101
|
Thomas MR, Lip GYH. Novel Risk Markers and Risk Assessments for Cardiovascular Disease. Circ Res 2017; 120:133-149. [PMID: 28057790 DOI: 10.1161/circresaha.116.309955] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 11/01/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022]
Abstract
The use of risk markers has transformed cardiovascular medicine, exemplified by the routine assessment of troponin, for both diagnosis and assessment of prognosis in patients with chest pain. Clinical risk factors form the basis for risk assessment of cardiovascular disease and the addition of biochemical, cellular, and imaging parameters offers further refinement. Identifying novel risk factors may allow greater risk stratification and a steady, but gradual progression toward precision medicine. Indeed, the generation of data in this area of research is explosive and when combined with new technologies and techniques provides the potential for more refined, targeted approaches to cardiovascular medicine. Although discussing the most recent developments in this field, this review article aims to strike a balance between novelty and validity by focusing on recent large sample-size studies that have been validated in a separate cohort in most cases. Risk markers related to atherosclerosis, thrombosis, inflammation, cardiac injury, and fibrosis are introduced in the context of their pathophysiology. Rapidly developing new areas, such as assessment of micro-RNA, are also explored. Subsequently the prognostic ability of these risk markers in coronary artery disease, heart failure, and atrial fibrillation is discussed in detail.
Collapse
Affiliation(s)
- Mark R Thomas
- From the University of Birmingham Institute of Cardiovascular Sciences, City Hospital, University of Birmingham, United Kingdom (M.R.T., G.Y.H.L.); and Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Denmark (G.Y.H.L.)
| | - Gregory Y H Lip
- From the University of Birmingham Institute of Cardiovascular Sciences, City Hospital, University of Birmingham, United Kingdom (M.R.T., G.Y.H.L.); and Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Denmark (G.Y.H.L.).
| |
Collapse
|
102
|
Gohar A, Gonçalves I, Vrijenhoek J, Haitjema S, van Koeverden I, Nilsson J, de Borst GJ, de Vries JP, Pasterkamp G, den Ruijter HM, Björkbacka H, de Jager SCA. Circulating GDF-15 levels predict future secondary manifestations of cardiovascular disease explicitly in women but not men with atherosclerosis. Int J Cardiol 2017; 241:430-436. [PMID: 28389123 DOI: 10.1016/j.ijcard.2017.03.101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/01/2017] [Accepted: 03/20/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND Elevated serum levels of growth differentiation factor-15 (GDF-15), is an established risk factor for a range of cardiovascular diseases. We aimed to evaluate the predictive value of plasma GDF-15 as a biomarker for secondary cardiovascular events (CVE) in patients with atherosclerosis undergoing carotid endarterectomy (CEA). Secondly, we determined whether plasma GDF-15 was associated with carotid plaque characteristics. METHODS Circulating GDF-15 levels were determined by Luminex assay in a cohort of 1056 patients from the Athero-Express biobank. Composite endpoint was defined as major CVE, death and peripheral vascular interventions. Findings were validated in 473 patients from the independent Carotid Plaque Imaging Project biobank. RESULTS GDF-15 levels did not associate with secondary CVE in the total cohort. However, following a significant interaction with sex, it was found to be strongly, independently predictive of secondary CVE in women but not men (quartile 4 vs. quartile 1: HR 3.04 [95% CI 1.35-6.86], p=0.007 in women vs. HR 0.96 [95% CI 0.66-1.40], p=0.845 in men). This was also observed in the validation cohort (women: HR 2.28 [95% CI 1.04-5.05], p=0.041), albeit dependent upon renal function. In addition, GDF-15 was associated with the presence of plaque smooth muscle cells and calcification. CONCLUSION High circulating GDF-15 levels are predictive of secondary CVE in women but not in men with carotid atherosclerotic disease undergoing CEA, suggesting a potential use for GDF-15 as a biomarker for secondary prevention in women. Sex differences in the role of GDF-15 in atherosclerotic disease deserve further interest.
Collapse
Affiliation(s)
- Aisha Gohar
- Laboratory for Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Clinical Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands
| | - Isabel Gonçalves
- Experimental Cardiovascular Research Unit, and Cardiology (coronary) Clinic, Department of Clinical Sciences, Malmö, Skåne University Hospital, Lund University, Sweden
| | - Joyce Vrijenhoek
- Laboratory for Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Saskia Haitjema
- Laboratory for Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ian van Koeverden
- Laboratory for Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jan Nilsson
- Experimental Cardiovascular Research Unit, Department of Clinical Sciences, Malmö, Skåne University Hospital, Lund University, Sweden
| | - Gert J de Borst
- Department of Vascular Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jean-Paul de Vries
- Department of Vascular Surgery, St. Antonius Hospital Nieuwegein, Nieuwegein, the Netherlands
| | - Gerard Pasterkamp
- Laboratory for Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands; Laboratory for clinical chemistry and haematology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hester M den Ruijter
- Laboratory for Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Harry Björkbacka
- Experimental Cardiovascular Research Unit, Department of Clinical Sciences, Malmö, Skåne University Hospital, Lund University, Sweden
| | - Saskia C A de Jager
- Laboratory for Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands; Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
103
|
Gerstein HC, Pare G, Hess S, Ford RJ, Sjaarda J, Raman K, McQueen M, Lee S, Haenel H, Steinberg GR. Growth Differentiation Factor 15 as a Novel Biomarker for Metformin. Diabetes Care 2017; 40:280-283. [PMID: 27974345 DOI: 10.2337/dc16-1682] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/25/2016] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Metformin is a commonly used glucose-lowering drug. However, apart from glycemic measures, no biomarker for its presence or dose has been identified. RESEARCH DESIGN AND METHODS A total of 237 biomarkers were assayed in baseline serum from 8,401 participants (2,317 receiving metformin) in the Outcome Reduction with Initial Glargine Intervention (ORIGIN) trial. Regression models were used to identify biomarkers for metformin use. RESULTS Growth differentiation factor 15 (GDF15) was strongly linked to metformin, such that the odds of metformin use per SD increase in level varied from 3.73 (95% CI 3.40, 4.09) to 3.94 (95% CI 3.59, 4.33) depending on the other included variables. For the remaining 25 linked biomarkers, the odds ranged from 0.71 to 1.24. A 1.64 ng/mL higher GDF15 level predicted a 188-mg higher metformin dose (P < 0.0001). CONCLUSIONS GDF15 levels are a biomarker for the use of metformin in people with dysglycemia, and its concentration reflects the dose of metformin.
Collapse
Affiliation(s)
- Hertzel C Gerstein
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada .,Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada.,Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Guillaume Pare
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada.,Hamilton Health Sciences, Hamilton, Ontario, Canada.,Department of Pathology, McMaster University, Hamilton, Ontario, Canada.,Hamilton Regional Laboratory Medicine Program, Hamilton, Ontario, Canada
| | - Sibylle Hess
- Research and Development Diabetes, Sanofi Aventis Deutschland GmbH, Frankfurt, Germany
| | - Rebecca J Ford
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jennifer Sjaarda
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
| | - Kripa Raman
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
| | - Matthew McQueen
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
| | - ShunFu Lee
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada.,Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Heinz Haenel
- Research and Development Diabetes, Sanofi Aventis Deutschland GmbH, Frankfurt, Germany
| | - Gregory R Steinberg
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
104
|
Sinning C, Kempf T, Schwarzl M, Lanfermann S, Ojeda F, Schnabel RB, Zengin E, Wild PS, Lackner KJ, Munzel T, Blankenberg S, Wollert KC, Zeller T, Westermann D. Biomarkers for characterization of heart failure - Distinction of heart failure with preserved and reduced ejection fraction. Int J Cardiol 2016; 227:272-277. [PMID: 27838133 DOI: 10.1016/j.ijcard.2016.11.110] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/06/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Heart failure (HF) incidence is rising worldwide and HF with preserved ejection fraction (HFpEF) represents nearly half of all cases. Treatment options are still limited in HFpEF in comparison to HF with reduced ejection fraction (HFrEF). METHODS We analyzed biomarkers in the general population to characterize HFpEF and HFrEF and defined a biomarker index to differentiate HFpEF from HFrEF. Growth differentiation factor-15 (GDF-15), soluble source of tumorigenicity 2 (sST2), C-reactive protein (CRP) and NT-proBNP were measured in 5000 individuals of the population-based Gutenberg Health Study (GHS). The median follow-up time for all-cause mortality was 7.3years with 213 events. RESULTS Identification of subjects with HF was improved by GDF-15 (p<0.001) in addition to NT-proBNP with an odds ratio (OR) of 1.4 (95% confidence interval [CI]:1.1-1.7). Discrimination of subjects with and without HF was slightly higher for GDF-15 (area under the ROC curve [AUC]:0.79 [95%CI:0.75-0.83]) compared to NT-proBNP (AUC:0.77 [95% CI:0.72-0.82]). For subjects with HF, differentiating HFpEF from HFrEF was feasible with the index ((CRP+GDF-15+sST2)/NT-proBNP) with an OR of 3.7 (95% CI:1.9-8.5) (p<0.001). The best biomarkers predicting all-cause mortality were NT-proBNP and GDF-15 with a hazard ratio (HR) of 1.9 (95% CI:1.6-2.2) and 1.7 (95%CI:1.6-1.9) (both p<0.001), respectively. CONCLUSION GDF-15 was useful to detect prevalent HF in addition to NT-proBNP and was elevated in HFrEF and HFpEF, whereas NT-proBNP was higher in HFrEF than in HFpEF. All biomarkers were useful to predict mortality in the general population. The index of ((CRP+GDF-15s+sST2)/NT-proBNP) was able to discriminate HFpEF from HFrEF.
