101
|
Mastenbroek TG, Karel MFA, Nagy M, Chayoua W, Korsten EIJ, Coenen DM, Debets J, Konings J, Brouns AE, Leenders PJA, van Essen H, van Oerle R, Heitmeier S, Spronk HM, Kuijpers MJE, Cosemans JMEM. Vascular protective effect of aspirin and rivaroxaban upon endothelial denudation of the mouse carotid artery. Sci Rep 2020; 10:19360. [PMID: 33168914 PMCID: PMC7653917 DOI: 10.1038/s41598-020-76377-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/27/2020] [Indexed: 11/08/2022] Open
Abstract
While in recent trials the dual pathway inhibition with aspirin plus rivaroxaban has shown to be efficacious in patients with atherosclerotic cardiovascular disease, little is known about the effects of this combination treatment on thrombus formation and vascular remodelling upon vascular damage. The aim of this study was to examine the effects of aspirin and/or rivaroxaban on injury-induced murine arterial thrombus formation in vivo and in vitro, vessel-wall remodelling, and platelet-leukocyte aggregates. Temporary ligation of the carotid artery of C57BL/6 mice, fed a western type diet, led to endothelial denudation and sub-occlusive thrombus formation. At the site of ligation, the vessel wall stiffened and the intima-media thickened. Aspirin treatment antagonized vascular stiffening and rivaroxaban treatment led to a positive trend towards reduced stiffening. Local intima-media thickening was antagonized by both aspirin or rivaroxaban treatment. Platelet-leukocyte aggregates and the number of platelets per leukocyte were reduced in aspirin and/or rivaroxaban treatment groups. Furthermore, rivaroxaban restricted thrombus growth and height in vitro. In sum, this study shows vascular protective effects of aspirin and rivaroxaban, upon vascular injury of the mouse artery.
Collapse
Affiliation(s)
- T G Mastenbroek
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht, The Netherlands
| | - M F A Karel
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - M Nagy
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - W Chayoua
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Synapse Research Institute, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - E I J Korsten
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - D M Coenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - J Debets
- Department of Pharmacology & Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - J Konings
- Synapse Research Institute, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - A E Brouns
- Department of Pharmacology & Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - P J A Leenders
- Department of Pharmacology & Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - H van Essen
- Department of Pharmacology & Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - R van Oerle
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - S Heitmeier
- Cardiovascular Research Institute, Bayer AG, Wuppertal, Germany
| | - H M Spronk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - M J E Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - J M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
102
|
Grover SP, Olson TM, Cooley BC, Mackman N. Model-dependent contributions of FXII and FXI to venous thrombosis in mice. J Thromb Haemost 2020; 18:2899-2909. [PMID: 33094904 PMCID: PMC7693194 DOI: 10.1111/jth.15037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/07/2020] [Accepted: 07/17/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The intrinsic pathway factors (F) XII and FXI have been shown to contribute to thrombosis in animal models. We assessed the role of FXII and FXI in venous thrombosis in three distinct mouse models. METHODS Venous thrombosis was assessed in mice genetically deficient for either FXII or FXI. Three models were used: the inferior vena cava (IVC) stasis, IVC stenosis, and femoral vein electrolytic injury models. RESULTS In the IVC stasis model, FXII and FXI deficiency did not affect the size of thrombi but their absence was associated with decreased levels of fibrin(ogen) and an increased level of the neutrophil extracellular trap marker citrullinated histone H3. In contrast, a deficiency of either FXII or FXI resulted in a significant and equivalent reduction in thrombus weight and incidence of thrombus formation in the IVC stenosis model. Thrombi formed in the IVC stenosis model contained significantly higher levels of citrullinated histone H3 compared with the thrombi formed in the IVC stasis model. Deletion of either FXII or FXI also resulted in a significant and equivalent reduction in both fibrin and platelet accumulation in the femoral vein electrolytic injury model. CONCLUSIONS Collectively, these data indicate that FXII and FXI contribute to the size of venous thrombosis in models with blood flow and thrombus composition in a stasis model. This study also demonstrates the importance of using multiple mouse models to assess the role of a given protein in venous thrombosis.
Collapse
Affiliation(s)
- Steven P. Grover
- Division of Hematology and OncologyDepartment of MedicineUNC Blood Research CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Tatianna M. Olson
- Division of Hematology and OncologyDepartment of MedicineUNC Blood Research CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Brian C. Cooley
- Department of Pathology and Laboratory MedicineMcAllister Heart InstituteUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Nigel Mackman
- Division of Hematology and OncologyDepartment of MedicineUNC Blood Research CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA
| |
Collapse
|
103
|
Lei X, MacKeigan DT, Ni H. Control of data variations in intravital microscopy thrombosis models. J Thromb Haemost 2020; 18:2823-2825. [PMID: 33463084 DOI: 10.1111/jth.15062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Xi Lei
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Daniel Thomas MacKeigan
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Heyu Ni
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
104
|
Korff M, Imberg L, Will JM, Bückreiß N, Kalinina SA, Wenzel BM, Kastner GA, Daniliuc CG, Barth M, Ovsepyan RA, Butov KR, Humpf HU, Lehr M, Panteleev MA, Poso A, Karst U, Steinmetzer T, Bendas G, Kalinin DV. Acylated 1H-1,2,4-Triazol-5-amines Targeting Human Coagulation Factor XIIa and Thrombin: Conventional and Microscale Synthesis, Anticoagulant Properties, and Mechanism of Action. J Med Chem 2020; 63:13159-13186. [DOI: 10.1021/acs.jmedchem.0c01635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Marvin Korff
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Lukas Imberg
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Jonas M. Will
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, 48149 Münster, Germany
| | - Nico Bückreiß
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Svetlana A. Kalinina
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Benjamin M. Wenzel
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Gregor A. Kastner
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Constantin G. Daniliuc
- Institute for Organic Chemistry, University of Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Maximilian Barth
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Ruzanna A. Ovsepyan
- Laboratory of Translational Medicine, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Samory Mashela str. 1, GSP-7, 117997 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, 119991 Moscow, Russia
| | - Kirill R. Butov
- Laboratory of Translational Medicine, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Samory Mashela str. 1, GSP-7, 117997 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, 119991 Moscow, Russia
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Matthias Lehr
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Mikhail A. Panteleev
- Laboratory of Translational Medicine, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Samory Mashela str. 1, GSP-7, 117997 Moscow, Russia
- Faculty of Physics, Lomonosov Moscow State University, 1/2 Leninskie gory, 119991 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, 119991 Moscow, Russia
- Faculty of Biological and Medical Physics, Moscow Institute of Physics and Technology, 9 Institutskii per., 141700 Dolgoprudnyi, Russia
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Department of Internal Medicine VIII, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, 48149 Münster, Germany
| | - Torsten Steinmetzer
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Gerd Bendas
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Dmitrii V. Kalinin
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| |
Collapse
|
105
|
Taus F, Salvagno G, Canè S, Fava C, Mazzaferri F, Carrara E, Petrova V, Barouni RM, Dima F, Dalbeni A, Romano S, Poli G, Benati M, De Nitto S, Mansueto G, Iezzi M, Tacconelli E, Lippi G, Bronte V, Minuz P. Platelets Promote Thromboinflammation in SARS-CoV-2 Pneumonia. Arterioscler Thromb Vasc Biol 2020; 40:2975-2989. [PMID: 33052054 PMCID: PMC7682791 DOI: 10.1161/atvbaha.120.315175] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Pulmonary thrombosis is observed in severe acute respiratory syndrome coronavirus 2 pneumonia. Aim was to investigate whether subpopulations of platelets were programmed to procoagulant and inflammatory activities in coronavirus disease 2019 (COVID-19) patients with pneumonia, without comorbidities predisposing to thromboembolism. Approach and Results: Overall, 37 patients and 28 healthy subjects were studied. Platelet-leukocyte aggregates, platelet-derived microvesicles, the expression of P-selectin, and active fibrinogen receptor on platelets were quantified by flow cytometry. The profile of 45 cytokines, chemokines, and growth factors released by platelets was defined by immunoassay. The contribution of platelets to coagulation factor activity was selectively measured. Numerous platelet-monocyte (mean±SE, 67.9±4.9%, n=17 versus 19.4±3.0%, n=22; P<0.0001) and platelet-granulocyte conjugates (34.2±4.04% versus 8.6±0.7%; P<0.0001) were detected in patients. Resting patient platelets had similar levels of P-selectin (10.9±2.6%, n=12) to collagen-activated control platelets (8.7±1.5%), which was not further increased by collagen activation on patient platelets (12.4±2.5%, P=nonsignificant). The agonist-stimulated expression of the active fibrinogen receptor was reduced by 60% in patients (P<0.0001 versus controls). Cytokines (IL [interleukin]-1α, IL-1β, IL-1RA, IL-4, IL-10, IL-13, IL, 17, IL-27, IFN [interferon]-α, and IFN-γ), chemokines (MCP-1/CCL2 [monocyte chemoattractant protein 1]), and growth factors (VEGF [vascular endothelial growth factor]-A/D) were released in significantly larger amounts upon stimulation of COVID-19 platelets. Platelets contributed to increased fibrinogen, VWF (von Willebrand factor), and factor XII in COVID-19 patients. Patients (28.5±0.7 s, n=32), unlike controls (31.6±0.5 s, n=28; P<0.001), showed accelerated factor XII-dependent coagulation. CONCLUSIONS Platelets in COVID-19 pneumonia are primed to spread proinflammatory and procoagulant activities in systemic circulation.
Collapse
Affiliation(s)
- Francesco Taus
- Department of Medicine, Section of General Medicine and Hypertension (T.F., F.C., D.A., R.S., M.P.), University of Verona, Italy
| | - Gianluca Salvagno
- Laboratory of Clinical Biochemistry, Department of Life and Reproduction Sciences (S.G., D.F., P.G., B.M., D.S., L.G.), University of Verona, Italy
| | - Stefania Canè
- Immunology Section, Department of Medicine, University and Hospital Trust of Verona, Italy (C.S., P.V., B.R.M., B.V.)
| | - Cristiano Fava
- Department of Medicine, Section of General Medicine and Hypertension (T.F., F.C., D.A., R.S., M.P.), University of Verona, Italy
| | - Fulvia Mazzaferri
- Department of Diagnostics and Public Health, Section of Infectious Diseases (M.F., C.E., T.E.), University of Verona, Italy
| | - Elena Carrara
- Department of Diagnostics and Public Health, Section of Infectious Diseases (M.F., C.E., T.E.), University of Verona, Italy
| | - Varvara Petrova
- Immunology Section, Department of Medicine, University and Hospital Trust of Verona, Italy (C.S., P.V., B.R.M., B.V.)
| | - Roza Maria Barouni
- Immunology Section, Department of Medicine, University and Hospital Trust of Verona, Italy (C.S., P.V., B.R.M., B.V.)
