101
|
Matthijs G, Rymen D, Millón MBB, Souche E, Race V. Approaches to homozygosity mapping and exome sequencing for the identification of novel types of CDG. Glycoconj J 2012; 30:67-76. [PMID: 22983704 DOI: 10.1007/s10719-012-9445-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 08/21/2012] [Accepted: 08/22/2012] [Indexed: 12/18/2022]
Abstract
In the past decade, the identification of most genes involved in Congenital Disorders of Glycosylation (CDG) (type I) was achieved by a combination of biochemical, cell biological and glycobiological investigations. This has been truly successful for CDG-I, because the candidate genes could be selected on the basis of the homology of the synthetic pathway of the dolichol linked oligosaccharide in human and yeast. On the contrary, only a few CDG-II defects were elucidated, be it that some of the discoveries represent wonderful breakthroughs, like e.g, the identification of the COG defects. In general, many rare genetic defects have been identified by positional cloning. However, only a few types of CDG have effectively been elucidated by linkage analysis and so-called reverse genetics. The reason is that the families were relatively small and could-except for CDG-PMM2-not be pooled for analysis. Hence, a large number of CDG cases has long remained unsolved because the search for the culprit gene was very laborious, due to the heterogeneous phenotype and the myriad of candidate defects. This has changed when homozygosity mapping came of age, because it could be applied to small (consanguineous) families. Many novel CDG genes have been discovered in this way. But the best has yet to come: what we are currently witnessing, is an explosion of novel CDG defects, thanks to exome sequencing: seven novel types were published over a period of only two years. It is expected that exome sequencing will soon become a diagnostic tool, that will continuously uncover new facets of this fascinating group of diseases.
Collapse
Affiliation(s)
- Gert Matthijs
- Center for Human Genetics, University of Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | | | | | | | | |
Collapse
|
102
|
Diseases of glycosylation beyond classical congenital disorders of glycosylation. Biochim Biophys Acta Gen Subj 2012; 1820:1306-17. [DOI: 10.1016/j.bbagen.2012.02.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/31/2012] [Accepted: 02/02/2012] [Indexed: 12/30/2022]
|
103
|
Zeevaert R, de Zegher F, Sturiale L, Garozzo D, Smet M, Moens M, Matthijs G, Jaeken J. Bone Dysplasia as a Key Feature in Three Patients with a Novel Congenital Disorder of Glycosylation (CDG) Type II Due to a Deep Intronic Splice Mutation in TMEM165. JIMD Rep 2012; 8:145-52. [PMID: 23430531 DOI: 10.1007/8904_2012_172] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/21/2012] [Accepted: 07/25/2012] [Indexed: 01/05/2023] Open
Abstract
Three patients belonging to two families presented with a psychomotor-dysmorphism syndrome including postnatal growth deficiency and major spondylo-, epi-, and metaphyseal skeletal involvement. Other features were muscular hypotrophy, fat excess, partial growth hormone deficiency, and, in two of the three patients, episodes of unexplained fever. Additional investigations showed mild to moderate increases of serum transaminases (particularly of aspartate transaminase (AST)), creatine kinase (CK), and lactate dehydrogenase (LDH), as well as decreased coagulation factors VIII, IX, XI, and protein C. Diagnostic work-up revealed a type 2 serum transferrin isoelectrofocusing (IEF) pattern and a cathodal shift on apolipoprotein C-III IEF pointing to a combined N- and O-glycosylation defect. Known glycosylation disorders with similar N-glycan structures lacking galactose and sialic acid were excluded. Through a combination of homozygosity mapping and expression profiling, a deep intronic homozygous mutation (c.792 + 182G>A) was found in TMEM165 (TPARL) in the three patients. TMEM165 is a gene of unknown function, possibly involved in Golgi proton/calcium transport. Here we present a detailed clinical description of the three patients with this mutation. The TMEM165 deficiency represents a novel type of CDG (TMEM165-CDG). This disorder enlarges the group of CDG caused by deficiencies in proteins that are not specifically involved in glycosylation but that have functions in the organization and homeostasis of the intracellular compartments and the secretory pathway, like COG-CDG and ATP6V0A2-CDG.
Collapse
Affiliation(s)
- R Zeevaert
- Center for Metabolic Disease, Department of Pediatrics, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Abstract
A segmented body plan is fundamental to all vertebrate species and this bestows both rigidity and flexibility on the body. Segmentation is initiated through the process of somitogenesis. This article aims to provide a broad and balanced cross-species overview of somitogenesis and to highlight the key molecular and cellular events involved in each stage of segmentation. We highlight where our understanding of this multifaceted process relies on strong experimental evidence as well as those aspects where our understanding still relies largely on models.