Collapse
Affiliation(s)
- Christoph Sinning
- University Heart Center Hamburg, Department of General and Interventional Cardiology, Hamburg, Germany
| | - Tibor Kempf
- University Heart Center Hamburg, Department of General and Interventional Cardiology, Hamburg, Germany
| | - Michael Schwarzl
- University Heart Center Hamburg, Department of General and Interventional Cardiology, Hamburg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Simon Lanfermann
- University Heart Center Hamburg, Department of General and Interventional Cardiology, Hamburg, Germany
| | - Francisco Ojeda
- University Heart Center Hamburg, Department of General and Interventional Cardiology, Hamburg, Germany
| | - Renate B Schnabel
- University Heart Center Hamburg, Department of General and Interventional Cardiology, Hamburg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Elvin Zengin
- University Heart Center Hamburg, Department of General and Interventional Cardiology, Hamburg, Germany
| | - Philipp S Wild
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Germany; University Medical Center of the Johannes Gutenberg-University Mainz, Department of Medicine 2, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Germany
| | - Karl-J Lackner
- Institute of Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Munzel
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Germany; University Medical Center of the Johannes Gutenberg-University Mainz, Department of Medicine 2, Mainz, Germany
| | - Stefan Blankenberg
- University Heart Center Hamburg, Department of General and Interventional Cardiology, Hamburg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Kai C Wollert
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Tanja Zeller
- University Heart Center Hamburg, Department of General and Interventional Cardiology, Hamburg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Dirk Westermann
- University Heart Center Hamburg, Department of General and Interventional Cardiology, Hamburg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| |
Collapse
|
105
|
Wollert KC, Kempf T, Wallentin L. Growth Differentiation Factor 15 as a Biomarker in Cardiovascular Disease. Clin Chem 2016; 63:140-151. [PMID: 28062617 DOI: 10.1373/clinchem.2016.255174] [Citation(s) in RCA: 378] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/17/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Growth differentiation factor 15 (GDF-15) is expressed and secreted in response to inflammation, oxidative stress, hypoxia, telomere erosion, and oncogene activation. Cardiovascular (CV) disease is a major driver of GDF-15 production. GDF-15 has favorable preanalytic characteristics and can be measured in serum and plasma by immunoassay. CONTENT In community-dwelling individuals higher concentrations of GDF-15 are associated with increased risks of developing CV disease, chronic kidney disease, and cancer, independent of traditional CV risk factors, renal function, and other biomarkers (C-reactive protein, B-type natriuretic peptide, cardiac troponin). Low concentrations of GDF-15 are closely associated with longevity. GDF-15 is as an independent marker of all-cause mortality and CV events in patients with coronary artery disease, and may help select patients with non-ST-elevation acute coronary syndrome for early revascularization and more intensive medical therapies. GDF-15 is independently associated with mortality and nonfatal events in atrial fibrillation and heart failure (HF) with preserved or reduced ejection fraction. GDF-15 reflects chronic disease burden and acute perturbations in HF and responds to improvements in hemodynamic status. GDF-15 is independently associated with major bleeding in patients receiving antithrombotic therapies and has been included in a new bleeding risk score, which may become useful for decision support. SUMMARY GDF-15 captures distinct aspects of CV disease development, progression, and prognosis, which are not represented by clinical risk predictors and other biomarkers. The usefulness of GDF-15 to guide management decisions and discover new treatment targets should be further explored.
Collapse
Affiliation(s)
- Kai C Wollert
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany;
| | - Tibor Kempf
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Lars Wallentin
- Department of Medical Sciences, Cardiology, and Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
106
|
Huang B, Svensson P, Ärnlöv J, Sundström J, Lind L, Ingelsson E. Effects of cigarette smoking on cardiovascular-related protein profiles in two community-based cohort studies. Atherosclerosis 2016; 254:52-58. [PMID: 27684606 DOI: 10.1016/j.atherosclerosis.2016.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/25/2016] [Accepted: 09/14/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Cardiovascular diseases account for the largest fraction of smoking-induced deaths. Studies of smoking in relation to cardiovascular-related protein markers can provide novel insights into the biological effects of smoking. We investigated the associations between cigarette smoking and 80 protein markers known to be related to cardiovascular diseases in two community-based cohorts, the Prospective Study of the Vasculature in Uppsala Seniors (PIVUS, n = 969, 50% women, all aged 70 years) and the Uppsala Longitudinal Study of Adult Men (ULSAM, n = 717, all men aged 77 years). METHODS Smoking status was self-reported and defined as current smoker, former smoker or never-smoker. Levels of the 80 proteins were measured using the proximity extension assay, a novel PCR-based proteomics technique. RESULTS We found 30 proteins to be significantly associated with current cigarette smoking in PIVUS (FDR<5%); and ten were replicated in ULSAM (p < 0.05). Matrix metalloproteinase-12 (MMP-12), growth/differentiation factor 15 (GDF-15), urokinase plasminogen activator surface receptor (uPAR), TNF-related apoptosis-inducing ligand receptor 2 (TRAIL-R2), lectin-like oxidized LDL receptor 1 (LOX-1), hepatocyte growth factor (HGF), matrix metalloproteinase-10 (MMP-10) and matrix metalloproteinase-1 (MMP-1) were positively associated, while endothelial cell-specific molecule 1 (ESM-1) and interleukin-27 subunit alpha (IL27-A) showed inverse associations. All of them remained significant in a subset of individuals without manifest cardiovascular disease. CONCLUSIONS The findings of the present study suggest that cigarette smoking may interfere with several essential parts of the atherosclerosis process, as evidenced by associations with protein markers representing endothelial dysfunction, inflammation, neointimal formation, foam cell formation and plaque instability.
Collapse
Affiliation(s)
- Biying Huang
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94304, USA; Department of Medicine, Solna, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Per Svensson
- Department of Medicine, Solna, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Johan Ärnlöv
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, 75185 Uppsala, Sweden; School of Health and Social Studies, Dalarna University, 79188 Falun, Sweden
| | - Johan Sundström
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, 75185 Uppsala, Sweden
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, 75185 Uppsala, Sweden
| | - Erik Ingelsson
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94304, USA; Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, 75185 Uppsala University, Uppsala, Sweden.
| |
Collapse
|
107
|
Affiliation(s)
- Oliver Soehnlein
- From the Institute for Cardiovascular Prevention, LMU Munich, Germany; Academic Medical Center, Department of Pathology, Amsterdam University, The Netherlands; and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany.
| |
Collapse
|
108
|
GDF-15 inhibits integrin activation and mouse neutrophil recruitment through the ALK-5/TGF-βRII heterodimer. Blood 2016; 128:529-41. [DOI: 10.1182/blood-2016-01-696617] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/16/2016] [Indexed: 12/12/2022] Open
Abstract
Key Points
A classical TGF-β receptor pair counteracts extravasation of myeloid cells by rapidly interfering with integrin activation. GDF-15 and TGF-β1 inhibit leukocyte integrin activation by targeting the Rap-1 GTPase exchange factor CalDAG-GEF1.
Collapse
|
109
|
Choi HJ, Do KH, Park JH, Kim J, Yu M, Park SH, Moon Y. Early Epithelial Restitution by Nonsteroidal Anti-Inflammatory Drug–Activated Gene 1 Counteracts Intestinal Ulcerative Injuries. THE JOURNAL OF IMMUNOLOGY 2016; 197:1415-24. [DOI: 10.4049/jimmunol.1501784] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 06/03/2016] [Indexed: 01/07/2023]
|
110
|
Relaxing the artery: A new strategy to limit atherogenesis. Atherosclerosis 2016; 251:510-511. [PMID: 27318867 DOI: 10.1016/j.atherosclerosis.2016.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 11/22/2022]
|
111
|
Machado V, Gilsbach R, Das R, Schober A, Bogatyreva L, Hauschke D, Krieglstein K, Unsicker K, Spittau B. Gdf-15 deficiency does not alter vulnerability of nigrostriatal dopaminergic system in MPTP-intoxicated mice. Cell Tissue Res 2016; 365:209-23. [PMID: 27115420 DOI: 10.1007/s00441-016-2406-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/06/2016] [Indexed: 12/25/2022]
Abstract
Growth/differentiation factor-15 (Gdf-15) is a member of the transforming growth factor-β (Tgf-β) superfamily and has been shown to be a potent neurotrophic factor for midbrain dopaminergic (DAergic) neurons both in vitro and in vivo. Gdf-15 has also been shown to be involved in inflammatory processes. The aim of this study was to identify the role of endogenous Gdf-15 in the MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model of Parkinson's disease (PD) by comparing Gdf-15 (+/+) and Gdf-15 (-/-) mice. At 4 days and 14 days post-MPTP administration, both Gdf-15 (+/+) and Gdf-15 (-/-) mice showed a similar decline in DAergic neuron numbers and in striatal dopamine (DA) levels. This was followed by a comparable restorative phase at 90 days and 120 days, indicating that the absence of Gdf-15 does not affect the susceptibility or the recovery capacity of the nigrostriatal system after MPTP administration. The MPTP-induced microglial and astrocytic response was not significantly altered between the two genotypes. However, pro-inflammatory and anti-inflammatory cytokine profiling revealed the differential expression of markers in Gdf-15 (+/+) and Gdf-15 (-/-) mice after MPTP administration. Thus, the MPTP mouse model fails to uncover a major role of endogenous Gdf-15 in the protection of MPTP-lesioned nigrostriatal DAergic neurons, in contrast to its capacity to protect the 6-hydroxydopamine-intoxicated nigrostriatal system.