| | - Francesco Dima
- Laboratory of Clinical Biochemistry, Department of Life and Reproduction Sciences (S.G., D.F., P.G., B.M., D.S., L.G.), University of Verona, Italy
| | - Andrea Dalbeni
- Department of Medicine, Section of General Medicine and Hypertension (T.F., F.C., D.A., R.S., M.P.), University of Verona, Italy
| | - Simone Romano
- Department of Medicine, Section of General Medicine and Hypertension (T.F., F.C., D.A., R.S., M.P.), University of Verona, Italy
| | - Giovanni Poli
- Laboratory of Clinical Biochemistry, Department of Life and Reproduction Sciences (S.G., D.F., P.G., B.M., D.S., L.G.), University of Verona, Italy
| | - Marco Benati
- Laboratory of Clinical Biochemistry, Department of Life and Reproduction Sciences (S.G., D.F., P.G., B.M., D.S., L.G.), University of Verona, Italy
| | | | - Giancarlo Mansueto
- Department of Diagnostic and Public Health, Section of Radiology (M.G.), University of Verona, Italy
| | - Manuela Iezzi
- Center for Advanced Studies and Technology, University G. D'Annunzio of Chieti-Pescara, Italy (I.M.)
| | - Evelina Tacconelli
- Department of Diagnostics and Public Health, Section of Infectious Diseases (M.F., C.E., T.E.), University of Verona, Italy
| | - Giuseppe Lippi
- Laboratory of Clinical Biochemistry, Department of Life and Reproduction Sciences (S.G., D.F., P.G., B.M., D.S., L.G.), University of Verona, Italy
| | - Vincenzo Bronte
- Immunology Section, Department of Medicine, University and Hospital Trust of Verona, Italy (C.S., P.V., B.R.M., B.V.)
| | - Pietro Minuz
- Department of Medicine, Section of General Medicine and Hypertension (T.F., F.C., D.A., R.S., M.P.), University of Verona, Italy
| |
Collapse
|
106
|
Peyron I, Kizlik‐Masson C, Dubois M, Atsou S, Ferrière S, Denis CV, Lenting PJ, Casari C, Christophe OD. Camelid-derived single-chain antibodies in hemostasis: Mechanistic, diagnostic, and therapeutic applications. Res Pract Thromb Haemost 2020; 4:1087-1110. [PMID: 33134775 PMCID: PMC7590285 DOI: 10.1002/rth2.12420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/03/2020] [Accepted: 07/12/2020] [Indexed: 12/16/2022] Open
Abstract
Hemostasis is a complex process involving the concerted action of molecular and vascular components. Its basic understanding as well as diagnostic and therapeutic aspects have greatly benefited from the use of monoclonal antibodies. Interestingly, camelid-derived single-domain antibodies (sdAbs), also known as VHH or nanobodies, have become available during the previous 2 decades as alternative tools in this regard. Compared to classic antibodies, sdAbs are easier to produce and their small size facilitates their engineering and functionalization. It is not surprising, therefore, that sdAbs are increasingly used in hemostasis-related research. In addition, they have the capacity to recognize unique epitopes unavailable to full monoclonal antibodies. This property can be used to develop novel diagnostic tests identifying conformational variants of hemostatic proteins. Examples include sdAbs that bind active but not globular von Willebrand factor or free factor VIIa but not tissue factor-bound factor VIIa. Finally, sdAbs have a high therapeutic potential, exemplified by caplacizumab, a homodimeric sdAb targeting von Willebrand factor that is approved for the treatment of thrombotic thrombocytopenic purpura. In this review, the various applications of sdAbs in thrombosis and hemostasis-related research, diagnostics, and therapeutic strategies will be discussed.
Collapse
Affiliation(s)
- Ivan Peyron
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | | | - Marie‐Daniéla Dubois
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
- EA 7525 VPMCUniversité des AntillesSchoelcherMartiniqueFrance
| | - Sénadé Atsou
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Stephen Ferrière
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Cécile V. Denis
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Peter J. Lenting
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Caterina Casari
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | | |
Collapse
|
107
|
Fang C, Schmaier AH. Novel anti-thrombotic mechanisms mediated by Mas receptor as result of balanced activities between the kallikrein/kinin and the renin-angiotensin systems. Pharmacol Res 2020; 160:105096. [PMID: 32712319 PMCID: PMC7378497 DOI: 10.1016/j.phrs.2020.105096] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 12/17/2022]
Abstract
The risk of thrombosis, a globally growing challenge and a major cause of death, is influenced by various factors in the intravascular coagulation, vessel wall, and cellular systems. Among the contributors to thrombosis, the contact activation system and the kallikrein/kinin system, two overlapping plasma proteolytic systems that are often considered as synonymous, regulate thrombosis from different aspects. On one hand, components of the contact activation system such as factor XII initiates activation of the coagulation proteins promoting thrombus formation on artificial surfaces through factor XI- and possibly prekallikrein-mediated intrinsic coagulation. On the other hand, physiological activation of plasma prekallikrein in the kallikrein/kinin system on endothelial cells liberates bradykinin from associated high-molecular-weight kininogen to stimulate the constitutive bradykinin B2 receptor to generate nitric oxide and prostacyclin to induce vasodilation and counterbalance angiotensin II signaling from the renin-angiotensin system which stimulates vasoconstriction. In addition to vascular tone regulation, this interaction between the kallikrein/kinin and renin-angiotensin systems has a thrombo-regulatory role independent of the contact pathway. At the level of the G-protein coupled receptors of these systems, defective bradykinin signaling due to attenuated bradykinin formation and/or decreased B2 receptor expression, as seen in murine prekallikrein and B2 receptor null mice, respectively, leads to compensatory overexpressed Mas, the receptor for angiotensin-(1-7) of the renin-angiotensin system. Mas stimulation and/or its increased expression contributes to maintaining a healthy vascular homeostasis by generating graded elevation of plasma prostacyclin which reduces thrombosis through two independent pathways: (1) increasing the vasoprotective transcription factor Sirtuin 1 to suppress tissue factor expression, and (2) inhibiting platelet activation. This review will summarize the recent advances in this field that support these understandings. Appreciating these subtle mechanisms help to develop novel anti-thrombotic strategies by targeting the vascular receptors in the renin-angiotensin and the kallikrein/kinin systems to maintain healthy vascular homeostasis.
Collapse
Affiliation(s)
- Chao Fang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and the Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, 430030, China.
| | - Alvin H. Schmaier
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
108
|
DeCortin ME, Brass LF, Diamond SL. Core and shell platelets of a thrombus: A new microfluidic assay to study mechanics and biochemistry. Res Pract Thromb Haemost 2020; 4:1158-1166. [PMID: 33134782 PMCID: PMC7590323 DOI: 10.1002/rth2.12405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/10/2020] [Accepted: 05/08/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Hemostatic clots have a P-selectin positive platelet core covered with a shell of P-selectin negative platelets. OBJECTIVE To develop a new human blood microfluidic assay to interrogate core/shell mechanics. METHODS A 2-stage assay perfused whole blood over collagen/± tissue factor (TF) for 180 seconds at 100 s-1 wall shear rate, followed by buffer perfusion at either 100 s-1 (venous) or 1000 s-1 (arterial). This microfluidic assay used an extended channel height (120 µm), allowing buffer perfusion well before occlusion. RESULTS Clot growth on collagen stopped immediately with buffer exchange, revealing ~10% reduction in platelet fluorescence intensity (at 100 s-1) and ~30% (at 1000 s-1) by 1200 seconds. Thrombin generation (on collagen/TF) reduced erosion at either buffer flow rate. P-selectin-positive platelets were stable (no erosion) against 1000 s-1, in contrast to P-selectin negative platelets. Thrombin inhibition (with D-Phe-Pro-Arg-CMK) reduced the number of P-selectin-positive platelets and lowered thrombus stability through the reduction of P-selectin-positive platelets. Interestingly, fibrin inhibition (with H-Gly-Pro-Arg-Pro-OH acetate salt) increased the number of P-selectin-positive platelets but did not lower stability, suggesting that fibrin was only in the core region. Thromboxane inhibition reduced P-selectin-positive platelets and caused a nearly 60% reduction of the clot at arterial buffer flow. P2Y1 antagonism reduced clot size and the number of P-selectin-positive platelets and reduced the stability of P-selectin-negative platelets. CONCLUSION The 2-stage assay (extended channel height plus buffer exchange) interrogated platelet stability using human blood. Under all conditions, P-selectin-positive platelets never left the clot.
Collapse
Affiliation(s)
- Michael E. DeCortin
- Department of Chemical and Biomolecular EngineeringInstitute for Medicine and EngineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Lawrence F. Brass
- Department of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Scott L. Diamond
- Department of Chemical and Biomolecular EngineeringInstitute for Medicine and EngineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
109
|
Chaudhry SA, Serrata M, Tomczak L, Higgins S, Ryu J, Laprise D, Enjyoji K, Bekendam R, Kaushik V, Flaumenhaft R, Bendapudi PK. Cationic zinc is required for factor XII recruitment and activation by stimulated platelets and for thrombus formation in vivo. J Thromb Haemost 2020; 18:2318-2328. [PMID: 32542960 PMCID: PMC8147875 DOI: 10.1111/jth.14964] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 05/06/2020] [Accepted: 06/03/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND Although divalent zinc (Zn2+ ) is known to bind factor (F)XII and affect its sensitivity to autoactivation, little is known about the role of Zn2+ in the binding of FXII to platelets, where FXII activation is thought to occur in vivo, and the function of Zn2+ during thrombus formation following vascular injury remains poorly understood. OBJECTIVES To evaluate the role of Zn2+ in platelet-dependent FXIIa generation. METHODS FXII binding to platelets and FXII activation by stimulated platelets were assessed using flow cytometry and a platelet-dependent thrombin generation assay. The mouse cremaster laser injury model was used to evaluate the impact of Zn2+ chelation on thrombus formation in vivo. RESULTS Our data demonstrate that stimulated platelets support FXII-dependent thrombin generation and that FXII activation by platelets requires the presence of Zn2+ . By contrast, thrombin generation by stimulated endothelial cells occurred independently of FXII and Zn2+ . Using flow cytometry, we found that FXII-fluorescein-5-isothiocyanate binds to the surfaces of stimulated platelets in a specific and Zn2+ -dependent manner, whereas resting platelets demonstrated minimal binding. Other physiologically-relevant divalent cations are unable to support this interaction. Consistent with these findings, the Zn2+ -specific chelator ethylenediaminetetraacetic acid calcium disodium salt confers thromboprotection in the mouse cremaster laser injury model without causing increased bleeding. We observed an identical phenotype in FXII null mice tested in the same system. CONCLUSIONS Our results suggest a novel role for Zn2+ in the binding and activation of FXII at the platelet surface, an interaction that appears crucial to FXII-dependent thrombin generation but dispensable for hemostasis.
