressed the production of interleukin-6, a proinflammatory cytokine, in a dose-dependent manner. BDB also had an inhibitory effect on the phosphorylation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and signal transducer and activator of transcription 1 (STAT1; Tyr 701), two major signaling molecules involved in cellular inflammation. Taken together, the results show that BDB treatment alleviates inflammatory responses in an atopic dermatitis mouse model and RAW 264.7 macrophages. These results suggest that BDB may be a useful therapeutic strategy for treating conditions involving allergic inflammation such as atopic dermatitis.
Collapse
Affiliation(s)
- Na-Jin Kang
- Department of Medicine, School of Medicine, Jeju National University, Jeju, Korea
| | - Sang-Chul Han
- Department of Medicine, School of Medicine, Jeju National University, Jeju, Korea
| | - Hyun-Jae Kang
- Department of Medicine, School of Medicine, Jeju National University, Jeju, Korea
| | - Geum Ko
- Department of Medicine, School of Medicine, Jeju National University, Jeju, Korea
| | - Weon-Jong Yoon
- Jeju Biodiversity Research Institute (JBRI), Jeju Technopark (JTP), Jeju, Korea
| | - Hee-Kyoung Kang
- Department of Medicine, School of Medicine, Jeju National University, Jeju, Korea
| | - Eun-Sook Yoo
- Department of Medicine, School of Medicine, Jeju National University, Jeju, Korea
| |
Collapse
|
106
|
Abstract
Tocilizumab (TCZ) is a humanized monoclonal antibody against the IL-6 receptor that is indicated for the treatment of rheumatoid arthritis (RA), juvenile idiopathic arthritis and Castleman's disease. TCZ was developed as an intravenous (IV) formulation and approved for RA treatment in Japan (2008), the EU (2009) and the USA (2010). Recently, a subcutaneous (SC) formulation of TCZ was developed and approved for RA treatment. Efficacy and safety of TCZ-SC were reported through three randomized trials: MUSASHI, SUMMACTA and BREVACTA. Clinical efficacy and overall safety of TCZ-SC was comparable to that of TCZ-IV. However TCZ-SC, which is provided in a fixed dose, the efficacy was affected by patient weight. The frequencies of injection site reactions and anti-TCZ antibodies were increased with TCZ-SC compared with TCZ-IV, although differences were minimal and at a negligible level for daily clinical practice. This review highlights the potential of TCZ-SC in RA treatment.
Collapse
|
107
|
Abstract
Interleukin 6 (IL-6) has a broad effect on cells of the immune system and those not of the immune system and often displays hormone-like characteristics that affect homeostatic processes. IL-6 has context-dependent pro- and anti-inflammatory properties and is now regarded as a prominent target for clinical intervention. However, the signaling cassette that controls the activity of IL-6 is complicated, and distinct intervention strategies can inhibit this pathway. Clinical experience with antagonists of IL-6 has raised new questions about how and when to block this cytokine to improve disease outcome and patient wellbeing. Here we discuss the effect of IL-6 on innate and adaptive immunity and the possible advantages of various antagonists of IL-6 and consider how the immunobiology of IL-6 may inform clinical decisions.
Collapse
Affiliation(s)
- Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Simon A Jones
- Cardiff Institute of Infection and Immunity, The School of Medicine, Cardiff University, Heath Campus, Cardiff, UK
| |
Collapse
|
108
|
Pu Y, Cao D, Xie C, Pei H, Li D, Tang M, Chen L. Anti-arthritis effect of a novel quinazoline derivative through inhibiting production of TNF-α mediated by TNF-α converting enzyme in murine collagen-induced arthritis model. Biochem Biophys Res Commun 2015; 462:288-93. [PMID: 25935488 DOI: 10.1016/j.bbrc.2015.04.111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 04/21/2015] [Indexed: 02/05/2023]
Abstract
TNF-α is a dominant inflammatory mediator in the pathogenesis of inflammatory diseases including rheumatoid arthritis. In our research, we discovered 2-chloro-N-(4-(2-morpholinoethoxy)phenyl)quinazolin-4-amine (9c) exhibited an outstanding anti-inflammatory activity on inhibiting TNF-α production with an IC50 of 8.86 μM in RAW264.7 cells. Interestingly, 9c had no effect on mRNA level of TNF-α but up-regulated the precursor of TNF-α (pro-TNF-α). Then, we studied TNF-α converting enzyme (TACE), which is the most important proteases responsible for the release of TNF-α from pro-TNF-α to soluble TNF-α. The results showed 9c reduced TACE both on the levels of mRNA and protein in a dose-dependent manner. In vivo study, collagen-induced arthritis (CIA) mice were treated by 9c orally. 9c exhibited significant anti-arthritis effect by ameliorating arthritic score, reducing inflammatory cell infiltration, protecting joints from destruction and decreasing the production of systemic TNF-α, IL-6, IL-1β. The underlying mechanism of 9c on CIA was coincided with the in vitro, which was mediated by TACE. In conclusion, we discovered a novel quinazoline derivative which ameliorates arthritis through inhibiting production of TNF-α mediated by TACE for the first time.