Collapse
Affiliation(s)
- Miguel Maroto
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Robert A. Bone
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - J. Kim Dale
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
105
|
Louvi A, Artavanis-Tsakonas S. Notch and disease: a growing field. Semin Cell Dev Biol 2012; 23:473-80. [PMID: 22373641 PMCID: PMC4369912 DOI: 10.1016/j.semcdb.2012.02.005] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 02/08/2012] [Accepted: 02/15/2012] [Indexed: 01/09/2023]
Abstract
Signals through the Notch receptors are used throughout development to control cellular fate choices. Our intention here is to provide an overview of the involvement of Notch signaling in human disease, which, keeping pace with the known biology of the pathway, manifests itself in a pleiotropic fashion. A pathway with such broad action in normal development, a profound involvement in the biology of adult stem cells and intricate and complex controls governing its activity, poses numerous challenges. We provide an overview of Notch related pathologies identified thus far and emphasize aspects that have been modeled in experimental systems in order to understand the underlying pathobiology and, hopefully, help the definition of rational therapeutic avenues.
Collapse
Affiliation(s)
- Angeliki Louvi
- Department of Neurosurgery and Neurobiology, Program on Neurogenetics, Yale School of Medicine, New Haven, CT, United States.
| | | |
Collapse
|
106
|
Scottoline B, Rosenthal S, Keisari R, Kirpekar R, Angell C, Wallerstein R. Long-term survival with diaphanospondylodysostosis (DSD): Survival to 5 years and further phenotypic characteristics. Am J Med Genet A 2012; 158A:1447-51. [DOI: 10.1002/ajmg.a.35352] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 01/30/2012] [Indexed: 11/11/2022]
|
107
|
Vulto-van Silfhout A, de Brouwer A, de Leeuw N, Obihara C, Brunner H, de Vries B. A 380-kb Duplication in 7p22.3 Encompassing the LFNG Gene in a Boy with Asperger Syndrome. Mol Syndromol 2012; 2:245-250. [PMID: 22822384 PMCID: PMC3362183 DOI: 10.1159/000336191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2011] [Indexed: 12/23/2022] Open
Abstract
De novo genomic aberrations are considered an important cause of autism spectrum disorders. We describe a de novo 380-kb gain in band p22.3 of chromosome 7 in a patient with Asperger syndrome. This duplicated region contains 9 genes including the LNFG gene that is an important regulator of NOTCH signaling. We suggest that this copy number variation has been a contributive factor to the occurrence of Asperger syndrome in this patient.
Collapse
Affiliation(s)
- A.T. Vulto-van Silfhout
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - A.F.M. de Brouwer
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - N. de Leeuw
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - C.C. Obihara
- Department of Paediatrics, St. Elisabeth Hospital, Tilburg, The Netherlands
| | - H.G. Brunner
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - B.B.A. de Vries
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
108
|
Myeloproliferation and hematopoietic stem cell dysfunction due to defective Notch receptor modification by O-fucose glycans. Semin Immunopathol 2012; 34:455-69. [DOI: 10.1007/s00281-012-0303-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 02/24/2012] [Indexed: 02/01/2023]
|
109
|
Eckalbar WL, Fisher RE, Rawls A, Kusumi K. Scoliosis and segmentation defects of the vertebrae. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:401-23. [PMID: 23801490 DOI: 10.1002/wdev.34] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The vertebral column derives from somites, which are transient paired segments of mesoderm that surround the neural tube in the early embryo. Somites are formed by a genetic mechanism that is regulated by cyclical expression of genes in the Notch, Wnt, and fibroblast growth factor (FGF) signaling pathways. These oscillators together with signaling gradients within the presomitic mesoderm help to set somitic boundaries and rostral-caudal polarity that are essential for the precise patterning of the vertebral column. Disruption of this mechanism has been identified as the cause of severe segmentation defects of the vertebrae in humans. These segmentation defects are part of a spectrum of spinal disorders affecting the skeletal elements and musculature of the spine, resulting in curvatures such as scoliosis, kyphosis, and lordosis. While the etiology of most disorders with spinal curvatures is still unknown, genetic and developmental studies of somitogenesis and patterning of the axial skeleton and musculature are yielding insights into the causes of these diseases.