Collapse
Affiliation(s)
- Venissa Machado
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, University of Freiburg, 79104, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Ralf Gilsbach
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104, Freiburg, Germany
| | - Richa Das
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, University of Freiburg, 79104, Freiburg, Germany.,German Center for Neurodegenerative Diseases, 53115, Bonn, Germany
| | - Andreas Schober
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, University of Freiburg, 79104, Freiburg, Germany
| | - Lioudmila Bogatyreva
- Institute of Medical Biometry and Medical Informatics, University of Freiburg, 79104, Freiburg, Germany
| | - Dieter Hauschke
- German Center for Neurodegenerative Diseases, 53115, Bonn, Germany
| | - Kerstin Krieglstein
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, University of Freiburg, 79104, Freiburg, Germany
| | - Klaus Unsicker
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, University of Freiburg, 79104, Freiburg, Germany.
| | - Björn Spittau
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
112
|
Fujita Y, Taniguchi Y, Shinkai S, Tanaka M, Ito M. Secreted growth differentiation factor 15 as a potential biomarker for mitochondrial dysfunctions in aging and age-related disorders. Geriatr Gerontol Int 2016; 16 Suppl 1:17-29. [DOI: 10.1111/ggi.12724] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Yasunori Fujita
- Research Teams for; Mechanism of Aging; Tokyo Metropolitan Institute of Gerontology; Tokyo Japan
| | - Yu Taniguchi
- Social Participation and Community Health; Tokyo Metropolitan Institute of Gerontology; Tokyo Japan
| | - Shoji Shinkai
- Social Participation and Community Health; Tokyo Metropolitan Institute of Gerontology; Tokyo Japan
| | - Masashi Tanaka
- Department of Genomics for Longevity and Health; Tokyo Metropolitan Institute of Gerontology; Tokyo Japan
| | - Masafumi Ito
- Research Teams for; Mechanism of Aging; Tokyo Metropolitan Institute of Gerontology; Tokyo Japan
| |
Collapse
|
113
|
Ikeda Y, Kumagai H, Motozawa Y, Suzuki JI. Growth Differentiation Factor 15 (GDF15) as a Reliable Biomarker for Cardiovascular Risk Assessment. Int Heart J 2016; 57:1-2. [DOI: 10.1536/ihj.15-324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yuichi Ikeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Hidetoshi Kumagai
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
- Department of Advanced Clinical Science and Therapeutics, Graduate School of Medicine, The University of Tokyo
| | - Yoshihiro Motozawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Jun-ichi Suzuki
- Department of Advanced Clinical Science and Therapeutics, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|
114
|
Machado V, Haas SJP, von Bohlen Und Halbach O, Wree A, Krieglstein K, Unsicker K, Spittau B. Growth/differentiation factor-15 deficiency compromises dopaminergic neuron survival and microglial response in the 6-hydroxydopamine mouse model of Parkinson's disease. Neurobiol Dis 2015; 88:1-15. [PMID: 26733415 DOI: 10.1016/j.nbd.2015.12.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/21/2015] [Accepted: 12/25/2015] [Indexed: 12/15/2022] Open
Abstract
Growth/differentiation factor-15 (Gdf-15) is a member of the TGF-β superfamily and a pleiotropic, widely distributed cytokine, which has been shown to play roles in various pathologies, including inflammation. Analysis of Gdf-15(-/-) mice has revealed that it serves the postnatal maintenance of spinal cord motor neurons and sensory neurons. In a previous study, exogenous Gdf-15 rescued 6-hydroxydopamine (6-OHDA) lesioned Gdf-15(+/+) nigrostriatal dopaminergic (DAergic) neurons in vitro and in vivo. Whether endogenous Gdf-15 serves the physiological maintenance of nigrostriatal DAergic neurons in health and disease is not known and was addressed in the present study. Stereotactic injection of 6-OHDA into the medial forebrain bundle (MFB) led to a significant decline in the numbers of DAergic neurons in both Gdf-15(+/+) and Gdf-15(-/-) mice over a time-period of 14days. However, this decrease was exacerbated in the Gdf-15(-/-) mice, with only 5.5% surviving neurons as compared to 24% in the Gdf-15(+/+) mice. Furthermore, the microglial response to the 6-OHDA lesion was reduced in Gdf-15(-/-) mice, with significantly lower numbers of total and activated microglia and a differential cytokine expression as compared to the Gdf-15(+/+) mice. Using in vitro models, we could demonstrate the importance of endogenous Gdf-15 in promoting DAergic neuron survival thus highlighting its relevance in a direct neurotrophic supportive role. Taken together, these results indicate the importance of Gdf-15 in promoting survival of DAergic neurons and regulating the inflammatory response post 6-OHDA lesion.
Collapse
Affiliation(s)
- Venissa Machado
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.
| | - Stefan J-P Haas
- Department of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany.
| | | | - Andreas Wree
- Department of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Kerstin Krieglstein
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, University of Freiburg, 79104 Freiburg, Germany.
| | - Klaus Unsicker
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, University of Freiburg, 79104 Freiburg, Germany.
| | - Björn Spittau
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
115
|
Onishi Y, Fukasawa K, Ozaki K, Iezaki T, Yoneda Y, Hinoi E. GDF1 is a novel mediator of macrophage infiltration in brown adipose tissue of obese mice. Biochem Biophys Rep 2015; 5:216-223. [PMID: 28955827 PMCID: PMC5600360 DOI: 10.1016/j.bbrep.2015.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/27/2015] [Accepted: 12/18/2015] [Indexed: 11/04/2022] Open
Abstract
We previously demonstrated a marked upregulation in the bone morphogenic protein (BMP)/growth differentiation factor (GDF) family member, GDF5, which is capable of promoting brown adipogenesis, in brown adipose tissue (BAT) of obese mice. In this study, we identified other GDF family members, besides GDF5 that are responsive to different obesogenic signals in BAT using inborn and acquired obesity animal models. In BAT from leptin-deficient ob/ob mice, GDF1 expression was preferentially downregulated, whereas the expression of several other genes in the BMP/GDF family, including GDF5, was upregulated. Moreover, in cultured brown adipocytes exposed to tunicamycin and hydrogen peroxide, at concentrations not affecting cellular viability, GDF1 expression was significantly downregulated. Recombinant GDF1 failed to significantly alter brown adipogenesis, despite the promoted phosphorylation of Smad1/5/8 in cultured brown adipocytes, but accelerated Smad1/5/8 phosphorylation with a concomitant increase in the number of migrating cells during exposure in a manner sensitive to activin-like kinase inhibitors in macrophagic RAW264.7 cells. Similarly, accelerated migration was observed in murine peritoneal macrophages exposed to GDF1. These results indicate that obesity could lead to predominant downregulation of GDF1 expression in BAT, which can modulate cellular migration through a mechanism relevant to activation of the downstream Smad signaling pathway in adjacent macrophages. GDF1 expression is downregulated in BAT of obese mice. GDF1 expression is decreased in brown adipocytes by oxidative and ER stress. GDF1 does not alter brown adipogenesis. GDF1 accelerates migration of macrophages through the BMP receptor.
Collapse
Key Words
- ALK, activin-like kinase
- BAT, brown adipose tissue
- BMP, bone morphogenic protein
- BMP/GDF
- BSA, bovine serum albumin
- Brown adipose tissue
- DMEM, Dulbecco’s modified Eagle medium
- ER, endoplasmic reticulum
- GDF, growth differentiation factor
- HFD, high fat diet
- Macrophage
- Obesity
- PCR, polymerase chain reaction
- PPARγ, peroxisome proliferator-activated receptor-γ
- UCP1, uncoupling protein-1
- WAT, white adipose tissue
- WT, wild-type
Collapse
Affiliation(s)
- Yuki Onishi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kazuya Fukasawa
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kakeru Ozaki
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Takashi Iezaki
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yukio Yoneda
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
116
|
Jiang J, Trollor JN, Brown DA, Crawford JD, Thalamuthu A, Smith E, Breit SN, Liu T, Brodaty H, Baune BT, Sachdev PS, Wen W. An inverse relationship between serum macrophage inhibitory cytokine-1 levels and brain white matter integrity in community-dwelling older individuals. Psychoneuroendocrinology 2015; 62:80-8. [PMID: 26254771 DOI: 10.1016/j.psyneuen.2015.07.610] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 07/17/2015] [Accepted: 07/23/2015] [Indexed: 11/28/2022]
Abstract
Macrophage inhibitory cytokine-1 (MIC-1/GDF15) is a marker of inflammation that has been associated with atherosclerosis. We have previously demonstrated its relationships with cognitive decline and cerebral gray matter volumes, suggesting its role as a biomarker of cognitive impairment. Considering that it is widely distributed in the brain, and both inflammation and vascular pathology impact on white matter (WM) integrity, we examined the relationship between MIC-1/GDF15 and measures of WM integrity, including WM volumes, mean fractional anisotropy (FA) values and WM hyperintensity (WMH) volumes in a community-dwelling non-demented sample of older individuals (n=327, 70-90 years old). We found that the mean FA values were negatively associated with MIC-1/GDF15 serum levels, after Bonferroni correction. The voxel-wise analysis showed negative relationships between MIC-1/GDF15 serum levels and FA values in corticospinal tract, corpus callosum (including genu, body and splenium parts), superior longitudinal fasciculus, cingulum, as well as anterior and posterior thalamic radiation. Whole brain WMH volumes, especially deep WMH volumes, showed a non-significant trend for a positive association with MIC-1/GDF15 serum levels. The associations between MIC-1/GDF15 serum levels and WM integrity showed a non-significant trend of being stronger for the individuals classified as mild cognitive impairment, compared to the normal ageing participants. The findings suggest that high serum MIC-1/GDF15 levels indicate reduced WM integrity and possibly greater WM pathology.
Collapse
Affiliation(s)
- Jiyang Jiang
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| | - Julian N Trollor
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Randwick, NSW, Australia; Department of Development Disability Neuropsychiatry, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - David A Brown
- Centre for Applied Medical Research, St. Vincent's Hospital and University of New South Wales, Darlinghurst, NSW, Australia
| | - John D Crawford
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| | - Evelyn Smith
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| | - Samuel N Breit
- Centre for Applied Medical Research, St. Vincent's Hospital and University of New South Wales, Darlinghurst, NSW, Australia
| | - Tao Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Henry Brodaty
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Randwick, NSW, Australia; Aged Care Psychiatry, Prince of Wales Hospital, Randwick, NSW, Australia; Dementia Collaborative Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Bernhard T Baune
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Randwick, NSW, Australia; Neuropsychiatric Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Randwick, NSW, Australia; Neuropsychiatric Institute, Prince of Wales Hospital, Randwick, NSW, Australia.