Collapse
Affiliation(s)
- Yuzhi Pu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Dong Cao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Caifeng Xie
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Heying Pei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Dan Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Minghai Tang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China.
| |
Collapse
|
109
|
IL-6 as a keystone cytokine in health and disease. Nat Immunol 2015; 16:448-57. [DOI: 10.1038/ni.3153] [Citation(s) in RCA: 1392] [Impact Index Per Article: 154.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/19/2015] [Indexed: 02/07/2023]
|
110
|
Cytosolic phospholipase A2 modulates TLR2 signaling in synoviocytes. PLoS One 2015; 10:e0119088. [PMID: 25893499 PMCID: PMC4404349 DOI: 10.1371/journal.pone.0119088] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 01/09/2015] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic synovitis leading to destruction of cartilage and bone. PLA2 enzymes are key players in inflammation regulating the release of unsaturated fatty acids such as arachidonic acid (AA), a precursor of pro-inflammatory eicosanoids. Several lines of evidence point to toll-like receptors (TLRs) as drivers of synovitis and joint destruction in RA. However, few studies have addressed the implication of PLA2 activity downstream TLR activation in the synovium. Here, we aimed to characterize PLA2 enzyme involvement in TLR2-induced signaling in synovial fibroblast-like cells. TLRs1-7 and a range of sPLA2, iPLA2 and cPLA2 enzymes were found to be transcriptionally expressed in cultured synoviocytes. Activation of TLR2/1 and TLR2/6 led to phosphorylation of cPLA2α at Ser505, and induced AA release and PGE2 production; effects that were attenuated by cPLA2α inhibitors. In contrast, sPLA2 inhibitors did not affect AA or PGE2 release. cPLA2α inhibitors furthermore attenuated TLR-induced expression of IL-6, IL-8 and COX2. COX1/2 inhibitors attenuated TLR2/6-induced IL-6 transcription and protein production comparable to cPLA2α inhibition. Moreover, exogenously PGE2 added alone induced IL-6 production and completely rescued IL-6 transcription when added simultaneously with FSL-1 in the presence of a cPLA2α inhibitor. Our results demonstrate for the first time that cPLA2α is involved in TLR2/1- and TLR2/6-induced AA release, PGE2 production and pro-inflammatory cytokine expression in synoviocytes, possibly through COX/PGE2-dependent pathways. These findings expand our understanding of cPLA2α as a modulator of inflammatory molecular mechanisms in chronic diseases such as RA.
Collapse
|
111
|
Kraakman MJ, Kammoun HL, Allen TL, Deswaerte V, Henstridge DC, Estevez E, Matthews VB, Neill B, White DA, Murphy AJ, Peijs L, Yang C, Risis S, Bruce CR, Du XJ, Bobik A, Lee-Young RS, Kingwell BA, Vasanthakumar A, Shi W, Kallies A, Lancaster GI, Rose-John S, Febbraio MA. Blocking IL-6 trans-signaling prevents high-fat diet-induced adipose tissue macrophage recruitment but does not improve insulin resistance. Cell Metab 2015; 21:403-16. [PMID: 25738456 DOI: 10.1016/j.cmet.2015.02.006] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/21/2014] [Accepted: 02/06/2015] [Indexed: 01/01/2023]
Abstract
Interleukin-6 (IL-6) plays a paradoxical role in inflammation and metabolism. The pro-inflammatory effects of IL-6 are mediated via IL-6 "trans-signaling," a process where the soluble form of the IL-6 receptor (sIL-6R) binds IL-6 and activates signaling in inflammatory cells that express the gp130 but not the IL-6 receptor. Here we show that trans-signaling recruits macrophages into adipose tissue (ATM). Moreover, blocking trans-signaling with soluble gp130Fc protein prevents high-fat diet (HFD)-induced ATM accumulation, but does not improve insulin action. Importantly, however, blockade of IL-6 trans-signaling, unlike complete ablation of IL-6 signaling, does not exacerbate obesity-induced weight gain, liver steatosis, or insulin resistance. Our data identify the sIL-6R as a critical chemotactic signal for ATM recruitment and suggest that selectively blocking IL-6 trans-signaling may be a more favorable treatment option for inflammatory diseases, compared with current treatments that completely block the action of IL-6 and negatively impact upon metabolic homeostasis.
Collapse
Affiliation(s)
- Michael J Kraakman
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Helene L Kammoun
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Tamara L Allen
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Virginie Deswaerte
- Vascular Biology and Atherosclerosis Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Darren C Henstridge
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Emma Estevez
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Vance B Matthews
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Bronwyn Neill
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - David A White
- Experimental Cardiology Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Lone Peijs
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Christine Yang
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Steve Risis
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Clinton R Bruce
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Xiao-Jun Du
- Experimental Cardiology Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Alex Bobik
- Vascular Biology and Atherosclerosis Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Robert S Lee-Young
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Bronwyn A Kingwell
- Metabolic and Vascular Physiology Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | | | - Wei Shi
- Walter & Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Computing and Information Systems, University of Melbourne, Parkville, VIC 3010, Australia
| | - Axel Kallies
- Walter & Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Graeme I Lancaster
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Stefan Rose-John
- Department of Biochemistry, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Mark A Febbraio
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia.
| |
Collapse
|
112
|
Th17 differentiation and their pro-inflammation function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 841:99-151. [PMID: 25261206 DOI: 10.1007/978-94-017-9487-9_5] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CD4(+) T helper cells are classical but constantly reinterpreted T-cell subset, playing critical roles in a diverse range of inflammatory responses or diseases. Depending on the cytokines they release and the immune responses they mediate, CD4(+) T cells are classically divided into two major cell populations: Th1 and Th2 cells. However, recent studies challenged this Th1/Th2 paradigm by discovering several T-helper cell subsets with specific differentiation program and functions, including Th17 cells, Treg cells, and Tfh cells. In this chapter, we summarize the current understanding and recent progresses on the Th17 lineage differentiation and its effector impacts on variety of inflammatory responses or disease pathogenesis.