Collapse
Affiliation(s)
- Sharjeel A. Chaudhry
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA
- George Washington University School of Medicine, Washington, DC
| | - Matthew Serrata
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA
| | - Lindsay Tomczak
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA
| | - Sarah Higgins
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Justine Ryu
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA
- Boston University Medical Center, Boston, MA
| | - Dylan Laprise
- Center for the Development of Therapeutics, Broad Institute, Cambridge, MA
| | - Keiichi Enjyoji
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Roelof Bekendam
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Virendar Kaushik
- Center for the Development of Therapeutics, Broad Institute, Cambridge, MA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Pavan K. Bendapudi
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA
- Harvard Medical School, Boston, MA
- Division of Hematology and Blood Transfusion Service, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
110
|
Wilbs J, Kong XD, Middendorp SJ, Prince R, Cooke A, Demarest CT, Abdelhafez MM, Roberts K, Umei N, Gonschorek P, Lamers C, Deyle K, Rieben R, Cook KE, Angelillo-Scherrer A, Heinis C. Cyclic peptide FXII inhibitor provides safe anticoagulation in a thrombosis model and in artificial lungs. Nat Commun 2020; 11:3890. [PMID: 32753636 PMCID: PMC7403315 DOI: 10.1038/s41467-020-17648-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 07/08/2020] [Indexed: 01/06/2023] Open
Abstract
Inhibiting thrombosis without generating bleeding risks is a major challenge in medicine. A promising solution may be the inhibition of coagulation factor XII (FXII), because its knock-out or inhibition in animals reduced thrombosis without causing abnormal bleeding. Herein, we have engineered a macrocyclic peptide inhibitor of activated FXII (FXIIa) with sub-nanomolar activity (Ki = 370 ± 40 pM) and a high stability (t1/2 > 5 days in plasma), allowing for the preclinical evaluation of a first synthetic FXIIa inhibitor. This 1899 Da molecule, termed FXII900, efficiently blocks FXIIa in mice, rabbits, and pigs. We found that it reduces ferric-chloride-induced experimental thrombosis in mice and suppresses blood coagulation in an extracorporeal membrane oxygenation (ECMO) setting in rabbits, all without increasing the bleeding risk. This shows that FXIIa activity is controllable in vivo with a synthetic inhibitor, and that the inhibitor FXII900 is a promising candidate for safe thromboprotection in acute medical conditions.
Collapse
Affiliation(s)
- Jonas Wilbs
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Xu-Dong Kong
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Simon J Middendorp
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Raja Prince
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland.,Department of Clinical Research, University of Bern, CH-3008, Bern, Switzerland
| | - Alida Cooke
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Caitlin T Demarest
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Mai M Abdelhafez
- Department of Clinical Research, University of Bern, CH-3008, Bern, Switzerland
| | - Kalliope Roberts
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Nao Umei
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Patrick Gonschorek
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Christina Lamers
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Kaycie Deyle
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Robert Rieben
- Department of Clinical Research, University of Bern, CH-3008, Bern, Switzerland
| | - Keith E Cook
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Anne Angelillo-Scherrer
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland.,Department of Clinical Research, University of Bern, CH-3008, Bern, Switzerland
| | - Christian Heinis
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| |
Collapse
|
111
|
Cheng S, Tu M, Liu H, An Y, Du M, Zhu B. A novel heptapeptide derived from Crassostrea gigas shows anticoagulant activity by targeting for thrombin active domain. Food Chem 2020; 334:127507. [PMID: 32688180 DOI: 10.1016/j.foodchem.2020.127507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 06/22/2020] [Accepted: 07/04/2020] [Indexed: 11/15/2022]
Abstract
A novel food-derived anticoagulant heptapeptides (P-3-CG) was isolated and characterized from oyster (Crassostrea gigas) pepsin hydrolysate. P-3-CG competed with fibrinogen against thrombin active domain by a spontaneous and exothermic reaction which was entropically driven. The residue Lys7 of P-3-CG anchored thrombin S1 pocket strongly, which inhibited fibrinogen binding to the thrombin, then blocked the conversion of fibrinogen to fibrin. The fibrinogen clotting time was prolonged to 27.55 s, and the reciprocally authenticated results of dynamic light scattering and scanning electron microscope further explained for fibrinogen clotting time extension. Inhibition of amidolytic activity of thrombin was affected significantly by reaction time and P-3-CG concentration. Furthermore, P-3-CG prolonged activated partial thromboplastin time significantly in vitro/vivo, and decreased the mortality which was confirmed by pulmonary pathological slide results. The obtained results demonstrated that P-3-CG may potentially serve as an alternative food-derived anticoagulant peptide that could be utilized for thrombosis prevention.
Collapse
Affiliation(s)
- Shuzhen Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Maolin Tu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Hanxiong Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yue An
- Clinical Laboratory, The Second Hospital Affiliated to Dalian Medical University, Dalian 116023, Liaoning, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Beiwei Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
112
|
Zwart B, Parker WAE, Storey RF. New Antithrombotic Drugs in Acute Coronary Syndrome. J Clin Med 2020; 9:E2059. [PMID: 32629976 PMCID: PMC7408919 DOI: 10.3390/jcm9072059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/15/2022] Open
Abstract
In recent years, much progress has been made in the field of antithrombotic drugs in acute coronary syndrome (ACS) treatment, as reflected by the introduction of the more potent P2Y12-inhibitors prasugrel and ticagrelor, and novel forms of concomitant anticoagulation, such as fondaparinux and bivalirudin. However, despite substantial improvements in contemporary ACS treatment, there remains residual ischemic risk in this group and hence the need for even more effective antithrombotic drugs, while balancing antithrombotic efficacy against bleeding risk. This review discusses recently introduced and currently developed antiplatelet and anticoagulant drugs in ACS treatment.
Collapse
Affiliation(s)
- Bastiaan Zwart
- Department of Cardiology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands
- Department of Cardiology, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands
| | - William A. E. Parker
- Cardiovascular Research Unit, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK; (W.A.E.P.); (R.F.S.)
- South Yorkshire Cardiothoracic Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S5 7AU, UK
| | - Robert F. Storey
- Cardiovascular Research Unit, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK; (W.A.E.P.); (R.F.S.)
- South Yorkshire Cardiothoracic Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S5 7AU, UK
| |
Collapse
|
113
|
Novel antithrombotic strategies for treatment of venous thromboembolism. Blood 2020; 135:351-359. [PMID: 31917385 DOI: 10.1182/blood.2019000919] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 12/16/2019] [Indexed: 12/25/2022] Open
Abstract
Venous thromboembolism (VTE), which includes deep vein thrombosis (DVT) and pulmonary embolism (PE), is the third most common cause of vascular death after heart attack and stroke. Anticoagulation therapy is the cornerstone of VTE treatment. Despite such therapy, up to 50% of patients with DVT develop postthrombotic syndrome, and up to 4% of patients with PE develop chronic thromboembolic pulmonary hypertension. Therefore, better therapies are needed. Although direct oral anticoagulants are more convenient and safer than warfarin for VTE treatment, bleeding remains the major side effect, particularly in cancer patients. Factor XII and factor XI have emerged as targets for new anticoagulants that may be safer. To reduce the complications of VTE, attenuation of thrombin activatable fibrinolysis inhibitor activity is under investigation in PE patients to enhance endogenous fibrinolysis, whereas blockade of leukocyte interaction with the vessel wall is being studied to reduce the inflammation that contributes to postthrombotic syndrome in DVT patients. Focusing on these novel antithrombotic strategies, this article explains why safer anticoagulants are needed, provides the rationale for factor XII and XI as targets for such agents, reviews the data on the factor XII- and factor XI-directed anticoagulants under development, describes novel therapies to enhance fibrinolysis and decrease inflammation in PE and DVT patients, respectively, and offers insights into the opportunities for these novel VTE therapies.
Collapse
|
114
|
Combination of tumour-infarction therapy and chemotherapy via the co-delivery of doxorubicin and thrombin encapsulated in tumour-targeted nanoparticles. Nat Biomed Eng 2020; 4:732-742. [PMID: 32572197 DOI: 10.1038/s41551-020-0573-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 05/18/2020] [Indexed: 12/22/2022]
Abstract
Drugs that induce thrombosis in the tumour vasculature have not resulted in long-term tumour eradication owing to tumour regrowth from tissue in the surviving rim of the tumour, where tumour cells can derive nutrients from adjacent non-tumoral blood vessels and tissues. Here, we report the performance of a combination of tumour-infarction therapy and chemotherapy, delivered via chitosan-based nanoparticles decorated with a tumour-homing peptide targeting fibrin-fibronectin complexes overexpressed on tumour-vessel walls and in tumour stroma, and encapsulating the coagulation-inducing protease thrombin and the chemotherapeutic doxorubicin. Systemic administration of the nanoparticles into mice and rabbits bearing subcutaneous or orthotopic tumours resulted in higher tumour growth suppression and decreased tumour recurrence than nanoparticles delivering only thrombin or doxorubicin, with histological and haematological analyses indicating an absence of detectable toxicity. The co-administration of a cytotoxic payload and a protease to elicit vascular infarction in tumours with biodegradable tumour-targeted nanoparticles represents a promising strategy for improving the therapeutic index of coagulation-based tumour therapy.
Collapse
|
115
|
Nakayama M, Miyagawa H, Kuranami Y, Tsunooka-Ota M, Yamaguchi Y, Kojima-Aikawa K. Annexin A4 inhibits sulfatide-induced activation of coagulation factor XII. J Thromb Haemost 2020; 18:1357-1369. [PMID: 32145147 DOI: 10.1111/jth.14789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Factor XII (FXII) is a plasma serine protease that initiates the intrinsic pathway of blood coagulation upon contact with anionic substances, such as the sulfated glycolipid sulfatide. Annexins (ANXs) have been implicated in the regulation of the blood coagulation reaction by binding to anionic surfaces composed of phospholipids and sulfated glycoconjugates, but their physiological importance is only partially understood. OBJECTIVE To test the hypothesis that ANXs are involved in suppressing the intrinsic pathway initiated by sulfatide, we examined the effect of eight recombinant ANX proteins on the intrinsic coagulation reaction and their sulfatide binding activities. METHODS Recombinant ANXs were prepared in Escherichia coli expression systems and their anticoagulant effects on the intrinsic pathway initiated by sulfatide were examined using plasma clotting assay and chromogenic assay. ANXA4 active sites were identified by alanine scanning and fold deletion in the core domain. RESULTS AND CONCLUSIONS We found that ANXA3, ANXA4, and ANXA5 strongly inhibited sulfatide-induced plasma coagulation. Wild-type and mutated ANXA4 were used to clarify the molecular mechanism involved in inhibition. ANXA4 inhibited sulfatide-induced auto-activation of FXII to FXIIa and the conversion of its natural substrate FXI to FXIa but showed no effect on the protease activity of FXIIa or FXIa. Alanine scanning showed that substitution of the Ca2+ -binding amino acid residue in the fourth fold of the core domain of ANXA4 reduced anticoagulant activity, and deletion of the entire fourth fold of the core domain resulted in complete loss of anticoagulant activity.
Collapse
Affiliation(s)
- Moeka Nakayama
- Division of Advanced Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
- Program for Leading Graduate Schools, Ochanomizu University, Tokyo, Japan
| | - Hitomi Miyagawa
- Division of Advanced Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Yumiko Kuranami
- Division of Advanced Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Miyuki Tsunooka-Ota
- Division of Advanced Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Yoshiki Yamaguchi
- Synthetic Cellular Chemistry Laboratory, RIKEN, Saitama, Japan
- Laboratory of Pharmaceutical Physical Chemistry, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Kyoko Kojima-Aikawa
- Natural Science Division, Faculty of Core Research, Ochanomizu University, Tokyo, Japan
- Institute for Human Life Innovation, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
116
|
Mohammed BM, Monroe DM, Gailani D. Mouse models of hemostasis. Platelets 2020; 31:417-422. [PMID: 31992118 PMCID: PMC7244364 DOI: 10.1080/09537104.2020.1719056] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 02/02/2023]
Abstract
Hemostasis is the normal process that produces a blood clot at a site of vascular injury. Mice are widely used to study hemostasis and abnormalities of blood coagulation because their hemostatic system is similar in most respects to that of humans, and their genomes can be easily manipulated to create models of inherited human coagulation disorders. Two of the most widely used techniques for assessing hemostasis in mice are the tail bleeding time (TBT) and saphenous vein bleeding (SVB) models. Here we discuss the use of these methods in the evaluation of hemostasis, and the advantages and limits of using mice as surrogates for studying hemostasis in humans.