| |
Collapse
|
117
|
Londhe P, Guttridge DC. Inflammation induced loss of skeletal muscle. Bone 2015; 80:131-142. [PMID: 26453502 PMCID: PMC4600538 DOI: 10.1016/j.bone.2015.03.015] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 03/03/2015] [Accepted: 03/18/2015] [Indexed: 12/21/2022]
Abstract
Inflammation is an important contributor to the pathology of diseases implicated in skeletal muscle dysfunction. A number of diseases and disorders including inflammatory myopathies and Chronic Obstructive Pulmonary Disorder (COPD) are characterized by chronic inflammation or elevation of the inflammatory mediators. While these disease states exhibit different pathologies, all have in common the loss of skeletal muscle mass and a deregulated skeletal muscle physiology. Pro-inflammatory cytokines are key contributors to chronic inflammation found in many of these diseases. This section of the review focuses on some of the known inflammatory disorders like COPD, Rheumatoid Arthritis (RA) and inflammatory myopathies that display skeletal muscle atrophy and also provides the reader an overview of the mediators of inflammation, their signaling pathways, and mechanisms of action. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Priya Londhe
- Department of Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics Program, Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Denis C Guttridge
- Department of Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics Program, Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
118
|
Wang X, Krebbers J, Charalambous P, Machado V, Schober A, Bosse F, Müller HW, Unsicker K. Growth/differentiation factor-15 and its role in peripheral nervous system lesion and regeneration. Cell Tissue Res 2015; 362:317-30. [DOI: 10.1007/s00441-015-2219-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/20/2015] [Indexed: 01/31/2023]
|
119
|
Cytokines in atherosclerosis: Key players in all stages of disease and promising therapeutic targets. Cytokine Growth Factor Rev 2015; 26:673-85. [PMID: 26005197 PMCID: PMC4671520 DOI: 10.1016/j.cytogfr.2015.04.003] [Citation(s) in RCA: 327] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/27/2015] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, a chronic inflammatory disorder of the arteries, is responsible for most deaths in westernized societies with numbers increasing at a marked rate in developing countries. The disease is initiated by the activation of the endothelium by various risk factors leading to chemokine-mediated recruitment of immune cells. The uptake of modified lipoproteins by macrophages along with defective cholesterol efflux gives rise to foam cells associated with the fatty streak in the early phase of the disease. As the disease progresses, complex fibrotic plaques are produced as a result of lysis of foam cells, migration and proliferation of vascular smooth muscle cells and continued inflammatory response. Such plaques are stabilized by the extracellular matrix produced by smooth muscle cells and destabilized by matrix metalloproteinase from macrophages. Rupture of unstable plaques and subsequent thrombosis leads to clinical complications such as myocardial infarction. Cytokines are involved in all stages of atherosclerosis and have a profound influence on the pathogenesis of this disease. This review will describe our current understanding of the roles of different cytokines in atherosclerosis together with therapeutic approaches aimed at manipulating their actions.
Collapse
|
120
|
Abstract
Risk prediction in patients admitted with acute decompensated heart failure (ADHF) remains a challenge. Biomarkers may improve risk prediction, which in turn may help to better inform patients regarding short-term and long-term prognosis, therapy and care. Most data on biomarkers have been derived from patient cohorts with chronic heart failure. In ADHF, currently, risk tools largely rely on common clinical and biochemical parameters. However, ADHF is not a single disease. It presents in various manners and different etiologies may underlie ADHF, which are reflected by different biomarkers. In the last decade, many studies have reported the prognostic value of these biomarkers. These studies have attempted to describe a value for statistical modeling, e.g., reclassification indices, in an effort to report incremental value over a clinical model or the "gold standard". However, the overall incremental predictive value of biomarkers has been modest compared to already existing clinical models. Natriuretic peptides, e.g., (NTpro-)BNP, are the benchmark, but head-to-head comparisons show that there are novel biomarkers with comparable prognostic value. Multimarker strategies may provide superior risk stratification. Future studies should elucidate cost-effectiveness of single or combined biomarker testing. The purpose of this review was to provide an update on current biomarkers and to identify new promising biomarkers than can be used in prognostication of acute heart failure.
Collapse
|
121
|
Ilhan F, Kalkanli ST. Atherosclerosis and the role of immune cells. World J Clin Cases 2015; 3:345-352. [PMID: 25879006 PMCID: PMC4391004 DOI: 10.12998/wjcc.v3.i4.345] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/30/2014] [Accepted: 01/20/2015] [Indexed: 02/05/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease arising from lipids, specifically low-density lipoproteins, and leukocytes. Following the activation of endothelium with the expression of adhesion molecules and monocytes, inflammatory cytokines from macrophages, and plasmacytoid dendritic cells, high levels of interferon (IFN)-α and β are generated upon the activation of toll-like receptor-9, and T-cells, especially the ones with Th1 profile, produce pro-inflammatory mediators such as IFN-γ and upregulate macrophages to adhere to the endothelium and migrate into the intima. This review presents an exhaustive account for the role of immune cells in the atherosclerosis.
Collapse
|
122
|
Jiang J, Wen W, Brown DA, Crawford J, Thalamuthu A, Smith E, Breit SN, Liu T, Zhu W, Brodaty H, Baune BT, Trollor JN, Sachdev PS. The relationship of serum macrophage inhibitory cytokine-1 levels with gray matter volumes in community-dwelling older individuals. PLoS One 2015; 10:e0123399. [PMID: 25867953 PMCID: PMC4395016 DOI: 10.1371/journal.pone.0123399] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/18/2015] [Indexed: 12/29/2022] Open
Abstract
Using circulating inflammatory markers and magnetic resonance imaging (MRI), recent studies have associated inflammation with brain volumetric measures. Macrophage Inhibitory Cytokine-1 (MIC-1/GDF15) is a divergent transforming growth factor - beta (TGF-β) superfamily cytokine. To uncover the underlying mechanisms of the previous finding of a negative association between MIC-1/GDF15 serum levels and cognition, the present study aimed to examine the relationship of circulating MIC-1/GDF15 levels with human brain gray matter (GM) volumes, in a community-dwelling sample aged 70-90 years over two years (Wave 1: n = 506, Wave 2: n = 327), of which the age-related brain atrophy had been previously well defined. T1-weighted MRI scans were obtained at both waves and analyzed using the FMRIB Software Library and FreeSurfer. The results showed significantly negative associations between MIC-1/GDF15 serum levels and both subcortical and cortical GM volumes. GM volumes of the whole brain, cortex, temporal lobe, thalamus and accumbens showed significant mediating effects on the associations between MIC-1/GDF15 serum levels and global cognition scores. Increases in MIC-1/GDF15 serum levels were associated with decreases in cortical and subcortical GM volume over two years. In conclusion, MIC-1/GDF15 serum levels were inversely associated with GM volumes both cross-sectionally and longitudinally.
Collapse
Affiliation(s)
- Jiyang Jiang
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Randwick NSW, Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Randwick NSW, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Randwick NSW, Australia
- * E-mail:
| | - David A. Brown
- Centre for Applied Medical Research, St. Vincent’s Hospital and University of New South Wales, Darlinghurst NSW, Australia
| | - John Crawford
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Randwick NSW, Australia
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Randwick NSW, Australia
| | - Evelyn Smith
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Randwick NSW, Australia
| | - Samuel N. Breit
- Centre for Applied Medical Research, St. Vincent’s Hospital and University of New South Wales, Darlinghurst NSW, Australia
| | - Tao Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Wanlin Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Henry Brodaty
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Randwick NSW, Australia
- Aged Care Psychiatry, Prince of Wales Hospital, Randwick NSW, Australia
- Dementia Collaborative Research Centre, University of New South Wales, Sydney NSW, Australia
| | - Bernhard T. Baune
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Julian N. Trollor
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Randwick NSW, Australia
- Department of Development Disability Neuropsychiatry, School of Psychiatry, University of New South Wales, Sydney NSW, Australia
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Randwick NSW, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Randwick NSW, Australia
| |
Collapse
|
123
|
Viola J, Soehnlein O. Atherosclerosis - A matter of unresolved inflammation. Semin Immunol 2015; 27:184-93. [PMID: 25865626 DOI: 10.1016/j.smim.2015.03.013] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/19/2015] [Accepted: 03/27/2015] [Indexed: 12/13/2022]
Abstract
Atherosclerosis is commonly looked upon as a chronic inflammatory disease of the arterial wall arising from an unbalanced lipid metabolism and a maladaptive inflammatory response. However, atherosclerosis is not merely an inflammation of the vessel wall. In fact, the cardinal signs of unstable atherosclerotic lesions are primarily characteristics of failed resolution of a chronic inflammation. In contrast to acute inflammatory events which are typically self-limiting, atherosclerosis is an unresolved inflammatory condition, lacking the switch from the pro-inflammatory to the pro-resolving phase, the latter characterized by termination of inflammatory cell recruitment, removal of inflammatory cells from the site of inflammation by apoptosis and dead cell clearance, reprogramming of macrophages toward an anti-inflammatory, regenerative phenotype, and finally egress of effector cells and tissue regeneration. Here we present an overview on mechanisms of failed resolution contributing to atheroprogression and deliver a summary of novel therapeutic strategies to restore resolution in inflamed arteries.
Collapse
Affiliation(s)
- Joana Viola
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany.
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands; German Centre for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
124
|
Husaini Y, Lockwood GP, Nguyen TV, Tsai VWW, Mohammad MG, Russell PJ, Brown DA, Breit SN. Macrophage inhibitory cytokine-1 (MIC-1/GDF15) gene deletion promotes cancer growth in TRAMP prostate cancer prone mice. PLoS One 2015; 10:e0115189. [PMID: 25695521 PMCID: PMC4335046 DOI: 10.1371/journal.pone.0115189] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/11/2014] [Indexed: 12/21/2022] Open
Abstract
The divergent TGF-β superfamily member, macrophage inhibitory cytokine-1 (MIC-1/GDF15), is overexpressed by most cancers, including prostate cancer (PCa). Whilst its circulating levels are linked to cancer outcome, the role MIC-1/GDF15 plays in cancer development and progression is incompletely understood. To investigate its effect on PCa development and spread, we have used TRAMP prostate cancer prone mice bearing a germline deletion of MIC-1/GDF15 (TRAMPMIC-/-). On average TRAMPMIC-/- mice died about 5 weeks earlier and had larger prostatic tumors compared with TRAMP mice that were wild type for MIC-1/GDF15 (TRAMPMIC+/+). Additionally, at the time of death or ethical end point, even when adjusted for lifespan, there were no significant differences in the number of mice with metastases between the TRAMPMIC+/+ and TRAMPMIC-/- groups. However, consistent with our previous data, more than twice as many TRAMP mice overexpressing MIC-1/GDF15 (TRAMPfmsmic-1) had metastases than TRAMPMIC+/+ mice (p<0.0001). We conclude that germ line gene deletion of MIC-1/GDF15 leads to increased local tumor growth resulting in decreased survival consistent with an overall protective role for MIC-1/GDF15 in early primary tumor development. However, in advancing disease, as we have previously noted, MIC-1/GDF15 overexpression may promote local invasion and metastatic spread.