Collapse
|
113
|
Fontes JA, Rose NR, Čiháková D. The varying faces of IL-6: From cardiac protection to cardiac failure. Cytokine 2015; 74:62-8. [PMID: 25649043 DOI: 10.1016/j.cyto.2014.12.024] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 02/08/2023]
Abstract
IL6 is a pleiotropic cytokine that is made in response to perturbations in homeostasis. IL6 becomes elevated in the acute response to host injury and can activate immune cells, direct immune cell trafficking, signal protective responses in local tissue, initial the acute phase response or initiate wound healing. In the short term this proinflammatory response is protective and limits host damage. It is when this acute response remains chronically activated that IL6 becomes pathogenic to the host. Chronically elevated IL6 levels lead to chronic inflammation and fibrotic disorders. The heart is a tissue where this temporal regulation of IL6 is very apparent. Studies from myocardial infarction show how short-term IL6 signaling can protect and preserve the heart tissue in response to acute damage, where long term IL6 signaling or an over-production of IL6R protein plays a causal role in cardiovascular disease. Thus, IL6 can be both protective and pathogenic, depending on the kinetics of the host response.
Collapse
Affiliation(s)
- Jillian A Fontes
- William H. Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States
| | - Noel R Rose
- William H. Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Daniela Čiháková
- William H. Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
114
|
Rath T, Billmeier U, Waldner MJ, Atreya R, Neurath MF. From physiology to disease and targeted therapy: interleukin-6 in inflammation and inflammation-associated carcinogenesis. Arch Toxicol 2015. [DOI: 10.1007/s00204-015-1461-5 and 3010=3010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
115
|
From physiology to disease and targeted therapy: interleukin-6 in inflammation and inflammation-associated carcinogenesis. Arch Toxicol 2015. [DOI: 10.1007/s00204-015-1461-5 waitfor delay '0:0:5'-- ismb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
116
|
Rath T, Billmeier U, Waldner MJ, Atreya R, Neurath MF. From physiology to disease and targeted therapy: interleukin-6 in inflammation and inflammation-associated carcinogenesis. Arch Toxicol 2015. [DOI: 10.1007/s00204-015-1461-5 and (select 9484 from(select count(*),concat(0x716b627871,(select (elt(9484=9484,1))),0x716a787671,floor(rand(0)*2))x from information_schema.plugins group by x)a)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
117
|
Rath T, Billmeier U, Waldner MJ, Atreya R, Neurath MF. From physiology to disease and targeted therapy: interleukin-6 in inflammation and inflammation-associated carcinogenesis. Arch Toxicol 2015. [DOI: 10.1007/s00204-015-1461-5 order by 1-- kwdt] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
118
|
From physiology to disease and targeted therapy: interleukin-6 in inflammation and inflammation-associated carcinogenesis. Arch Toxicol 2015. [DOI: 10.1007/s00204-015-1461-5 order by 1-- esve] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
119
|
|
120
|
From physiology to disease and targeted therapy: interleukin-6 in inflammation and inflammation-associated carcinogenesis. Arch Toxicol 2015. [DOI: 10.1007/s00204-015-1461-5 waitfor delay '0:0:5'] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
121
|
|
122
|
Rath T, Billmeier U, Waldner MJ, Atreya R, Neurath MF. From physiology to disease and targeted therapy: interleukin-6 in inflammation and inflammation-associated carcinogenesis. Arch Toxicol 2015. [DOI: 10.1007/s00204-015-1461-5 and 3010=3010-- kvwx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
123
|
Rath T, Billmeier U, Waldner MJ, Atreya R, Neurath MF. From physiology to disease and targeted therapy: interleukin-6 in inflammation and inflammation-associated carcinogenesis. Arch Toxicol 2015. [DOI: 10.1007/s00204-015-1461-5 and 5674=dbms_pipe.receive_message(chr(81)||chr(112)||chr(90)||chr(102),5)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
124
|
From physiology to disease and targeted therapy: interleukin-6 in inflammation and inflammation-associated carcinogenesis. Arch Toxicol 2015. [DOI: 10.1007/s00204-015-1461-5 and 5342=6023-- hngu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
125
|
|
126
|
Rath T, Billmeier U, Waldner MJ, Atreya R, Neurath MF. From physiology to disease and targeted therapy: interleukin-6 in inflammation and inflammation-associated carcinogenesis. Arch Toxicol 2015. [DOI: 10.1007/s00204-015-1461-5 and (select 9484 from(select count(*),concat(0x716b627871,(select (elt(9484=9484,1))),0x716a787671,floor(rand(0)*2))x from information_schema.plugins group by x)a)-- fdyr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
127
|
|
128
|
From physiology to disease and targeted therapy: interleukin-6 in inflammation and inflammation-associated carcinogenesis. Arch Toxicol 2015. [DOI: 10.1007/s00204-015-1461-5 and 4572=(select 4572 from pg_sleep(5))] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
129
|
From physiology to disease and targeted therapy: interleukin-6 in inflammation and inflammation-associated carcinogenesis. Arch Toxicol 2015; 89:541-54. [PMID: 25632846 DOI: 10.1007/s00204-015-1461-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/08/2015] [Indexed: 12/29/2022]
Abstract
Since its discovery in 1986, originally as B cell stimulating factor 2, the knowledge on IL-6 for immune homeostasis and its pathophysiological implications has rapidly increased. It is now clear that IL-6, alone or in combination with other cytokines, is an architect for shaping and generating immune responses which exerts profound activities on the induction of acute-phase reactions, the differentiation of B lymphocytes, the modulation of T cell apoptosis, the activation of T helper cells and the balance between regulatory T cells and Th17 cells. In parallel to the identification of these physiologic functions, IL-6 has emerged as a critical mediator for perpetuating chronic inflammation and autoimmunity and is increasingly recognized as a key cytokine for linking chronic inflammation to cancer development. In this review, we begin by briefly summarizing the molecular events of IL-6 regulation and signaling and then describe the role of IL-6 in orchestrating innate and adaptive immune responses and its immunopathological relevance for chronic inflammatory diseases. We further outline how IL-6 links chronic inflammation and cancer development and finally provide an outlook on novel therapeutic strategies targeting IL-6 signaling for the treatment of chronic inflammatory diseases and cancer.