Collapse
Affiliation(s)
- Bassem M. Mohammed
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
- Department of Pathology and Immunology, Washington University, St. Louis, MO
| | - Dougald M. Monroe
- UNC Blood Research Center and Hematology/Oncology, University of North Carolina, Chapel Hill, NC
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| |
Collapse
|
117
|
Mok SWF, Wong VKW, Lo HH, de Seabra Rodrigues Dias IR, Leung ELH, Law BYK, Liu L. Natural products-based polypharmacological modulation of the peripheral immune system for the treatment of neuropsychiatric disorders. Pharmacol Ther 2020; 208:107480. [DOI: 10.1016/j.pharmthera.2020.107480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/31/2019] [Indexed: 02/06/2023]
|
118
|
Noubouossie DF, Henderson MW, Mooberry M, Ilich A, Ellsworth P, Piegore M, Skinner SC, Pawlinski R, Welsby I, Renné T, Hoffman M, Monroe DM, Key NS. Red blood cell microvesicles activate the contact system, leading to factor IX activation via 2 independent pathways. Blood 2020; 135:755-765. [PMID: 31971571 PMCID: PMC7059516 DOI: 10.1182/blood.2019001643] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 01/08/2020] [Indexed: 01/01/2023] Open
Abstract
Storage lesion-induced, red cell-derived microvesicles (RBC-MVs) propagate coagulation by supporting the assembly of the prothrombinase complex. It has also been reported that RBC-MVs initiate coagulation via the intrinsic pathway. To elucidate the mechanism(s) of RBC-MV-induced coagulation activation, the ability of storage lesion-induced RBC-MVs to activate each zymogen of the intrinsic pathway was assessed in a buffer system. Simultaneously, the thrombin generation (TG) assay was used to assess their ability to initiate coagulation in plasma. RBC-MVs directly activated factor XII (FXII) or prekallikrein, but not FXI or FIX. RBC-MVs initiated TG in normal pooled plasma and in FXII- or FXI-deficient plasma, but not in FIX-deficient plasma, suggesting an alternate pathway that bypasses both FXII and FXI. Interestingly, RBC-MVs generated FIXa in a prekallikrein-dependent manner. Similarly, purified kallikrein activated FIX in buffer and initiated TG in normal pooled plasma, as well as FXII- or FXI-deficient plasma, but not FIX-deficient plasma. Dual inhibition of FXIIa by corn trypsin inhibitor and kallikrein by soybean trypsin inhibitor was necessary for abolishing RBC-MV-induced TG in normal pooled plasma, whereas kallikrein inhibition alone was sufficient to abolish TG in FXII- or FXI-deficient plasma. Heating RBC-MVs at 60°C for 15 minutes or pretreatment with trypsin abolished TG, suggesting the presence of MV-associated proteins that are essential for contact activation. In summary, RBC-MVs activate both FXII and prekallikrein, leading to FIX activation by 2 independent pathways: the classic FXIIa-FXI-FIX pathway and direct kallikrein activation of FIX. These data suggest novel mechanisms by which RBC transfusion mediates inflammatory and/or thrombotic outcomes.
Collapse
Affiliation(s)
| | - Michael W Henderson
- UNC Blood Research Center, and
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Anton Ilich
- Department of Medicine
- UNC Blood Research Center, and
| | - Patrick Ellsworth
- Department of Medicine
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Mark Piegore
- Department of Medicine
- UNC Blood Research Center, and
| | - Sarah C Skinner
- Department of Medicine
- UNC Blood Research Center, and
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Ian Welsby
- Department of Anesthesiology, Duke University, Durham, NC
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and
| | - Maureane Hoffman
- Department of Pathology, Veteran Affairs Medical Center, Durham, NC
| | | | - Nigel S Key
- Department of Medicine
- UNC Blood Research Center, and
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
119
|
Central venous catheter-related thrombosis in children and adults. Thromb Res 2020; 187:103-112. [DOI: 10.1016/j.thromres.2020.01.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/03/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
|
120
|
Design and characterization of α1-antitrypsin variants for treatment of contact system-driven thromboinflammation. Blood 2020; 134:1658-1669. [PMID: 31366623 DOI: 10.1182/blood.2019000481] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/22/2019] [Indexed: 01/15/2023] Open
Abstract
The contact system produces the inflammatory peptide bradykinin and contributes to experimental thrombosis. C1 esterase-inhibitor (C1INH) deficiency or gain-of-function mutations in factor XII (FXII) cause hereditary angioedema, a life-threatening tissue swelling disease. C1INH is a relatively weak contact system enzyme inhibitor. Although α1-antitrypsin (α1AT) does not naturally inhibit contact system enzymes, a human mutation (M358R; α1AT-Pittsburgh) changes it into a powerful broad-spectrum enzyme inhibitor. It blocks the contact system, but also thrombin and activated protein C (APC), making it an unattractive candidate for therapeutic contact system blockade. We adapted the reactive center loop of α1AT-Pittsburgh (AIPR/S) to overcome these obstacles. Two α1AT variants (SMTR/S and SLLR/S) strongly inhibit plasma kallikrein, activated FXII, and plasmin. α1AT-SMTR/S no longer inhibits thrombin, but residually inhibits APC. In contrast, α1AT-SLLR/S residually inhibits thrombin, but no longer APC. Additional modification at the P1' position (S→V) eliminates residual inhibition of thrombin and APC for both variants, while retaining their properties as contact system inhibitors. Both α1AT-SMTR/V and -SLLR/V are superior to C1INH in reducing bradykinin production in plasma. Owing to their capacity to selectively block contact system-driven coagulation, both variants block vascular occlusion in an in vivo model for arterial thrombosis. Furthermore, both variants block acute carrageenan-induced tissue edema in mice. Finally, α1AT-SLLR/V, our most powerful candidate, suppresses epithelial leakage of the gut in a mouse model of colitis. Our findings confirm that redesign of α1AT strongly alters its inhibitory behavior and can be used for the treatment of contact system-mediated thrombosis and inflammation.
Collapse
|
121
|
Wallisch M, Lorentz CU, Lakshmanan HHS, Johnson J, Carris MR, Puy C, Gailani D, Hinds MT, McCarty OJT, Gruber A, Tucker EI. Antibody inhibition of contact factor XII reduces platelet deposition in a model of extracorporeal membrane oxygenator perfusion in nonhuman primates. Res Pract Thromb Haemost 2020; 4:205-216. [PMID: 32110750 PMCID: PMC7040549 DOI: 10.1002/rth2.12309] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The contact factor XII (FXII) activates upon contact with a variety of charged surfaces. Activated FXII (FXIIa) activates factor XI, which activates factor IX, resulting in thrombin generation, platelet activation, and fibrin formation. In both in vitro and in vivo rabbit models, components of medical devices, including extracorporeal oxygenators, are known to incite fibrin formation in a FXII-dependent manner. Since FXII has no known role in hemostasis and its inhibition is therefore likely a safe antithrombotic approach, we investigated whether FXII inhibition also reduces accumulation of platelets in extracorporeal oxygenators. OBJECTIVES We aimed to determine the effect of FXII inhibition on platelet deposition in perfused extracorporeal membrane oxygenators in nonhuman primates. METHODS A potent FXII neutralizing monoclonal antibody, 5C12, was administered intravenously to block contact activation in baboons. Extracorporeal membrane oxygenators were temporarily deployed into chronic arteriovenous access shunts. Radiolabeled platelet deposition in oxygenators was quantified in real time using gamma camera imaging. Biochemical assays were performed to characterize the method of action of 5C12. RESULTS The anti-FXII monoclonal antibody 5C12 recognized both the alpha and beta forms of human and baboon FXII by binding to the protease-containing domain, and inhibited FXIIa activity. Administration of 5C12 to baboons reduced platelet deposition and fibrin formation in the extracorporeal membrane oxygenators, in both the presence and absence of systemic low-dose unfractionated heparin. The antiplatelet dose of 5C12 did not cause measurable increases in template bleeding times in baboons. CONCLUSIONS FXII represents a possible therapeutic and safe target for reducing platelet deposition and fibrin formation during medical interventions including extracorporeal membrane oxygenation.
Collapse
Affiliation(s)
- Michael Wallisch
- Department of Biomedical EngineeringOregon Health & Science UniversityPortlandORUSA
- Aronora, Inc.PortlandORUSA
| | - Christina U. Lorentz
- Department of Biomedical EngineeringOregon Health & Science UniversityPortlandORUSA
- Aronora, Inc.PortlandORUSA
| | | | - Jennifer Johnson
- Department of Biomedical EngineeringOregon Health & Science UniversityPortlandORUSA
| | - Marschelle R. Carris
- Department of Biomedical EngineeringOregon Health & Science UniversityPortlandORUSA
- Aronora, Inc.PortlandORUSA
| | - Cristina Puy
- Department of Biomedical EngineeringOregon Health & Science UniversityPortlandORUSA
| | - David Gailani
- Department of Pathology, Microbiology, and ImmunologyVanderbilt University School of MedicineNashvilleTNUSA
| | - Monica T. Hinds
- Department of Biomedical EngineeringOregon Health & Science UniversityPortlandORUSA
| | - Owen J. T. McCarty
- Department of Biomedical EngineeringOregon Health & Science UniversityPortlandORUSA
- Division of Hematology & Medical OncologyDepartment of MedicineOregon Health & Science UniversityPortlandORUSA
| | - András Gruber
- Department of Biomedical EngineeringOregon Health & Science UniversityPortlandORUSA
- Aronora, Inc.PortlandORUSA
- Division of Hematology & Medical OncologyDepartment of MedicineOregon Health & Science UniversityPortlandORUSA
| | - Erik I. Tucker
- Department of Biomedical EngineeringOregon Health & Science UniversityPortlandORUSA
- Aronora, Inc.PortlandORUSA
| |
Collapse
|
122
|
Abstract
Activation of the intrinsic pathway of coagulation contributes to the pathogenesis of arterial and venous thrombosis. Critical insights into the involvement of intrinsic pathway factors have been derived from the study of gene-specific knockout animals and targeted inhibitors. Importantly, preclinical studies have indicated that targeting components of this pathway, including FXI (factor XI), FXII, and PKK (prekallikrein), reduces thrombosis with no significant effect on protective hemostatic pathways. This review highlights the advances made from studying the intrinsic pathway using gene-specific knockout animals and inhibitors in models of arterial and venous thrombosis. Development of inhibitors of activated FXI and FXII may reduce thrombosis with minimal increases in bleeding compared with current anticoagulant drugs.