Collapse
Affiliation(s)
- Yasmin Husaini
- St. Vincent’s Centre for Applied Medical Research, St. Vincent’s Hospital and University of New South Wales, Sydney, NSW 2010, Australia
| | - Glen P. Lockwood
- St. Vincent’s Centre for Applied Medical Research, St. Vincent’s Hospital and University of New South Wales, Sydney, NSW 2010, Australia
| | - Trung V. Nguyen
- St. Vincent’s Centre for Applied Medical Research, St. Vincent’s Hospital and University of New South Wales, Sydney, NSW 2010, Australia
| | - Vicky Wang-Wei Tsai
- St. Vincent’s Centre for Applied Medical Research, St. Vincent’s Hospital and University of New South Wales, Sydney, NSW 2010, Australia
| | - Mohammad G. Mohammad
- St. Vincent’s Centre for Applied Medical Research, St. Vincent’s Hospital and University of New South Wales, Sydney, NSW 2010, Australia
| | - Pamela J. Russell
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - David A. Brown
- St. Vincent’s Centre for Applied Medical Research, St. Vincent’s Hospital and University of New South Wales, Sydney, NSW 2010, Australia
- * E-mail: (SNB); (DAB)
| | - Samuel N. Breit
- St. Vincent’s Centre for Applied Medical Research, St. Vincent’s Hospital and University of New South Wales, Sydney, NSW 2010, Australia
- * E-mail: (SNB); (DAB)
| |
Collapse
|
125
|
Figueiredo JL, Aikawa M, Zheng C, Aaron J, Lax L, Libby P, de Lima Filho JL, Gruener S, Fingerle J, Haap W, Hartmann G, Aikawa E. Selective cathepsin S inhibition attenuates atherosclerosis in apolipoprotein E-deficient mice with chronic renal disease. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1156-66. [PMID: 25680278 DOI: 10.1016/j.ajpath.2014.11.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/28/2014] [Accepted: 11/25/2014] [Indexed: 01/02/2023]
Abstract
Chronic renal disease (CRD) accelerates the development of atherosclerosis. The potent protease cathepsin S cleaves elastin and generates bioactive elastin peptides, thus promoting vascular inflammation and calcification. We hypothesized that selective cathepsin S inhibition attenuates atherogenesis in hypercholesterolemic mice with CRD. CRD was induced by 5/6 nephrectomy in high-fat high-cholesterol fed apolipoprotein E-deficient mice. CRD mice received a diet admixed with 6.6 or 60 mg/kg of the potent and selective cathepsin S inhibitor RO5444101 or a control diet. CRD mice had significantly higher plasma levels of osteopontin, osteocalcin, and osteoprotegerin (204%, 148%, and 55%, respectively; P < 0.05), which were inhibited by RO5444101 (60%, 40%, and 36%, respectively; P < 0.05). Near-infrared fluorescence molecular imaging revealed a significant reduction in cathepsin activity in treated mice. RO5444101 decreased osteogenic activity. Histologic assessment in atherosclerotic plaque demonstrated that RO5444101 reduced immunoreactive cathepsin S (P < 0.05), elastin degradation (P = 0.01), plaque size (P = 0.01), macrophage accumulation (P < 0.01), growth differentiation factor-15 (P = 0.0001), and calcification (alkaline phosphatase activity, P < 0.01; osteocalcin, P < 0.05). Furthermore, cathepsin S inhibitor or siRNA significantly decreased expression of growth differentiation factor-15 and monocyte chemotactic protein-1 in a murine macrophage cell line and human primary macrophages. Systemic inhibition of cathepsin S attenuates the progression of atherosclerotic lesions in 5/6 nephrectomized mice, serving as a potential treatment for atherosclerosis in patients with CRD.
Collapse
Affiliation(s)
- Jose-Luiz Figueiredo
- The Center of Excellence in Vascular Biology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, Brazil
| | - Masanori Aikawa
- The Center of Excellence in Vascular Biology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, Brazil
| | - Chunyu Zheng
- The Center of Excellence in Vascular Biology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, Brazil
| | - Jacob Aaron
- The Center of Excellence in Vascular Biology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, Brazil
| | - Lilian Lax
- The Center of Excellence in Vascular Biology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, Brazil
| | - Peter Libby
- The Center of Excellence in Vascular Biology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, Brazil
| | | | - Sabine Gruener
- Pharma Research and Early Development, Hoffman La Roche, Basel, Switzerland
| | - Jürgen Fingerle
- Pharma Research and Early Development, Hoffman La Roche, Basel, Switzerland
| | - Wolfgang Haap
- Pharma Research and Early Development, Hoffman La Roche, Basel, Switzerland
| | - Guido Hartmann
- Pharma Research and Early Development, Hoffman La Roche, Basel, Switzerland
| | - Elena Aikawa
- The Center of Excellence in Vascular Biology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, Brazil.
| |
Collapse
|
126
|
Adela R, Banerjee SK. GDF-15 as a Target and Biomarker for Diabetes and Cardiovascular Diseases: A Translational Prospective. J Diabetes Res 2015; 2015:490842. [PMID: 26273671 PMCID: PMC4530250 DOI: 10.1155/2015/490842] [Citation(s) in RCA: 303] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 12/20/2022] Open
Abstract
Growth differentiation factor-15 (GDF-15) is a stress responsive cytokine. It is highly expressed in cardiomyocytes, adipocytes, macrophages, endothelial cells, and vascular smooth muscle cells in normal and pathological condition. GDF-15 increases during tissue injury and inflammatory states and is associated with cardiometabolic risk. Increased GDF-15 levels are associated with cardiovascular diseases such as hypertrophy, heart failure, atherosclerosis, endothelial dysfunction, obesity, insulin resistance, diabetes, and chronic kidney diseases in diabetes. Increased GDF-15 level is linked with the progression and prognosis of the disease condition. Age, smoking, and environmental factors are other risk factors that may increase GDF-15 level. Most of the scientific studies reported that GDF-15 plays a protective role in different tissues. However, few reports show that the deficiency of GDF-15 is beneficial against vascular injury and inflammation. GDF-15 protects heart, adipose tissue, and endothelial cells by inhibiting JNK (c-Jun N-terminal kinase), Bad (Bcl-2-associated death promoter), and EGFR (epidermal growth factor receptor) and activating Smad, eNOS, PI3K, and AKT signaling pathways. The present review describes the different animal and clinical studies and patent updates of GDF-15 in diabetes and cardiovascular diseases. It is a challenge for the scientific community to use GDF-15 information for patient monitoring, clinical decision-making, and replacement of current treatment strategies for diabetic and cardiovascular diseases.
Collapse
Affiliation(s)
- Ramu Adela
- Drug Discovery Research Center, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana 122014, India
| | - Sanjay K. Banerjee
- Drug Discovery Research Center, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana 122014, India
- *Sanjay K. Banerjee:
| |
Collapse
|
127
|
Abstract
AbstractThe Growth Differentiation Factor-15 gene (GDF15) is a member of TGF-b superfamily and this cytokine family is considered to be a promising target for cancer therapy. The purpose of this study was to investigate the effect of tumor derived GDF15 on proliferation and radiosensitivity of breast cancer cells in vitro and in vivo. A mouse breast cancer LM2 cell line with stable transfection of full-length mouse GDF15 cDNA was established. Cell growth and proliferation was observed using WST assay and impedance-based method. Radiation induced GDF15 and TGF-b1 expression was determined by qRT-PCR. Radiosensitivity was measured by a colony formation assay in vitro and by a tumor growth delay assay in vivo. Cells with more than a 10-fold increase in GDF15 expression had a higher growth rate than parental control cells in vitro and in vivo. The radiation induced elevation of the expression of TGFb1 was reduced in GDF15 overexpressing cells. GDF15 may play a role in the radiation response of breast cancer cells by effecting cell survival, inhibiting radiation-induced cell death, and inhibiting the TGF-b1 related cytotoxic action.
Collapse
|
128
|
Yilmaz H, Çelik HT, Gurel OM, Bilgic MA, Namuslu M, Bozkurt H, Ayyildiz A, Inan O, Bavbek N, Akcay A. Increased serum levels of GDF-15 associated with mortality and subclinical atherosclerosis in patients on maintenance hemodialysis. Herz 2014; 40 Suppl 3:305-12. [PMID: 25117302 DOI: 10.1007/s00059-014-4139-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/25/2014] [Accepted: 07/14/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND/AIMS Increased carotid intima-media thickness (CIMT) was shown to be an independent predictor of cardiovascular (CV) mortality in dialysis patients and the general population. Growth differentiation factor 15 (GDF-15), a member of the transforming growth factor superfamily, is produced by cardiomyocytes and atherosclerotic lesions under stress conditions such as inflammation. We assessed associations between serum concentrations of GDF-15, mortality, and CIMT for subclinical atherosclerosis in hemodialysis (HD) patients. METHODS A total of 87 patients on maintenance hemodialysis and 45 sex- and age-matched healthy controls were included in this prospective study. Serum GDF-15 levels were measured by ELISA. CIMT was assessed by Doppler ultrasonography. The association between serum GDF-15 levels and mortality was assessed using Cox regression analysis with serum levels categorized into two groups according to the median value (328.18 pg/ml). Patients were followed for 2 years and cause-specific and all-cause mortality were determined. RESULTS The median level of serum GDF-15 was significantly higher in HD patients than controls [328 (198-522) vs. 176 (101-289) pg/ml, p < 0.01, respectively]. Serum GDF-15 levels were correlated to CIMT (r = 0.607, p < 0.001), C-reactive protein (CRP; r = 0.250, p = 0.010), HD duration (r = 0.376, p = 0.004), and serum albumin (r = - 0.156, p = 0.030). The multivariate analysis revealed that GDF-15 was found to be an independent variable of CIMT in HD patients. In the study, the serum GDF-15 level was an independent marker of all-cause of mortality when adjusted for age, CRP, and history of diabetes mellitus. CONCLUSION The relationship between serum GDF-15, mortality, and carotid artery thickening suggests that GDF-15 may be a novel marker of atherosclerosis, inflammation, and malnutrition in HD patients.