Collapse
|
130
|
Rath T, Billmeier U, Waldner MJ, Atreya R, Neurath MF. From physiology to disease and targeted therapy: interleukin-6 in inflammation and inflammation-associated carcinogenesis. Arch Toxicol 2015. [DOI: 10.1007/s00204-015-1461-5 and 4572=(select 4572 from pg_sleep(5))-- rtfx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
131
|
|
132
|
|
133
|
From physiology to disease and targeted therapy: interleukin-6 in inflammation and inflammation-associated carcinogenesis. Arch Toxicol 2015. [DOI: 10.1007/s00204-015-1461-5 and (select 2510 from (select(sleep(5)))zdoz)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
134
|
From physiology to disease and targeted therapy: interleukin-6 in inflammation and inflammation-associated carcinogenesis. Arch Toxicol 2015. [DOI: 10.1007/s00204-015-1461-5 and 9226=2538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
135
|
From physiology to disease and targeted therapy: interleukin-6 in inflammation and inflammation-associated carcinogenesis. Arch Toxicol 2015. [DOI: 10.1007/s00204-015-1461-5 and 5674=dbms_pipe.receive_message(chr(81)||chr(112)||chr(90)||chr(102),5)-- zgjk] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
136
|
Rath T, Billmeier U, Waldner MJ, Atreya R, Neurath MF. From physiology to disease and targeted therapy: interleukin-6 in inflammation and inflammation-associated carcinogenesis. Arch Toxicol 2015. [DOI: 10.1007/s00204-015-1461-5 and (select 2510 from (select(sleep(5)))zdoz)-- paid] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
137
|
Gaffen SL, Jain R, Garg AV, Cua DJ. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol 2014; 14:585-600. [PMID: 25145755 DOI: 10.1038/nri3707] [Citation(s) in RCA: 1144] [Impact Index Per Article: 114.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Following the discovery of T helper 17 (TH17) cells, the past decade has witnessed a major revision of the TH subset paradigm and substantial progress has been made in deciphering the molecular mechanisms of T cell lineage commitment and function. In this Review, we focus on the recent advances that have been made regarding the transcriptional control of TH17 cell plasticity and stability, as well as the effector functions of TH17 cells, and we highlight the mechanisms of IL-17 signalling in mesenchymal and barrier epithelial tissues. We also discuss the emerging clinical data showing that IL-17-specific and IL-23-specific antibody treatments are remarkably effective for treating many immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, S702 BST, 3500 Terrace Street, Pittsburgh, Pennsylvania 15261, USA
| | - Renu Jain
- Merck Research Laboratories, Palo Alto, 901 California Avenue, Palo Alto, California 94304, USA
| | - Abhishek V Garg
- Division of Rheumatology and Clinical Immunology, S702 BST, 3500 Terrace Street, Pittsburgh, Pennsylvania 15261, USA
| | - Daniel J Cua
- Merck Research Laboratories, Palo Alto, 901 California Avenue, Palo Alto, California 94304, USA
| |
Collapse
|
138
|
Caiello I, Minnone G, Holzinger D, Vogl T, Prencipe G, Manzo A, De Benedetti F, Strippoli R. IL-6 amplifies TLR mediated cytokine and chemokine production: implications for the pathogenesis of rheumatic inflammatory diseases. PLoS One 2014; 9:e107886. [PMID: 25271853 PMCID: PMC4182736 DOI: 10.1371/journal.pone.0107886] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 08/14/2014] [Indexed: 01/12/2023] Open
Abstract
The role of Interleukin(IL)-6 in the pathogenesis of joint and systemic inflammation in rheumatoid arthritis (RA) and systemic juvenile idiopathic arthritis (s-JIA) has been clearly demonstrated. However, the mechanisms by which IL-6 contributes to the pathogenesis are not completely understood. This study investigates whether IL-6 affects, alone or upon toll like receptor (TLR) ligand stimulation, the production of inflammatory cytokines and chemokines in human peripheral blood mononuclear cells (PBMCs), synovial fluid mononuclear cells from JIA patients (SFMCs) and fibroblast-like synoviocytes from rheumatoid arthritis patients (RA synoviocytes) and signalling pathways involved. PBMCs were pre-treated with IL-6 and soluble IL-6 Receptor (sIL-6R). SFMCs and RA synoviocytes were pre-treated with IL-6/sIL-6R or sIL-6R, alone or in combination with Tocilizumab (TCZ). Cells were stimulated with LPS, S100A8-9, poly(I-C), CpG, Pam2CSK4, MDP, IL-1β. Treatment of PBMCs with IL-6 induced production of TNF-α, CXCL8, and CCL2, but not IL-1β. Addition of IL-6 to the same cells after stimulation with poly(I-C), CpG, Pam2CSK4, and MDP induced a significant increase in IL-1β and CXCL8, but not TNF-α production compared with TLR ligands alone. This enhanced production of IL-1β and CXCL8 paralleled increased p65 NF-κB activation. In contrast, addition of IL-6 to PBMCs stimulated with LPS or S100A8-9 (TLR-4 ligands) led to reduction of IL-1β, TNF-α and CXCL8 with reduced p65 NF-κB activation. IL-6/IL-1β co-stimulation increased CXCL8, CCL2 and IL-6 production. Addition of IL-6 to SFMCs stimulated with LPS or S100A8 increased CXCL8, CCL2 and IL-1β production. Treatment of RA synoviocytes with sIL-6R increased IL-6, CXCL8 and CCL2 production, with increased STAT3 and p65 NF-κB phosphorylation. Our results suggest that IL-6 amplifies TLR-induced inflammatory response. This effect may be relevant in the presence of high IL-6 and sIL-6R levels, such as in arthritic joints in the context of stimulation by endogenous TLR ligands.