Collapse
|
110
|
Zanotti S, Canalis E. Notch regulation of bone development and remodeling and related skeletal disorders. Calcif Tissue Int 2012; 90:69-75. [PMID: 22002679 PMCID: PMC3272107 DOI: 10.1007/s00223-011-9541-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 09/14/2011] [Indexed: 10/16/2022]
Abstract
Notch signaling mediates cell-to-cell interactions that are critical for embryonic development and tissue renewal. In the canonical signaling pathway, the Notch receptor is cleaved following ligand binding, resulting in the release and nuclear translocation of the Notch intracellular domain (NICD). NICD induces gene expression by forming a ternary complex with the DNA binding protein CBF1/Rbp-Jk, Suppressor of Hairless, Lag1, and Mastermind-Like (Maml). Hairy Enhancer of Split (Hes) and Hes related with YRPW motif (Hey) are classic Notch targets. Notch canonical signaling plays a central role in skeletal development and bone remodeling by suppressing the differentiation of skeletal cells. The skeletal phenotype of mice misexpressing Hes1 phenocopies partially the effects of Notch misexpression, suggesting that Hey proteins mediate most of the skeletal effects of Notch. Dysregulation of Notch signaling is associated with diseases affecting human skeletal development, such as Alagille syndrome, brachydactyly and spondylocostal dysostosis. Somatic mutations in Notch receptors and ligands are found in tumors of the skeletal system. Overexpression of NOTCH1 is associated with osteosarcoma, and overexpression of NOTCH3 or JAGGED1 in breast cancer cells favors the formation of osteolytic bone metastasis. Activating mutations in NOTCH2 cause Hajdu-Cheney syndrome, which is characterized by skeletal defects and fractures, and JAG1 polymorphisms, are associated with variations in bone mineral density. In conclusion, Notch is a regulator of skeletal development and bone remodeling, and abnormal Notch signaling is associated with developmental and postnatal skeletal disorders.
Collapse
Affiliation(s)
- Stefano Zanotti
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, CT 06105 USA
- The University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Ernesto Canalis
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, CT 06105 USA
- The University of Connecticut School of Medicine, Farmington, CT 06030, USA
- Address correspondence: Department of Research Saint Francis Hospital and Medical Center 114 Woodland Street Hartford, CT 06105-1299 Tel: (860)714-4068 Fax: (860)714-8053
| |
Collapse
|
111
|
Notch signaling in human development and disease. Semin Cell Dev Biol 2012; 23:450-7. [PMID: 22306179 DOI: 10.1016/j.semcdb.2012.01.010] [Citation(s) in RCA: 231] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 01/17/2012] [Indexed: 12/31/2022]
Abstract
Mutations in Notch signaling pathway members cause developmental phenotypes that affect the liver, skeleton, heart, eye, face, kidney, and vasculature. Notch associated disorders include the autosomal dominant, multi-system, Alagille syndrome caused by mutations in both a ligand (Jagged1 (JAG1)) and receptor (NOTCH2) and autosomal recessive spondylocostal dysostosis, caused by mutations in a ligand (Delta-like-3 (DLL3)), as well as several other members of the Notch signaling pathway. Mutations in NOTCH2 have also recently been connected to Hajdu-Cheney syndrome, a dominant disorder causing focal bone destruction, osteoporosis, craniofacial morphology and renal cysts. Mutations in the NOTCH1 receptor are associated with several types of cardiac disease and mutations in NOTCH3 cause the dominant adult onset disorder CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy), a vascular disorder with onset in the 4th or 5th decades. Studies of these human disorders and their inheritance patterns and types of mutations reveal insights into the mechanisms of Notch signaling.
Collapse
|
112
|
Mead TJ, Yutzey KE. Notch signaling and the developing skeleton. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 727:114-30. [PMID: 22399343 DOI: 10.1007/978-1-4614-0899-4_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Notch signaling is an important regulator of skeletogenesis at multiple developmental stages. The Notch signaling pathway is involved in the promotion of somite segmentation, patterning and differentiation into sclerotome pre-chondrogenic cells to allow for appropriate axial skeleton development. In addition, studies performed in vitro and in vivo demonstrate that Notch signaling suppresses chondrogenic and osteoblastic differentiation and negatively regulates osteoclast formation and proliferation. Through the use of in vitro and in vivo approaches, Notch signaling has been shown to regulate somitogenesis, chondrogenesis, osteoblastogenesis and osteoclastogenesis that ultimately affect skeletogenesis. Dysregulation of Notch signaling results in congenital skeletal malformations that could reveal therapeutic potential.