Collapse
Affiliation(s)
- H Yilmaz
- Department of Internal Medicine, Section of Nephrology, Turgut Ozal University School of Medicine, Alparslan Türkes Cad. No: 57, 06510, Emek/Ankara, Turkey,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
GDF15 regulates Kv2.1-mediated outward K+ current through the Akt/mTOR signalling pathway in rat cerebellar granule cells. Biochem J 2014; 460:35-47. [PMID: 24597762 PMCID: PMC4000135 DOI: 10.1042/bj20140155] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
GDF15 (growth/differentiation factor 15), a novel member of the TGFβ (transforming growth factor β) superfamily, plays critical roles in the central and peripheral nervous systems, but the signal transduction pathways and receptor subtypes involved are not well understood. In the present paper, we report that GDF15 specifically increases the IK (delayed-rectifier outward K+ current) in rat CGNs (cerebellar granule neurons) in time- and concentration-dependent manners. The GDF15-induced amplification of the IK is mediated by the increased expression and reduced lysosome-dependent degradation of the Kv2.1 protein, the main α-subunit of the IK channel. Exposure of CGNs to GDF15 markedly induced the phosphorylation of ERK (extracellular-signal-regulated kinase), Akt and mTOR (mammalian target of rapamycin), but the GDF15-induced IK densities and increased expression of Kv2.1 were attenuated only by Akt and mTOR, and not ERK, inhibitors. Pharmacological inhibition of the Src-mediated phosphorylation of TGFβR2 (TGFβ receptor 2), not TGFβR1, abrogated the effect of GDF15 on IK amplification and Kv2.1 induction. Immunoprecipitation assays showed that GDF15 increased the tyrosine phosphorylation of TGFβRII in the CGN lysate. The results of the present study reveal a novel regulation of Kv2.1 by GDF15 mediated through the TGFβRII-activated Akt/mTOR pathway, which is a previously uncharacterized Smad-independent mechanism of GDF15 signalling.
Collapse
|
130
|
Morissette MC, Lamontagne M, Bérubé JC, Gaschler G, Williams A, Yauk C, Couture C, Laviolette M, Hogg JC, Timens W, Halappanavar S, Stampfli MR, Bossé Y. Impact of cigarette smoke on the human and mouse lungs: a gene-expression comparison study. PLoS One 2014; 9:e92498. [PMID: 24663285 PMCID: PMC3963906 DOI: 10.1371/journal.pone.0092498] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 02/22/2014] [Indexed: 01/31/2023] Open
Abstract
Cigarette smoke is well known for its adverse effects on human health, especially on the lungs. Basic research is essential to identify the mechanisms involved in the development of cigarette smoke-related diseases, but translation of new findings from pre-clinical models to the clinic remains difficult. In the present study, we aimed at comparing the gene expression signature between the lungs of human smokers and mice exposed to cigarette smoke to identify the similarities and differences. Using human and mouse whole-genome gene expression arrays, changes in gene expression, signaling pathways and biological functions were assessed. We found that genes significantly modulated by cigarette smoke in humans were enriched for genes modulated by cigarette smoke in mice, suggesting a similar response of both species. Sixteen smoking-induced genes were in common between humans and mice including six newly reported to be modulated by cigarette smoke. In addition, we identified a new conserved pulmonary response to cigarette smoke in the induction of phospholipid metabolism/degradation pathways. Finally, the majority of biological functions modulated by cigarette smoke in humans were also affected in mice. Altogether, the present study provides information on similarities and differences in lung gene expression response to cigarette smoke that exist between human and mouse. Our results foster the idea that animal models should be used to study the involvement of pathways rather than single genes in human diseases.
Collapse
Affiliation(s)
- Mathieu C. Morissette
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| | - Maxime Lamontagne
- Centre de Recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec city, Québec, Canada
| | - Jean-Christophe Bérubé
- Centre de Recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec city, Québec, Canada
| | - Gordon Gaschler
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Andrew Williams
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Carole Yauk
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Christian Couture
- Centre de Recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec city, Québec, Canada
| | - Michel Laviolette
- Centre de Recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec city, Québec, Canada
| | - James C. Hogg
- Center for Heart and Lung Health St. Paul’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine Respiratory Division, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wim Timens
- Department of Pathology and Medical Biology University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Sabina Halappanavar
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Martin R. Stampfli
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine Firestone Institute of Respiratory Health at St. Joseph’s Healthcare, McMaster University, Hamilton, Ontario, Canada
| | - Yohan Bossé
- Centre de Recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec city, Québec, Canada
- Department of Molecular Medicine, Laval University, Quebec city, Québec, Canada
| |
Collapse
|
131
|
Growth Differentiation Factor 15, a Marker of Lung Involvement in Systemic Sclerosis, Is Involved in Fibrosis Development but Is not Indispensable for Fibrosis Development. Arthritis Rheumatol 2014; 66:418-27. [DOI: 10.1002/art.38241] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/15/2013] [Indexed: 01/22/2023]
|
132
|
Yanaba K, Asano Y, Tada Y, Sugaya M, Kadono T, Sato S. Clinical significance of serum growth differentiation factor-15 levels in systemic sclerosis: association with disease severity. Mod Rheumatol 2014. [DOI: 10.3109/s10165-011-0568-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
133
|
Wallentin L, Zethelius B, Berglund L, Eggers KM, Lind L, Lindahl B, Wollert KC, Siegbahn A. GDF-15 for prognostication of cardiovascular and cancer morbidity and mortality in men. PLoS One 2013; 8:e78797. [PMID: 24312445 PMCID: PMC3846468 DOI: 10.1371/journal.pone.0078797] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 09/22/2013] [Indexed: 11/21/2022] Open
Abstract
The objective was to evaluate the hypothesis that growth-differentiation factor 15 (GDF-15) is an independent marker of the long-term risk for both cardiovascular disease and cancer morbidity beyond clinical and biochemical risk factors. Plasma obtained at age 71 was available from 940 subjects in the Uppsala Longitudinal Study of Adult Men (ULSAM) cohort. Complete mortality and morbidity data were obtained from public registries. At baseline there were independent associations between GDF-15 and current smoking, diabetes mellitus, biomarkers of cardiac (high-sensitivity troponin-T, NT-proBNP) and renal dysfunction (cystatin-C) and inflammatory activity (C-reactive protein), and previous cardiovascular disease (CVD). During 10 years follow-up there occurred 265 and 131 deaths, 115 and 46 cardiovascular deaths, and 185 and 86 events with coronary heart disease mortality or morbidity in the respective total cohort (n=940) and non-CVD (n=561) cohort. After adjustment for conventional cardiovascular risk factors, one SD increase in log GDF-15 were, in the respective total and non-CVD populations, associated with 48% (95%CI 26 to 73%, p<0.001) and 67% (95%CI 28 to 217%, p<0.001) incremental risk of cardiovascular mortality, 48% (95%CI 33 to 67%, p<0.001) and 61% (95%CI 38 to 89%, p<0.001) of total mortality and 36% (95%CI 19 to 56%, p<0.001) and 44% (95%CI 17 to 76%, p<0.001) of coronary heart disease morbidity and mortality. The corresponding incremental increase for cancer mortality in the respective total and non-cancer disease (n=882) population was 46% (95%CI 21 to 77%, p<0.001) and 38% (95%CI 12 to 70%, p<0.001) and for cancer morbidity and mortality in patients without previous cancer disease 30% (95%CI 12 to 51%, p<0.001). In conclusion, in elderly men, GDF-15 improves prognostication of both cardiovascular, cancer mortality and morbidity beyond established risk factors and biomarkers of cardiac, renal dysfunction and inflammation.
Collapse
Affiliation(s)
- Lars Wallentin
- Uppsala Clinical Research Center (UCR) and Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Björn Zethelius
- Department of Public Health/Geriatrics, Uppsala University and Medical Products Agency/Epidemiology, Uppsala, Sweden
| | - Lars Berglund
- Uppsala Clinical Research Center (UCR) and Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Kai M. Eggers
- Uppsala Clinical Research Center (UCR) and Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Bertil Lindahl
- Uppsala Clinical Research Center (UCR) and Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Kai C. Wollert
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Agneta Siegbahn
- Uppsala Clinical Research Center (UCR) and Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
134
|
Corre J, Hébraud B, Bourin P. Concise review: growth differentiation factor 15 in pathology: a clinical role? Stem Cells Transl Med 2013; 2:946-52. [PMID: 24191265 DOI: 10.5966/sctm.2013-0055] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Growth differentiation factor 15 (GDF15) is a divergent member of the transforming growth factor β family discovered in a broad range of cells, as indicated by the diversity of its nomenclature. However, the only tissue that expresses a high amount of GDF15 in the physiologic state is placenta. GDF15 is easily detected in blood, and its concentration varies with age. In fact, increased blood concentration of GDF15 is associated with numerous pathological conditions. However, the biological significance underlying these observations is far from clear. GDF15 could have a positive or negative role depending on the state of cells or their environment. Furthermore, study of its biology is hampered by lack of knowledge of its receptor and thus the signaling pathways that drive its action. GDF15 seems to be an integrative signal in pathologic conditions, giving information on severity of disease. Its effectiveness in classifying patients to modulate treatment remains to be shown. Development of therapeutic interventions with GDF15 or anti-GDF15 agents remains difficult until we uncover the mechanism that drives its activity.
Collapse
Affiliation(s)
- Jill Corre
- Intergroupe Francophone du Myélome, France
| | | | | |
Collapse
|
135
|
Abstract
At least 468 individual genes have been manipulated by molecular methods to study their effects on the initiation, promotion, and progression of atherosclerosis. Most clinicians and many investigators, even in related disciplines, find many of these genes and the related pathways entirely foreign. Medical schools generally do not attempt to incorporate the relevant molecular biology into their curriculum. A number of key signaling pathways are highly relevant to atherogenesis and are presented to provide a context for the gene manipulations summarized herein. The pathways include the following: the insulin receptor (and other receptor tyrosine kinases); Ras and MAPK activation; TNF-α and related family members leading to activation of NF-κB; effects of reactive oxygen species (ROS) on signaling; endothelial adaptations to flow including G protein-coupled receptor (GPCR) and integrin-related signaling; activation of endothelial and other cells by modified lipoproteins; purinergic signaling; control of leukocyte adhesion to endothelium, migration, and further activation; foam cell formation; and macrophage and vascular smooth muscle cell signaling related to proliferation, efferocytosis, and apoptosis. This review is intended primarily as an introduction to these key signaling pathways. They have become the focus of modern atherosclerosis research and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
136
|
Legein B, Temmerman L, Biessen EAL, Lutgens E. Inflammation and immune system interactions in atherosclerosis. Cell Mol Life Sci 2013; 70:3847-69. [PMID: 23430000 PMCID: PMC11113412 DOI: 10.1007/s00018-013-1289-1] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 01/30/2013] [Accepted: 02/04/2013] [Indexed: 12/15/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality worldwide, accounting for 16.7 million deaths each year. The underlying cause of the majority of CVD is atherosclerosis. In the past, atherosclerosis was considered to be the result of passive lipid accumulation in the vessel wall. Today's picture is far more complex. Atherosclerosis is considered a chronic inflammatory disease that results in the formation of plaques in large and mid-sized arteries. Both cells of the innate and the adaptive immune system play a crucial role in its pathogenesis. By transforming immune cells into pro- and anti-inflammatory chemokine- and cytokine-producing units, and by guiding the interactions between the different immune cells, the immune system decisively influences the propensity of a given plaque to rupture and cause clinical symptoms like myocardial infarction and stroke. In this review, we give an overview on the newest insights in the role of different immune cells and subtypes in atherosclerosis.