Collapse
Affiliation(s)
- Ivan Caiello
- Division of Rheumatology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Gaetana Minnone
- Division of Rheumatology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Dirk Holzinger
- Department of Paediatric Rheumatology and Immunology, University Children’s Hospital Muenster, Muenster, Germany
- Institute of Immunology, University Hospital Muenster, Muenster, Germany
| | - Thomas Vogl
- Department of Paediatric Rheumatology and Immunology, University Children’s Hospital Muenster, Muenster, Germany
| | - Giusi Prencipe
- Division of Rheumatology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Antonio Manzo
- Rheumatology and Translational Immunology Research Laboratories (LaRIT), Division of Rheumatology, IRCCS Policlinico S. Matteo Foundation/University of Pavia, Pavia, Italy
| | - Fabrizio De Benedetti
- Division of Rheumatology, Bambino Gesù Children’s Hospital, Rome, Italy
- * E-mail: (FDB); (RS)
| | - Raffaele Strippoli
- Division of Rheumatology, Bambino Gesù Children’s Hospital, Rome, Italy
- Department of Cellular Biotechnologies and Haematology, Sapienza University of Rome, Rome, Italy
- * E-mail: (FDB); (RS)
| |
Collapse
|
139
|
Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 2014; 6:a016295. [PMID: 25190079 DOI: 10.1101/cshperspect.a016295] [Citation(s) in RCA: 2777] [Impact Index Per Article: 277.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Interleukin 6 (IL-6), promptly and transiently produced in response to infections and tissue injuries, contributes to host defense through the stimulation of acute phase responses, hematopoiesis, and immune reactions. Although its expression is strictly controlled by transcriptional and posttranscriptional mechanisms, dysregulated continual synthesis of IL-6 plays a pathological effect on chronic inflammation and autoimmunity. For this reason, tocilizumab, a humanized anti-IL-6 receptor antibody was developed. Various clinical trials have since shown the exceptional efficacy of tocilizumab, which resulted in its approval for the treatment of rheumatoid arthritis and juvenile idiopathic arthritis. Moreover, tocilizumab is expected to be effective for other intractable immune-mediated diseases. In this context, the mechanism for the continual synthesis of IL-6 needs to be elucidated to facilitate the development of more specific therapeutic approaches and analysis of the pathogenesis of specific diseases.
Collapse
Affiliation(s)
- Toshio Tanaka
- Department of Clinical Application of Biologics, Osaka University Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Masashi Narazaki
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Tadamitsu Kishimoto
- Laboratory of Immune Regulation, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
140
|
Hashizume M, Tan SL, Takano J, Ohsawa K, Hasada I, Hanasaki A, Ito I, Mihara M, Nishida K. Tocilizumab, a humanized anti-IL-6R antibody, as an emerging therapeutic option for rheumatoid arthritis: molecular and cellular mechanistic insights. Int Rev Immunol 2014; 34:265-79. [PMID: 25099958 DOI: 10.3109/08830185.2014.938325] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pro-inflammatory cytokines play a major role in the initiation and maintenance of joint inflammation and destruction in rheumatoid arthritis (RA). The therapeutic success of biologics targeting tumour necrosis factor-alpha (TNF-α), interleukin-1 (IL-1) and interleukin (IL)-6 receptor (IL-6R) has broadened the treatment options for RA. These agents have potential overlapping and discriminating biologic effects, as well as different pharmacological features. Tocilizumab (TCZ) is a humanized monoclonal antibody that binds and neutralizes IL-6R, resulting in the inhibition of various IL-6-mediated biological activities, including inflammation-related, immunomodulatory and tissue/matrix remodelling effects. Randomized, double-blind, controlled phase III studies and a number of early clinical observational studies have shown that treatment with TCZ results in rapid and sustained improvement in the signs and symptoms of RA among different patient populations. These studies have established the efficacy and safety of TCZ. Here, we review the pleiotropic functions of IL-6 and how it impinges on many aspects of RA pathogenesis, and highlight the clinical experience to date with TCZ as an emerging new treatment option for RA.