Collapse
Affiliation(s)
- Steven P Grover
- From the Division of Hematology and Oncology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill
| | - Nigel Mackman
- From the Division of Hematology and Oncology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill
| |
Collapse
|
123
|
Wang Y, Ivanov I, Smith SA, Gailani D, Morrissey JH. Polyphosphate, Zn 2+ and high molecular weight kininogen modulate individual reactions of the contact pathway of blood clotting. J Thromb Haemost 2019; 17:2131-2140. [PMID: 31420909 PMCID: PMC6893101 DOI: 10.1111/jth.14612] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/09/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Inorganic polyphosphate modulates the contact pathway of blood clotting, which is implicated in thrombosis and inflammation. Polyphosphate polymer lengths are highly variable, with shorter polymers (approximately 60-100 phosphates) secreted from human platelets, and longer polymers (up to thousands of phosphates) in microbes. We previously reported that optimal triggering of clotting via the contact pathway requires very long polyphosphates, although the impact of shorter polyphosphate polymers on individual proteolytic reactions of the contact pathway was not interrogated. OBJECTIVES AND METHODS We conducted in vitro measurements of enzyme kinetics to investigate the ability of varying polyphosphate sizes, together with high molecular weight kininogen and Zn2+ , to mediate four individual proteolytic reactions of the contact pathway: factor XII autoactivation, factor XII activation by kallikrein, prekallikrein activation by factor XIIa, and prekallikrein autoactivation. RESULTS The individual contact pathway reactions were differentially dependent on polyphosphate length. Very long-chain polyphosphate was required to support factor XII autoactivation, whereas platelet-size polyphosphate significantly accelerated the activation of factor XII by kallikrein, and the activation of prekallikrein by factor XIIa. Intriguingly, polyphosphate did not support prekallikrein autoactivation. We also report that high molecular weight kininogen was required only when kallikrein was the enzyme (ie, FXII activation by kallikrein), whereas Zn2+ was required only when FXII was the substrate (ie, FXII activation by either kallikrein or FXIIa). Activation of prekallikrein by FXIIa required neither Zn2+ nor high molecular weight kininogen. CONCLUSIONS Platelet polyphosphate and Zn2+ can promote subsets of the reactions of the contact pathway, with implications for a variety of disease states.
Collapse
Affiliation(s)
- Yuqi Wang
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ivan Ivanov
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephanie A. Smith
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David Gailani
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James H. Morrissey
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
124
|
Abstract
Recent advances in our understanding of the contribution of thrombin generation to arterial thrombosis and the role of platelets in venous thrombosis have prompted new treatment paradigms. Nonetheless, bleeding remains the major side effect of such treatments spurring the quest for new antithrombotic regimens with better benefit-risk profiles and for safer anticoagulants for existing and new indications. The aims of this article are to review the results of recent trials aimed at enhancing the benefit-risk profile of antithrombotic therapy and explain how these findings are changing our approach to the management of arterial and venous thrombosis. Focusing on these 2 aspects of thrombosis management, this article discusses 4 advances: (1) the observation that in some indications, lowering the dose of some direct oral anticoagulants reduces the risk of bleeding without compromising efficacy, (2) the recognition that aspirin is not only effective for secondary prevention of atherothrombosis but also for prevention of venous thromboembolism, (3) the finding that dual pathway inhibition with the combination of low-dose rivaroxaban to attenuate thrombin generation plus aspirin to reduce thromboxane A2-mediated platelet activation is superior to aspirin or rivaroxaban alone for prevention of atherothrombosis in patients with coronary or peripheral artery disease, and (4) the development of inhibitors of factor XI or XII as potentially safer anticoagulants.
Collapse
Affiliation(s)
- Noel C Chan
- From the Thrombosis and Atherosclerosis Research Institute and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jeffrey I Weitz
- From the Thrombosis and Atherosclerosis Research Institute and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
125
|
Peng B, Xue G, Xu D, Feng Z, Chen J, Huang M, Lu H, Gong L. Expression and purification of recombinant serine protease domain of human coagulation factor XII in Pichia pastoris. Biosci Biotechnol Biochem 2019; 83:1815-1821. [DOI: 10.1080/09168451.2019.1621151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
ABSTRACT
Human coagulation factor XII, the initiating factor in the intrinsic coagulation pathway, is critical for pathological thrombosis but not for hemostasis. Pharmacologic inhibition of factor XII is an attractive alternative in providing protection from pathologic thrombus formation while minimizing hemorrhagic risk. Large quantity of recombinant active factor XII is required for screening inhibitors and further research. In the present study, we designed and expressed the recombinant serine protease domain of factor XII in Pichia pastoris strain X-33, which is a eukaryotic expression model organism with low cost. The purification protocol was simplified and the protein yield was high (~20 mg/L medium). The purified serine protease domain of factor XII behaved homogeneously as a monomer, exhibited comparable activity with the human βFXIIa, and accelerated clot formation in human plasma. This study provides the groundwork for factor XII inhibitors screening and further research.
Collapse
Affiliation(s)
- Bangya Peng
- Department of Biochemistry, Zunyi Medical University, Zunyi, China
| | - Guangpu Xue
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Dongfang Xu
- Department of Biochemistry, Zunyi Medical University, Zunyi, China
| | - Zanjie Feng
- Department of Biochemistry, Zunyi Medical University, Zunyi, China
| | - Jing Chen
- Department of Biochemistry, Zunyi Medical University, Zunyi, China
| | | | - Hongling Lu
- Department of Biochemistry, Zunyi Medical University, Zunyi, China
| | - Lihu Gong
- Department of Biochemistry, Zunyi Medical University, Zunyi, China
| |
Collapse
|
126
|
Anticoagulation With an Inhibitor of Factors XIa and XIIa During Cardiopulmonary Bypass. J Am Coll Cardiol 2019; 74:2178-2189. [DOI: 10.1016/j.jacc.2019.08.1028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/01/2019] [Indexed: 11/20/2022]
|
127
|
Schmaier AH, Stavrou EX. Factor XII - What's important but not commonly thought about. Res Pract Thromb Haemost 2019; 3:599-606. [PMID: 31624779 PMCID: PMC6781921 DOI: 10.1002/rth2.12235] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/28/2019] [Accepted: 05/18/2019] [Indexed: 12/20/2022] Open
Abstract
Factor XII (FXII) becomes a serine protease when blood is exposed to artificial medical surfaces or when pathologic surfaces arise in disease states leading to its autoactivation. Initiation of the blood coagulation cascade was the first recognized activity of FXIIa. Blocking FXIIa activity formed on artificial medical surfaces should reduce induced blood coagulation leading to thrombosis. In contrast to FXII enzymatic activities, less is known about zymogen FXII functions. Studies show that zymogen FXII has biologic activity in various cells in vivo. In endothelium, FXII stimulates cell growth and proliferation and, in vivo, neoangiogenesis after injury. In fibroblasts, transforming growth factor-β increases FXII expression, which in turn stimulates fibroblast proliferation, contributing to tissue fibrosis. In neutrophils, FXII stimulates Akt2 to initiate neutrophil adhesion, migration, and chemotaxis, priming events leading to NETosis. Factor FXII deficiency leads to decreased neutrophil recruitment and improved wound healing. In dendritic cells, FXII contributes to neuroinflammation, and its deficiency or pharmacologic inhibition renders mice less susceptible to autoimmune encephalomyelitis. These combined studies indicate that FXII also contributes to multiple components of the inflammatory response. In sum, targeting FXII's biologic activities may provide novel approaches to reduce thrombosis and the inflammatory response in various disease states.
Collapse
Affiliation(s)
- Alvin H. Schmaier
- Department of MedicineCase Western Reserve UniversityClevelandOhio
- Department of MedicineUniversity Hospitals Cleveland Medical CenterClevelandOhio
| | - Evi X. Stavrou
- Department of MedicineCase Western Reserve UniversityClevelandOhio
- Department of MedicineVA Northeast Ohio Healthcare SystemClevelandOhio
| |
Collapse
|
128
|
Govers-Riemslag JWP, Konings J, Cosemans JMEM, van Geffen JP, de Laat B, Heemskerk JWM, Dargaud Y, Ten Cate H. Impact of Deficiency of Intrinsic Coagulation Factors XI and XII on Ex Vivo Thrombus Formation and Clot Lysis. TH OPEN 2019; 3:e273-e285. [PMID: 31511847 PMCID: PMC6736668 DOI: 10.1055/s-0039-1693485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/07/2019] [Indexed: 12/11/2022] Open
Abstract
The contributions of coagulation factor XI (FXI) and FXII to human clot formation is not fully known. Patients with deficiency in FXI have a variable mild bleeding risk, whereas FXII deficiency is not associated with bleeding. These phenotypes make FXII and FXI attractive target proteins in anticoagulant therapy. Here, we studied the mechanisms of fibrin clot formation, stability, and fibrinolytic degradation in patients with severe FXI or FXII deficiency. Thrombin generation was triggered in platelet-poor (PPP) and platelet-rich plasma (PRP) with the biological FXII trigger sulfatides. Intrinsic and extrinsic thrombus formation and degradation in whole blood were determined with rotational thromboelastometry (ROTEM). Clot formation under flow was assessed by perfusion of whole blood over collagen microspots with(out) tissue factor (TF). Thrombin generation and clot formation were delayed in FXII- and FXI-deficient patients triggered with sulfatides. In FXI-deficient plasma, this delay was more pronounced in PRP compared to PPP. In whole blood of FXII-deficient patients, clots were smaller but resistance to fibrinolysis was normal. In whole blood of FXI-deficient patients, clot formation was normal but the time to complete fibrinolysis was prolonged. In flow chamber experiments triggered with collagen/TF, platelet coverage was reduced in severe compared with moderate FXI deficiency, and fibrin formation was impaired. We conclude that quantitative defects in FXII and FXI have a substantial impact on contact activation-triggered coagulation. Furthermore, FXI deficiency has a dose-dependent suppressing effect on flow-mediated and platelet/TF-dependent clot formation. These last data highlight the contribution of particularly FXI to hemostasis.
Collapse
Affiliation(s)
- José W P Govers-Riemslag
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Joke Konings
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands.,Synapse Research Institute, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Judith M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Johanna P van Geffen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Bas de Laat
- Synapse Research Institute, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Yesim Dargaud
- Unité d 'Hémostase Clinique, Hôpital Cardiologique Louis Pradel, Hospices Civils de Lyon, Bron, France
| | - Hugo Ten Cate
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
129
|
Maas C. Plasminflammation-An Emerging Pathway to Bradykinin Production. Front Immunol 2019; 10:2046. [PMID: 31507620 PMCID: PMC6719523 DOI: 10.3389/fimmu.2019.02046] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/13/2019] [Indexed: 11/16/2022] Open
Abstract
Plasminogen activation is essential for fibrinolysis—the breakdown of fibrin polymers in blood clots. Besides this important function, plasminogen activation participates in a wide variety of inflammatory conditions. One of these conditions is hereditary angioedema (HAE), a rare disease with characteristic attacks of aggressive tissue swelling due to unregulated production and activity of the inflammatory mediator bradykinin. Plasmin was already implicated in this disease decades ago, but a series of recent discoveries have made it clear that plasmin actively contributes to this pathology. Collective evidence points toward an axis in which the plasminogen activation system and the contact system (which produces bradykinin) are mechanistically coupled. This is amongst others supported by findings in subtypes of HAE that are caused by gain-of-function mutations in the genes that respectively encode factor XII or plasminogen, as well as clinical experience with the antifibrinolytic agents in HAE. The concept of a link between plasminogen activation and the contact system helps us to explain the inflammatory side effects of fibrinolytic therapy, presenting as angioedema or tissue edema. Furthermore, these observations motivate the development and characterization of therapeutic agents that disconnect plasminogen activation from bradykinin production.