Collapse
Affiliation(s)
- Bart Legein
- Experimental Vascular Pathology, Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Lieve Temmerman
- Experimental Vascular Pathology, Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Erik A. L. Biessen
- Experimental Vascular Pathology, Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Esther Lutgens
- Experimental Vascular Biology, Department of Medical Biochemistry, Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian’s University, Pettenkoferstrasse 8a/9, 80336 Munich, Germany
| |
Collapse
|
137
|
The multiple facets of the TGF-β family cytokine growth/differentiation factor-15/macrophage inhibitory cytokine-1. Cytokine Growth Factor Rev 2013; 24:373-84. [DOI: 10.1016/j.cytogfr.2013.05.003] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 05/21/2013] [Indexed: 12/23/2022]
|
138
|
Hoving S, Heeneman S, Gijbels MJJ, Te Poele JAM, Visser N, Cleutjens J, Russell NS, Daemen MJAP, Stewart FA. Irradiation induces different inflammatory and thrombotic responses in carotid arteries of wildtype C57BL/6J and atherosclerosis-prone ApoE(-/-) mice. Radiother Oncol 2013; 105:365-70. [PMID: 23245647 DOI: 10.1016/j.radonc.2012.11.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/14/2012] [Accepted: 11/17/2012] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND PURPOSE We have previously shown that irradiation to the carotid arteries of hypercholesterolemic ApoE(-/-) mice accelerated the development of macrophage-rich, inflammatory atherosclerotic lesions. We now investigated the mechanism underlying the development of radiation-induced atherosclerosis. MATERIALS AND METHODS ApoE(-/-) and wildtype C57BL/6J mice received 0, 8 or 14 Gy to the neck and the carotid arteries were harvested 1 day, 1 or 4 weeks later. Immunohistochemical stainings were performed to evaluate well-known inflammatory and thrombotic molecules. A hypothesis-generating approach was used to compare gene expression profiles of irradiated and unirradiated carotid arteries. RESULTS Basal levels of endothelial VCAM-1 and thrombomodulin immunoexpression were higher in ApoE(-/-) mice than in C57BL/6J mice. At 1 week after 14 Gy VCAM-1 immunoexpression was decreased in ApoE(-/-) mice, whereas ICAM-1 immunoexpression was decreased at 1 and 4 weeks after 14 Gy in C57BL/6J mice. Thrombomodulin and tissue factor immunoexpression were elevated at 4 weeks after 14 Gy in ApoE(-/-) mice and reduced in C57BL/6J mice. There were no changes in immunoexpression of eNOS, MCP-1 or endoglin. Several canonical pathways were differentially expressed after irradiation, including tight junction pathways, leukocyte extravasation signaling and PI3K/AKT signaling. CONCLUSION ApoE(-/-) and C57BL/6J mice respond differently to irradiation. The thrombotic pathways were activated after irradiation in ApoE(-/-) mice only. Genes involved in tight junction regulation were up-regulated in ApoE(-/-) mice and decreased in C57BL/6J mice. These factors may have contributed to fatty-streak formation in ApoE(-/-) mice.
Collapse
Affiliation(s)
- Saske Hoving
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Preusch MR, Baeuerle M, Albrecht C, Blessing E, Bischof M, Katus HA, Bea F. GDF-15 protects from macrophage accumulation in a mousemodel of advanced atherosclerosis. Eur J Med Res 2013; 18:19. [PMID: 23800095 PMCID: PMC3701574 DOI: 10.1186/2047-783x-18-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/29/2013] [Indexed: 01/10/2023] Open
Abstract
Background The cytokine growth differentiation factor-15 (GDF-15), a member of the TGF beta superfamily, has recently been discovered to play an important role in cardiovascular diseases. It is mostly expressed in macrophages of atherosclerotic lesions, but its impact on advanced atherosclerosis is still unknown. This study was performed to evaluate the effects of GDF-15 in an established mouse model of advanced atherosclerosis. Methods Thirty-eight LDL receptor deficient mice received a lethal body radiation. Half of the group was transplanted with bone marrow of GDF-15 deficient mice. Nineteen mice were transplanted with bone marrow from wild-type controls. After 24 weeks on an atherogenic diet, animals were euthanized and sections of the aortic sinus were prepared. Lesion size and lesion composition, as well as macrophage content,were evaluated. Results While demonstrating no difference in lesion size, LDL-receptor knockout mice transplanted with bone marrow from GDF-15 deficient mice showed enhanced macrophage accumulation and features of atherosclerotic plaque destabilization, such as thinning of fibrous caps. Immunostaining against intercellular adhesion molecule-1 further revealed an increased expression in mice receiving GDF-15-deficient bone marrow. Conclusions This is the first study that demonstrates a protective role of GDF-15 in advanced atherosclerosis and macrophage accumulation, possibly due to the reduced expression of adhesion molecules.
Collapse
Affiliation(s)
- Michael R Preusch
- Department of Internal Medicine, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
140
|
|
141
|
YAMAMOTO HIDEYUKI, OKUZAKI DAISUKE, YAMANISHI KYOSUKE, XU YUNFENG, WATANABE YUKO, YOSHIDA MOMOKO, YAMASHITA AKIFUMI, GOTO NAOHISA, NISHIGUCHI SEIJI, SHIMADA KAZUNORI, NOJIMA HIROSHI, YASUNAGA TERUO, OKAMURA HARUKI, MATSUNAGA HISATO, YAMANISHI HIROMICHI. Genetic analysis of genes causing hypertension and stroke in spontaneously hypertensive rats. Int J Mol Med 2013; 31:1057-65. [DOI: 10.3892/ijmm.2013.1304] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 02/22/2013] [Indexed: 11/05/2022] Open
|
142
|
Bonaterra GA, Zügel S, Thogersen J, Walter SA, Haberkorn U, Strelau J, Kinscherf R. Growth differentiation factor-15 deficiency inhibits atherosclerosis progression by regulating interleukin-6-dependent inflammatory response to vascular injury. J Am Heart Assoc 2012; 1:e002550. [PMID: 23316317 PMCID: PMC3540664 DOI: 10.1161/jaha.112.002550] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/07/2012] [Indexed: 12/16/2022]
Abstract
BACKGROUND Growth differentiation factor (GDF)-15 is a distant and divergent member of the transforming growth factor-β superfamily (TGF-β) . There is growing evidence indicating the involvement of GDF-15 in various pathologies. Expression of GDF-15 is induced under conditions of inflammation and increased GDF-15 serum levels are suggested as a risk factor for cardiovascular diseases. METHODS AND RESULTS We show here that GDF-15 and proinflammatory cytokine interleukin (IL)-6 levels are highly increased (5-fold) in cultured oxidized low-density lipoproteins-stimulated peritoneal macrophages derived from GDF-15(+/+)/apolipoprotein (apo) E(-/-), mice. Notably, IL-6 induction on oxidized low-density lipoproteins stimulation is completely abolished in the absence of GDF-15. Consistent with our in vitro data GDF-15 mRNA expression and protein levels are upregulated (2.5- to 6-fold) in the atherosclerotic vessel wall of GDF-15(+/+)/apoE(-/-) mice after a cholesterol-enriched diet. GDF-15 deficiency inhibits lumen stenosis (52%) and (18)FDG uptake (34%) in the aortic arch despite increased serum triglyceride/cholesterol levels and elevated body weight. Immunohistomorphometric investigations of atherosclerotic lesions reveal a decreased percentage of inflammatory CD11b(+) (57%) or IL-6(+), leukocytes, and apoptotic cells (74%) after 20 weeks. However, the total number of macrophages and cell density in atherosclerotic lesions of the innominate artery are increased in GDF-15(-/-)/apoE(-/-) mice. CONCLUSIONS Our data suggest that GDF-15 is involved in orchestrating atherosclerotic lesion progression by regulating apoptotic cell death and IL-6-dependent inflammatory responses to vascular injury.
Collapse
Affiliation(s)
- Gabriel A Bonaterra
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
143
|
Anorexia/cachexia of chronic diseases: a role for the TGF-β family cytokine MIC-1/GDF15. J Cachexia Sarcopenia Muscle 2012; 3:239-43. [PMID: 22936174 PMCID: PMC3505580 DOI: 10.1007/s13539-012-0082-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 07/23/2012] [Indexed: 12/22/2022] Open
Abstract
Anorexia/cachexia is a common and currently mostly untreatable complication of advanced cancer. It is also a feature of a number of chronic diseases and can also occur as part of the normal ageing process. Over recent years, two different, but sometimes overlapping, processes have been identified to mediate anorexia/cachexia: those that act primarily on muscle reducing its mass and function, and processes that decrease nutrition leading to loss of both fat and muscle. In the case of at least some cancers, the latter process is sometimes driven by marked overexpression of macrophage inhibitory cytokine-1/growth differentiation factor 15 (MIC-1/GDF15). MIC-1/GDF15 is a transforming growth factor beta (TGF-β) family cytokine that is found in the serum of all normal individuals at an average concentration of about 0.6 ng/ml. Its increased expression in both cancers and other diseases can result in 10-100-fold or more elevation of its serum levels. In experimental animals, serum MIC-1/GDF15 levels at the lower end of this range induce anorexia by direct actions of the circulating cytokine on feeding centres in the brain. Mice with tumours overexpressing MIC-1/GDF15 display decreased food intake, loss of lean and fat mass and cachexia. That this process also mediates anorexia/cachexia in humans is suggested by the fact that there is a direct correlation between the degree of serum MIC-1/GDF15 elevation and the amount of cancer-related weight loss, the first such relationship demonstrated. Further, in experimental animals, weight loss can be reversed by neutralisation of tumour-produced MIC-1/GDF15 with a specific monoclonal antibody, suggesting the possibility of effective therapy of patients with the devastating complication of anorexia/cachexia.