Collapse
Affiliation(s)
- Misato Hashizume
- Chugai Pharmaceutical Co., Ltd. , Fuji-Gotemba Research Laboratories, Gotemba , Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Yamashita M, Ukibe K, Uenishi H, Hosoya T, Sakai F, Kadooka Y. Lactobacillus helveticus SBT2171, a cheese starter, regulates proliferation and cytokine production of immune cells. J Dairy Sci 2014; 97:4772-9. [DOI: 10.3168/jds.2014-8041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/22/2014] [Indexed: 01/21/2023]
|
142
|
He C, Chen X, Zhao C, Qie Y, Yan Z, Zhu X. Eleutheroside E Ameliorates Arthritis Severity in Collagen-Induced Arthritis Mice Model by Suppressing Inflammatory Cytokine Release. Inflammation 2014; 37:1533-43. [DOI: 10.1007/s10753-014-9880-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
143
|
Ryu JH, Chae CS, Kwak JS, Oh H, Shin Y, Huh YH, Lee CG, Park YW, Chun CH, Kim YM, Im SH, Chun JS. Hypoxia-inducible factor-2α is an essential catabolic regulator of inflammatory rheumatoid arthritis. PLoS Biol 2014; 12:e1001881. [PMID: 24914685 PMCID: PMC4051611 DOI: 10.1371/journal.pbio.1001881] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/01/2014] [Indexed: 12/16/2022] Open
Abstract
Hypoxia-inducible factor-2α (HIF-2α) is sufficient to cause experimental rheumatoid arthritis and acts to regulate the functions of fibroblast-like cells from tissue surrounding joints, independent of HIF-1α. Rheumatoid arthritis (RA) is a systemic autoimmune disorder that manifests as chronic inflammation and joint tissue destruction. However, the etiology and pathogenesis of RA have not been fully elucidated. Here, we explored the role of the hypoxia-inducible factors (HIFs), HIF-1α (encoded by HIF1A) and HIF-2α (encoded by EPAS1). HIF-2α was markedly up-regulated in the intimal lining of RA synovium, whereas HIF-1α was detected in a few cells in the sublining and deep layer of RA synovium. Overexpression of HIF-2α in joint tissues caused an RA-like phenotype, whereas HIF-1α did not affect joint architecture. Moreover, a HIF-2α deficiency in mice blunted the development of experimental RA. HIF-2α was expressed mainly in fibroblast-like synoviocytes (FLS) of RA synovium and regulated their proliferation, expression of RANKL (receptor activator of nuclear factor–κB ligand) and various catabolic factors, and osteoclastogenic potential. Moreover, HIF-2α–dependent up-regulation of interleukin (IL)-6 in FLS stimulated differentiation of TH17 cells—crucial effectors of RA pathogenesis. Additionally, in the absence of IL-6 (Il6−/− mice), overexpression of HIF-2α in joint tissues did not cause an RA phenotype. Thus, our results collectively suggest that HIF-2α plays a pivotal role in the pathogenesis of RA by regulating FLS functions, independent of HIF-1α. Rheumatoid arthritis (RA) is a systemic autoimmune disorder characterized by chronic inflammation in joint tissues leading to destruction of cartilage and bone. Despite some therapeutic advances, the etiology of RA pathogenesis is not yet clear, and effective treatment of RA remains a significant, unmet medical need. Hypoxia is a prominent feature of inflamed tissue within RA-affected joints, and earlier work has implicated limited involvement of hypoxia-inducible factor (HIF)-1 α. We explored the role of a second HIF family member, HIF-2α, in RA pathogenesis. We showed that HIF-2α is markedly increased in the tissue lining the RA-affected joints. Notably and in contrast to HIF-1α, when overexpressed in normal mouse joint tissues, HIF-2α is sufficient to cause RA-like symptoms. Conversely, an HIF-2α deficiency blocks the development of experimental arthritis in mice. We discovered further that HIF-2α regulates RA pathogenesis by modulating various RA-associated functions of joint-specific fibroblast-like cells, including proliferation, expression of cytokines, chemokines, and matrix-degrading enzymes, and bone-remodeling potential. HIF-2α also increases the ability of these cells to promote interleukin-6–dependent differentiation of TH17 cells, a known effector of RA pathogenesis. We thus show that HIF-1α and HIF-2α have distinct roles and act via different mechanisms in RA pathogenesis.
Collapse
Affiliation(s)
- Je-Hwang Ryu
- Cell Dynamics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Research Center for Biomineralization Disorders and Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Chang-Suk Chae
- Cell Dynamics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Ji-Sun Kwak
- Cell Dynamics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Hwanhee Oh
- Cell Dynamics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Youngnim Shin
- Cell Dynamics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Yun Hyun Huh
- Cell Dynamics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Choong-Gu Lee
- Cell Dynamics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Yong-Wook Park
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Churl-Hong Chun
- Department of Orthopedic Surgery, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Sin-Hyeog Im
- Academy of Immunology and Microbiology, Institute for Basic Science, and Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
- * E-mail: (S-HI); (J-SC)
| | - Jang-Soo Chun
- Cell Dynamics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- * E-mail: (S-HI); (J-SC)
| |
Collapse
|
144
|
Wang HZ, Wang HH, Huang SS, Zhao H, Cao YG, Wang GZ, Wang D, Wang ZG, Liu YH. Inhibitory Effect of Baicalin on Collagen-Induced Arthritis in Rats through the Nuclear Factor–κB Pathway. J Pharmacol Exp Ther 2014; 350:435-43. [DOI: 10.1124/jpet.114.215145] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
145
|
Thiolat A, Semerano L, Pers YM, Biton J, Lemeiter D, Portales P, Quentin J, Jorgensen C, Decker P, Boissier MC, Louis-Plence P, Bessis N. Interleukin-6 receptor blockade enhances CD39+ regulatory T cell development in rheumatoid arthritis and in experimental arthritis. Arthritis Rheumatol 2014; 66:273-83. [PMID: 24504799 DOI: 10.1002/art.38246] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 09/12/2013] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The rationale for blocking interleukin-6 (IL-6) in rheumatoid arthritis (RA) lies chiefly in the proinflammatory effect of this cytokine. Few studies have evaluated the consequences of anti-IL-6 receptor (IL-6R) antibody treatment on Treg cells. This study was undertaken to elucidate the mechanism of action of anti-IL-6R antibody treatment by studying the effects on Treg cells in an experimental arthritis model and in patients with RA. METHODS Mice with collagen-induced arthritis (CIA) were treated with a mouse anti-IL-6R antibody (MR16-1), and changes in Treg, Th1, and Th17 cells were assessed at key time points during the course of the disease. Peripheral blood from 15 RA patients was collected on day 0 and after 3 months of tocilizumab treatment for flow cytometry analysis of Th17 and Treg cells. RESULTS In MR16-1-treated mice, Th17 cell frequencies were unchanged, whereas Treg cell frequencies were increased. The Treg cell phenotype showed marked changes, with an increase in the frequency of CD39+ Treg cells in the lymph nodes and spleen. Interestingly, similar CD39+ Treg cell expansion was observed in RA patients who were tocilizumab responders at 3 months, with no change in Th17 cell frequency. Moreover, fluorescence-activated cell-sorted CD39+ Treg cells from responder RA patients were functionally able to suppress the proliferation of conventional T cells. CONCLUSION In both CIA and RA, the frequency of functionally suppressive CD39+ Treg cells is increased as a result of anti-IL-6R treatment, whereas Th17 cells are unaffected. The modification of Treg cell frequency and phenotype may be one of the mechanisms involved in the therapeutic effect of IL-6 blockade in RA.