Collapse
Affiliation(s)
- Coen Maas
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
130
|
Renné T, Stavrou EX. Roles of Factor XII in Innate Immunity. Front Immunol 2019; 10:2011. [PMID: 31507606 PMCID: PMC6713930 DOI: 10.3389/fimmu.2019.02011] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022] Open
Abstract
Factor XII (FXII) is the zymogen of serine protease, factor XIIa (FXIIa). FXIIa enzymatic activities have been extensively studied and FXIIa inhibition is emerging as a promising target to treat or prevent thrombosis without creating a hemostatic defect. FXII and plasma prekallikrein reciprocally activate each other and result in liberation of bradykinin. Due to its unique structure among coagulation factors, FXII exerts mitogenic activity in endothelial and smooth muscle cells, indicating that zymogen FXII has activities independent of its protease function. A growing body of evidence has revealed that both FXII and FXIIa upregulate neutrophil functions, contribute to macrophage polarization and induce T-cell differentiation. In vivo, these signaling activities contribute to host defense against pathogens, mediate the development of neuroinflammation, influence wound repair and may facilitate cancer maintenance and progression. Here, we review the roles of FXII in innate immunity as they relate to non-sterile and sterile immune responses.
Collapse
Affiliation(s)
- Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Evi X Stavrou
- Section of Hematology-Oncology, Department of Medicine, Louis Stokes Cleveland Veterans Administration Medical Center, VA Northeast Ohio Healthcare System, Cleveland, OH, United States.,Hematology and Oncology Division, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
131
|
Chen J, Diamond SL. Reduced model to predict thrombin and fibrin during thrombosis on collagen/tissue factor under venous flow: Roles of γ'-fibrin and factor XIa. PLoS Comput Biol 2019; 15:e1007266. [PMID: 31381558 PMCID: PMC6695209 DOI: 10.1371/journal.pcbi.1007266] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/15/2019] [Accepted: 07/08/2019] [Indexed: 01/29/2023] Open
Abstract
During thrombosis, thrombin generates fibrin, however fibrin reversibly binds thrombin with low affinity E-domain sites (KD = 2.8 μM) and high affinity γ’-fibrin sites (KD = 0.1 μM). For blood clotting on collagen/tissue factor (1 TF-molecule/μm2) at 200 s-1 wall shear rate, high μM-levels of intraclot thrombin suggest robust prothrombin penetration into clots. Setting intraclot zymogen concentrations to plasma levels (and neglecting cofactor rate limitations) allowed the linearization of 7 Michaelis-Menton reactions between 6 species to simulate intraclot generation of: Factors FXa (via TF/VIIa or FIXa), FIXa (via TF/FVIIa or FXIa), thrombin, fibrin, and FXIa. This reduced model [7 rates, 2 KD’s, enzyme half-lives~1 min] predicted the measured clot elution rate of thrombin-antithrombin (TAT) and fragment F1.2 in the presence and absence of the fibrin inhibitor Gly-Pro-Arg-Pro. To predict intraclot fibrin reaching 30 mg/mL by 15 min, the model required fibrinogen penetration into the clot to be strongly diffusion-limited (actual rate/ideal rate = 0.05). The model required free thrombin in the clot (~100 nM) to have an elution half-life of ~2 sec, consistent with measured albumin elution, with most thrombin (>99%) being fibrin-bound. Thrombin-feedback activation of FXIa became prominent and reached 5 pM FXIa at >500 sec in the simulation, consistent with anti-FXIa experiments. In predicting intrathrombus thrombin and fibrin during 15-min microfluidic experiments, the model revealed “cascade amplification” from 30 pM levels of intrinsic tenase to 15 nM prothrombinase to 15 μM thrombin to 90 μM fibrin. Especially useful for multiscale simulation, this reduced model predicts thrombin and fibrin co-regulation during thrombosis under flow. During blood clotting events, a complex series of reaction are involved. Simulation gives insights to the concentration of different enzymes which are at too low of concentration to be detected. However, the models are often large and difficult to solve for clotting under flow conditions. With a thin film approximation, we were able to simplify clotting under flow with parameters from literature, with only 3 adjusted in order to fit the experimental data. This model gave insights into the dynamics of the species involved, and the roles of γ’-fibrin and thrombin feedback activation. This reduced model may be useful in further multiscale simulations.
Collapse
Affiliation(s)
- Jason Chen
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Scott L. Diamond
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
132
|
Heestermans M, de Jong A, van Tilburg S, Reitsma PH, Versteeg HH, Spronk HM, van Vlijmen BJ. Use of “C9/11 Mismatch” Control siRNA Reveals Sequence-Related Off-Target Effect on Coagulation of an siRNA Targeting Mouse Coagulation Factor XII. Nucleic Acid Ther 2019; 29:218-223. [DOI: 10.1089/nat.2018.0767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Marco Heestermans
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Annika de Jong
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Sander van Tilburg
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Pieter H. Reitsma
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Henri H. Versteeg
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Henri M. Spronk
- Department of Internal Medicine and Biochemistry, Maastricht University, Maastricht, the Netherlands
| | - Bart J.M. van Vlijmen
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
133
|
Mezger M, Nording H, Sauter R, Graf T, Heim C, von Bubnoff N, Ensminger SM, Langer HF. Platelets and Immune Responses During Thromboinflammation. Front Immunol 2019; 10:1731. [PMID: 31402914 PMCID: PMC6676797 DOI: 10.3389/fimmu.2019.01731] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
Besides mediating hemostatic functions, platelets are increasingly recognized as important players of inflammation. Data from experiments in mice and men revealed various intersection points between thrombosis, hemostasis, and inflammation, which are addressed and discussed in this review in detail. One such example is the intrinsic coagulation cascade that is initiated after platelet activation thereby further propagating and re-enforcing wound healing or thrombus formation but also contributing to the pathophysiology of severe diseases. FXII of the intrinsic pathway connects platelet activation with the coagulation cascade during immune reactions. It can activate the contact system thereby either creating an inflammatory state or accelerating inflammation. Recent insights into platelet biology could show that platelets are equipped with complement receptors. Platelets are important for tissue remodeling after injury has been inflicted to the endothelial barrier and to the subendothelial tissue. Thus, platelets are increasingly recognized as more than just cells relevant for bleeding arrest. Future insights into platelet biology are to be expected. This research will potentially offer novel opportunities for therapeutic intervention in diseases featuring platelet abundance.
Collapse
Affiliation(s)
- Matthias Mezger
- University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Henry Nording
- University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Reinhard Sauter
- University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Tobias Graf
- University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Christian Heim
- Department of Cardiac Surgery, University Hospital Erlangen, Erlangen, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
| | - Stephan M Ensminger
- Department of Cardiac and Thoracic Vascular Surgery, University Heart Center Lübeck, Lübeck, Germany
| | - Harald F Langer
- University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| |
Collapse
|
134
|
The relationship between pancreatic cancer and hypercoagulability: a comprehensive review on epidemiological and biological issues. Br J Cancer 2019; 121:359-371. [PMID: 31327867 PMCID: PMC6738049 DOI: 10.1038/s41416-019-0510-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 05/13/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022] Open
Abstract
It has long been recognised that pancreatic cancer induces a hypercoagulable state that may lead to clinically apparent thrombosis. Although the relationship between pancreatic cancer and hypercoagulability is well described, the underlying pathological mechanism(s) and the interplay between these pathways remain a matter of intensive study. This review summarises existing data on epidemiology and pathogenesis of thrombotic complications in pancreatic cancer with a particular emphasis on novel pathophysiological pathways. Pancreatic cancer is characterised by high tumoural expression of tissue factor, activation of leukocytes with the release of neutrophil extracellular traps, the dissemination of tumour-derived microvesicles that promote hypercoagulability and increased platelet activation. Furthermore, other coagulation pathways probably contribute to these processes, such as those that involve heparanase, podoplanin and hypofibrinolysis. In the era in which heparin and its derivatives—the currently recommended therapy for cancer-associated thrombosis—might be superseded by direct oral anticoagulants, novel data from mouse models of cancer-associated thrombosis suggest the possibility of future personalised therapeutic approaches. In this dynamic era for cancer-associated thrombosis, the discovery of novel prothrombotic and proinflammatory mechanisms will potentially uncover pharmacological targets to prevent and treat thrombosis without adversely affecting haemostasis.
Collapse
|
135
|
Köhler J, Maletzki C, Koczan D, Frank M, Trepesch C, Revenko AS, Crosby JR, Macleod AR, Mikkat S, Oehmcke-Hecht S. The contact system proteases play disparate roles in streptococcal sepsis. Haematologica 2019; 105:1424-1435. [PMID: 31320552 PMCID: PMC7193472 DOI: 10.3324/haematol.2019.223545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/12/2019] [Indexed: 11/09/2022] Open
Abstract
Sepsis causes an activation of the human contact system, an inflammatory response mechanism against foreign surfaces, proteins and pathogens. The serine proteases of the contact system, factor XII and plasma kallikrein, are decreased in plasma of septic patients, which was previously associated with an unfavorable outcome. However, the precise mechanisms and roles of contact system factors in bacterial sepsis are poorly understood. We, therefore, studied the physiological relevance of factor XII and plasma kallikrein in a mouse model of experimental sepsis. We show that decreased plasma kallikrein concentration in septic mice is a result of reduced mRNA expression plasma prekallikrein gene, indicating that plasma kallikrein belong to negative acute phase proteins. Investigations regarding the pathophysiological function of contact system proteases during sepsis revealed different roles for factor XII and plasma kallikrein. In vitro, factor XII decelerated bacteria induced fibrinolysis, whereas plasma kallikrein supported it. Remarkably, depletion of plasma kallikrein (but not factor XII) by treatment with antisense-oligonucleotides, dampens bacterial dissemination and growth in multiple organs in the mouse sepsis model. These findings identify plasma kallikrein as a novel host pathogenicity factor in Streptococcus pyogenes sepsis.
Collapse
Affiliation(s)
- Juliane Köhler
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| | - Claudia Maletzki
- Department of Internal Medicine, Medical Clinic III -Hematology, Oncology, Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Dirk Koczan
- Center for Medical Research - Core Facility Micro-Array-Technologie, Rostock University Medical Center, Rostock, Germany
| | - Marcus Frank
- Medical Biology and Electron Microscopy Centre, Rostock University Medical Center, Rostock, Germany
| | - Carolin Trepesch
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| | - Alexey S Revenko
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals Inc., Carlsbad, CA, USA
| | - Jeffrey R Crosby
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals Inc., Carlsbad, CA, USA
| | - A Robert Macleod
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals Inc., Carlsbad, CA, USA
| | - Stefan Mikkat
- Core Facility Proteome Analysis, Rostock University Medical Center, Rostock, Germany
| | - Sonja Oehmcke-Hecht
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
136
|
Folsom AR, Tang W, Basu S, Misialek JR, Couper D, Heckbert SR, Cushman M. Plasma Concentrations of High Molecular Weight Kininogen and Prekallikrein and Venous Thromboembolism Incidence in the General Population. Thromb Haemost 2019; 119:834-843. [PMID: 30780167 PMCID: PMC6499653 DOI: 10.1055/s-0039-1678737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The kallikrein/kinin system, an intravascular biochemical pathway that includes several proteins involved in the contact activation system of coagulation, renin-angiotensin activation and inflammation, may or may not play a role in venous thromboembolism (VTE) occurrence. Within a large prospective population-based study in the United States, we conducted a nested case-cohort study to test the hypothesis that higher plasma levels of high molecular weight kininogen (HK) or prekallikrein are associated with greater VTE incidence. We related baseline enzyme-linked immunosorbent assay measures of HK and prekallikrein in 1993 to 1995 to incidence VTE of the lower extremity (n = 612) through 2015 (mean follow-up = 18 years). We found no evidence that plasma HK or prekallikrein was associated positively with incident VTE. HK, in fact, was associated inversely and significantly with VTE in most proportional hazards regression models. For example, the hazard ratio of VTE per standard deviation higher HK concentration was 0.88 (95% confidence interval = 0.81, 0.97), after adjustment for several VTE risk factors. Our findings suggest that plasma levels of these factors do not determine the risk of VTE in the general population.