Collapse
|
144
|
Koenen R, Weber C. Chemokines and Their Receptors as Therapeutic Targets in Atherosclerosis. Atherosclerosis 2012. [DOI: 10.1201/b13723-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
145
|
Ho JE, Mahajan A, Chen MH, Larson MG, McCabe EL, Ghorbani A, Cheng S, Johnson AD, Lindgren CM, Kempf T, Lind L, Ingelsson E, Vasan RS, Januzzi J, Wollert KC, Morris AP, Wang TJ. Clinical and genetic correlates of growth differentiation factor 15 in the community. Clin Chem 2012; 58:1582-91. [PMID: 22997280 DOI: 10.1373/clinchem.2012.190322] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Growth differentiation factor 15 (GDF15), a stress-responsive cytokine produced in cardiovascular cells under conditions of inflammation and oxidative stress, is emerging as an important prognostic marker in individuals with and without existing cardiovascular disease (CVD). We therefore examined the clinical and genetic correlates of circulating GDF15 concentrations, which have not been investigated collectively. METHODS Plasma GDF15 concentrations were measured in 2991 participants in the Framingham Offspring Study who were free of clinically overt CVD (mean age, 59 years; 56% women). Clinical correlates of GDF15 were examined in multivariable analyses. We then conducted a genomewide association study of the GDF15 concentration that included participants in the Framingham Offspring Study and participants in the PIVUS (Prospective Investigation of the Vasculature in Uppsala Seniors) study. RESULTS GDF15 was positively associated with age, smoking, antihypertensive treatment, diabetes, worse kidney function, and use of nonsteroidal antiinflammatory drugs (NSAIDs), but it was negatively associated with total cholesterol and HDL cholesterol. Clinical correlates accounted for 38% of interindividual variation in the circulating GDF15 concentration, whereas genetic factors accounted for up to 38% of the residual variability (h(2) = 0.38; P = 2.5 × 10(-11)). We identified 1 locus of genomewide significance. This locus, which is on chromosome 19p13.11 and includes the GDF15 gene, is associated with GDF15 concentration (smallest P = 2.74 × 10(-32) for rs888663). Conditional analyses revealed 2 independent association signals at this locus (rs888663 and rs1054564), which were associated with altered cis gene expression in blood cell lines. CONCLUSIONS In ambulatory individuals, both cardiometabolic risk factors and genetic factors play important roles in determining circulating GDF15 concentrations and contribute similarly to the overall variation.
Collapse
|
146
|
|
147
|
Wang TJ, Wollert KC, Larson MG, Coglianese E, McCabe EL, Cheng S, Ho JE, Fradley MG, Ghorbani A, Xanthakis V, Kempf T, Benjamin EJ, Levy D, Vasan RS, Januzzi JL. Prognostic utility of novel biomarkers of cardiovascular stress: the Framingham Heart Study. Circulation 2012; 126:1596-604. [PMID: 22907935 DOI: 10.1161/circulationaha.112.129437] [Citation(s) in RCA: 387] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Biomarkers for predicting cardiovascular events in community-based populations have not consistently added information to standard risk factors. A limitation of many previously studied biomarkers is their lack of cardiovascular specificity. METHODS AND RESULTS To determine the prognostic value of 3 novel biomarkers induced by cardiovascular stress, we measured soluble ST2, growth differentiation factor-15, and high-sensitivity troponin I in 3428 participants (mean age, 59 years; 53% women) in the Framingham Heart Study. We performed multivariable-adjusted proportional hazards models to assess the individual and combined ability of the biomarkers to predict adverse outcomes. We also constructed a "multimarker" score composed of the 3 biomarkers in addition to B-type natriuretic peptide and high-sensitivity C-reactive protein. During a mean follow-up of 11.3 years, there were 488 deaths, 336 major cardiovascular events, 162 heart failure events, and 142 coronary events. In multivariable-adjusted models, the 3 new biomarkers were associated with each end point (P<0.001) except coronary events. Individuals with multimarker scores in the highest quartile had a 3-fold risk of death (adjusted hazard ratio, 3.2; 95% confidence interval, 2.2-4.7; P<0.001), 6-fold risk of heart failure (6.2; 95% confidence interval, 2.6-14.8; P<0.001), and 2-fold risk of cardiovascular events (1.9; 95% confidence interval, 1.3-2.7; P=0.001). Addition of the multimarker score to clinical variables led to significant increases in the c statistic (P=0.005 or lower) and net reclassification improvement (P=0.001 or lower). CONCLUSION Multiple biomarkers of cardiovascular stress are detectable in ambulatory individuals and add prognostic value to standard risk factors for predicting death, overall cardiovascular events, and heart failure.
Collapse
Affiliation(s)
- Thomas J Wang
- Cardiology Division, GRB-800, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Raghuwanshi SK, Su Y, Singh V, Haynes K, Richmond A, Richardson RM. The chemokine receptors CXCR1 and CXCR2 couple to distinct G protein-coupled receptor kinases to mediate and regulate leukocyte functions. THE JOURNAL OF IMMUNOLOGY 2012; 189:2824-32. [PMID: 22869904 DOI: 10.4049/jimmunol.1201114] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The chemokine receptors, CXCR1 and CXCR2, couple to Gαi to induce leukocyte recruitment and activation at sites of inflammation. Upon activation by CXCL8, these receptors become phosphorylated, desensitized, and internalized. In this study, we investigated the role of different G protein-coupled receptor kinases (GRKs) in CXCR1- and CXCR2-mediated cellular functions. To that end, short hairpin RNA was used to inhibit GRK2, 3, 5, and 6 in RBL-2H3 cells stably expressing CXCR1 or CXCR2, and CXCL8-mediated receptor activation and regulation were assessed. Inhibition of GRK2 and GRK6 increased CXCR1 and CXCR2 resistance to phosphorylation, desensitization, and internalization, respectively, and enhanced CXCL8-induced phosphoinositide hydrolysis and exocytosis in vitro. GRK2 depletion diminished CXCR1-induced ERK1/2 phosphorylation but had no effect on CXCR2-induced ERK1/2 phosphorylation. GRK6 depletion had no significant effect on CXCR1 function. However, peritoneal neutrophils from mice deficient in GRK6 (GRK6(-/-)) displayed an increase in CXCR2-mediated G protein activation but in vitro exhibited a decrease in chemotaxis, receptor desensitization, and internalization relative to wild-type (GRK6(+/+)) cells. In contrast, neutrophil recruitment in vivo in GRK6(-/-) mice was increased in response to delivery of CXCL1 through the air pouch model. In a wound-closure assay, GRK6(-/-) mice showed enhanced myeloperoxidase activity, suggesting enhanced neutrophil recruitment, and faster wound closure compared with GRK6(+/+) animals. Taken together, the results indicate that CXCR1 and CXCR2 couple to distinct GRK isoforms to mediate and regulate inflammatory responses. CXCR1 predominantly couples to GRK2, whereas CXCR2 interacts with GRK6 to negatively regulate receptor sensitization and trafficking, thus affecting cell signaling and angiogenesis.
Collapse
Affiliation(s)
- Sandeep K Raghuwanshi
- Department of Biology, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | | | | | | | | | | |
Collapse
|
149
|
Malinowski B, Fulgheri G, Wicinski M, Grzesk E, Odrowaz-Sypniewska G, Grześk G, Darwish N. Potential Markers in Cardiac Hypertrophy? EJIFCC 2012; 23:41-6. [PMID: 27683411 PMCID: PMC4975242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cardiomyopathies are diagnosed based on medical history of patient (symptoms and family history), physical examination, results of echocardiogram and in some situations additionally ECG or chest-X-ray results. Currently used non-invasive diagnostic methods, could be complemented by biochemical tests. In this review some emerging potential biomarkers such as: osteopontin, ST-2 receptor, osteoprotegerin, neopterin, urocortins, growth differentiation factor 15 and urotensin II are described. In current article human and non human investigations have been reviewed, since rat is most commonly used model in experimental cardiology and gives important foundations to clinical knowledge.
Collapse
Affiliation(s)
- Bartosz Malinowski
- Department of Laboratory Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
- Department of Pharmacology and Therapeutics, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Gabriele Fulgheri
- Department of Laboratory Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Michal Wicinski
- Department of Pharmacology and Therapeutics, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Elzbieta Grzesk
- Department of Pharmacology and Therapeutics, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | | | - Grzegorz Grześk
- Department of Pharmacology and Therapeutics, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Nasser Darwish
- Department of Pharmacology and Therapeutics, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
150
|
Aparicio-Vergara M, Shiri-Sverdlov R, Koonen DPY, Hofker MH. Bone marrow transplantation as an established approach for understanding the role of macrophages in atherosclerosis and the metabolic syndrome. Curr Opin Lipidol 2012; 23:111-21. [PMID: 22274753 DOI: 10.1097/mol.0b013e3283508c4f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Bone marrow transplantation (BMT) technology is a firmly established tool for studying atherosclerosis. Only recently it is helping us to understand the inflammatory mechanisms leading to the development of obesity, insulin resistance and type 2 diabetes. Here we review the use of BMT as a tool for studying the metabolic syndrome. RECENT FINDINGS Bone marrow-derived cells, and particularly monocytes and macrophages, have been a major subject in the study of atherogenesis, and they are highly amenable for research purposes because of their application in bone marrow transplantations. For example, the many pathways studied using BMT have helped unmask ABC transporters as the genes controlling reverse cholesterol transport and foam cell formation, as well as other genes like CCR2 and IκBα controlling leukocyte development, migration and activation. The invasion of leukocytes, not only in the vessel wall, but also in adipose tissue and liver, shares many common mechanisms relevant to atherosclerosis and metabolic diseases. SUMMARY BMT is an efficient and versatile tool for assessing the roles of specific genes that are restricted to hematopoietic cells, and especially the monocytes and macrophages in metabolic syndrome and its related pathologies.
Collapse
Affiliation(s)
- Marcela Aparicio-Vergara
- Molecular Genetics, Medical Biology Section, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|