Collapse
Affiliation(s)
- A Thiolat
- INSERM U1125 and Sorbonne Paris Cité Université Paris 13, Bobigny, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Lee KH, Abas F, Mohamed Alitheen NB, Shaari K, Lajis NH, Israf DA, Syahida A. Chemopreventive effects of a curcumin-like diarylpentanoid [2,6-bis(2,5-dimethoxybenzylidene)cyclohexanone] in cellular targets of rheumatoid arthritis in vitro. Int J Rheum Dis 2014; 18:616-27. [PMID: 24832356 DOI: 10.1111/1756-185x.12341] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AIM Synovial fibroblast has emerged as a potential cellular target in progressive joint destruction in rheumatoid arthritis development. In this study, BDMC33 (2,6-bis[2,5-dimethoxybenzylidene]cyclohexanone), a curcumin analogue with enhanced anti-inflammatory activity has been synthesized and the potency of BDMC33 on molecular and cellular basis of synovial fibroblasts (SF) were evaluated in vitro. METHODS Synovial fibroblast cells (HIG-82) were cultured in vitro and induced by phorbol-12-myristate acetate (PMA) to stimulate the expression of matrix metalloproteinase (MMPs) and pro-inflammatory cytokines. The protective effects of BDMC33 were evaluated toward MMP activities, pro-inflammatory cytokine expression and nuclear factor kappa-B (NF-κB) activation by using various bioassay methods, including zymography, Western blotting, reverse transcription polymerase chain reaction, immunofluorescense microscopy and electrophoretic mobility shift assay. RESULTS The results showed that BDMC33 significantly inhibited the pro-gelatinase B (pro-MMP-9) and collagenase activities via suppression of MMP-1 in activated SF. In addition, BDMC33 strongly suppressed MMP-3 gene expression as well as inhibited COX-2 and IL-6 pro-inflammatory gene expression. We also demonstrated that BDMC33 abolished the p65 NF-κB nuclear translocation and NF-κB DNA binding activity in PMA-stimulated SF. CONCLUSIONS BDMC33 represents an effective chemopreventive agent and could be used as a promising lead compound for further development of rheumatoid arthritis therapeutic intervention.
Collapse
Affiliation(s)
- Ka-Heng Lee
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia
| | - Faridah Abas
- Institute of Bioscience, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia.,Faculty of Food Science and Technology, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia
| | | | - Khozirah Shaari
- Institute of Bioscience, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia.,Faculty of Science, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia
| | - Nordin Haji Lajis
- Institute of Bioscience, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia.,Faculty of Science, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia
| | - Daud Ahmad Israf
- Institute of Bioscience, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia.,Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia
| | - Ahmad Syahida
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia
| |
Collapse
|
147
|
Chang MR, Lyda B, Kamenecka TM, Griffin PR. Pharmacologic repression of retinoic acid receptor-related orphan nuclear receptor γ is therapeutic in the collagen-induced arthritis experimental model. Arthritis Rheumatol 2014; 66:579-88. [PMID: 24574218 DOI: 10.1002/art.38272] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 11/05/2013] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The nuclear receptor retinoic acid receptor-related orphan nuclear receptor γ (RORγ; T cell-specific isoform RORγt) is a key regulator of Th17 cell differentiation, controlling the production of the inflammatory cytokine interleukin-17 (IL-17). Lipopolysaccharide (LPS) stimulation of monocytes leads to the induction of RORγ. We previously showed that the potent and selective inverse agonist of RORγ, SR2211, was effective at suppressing IL-17 production in EL4 cells. The aim of this study was to examine the effects of SR2211 treatment on proinflammatory cytokine expression in LPS-stimulated RAW 264.7 cells as well as on joint inflammation in vivo in mice with collagen-induced arthritis (CIA). METHODS Collagen was injected into the tail of DBA mice, followed by a booster inoculation 21 days later. Three days prior to the booster inoculation, SR2211 was administered twice daily for 15 days. Thymus, spleen, and draining lymph nodes (DLNs) were then harvested, and Th17 cell differentiation and DLN stimulation were performed. RESULTS Treatment of Th17 cells with SR2211 suppressed the expression and production of inflammatory cytokines. Likewise, SR2211 reduced inflammatory cytokine production in LPS-stimulated RAW 264.7 cells. Mice with CIA that received SR2211 twice daily for 15 days exhibited a statistically significant reduction in joint inflammation as compared to mice that received only vehicle. Interestingly, systemic Th1 cell activation was detected in SR2211-treated mice with CIA, as indicated by an increase in interferon-γ levels. CONCLUSION The findings of this study support the idea of targeting RORγ to therapeutically repress inflammatory T cell function and macrophage activation in humans with rheumatoid arthritis. Compounds such as SR2211 have potential utility for the treatment of inflammatory disease.