Collapse
Affiliation(s)
- Aaron R. Folsom
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States
| | - Weihong Tang
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States
| | - Saonli Basu
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States
| | - Jeffrey R. Misialek
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States
| | - David Couper
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Susan R. Heckbert
- Department of Epidemiology, University of Washington, Seattle, Washington, United States
| | - Mary Cushman
- Department of Medicine, University of Vermont, Burlington, Vermont, United States
- Department of Pathology, University of Vermont, Burlington, Vermont, United States
| |
Collapse
|
137
|
Maruyama H, Brooks MB, Stablein A, Frye A. Factor XII deficiency is common in domestic cats and associated with two high frequency F12 mutations. Gene 2019; 706:6-12. [PMID: 31022435 DOI: 10.1016/j.gene.2019.04.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/03/2019] [Accepted: 04/18/2019] [Indexed: 11/19/2022]
Abstract
Factor XII (FXII) is a coagulation protein that initiates surface-activation of the coagulation cascade in vitro. The protein's in vivo role, however, remains poorly defined. Factor XII deficiency, or Hageman trait, is a rare hereditary disorder that is not associated with bleeding, and wide variations in FXII activity (FXII:C) exist among healthy people. While FXII-deficient knockout mice appear to be resistant to arterial thrombosis, human F12 polymorphisms that influence FXII:C have not been associated with thrombotic risk in population surveys. Factor XII deficiency is a naturally occurring hereditary trait in domestic cats. We undertook phenotypic and genotypic analyses of FXII-deficient cats for comparative studies with the human disease counterpart. A retrospective review of feline submissions to our laboratory revealed that FXII deficiency is common in domestic cats, and also present in many different breeds. The trait has a geographic bias toward the Midwestern United States. Clinical history, coagulation assays, and samples for F12 sequencing were obtained from 26 FXII deficient cats. None of the cats had experienced abnormal bleeding and their residual FXII:C was related to F12 mutation number and mutation-type. We found 2 high frequency F12 mutations: an exon 13 missense mutation (c.1631G > C) and an exon 11 deletion mutation (c.1321delC), and additional sequence variants throughout the gene. Factor XII deficiency in pet cat populations provides an animal model system to help clarify the biologic actions and clinical relevance of FXII protein.
Collapse
Affiliation(s)
- Haruhiko Maruyama
- Laboratory of Veterinary Clinical Pathology, Department of Veterinary Medicine, Nihon University, Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Marjory B Brooks
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America.
| | - Alyssa Stablein
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Amelia Frye
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
138
|
Abstract
PURPOSE OF REVIEW Since the selection of the first thrombin-binding aptamer in 1992, the use of nucleic acid aptamers to target specific coagulation factors has emerged as a valuable approach for generating novel anticoagulant and procoagulant therapeutics. Herein, we highlight the most recent discoveries involving application of aptamers for those purposes. RECENT FINDINGS Learning from the successes and pitfalls of the FIXa-targeting aptamer pegnivacogin in preclinical and clinical studies, the latest efforts to develop antidote-controllable anticoagulation strategies for cardiopulmonary bypass that avoid unfractionated heparin involve potentiation of the exosite-binding factor X (FX)a aptamer 11F7t by combination with either a small molecule FXa catalytic site inhibitor or a thrombin aptamer. Recent work has also focused on identifying aptamer inhibitors of contact pathway factors such as FXIa and kallikrein, which may prove to be well tolerated and effective antithrombotic agents in certain clinical settings. Finally, new approaches to develop procoagulant aptamers to control bleeding associated with hemophilia and other coagulopathies involve targeting activated protein C and tissue plasminogen activator. SUMMARY Overall, these recent findings exemplify the versatility of aptamers to modulate a variety of procoagulant and anticoagulant factors, along with their capacity to be used complementarily with other aptamers or drugs for wide-ranging applications.
Collapse
|
139
|
Abstract
PURPOSE OF REVIEW This review describes the contribution of coagulation factor XII (FXII) in sterile inflammation and wound healing, focusing on recently identified roles for zymogen FXII in neutrophil functions. RECENT FINDINGS Recent studies have identified an important role for FXII in neutrophil trafficking. In particular, following neutrophil activation, autocrine FXII signals through the urokinase plasminogen activator receptor (uPAR) on the neutrophil surface to upregulate neutrophil functions. The sum of these activities leads to neutrophil adhesion, chemotaxis, and neutrophil extracellular (NET) formation. Downregulating FXII-mediated signaling in neutrophils is associated with improved wound healing. SUMMARY These recent findings show the sophisticated role of FXII in vivo and create new opportunities for research on the treatment of chronic inflammatory diseases.
Collapse
|
140
|
Subverting bradykinin-evoked inflammation by co-opting the contact system: lessons from survival strategies of Trypanosoma cruzi. Curr Opin Hematol 2019; 25:347-357. [PMID: 30028741 DOI: 10.1097/moh.0000000000000444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW During Chagas disease, Trypanosoma cruzi alternates between intracellular and extracellular developmental forms. After presenting an overview about the roles of the contact system in immunity, I will review experimental studies showing that activation of the kallikrein-kinin system (KKS) translates into mutual benefits to the host/parasite relationship. RECENT FINDINGS T. cruzi trypomastigotes initiate inflammation by activating tissue-resident innate sentinel cells via the TLR2/CXCR2 pathway. Following neutrophil-evoked microvascular leakage, the parasite's major cysteine protease (cruzipain) cleaves plasma-borne kininogens and complement C5. Tightly regulated by angiotensin-converting enzyme (ACE), kinins and C5a in turn further propagate inflammation via iterative cycles of mast cell degranulation, contact system activation, bradykinin release and activation of endothelial bradykinin B2 receptors (B2R). Recently, studies in the intracardiac model of infection revealed a dichotomic role for bradykinin and endothelin-1: generated upon contact activation (mast cell/KKS pathway), these pro-oedematogenic peptides reciprocally stimulate trypomastigote invasion of heart cells that naturally overexpress B2R and endothelin receptors (ETaR/ETbR). SUMMARY Studies focusing on the immunopathogenesis of Chagas disease revealed that the contact system plays a dual role in host/parasite balance: T. cruzi co-opts bradykinin-induced plasma leakage as a strategy to increment heart parasitism and increase immune resistance by upregulating type-1 effector T-cell production in secondary lymphoid tissues.
Collapse
|
141
|
Mailer RKW, Hänel L, Allende M, Renné T. Polyphosphate as a Target for Interference With Inflammation and Thrombosis. Front Med (Lausanne) 2019; 6:76. [PMID: 31106204 PMCID: PMC6499166 DOI: 10.3389/fmed.2019.00076] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/28/2019] [Indexed: 12/19/2022] Open
Abstract
Activated platelets and mast cells expose the inorganic polymer, polyphosphate (polyP) on their surfaces. PolyP initiates procoagulant and proinflammatory reactions and the polymer has been recognized as a therapeutic target for interference with blood coagulation and vascular hyperpermeability. PolyP content and chain length depend on the specific cell type and energy status, which may affect cellular functions. PolyP metabolism has mainly been studied in bacteria and yeast, but its roles in eukaryotic cells and mammalian systems have remained enigmatic. In this review, we will present an overview of polyP functions, focusing on intra- and extracellular roles of the polymer and discuss open questions that emerge from the current knowledge on polyP regulation.
Collapse
Affiliation(s)
- Reiner K W Mailer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lorena Hänel
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mikel Allende
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
142
|
Zhang H, Liu S, Lin C, Luo S, Yang L, Jin Y, Zhu L, Wang M. Compound heterozygous mutations Glu502Lys and Met527Thr of the FXII gene in a patient with factor XII deficiency. ACTA ACUST UNITED AC 2019; 24:420-425. [PMID: 30929639 DOI: 10.1080/16078454.2019.1598679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To study the gene mutation of human coagulation factor XII (FXII) in a Chinese family with FXII deficiency and it will help us to understand the pathogenesis of this type of disease. CLINICAL PRESENTATION The proband was a 50-year-old male who had a fracture of the right humerus. The routine presurgical coagulation test showed a significant prolonged activated partial thromboplastin time (APTT) at 59.1s (reference range, 29.0-43.0s). TECHNIQUES FXII activity (FXII:C) and FXII antigen (FXII:Ag) were detected by the one-stage clotting method and ELISA, respectively. To identify mutations, the FXII whole exon and flanking sequences were carried out. Suspected mutations were confirmed by reverse sequencing. The conservatism and possible impact of the amino acid substitution were analyzed by ClustalX-2.1-win and four online bioinformatics tools. RESULTS Phenotypic analysis revealed the FXII:C and FXII:Ag of the proband were 4% and 5%, respectively (normal range, 72-113%). Gene sequencing detected compound heterozygous mutations c.1561G > A (Glu502Lys) and c.1637T > C (Met527Thr) in exon 13. Bioinformatics and model analysis indicated that mutations probably had disrupted the function and structure of the FXII protein. CONCLUSION We detected two missense mutations Glu502Lys and Met527Thr in the catalytic domain of the proband, of which Met527Thr was first reported in the world. Our findings suggest that the double mutations in the FXII gene were the causing reasons for the decreased FXII:C and FXII:Ag. These results not only enriched the F12 mutation database in this condition, but also helped to identify the genetic defects of FXII in China.