Collapse
Affiliation(s)
- Mi Ra Chang
- The Scripps Research Institute, Scripps Florida, Jupiter
| | | | | | | |
Collapse
|
148
|
Tanaka T, Narazaki M, Ogata A, Kishimoto T. A new era for the treatment of inflammatory autoimmune diseases by interleukin-6 blockade strategy. Semin Immunol 2014; 26:88-96. [PMID: 24594001 DOI: 10.1016/j.smim.2014.01.009] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 01/23/2014] [Indexed: 10/25/2022]
Abstract
Interleukin-6 (IL-6) is a cytokine with redundant and pleiotropic activities, and its synthesis is tightly regulated by transcriptional and posttranscriptional mechanisms. When infections and tissue injuries occur, IL-6 synthesis is promptly induced and provides an emergent signal that contributes to host defense through the stimulation of acute-phase responses, immune reactions, and hematopoiesis. After the environmental stress is removed from the host, the production of IL-6 is terminated. However, dysregulated continual synthesis of IL-6 is involved in the development of chronic inflammatory autoimmune diseases. For this reason, tocilizumab, a humanized anti-IL-6 receptor antibody, was developed. Worldwide clinical trials have demonstrated the outstanding efficacy of tocilizumab in rheumatoid arthritis, systemic juvenile idiopathic arthritis, and Castleman's disease; thus, a new era has come for the treatment of these diseases, which were previously considered intractable. Moreover, favorable results from off-label use of tocilizumab strongly suggest that it will be widely applicable for various refractory inflammatory autoimmune diseases. In this context, the mechanism for the continual synthesis of IL-6 needs to be elucidated in order to investigate the pathogenesis of specific diseases and to facilitate the development of more specific therapeutic strategies.
Collapse
Affiliation(s)
- Toshio Tanaka
- Department of Clinical Application of Biologics, Osaka University Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Masashi Narazaki
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Atsushi Ogata
- Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan; Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Tadamitsu Kishimoto
- Laboratory of Immune Regulation, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
149
|
Role of regulatory B cells in chronic intestinal inflammation: association with pathogenesis of Crohn's disease. Inflamm Bowel Dis 2014; 20:315-28. [PMID: 24390063 DOI: 10.1097/01.mib.0000437983.14544.d5] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The role of regulatory B cells (Bregs) producing interleukin (IL)-10 in the pathogenesis of inflammatory bowel diseases remains unknown. We investigated IL-10 production in B cells from patients with inflammatory bowel diseases and immunoregulatory functions of Bregs in experimental colitis mouse models. CpG DNA-induced IL-10 production in peripheral blood B cells isolated from patients with inflammatory bowel diseases and control subjects was examined. CD19 and CD1d were used for evaluating possible cell surface markers of Bregs. Colitis models of severe combined immunodeficiency mice were established by adoptive transfer of whole CD4 T cells or regulatory T cell (Treg)-depleted T cells (CD4CD25) isolated from SAMP1/Yit mice and the function of Bregs in intestinal inflammation was elucidated by evaluating the effects of cotransfer of whole or Breg-depleted B cells. CpG DNA-induced IL-10 production was significantly decreased in B cells from patients with Crohn's disease (CD), as compared with those from healthy controls, whereas Bregs were found to be enriched in a population of CD19 and CD1d B cells isolated from both human and mouse samples. The severity of intestinal inflammation was significantly increased in the Breg-depleted mice, with similar results also found in adoptive transfer colitis model mice even after Treg depletion. Our findings show that Bregs, characterized by the cell surface markers CD19 and CD1d, significantly reduced experimental colitis regardless of the presence or absence of Tregs. These results suggest that a deficiency or decrease of Bregs function exacerbates intestinal inflammation, which may be associated with the pathogenesis of CD.
Collapse
|
150
|
Yoshida Y, Tanaka T. Interleukin 6 and rheumatoid arthritis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:698313. [PMID: 24524085 PMCID: PMC3913495 DOI: 10.1155/2014/698313] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/19/2013] [Accepted: 12/11/2013] [Indexed: 12/12/2022]
Abstract
Interleukin-6 (IL-6) is a representative cytokine featuring pleiotropic activity and redundancy. A transient synthesis of IL-6 contributes to host defense against infectious agents and tissue injuries by inducing acute phase reactions and immunological and hematopoietic responses. However, uncontrolled persistent production of IL-6 may lead to the development of several immune-mediated diseases. Rheumatoid arthritis (RA) is a chronic disease with joint and systemic inflammation resulting from immunological abnormalities and it has been found that IL-6 plays a key role in the development of this disease. Clinical trials in various parts of the world of tocilizumab, a humanized anti-IL-6 receptor antibody, have proved its efficacy and tolerable safety either as monotherapy or in combination with disease-modifying antirheumatic drugs. As a result, it is currently used as a first-line biologic for the treatment of moderate-to-severe RA in more than 100 countries. Clarification of the mechanism(s) through which tocilizumab exerts its effect on RA and of the reason(s) why IL-6 is continuously produced in RA can be expected to lead to the best use of this agent for RA patients and aid in investigations into the pathogenesis of RA.
Collapse
Affiliation(s)
- Yuji Yoshida
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Toshio Tanaka
- Department of Clinical Application of Biologics, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita City, Osaka 565-0871, Japan
- Department of Immunopathology, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|