Collapse
Affiliation(s)
- Haiyue Zhang
- a Department of Clinical Laboratory , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , People's Republic of China
| | - Siqi Liu
- a Department of Clinical Laboratory , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , People's Republic of China
| | - Chanchan Lin
- a Department of Clinical Laboratory , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , People's Republic of China
| | - Shasha Luo
- a Department of Clinical Laboratory , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , People's Republic of China
| | - Lihong Yang
- a Department of Clinical Laboratory , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , People's Republic of China
| | - Yanhui Jin
- a Department of Clinical Laboratory , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , People's Republic of China
| | - Liqing Zhu
- a Department of Clinical Laboratory , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , People's Republic of China
| | - Mingshan Wang
- a Department of Clinical Laboratory , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , People's Republic of China
| |
Collapse
|
143
|
Preston RJS, O'Sullivan JM, O'Donnell JS. Advances in understanding the molecular mechanisms of venous thrombosis. Br J Haematol 2019; 186:13-23. [DOI: 10.1111/bjh.15869] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Roger J. S. Preston
- Irish Centre for Vascular Biology Department of Molecular and Cellular Therapeutics Royal College of Surgeons in Ireland Dublin Ireland
| | - Jamie M. O'Sullivan
- Irish Centre for Vascular Biology Department of Molecular and Cellular Therapeutics Royal College of Surgeons in Ireland Dublin Ireland
| | - James S. O'Donnell
- Irish Centre for Vascular Biology Department of Molecular and Cellular Therapeutics Royal College of Surgeons in Ireland Dublin Ireland
| |
Collapse
|
144
|
Mouse venous thrombosis upon silencing of anticoagulants depends on tissue factor and platelets, not FXII or neutrophils. Blood 2019; 133:2090-2099. [PMID: 30898865 DOI: 10.1182/blood-2018-06-853762] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 03/14/2019] [Indexed: 12/18/2022] Open
Abstract
Tissue factor, coagulation factor XII, platelets, and neutrophils are implicated as important players in the pathophysiology of (experimental) venous thrombosis (VT). Their role became evident in mouse models in which surgical handlings were required to provoke VT. Combined inhibition of the natural anticoagulants antithrombin (Serpinc1) and protein C (Proc) using small interfering RNA without additional triggers also results in a venous thrombotic phenotype in mice, most notably with vessel occlusion in large veins of the head. VT is fatal but is fully rescued by thrombin inhibition. In the present study, we used this VT mouse model to investigate the involvement of tissue factor, coagulation factor XII, platelets, and neutrophils. Antibody-mediated inhibition of tissue factor reduced the clinical features of VT, the coagulopathy in the head, and fibrin deposition in the liver. In contrast, genetic deficiency in, and small interfering RNA-mediated depletion of, coagulation factor XII did not alter VT onset, severity, or thrombus morphology. Antibody-mediated depletion of platelets fully abrogated coagulopathy in the head and liver fibrin deposition. Although neutrophils were abundant in thrombotic lesions, depletion of circulating Ly6G-positive neutrophils did not affect onset, severity, thrombus morphology, or liver fibrin deposition. In conclusion, VT after inhibition of antithrombin and protein C is dependent on the presence of tissue factor and platelets but not on coagulation factor XII and circulating neutrophils. This study shows that distinct procoagulant pathways operate in mouse VT, dependent on the triggering stimulus.
Collapse
|
145
|
Neutrophils: back in the thrombosis spotlight. Blood 2019; 133:2186-2197. [PMID: 30898858 DOI: 10.1182/blood-2018-10-862243] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022] Open
Abstract
Reactive and clonal neutrophil expansion has been associated with thrombosis, suggesting that neutrophils play a role in this process. However, although there is no doubt that activated monocytes trigger coagulation in a tissue factor-dependent manner, it remains uncertain whether stimulated neutrophils can also directly activate coagulation. After more than a decade of debate, it is now largely accepted that normal human neutrophils do not synthetize tissue factor, the initiator of the extrinsic pathway of coagulation. However, neutrophils may passively acquire tissue factor from monocytes. Recently, the contact system, which initiates coagulation via the intrinsic pathway, has been implicated in the pathogenesis of thrombosis. After the recent description of neutrophil extracellular trap (NET) release by activated neutrophils, some animal models of thrombosis have demonstrated that coagulation may be enhanced by direct NET-dependent activation of the contact system. However, there is currently no consensus on how to assess or quantify NETosis in vivo, and other experimental animal models have failed to demonstrate a role for neutrophils in thrombogenesis. Nevertheless, it is likely that NETs can serve to localize other circulating coagulation components and can also promote vessel occlusion independent of fibrin formation. This article provides a critical appraisal of the possible roles of neutrophils in thrombosis and highlights some existing knowledge gaps regarding the procoagulant activities of neutrophil-derived extracellular chromatin and its molecular components. A better understanding of these mechanisms could guide future approaches to prevent and/or treat thrombosis.
Collapse
|
146
|
Székely O, Borgi M, Lip GYH. Factor XI inhibition fulfilling the optimal expectations for ideal anticoagulation. Expert Opin Emerg Drugs 2019; 24:55-61. [DOI: 10.1080/14728214.2019.1591368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Orsolya Székely
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Marco Borgi
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Gregory Y. H. Lip
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
- Aalborg Thrombosis Research Unit, Aalborg University, Aalborg, Denmark
| |
Collapse
|
147
|
Abstract
PURPOSE OF REVIEW The last 40 years of clinical research in interventional cardiology were extraordinarily innovative. This article will review the most promising up and coming interventional cardiovascular therapies, with a primary focus on the treatment of coronary artery disease. RECENT FINDINGS From the first stent, to the first transcatheter aortic valve implantation (TAVI), and the left appendage closure technique, percutaneous interventions revolutionized the treatment of multiple diseases and dramatically improved the prognosis of many patients. While these advances have decreased the risk of mortality in some patients (such as ST-elevation myocardial infarction), 15% of acute coronary syndrome (ACS) patients still experience recurrent ischemic events within the first year, challenging us to develop new pharmaceutical targets and new devices. The continued emergence of data supporting inflammation as a risk factor and pharmacologic target as well as data supporting the importance of cholesterol efflux have identified novel therapeutic targets that may play a major role in the improvement of prognosis of patients with coronary artery disease. In addition, novel medical devices are being developed to allow even earlier detection of acute cardiac events and to support high-risk percutaneous coronary interventions. Advances in computing and the ability to analyze large datasets will allow us to use artificial intelligence to augment the clinician patient experience, both in and out of the catheterization laboratory, with live procedural guidance as well as pre- and post-operative prognostication tools.
Collapse
|
148
|
Liu W, Hashimoto T, Yamashita T, Hirano K. Coagulation factor XI induces Ca 2+ response and accelerates cell migration in vascular smooth muscle cells via proteinase-activated receptor 1. Am J Physiol Cell Physiol 2019; 316:C377-C392. [PMID: 30566391 DOI: 10.1152/ajpcell.00426.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activated coagulation factor XI (FXIa) is a serine proteinase that plays a key role in the intrinsic coagulation pathway. The analysis of FXI-knockout mice has indicated the contribution of FXI to the pathogenesis of atherosclerosis. However, the underlying mechanism remains unknown. We hypothesized that FXIa exerts vascular smooth muscle effects via proteinase-activated receptor 1 (PAR1). Fura-2 fluorometry revealed that FXIa elicited intracellular Ca2+ signal in rat embryo aorta smooth muscle A7r5 cells. The influx of extracellular Ca2+ played a greater role in generating Ca2+ signal than the Ca2+ release from intracellular stores. The FXIa-induced Ca2+ signal was abolished by the pretreatment with atopaxar, an antagonist of PAR1, or 4-amidinophenylmethanesulfonyl fluoride (p-APMSF), an inhibitor of proteinase, while it was also lost in embryonic fibroblasts derived from PAR1-/- mice. FXIa cleaved the recombinant protein containing the extracellular region of PAR1 at the same site (R45/S46) as that of thrombin, a canonical PAR1 agonist. The FXIa-induced Ca2+ influx was inhibited by diltiazem, an L-type Ca2+ channel blocker, and by siRNA targeted to CaV1.2. The FXIa-induced Ca2+ influx was also inhibited by GF109203X and rottlerin, inhibitors of protein kinase C. In a wound healing assay, FXIa increased the rate of cell migration by 2.46-fold of control, which was partly inhibited by atopaxar or diltiazem. In conclusion, FXIa mainly elicits the Ca2+ signal via the PAR1/CaV1.2-mediated Ca2+ influx and accelerates the migration in vascular smooth muscle cells. The present study provides the first evidence that FXIa exerts a direct cellular effect on vascular smooth muscle.
Collapse
Affiliation(s)
- Wenhua Liu
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University , Kagawa , Japan
| | - Takeshi Hashimoto
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University , Kagawa , Japan
| | - Tetsuo Yamashita
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University , Kagawa , Japan
| | - Katsuya Hirano
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University , Kagawa , Japan
| |
Collapse
|
149
|
Abu-Fanne R, Stepanova V, Litvinov RI, Abdeen S, Bdeir K, Higazi M, Maraga E, Nagaswami C, Mukhitov AR, Weisel JW, Cines DB, Higazi AAR. Neutrophil α-defensins promote thrombosis in vivo by altering fibrin formation, structure, and stability. Blood 2019; 133:481-493. [PMID: 30442678 PMCID: PMC6356988 DOI: 10.1182/blood-2018-07-861237] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/17/2018] [Indexed: 02/06/2023] Open
Abstract
Inflammation and thrombosis are integrated, mutually reinforcing processes, but the interregulatory mechanisms are incompletely defined. Here, we examined the contribution of α-defensins (α-defs), antimicrobial proteins released from activated human neutrophils, on clot formation in vitro and in vivo. Activation of the intrinsic pathway of coagulation stimulates release of α-defs from neutrophils. α-Defs accelerate fibrin polymerization, increase fiber density and branching, incorporate into nascent fibrin clots, and impede fibrinolysis in vitro. Transgenic mice (Def++) expressing human α-Def-1 developed larger, occlusive, neutrophil-rich clots after partial inferior vena cava (IVC) ligation than those that formed in wild-type (WT) mice. IVC thrombi extracted from Def++ mice were composed of a fibrin meshwork that was denser and contained a higher proportion of tightly packed compressed polyhedral erythrocytes than those that developed in WT mice. Def++ mice were resistant to thromboprophylaxis with heparin. Inhibiting activation of the intrinsic pathway of coagulation, bone marrow transplantation from WT mice or provision of colchicine to Def++ mice to inhibit neutrophil degranulation decreased plasma levels of α-defs, caused a phenotypic reversion characterized by smaller thrombi comparable to those formed in WT mice, and restored responsiveness to heparin. These data identify α-defs as a potentially important and tractable link between innate immunity and thrombosis.
Collapse
Affiliation(s)
- Rami Abu-Fanne
- Department of Clinical Biochemistry, Hadassah-Hebrew University, Jerusalem, Israel
| | | | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; and
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Suhair Abdeen
- Department of Clinical Biochemistry, Hadassah-Hebrew University, Jerusalem, Israel
| | - Khalil Bdeir
- Department of Pathology and Laboratory Medicine and
| | - Mohamed Higazi
- Department of Clinical Biochemistry, Hadassah-Hebrew University, Jerusalem, Israel
| | - Emad Maraga
- Department of Clinical Biochemistry, Hadassah-Hebrew University, Jerusalem, Israel
| | - Chandrasekaran Nagaswami
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; and
| | - Alexander R Mukhitov
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; and
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; and
| | | | - Abd Al-Roof Higazi
- Department of Clinical Biochemistry, Hadassah-Hebrew University, Jerusalem, Israel
- Department of Pathology and Laboratory Medicine and
| |
Collapse
|
150
|
Abstract
Thrombosis remains a major cause of morbidity and mortality. Consequently, advances in antithrombotic therapy are needed to reduce the disease burden. This article focuses on 2 such advances. First, the prevention of atherothrombosis in patients with coronary or peripheral artery disease, which has been enhanced by the finding that the combination of low-dose rivaroxaban plus aspirin is superior to aspirin alone for prevention of recurrent ischemic events. However, this benefit comes at the cost of increased bleeding albeit not fatal bleeding. To overcome this problem, the second advance is the identification of factor XI as a target for new anticoagulants that are potentially safer than those currently available.
Collapse
Affiliation(s)
- Jeffrey I. Weitz
- From the Thrombosis and Atherosclerosis Research Institute and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Noel C. Chan
- From the Thrombosis and Atherosclerosis Research Institute and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|