Collapse
Affiliation(s)
- Timothy J Mead
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | |
Collapse
|
113
|
Fisher RE, Smith HF, Kusumi K, Tassone EE, Rawls A, Wilson-Rawls J. Mutations in the Notch pathway alter the patterning of multifidus. Anat Rec (Hoboken) 2011; 295:32-9. [PMID: 22095884 DOI: 10.1002/ar.21488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 08/09/2011] [Indexed: 01/06/2023]
Abstract
Clinical studies have suggested that defects in the epaxial muscles, particularly multifidus, may contribute to the etiology of idiopathic scoliosis. While the epaxial muscles and the vertebrae derive from the same embryonic segmentation process, the mechanisms that pattern the multisegmental back muscles are still unclear. The process of segmentation is regulated by the Notch signaling pathway, and mutations in the modulators delta-like 3 (Dll3) and lunatic fringe (Lfng) are genetic models for spinal disorders such as scoliosis. Osteological defects have been characterized in these genetic models, but myological phenotypes have not previously been studied. We analyzed the multifidus muscle in the mouse (Mus musculus) and observed intriguing changes in the cranio-caudal borders of multifidus in Dll3 and Lfng models. Statistical analysis did not find a significant association between the majority of the multifidus anomalies and the vertebral defects, suggesting a previously unappreciated role for Notch signaling in patterning epaxial muscle groups. These findings indicate an additional mechanism by which DLL3 and LFNG may play a role in the etiology of human idiopathic scoliosis.
Collapse
Affiliation(s)
- Rebecca E Fisher
- Department of Basic Medical Sciences, The University of Arizona College of Medicine-Phoenix, USA.
| | | | | | | | | | | |
Collapse
|
114
|
Wang CH, Lin WD, Bau DT, Chou IC, Tsai FJ. Genetic and clinical profiles of spondylocostal dysostosis patients in Taiwan. Am J Med Genet A 2011; 155A:3132-5. [PMID: 22052723 DOI: 10.1002/ajmg.a.34301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Accepted: 08/17/2011] [Indexed: 11/11/2022]
Affiliation(s)
- Chung-Hsing Wang
- Department of Pediatrics, China Medical University and Hospital, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
115
|
Andersson ER, Sandberg R, Lendahl U. Notch signaling: simplicity in design, versatility in function. Development 2011; 138:3593-612. [PMID: 21828089 DOI: 10.1242/dev.063610] [Citation(s) in RCA: 698] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Notch signaling is evolutionarily conserved and operates in many cell types and at various stages during development. Notch signaling must therefore be able to generate appropriate signaling outputs in a variety of cellular contexts. This need for versatility in Notch signaling is in apparent contrast to the simple molecular design of the core pathway. Here, we review recent studies in nematodes, Drosophila and vertebrate systems that begin to shed light on how versatility in Notch signaling output is generated, how signal strength is modulated, and how cross-talk between the Notch pathway and other intracellular signaling systems, such as the Wnt, hypoxia and BMP pathways, contributes to signaling diversity.
Collapse
Affiliation(s)
- Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
116
|
|
117
|
The mouse notches up another success: understanding the causes of human vertebral malformation. Mamm Genome 2011; 22:362-76. [DOI: 10.1007/s00335-011-9335-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 05/23/2011] [Indexed: 11/27/2022]
|
118
|
Abstract
One of the most striking features of the human vertebral column is its periodic organization along the anterior-posterior axis. This pattern is established when segments of vertebrates, called somites, bud off at a defined pace from the anterior tip of the embryo's presomitic mesoderm (PSM). To trigger this rhythmic production of somites, three major signaling pathways--Notch, Wnt/β-catenin, and fibroblast growth factor (FGF)--integrate into a molecular network that generates a traveling wave of gene expression along the embryonic axis, called the "segmentation clock." Recent systems approaches have begun identifying specific signaling circuits within the network that set the pace of the oscillations, synchronize gene expression cycles in neighboring cells, and contribute to the robustness and bilateral symmetry of somite formation. These findings establish a new model for vertebrate segmentation and provide a conceptual framework to explain human diseases of the spine, such as congenital scoliosis.
Collapse
Affiliation(s)
- Olivier Pourquié
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch F-67400, France
| |
Collapse
|
119
|
|
120
|
Hoyne GF, Chapman G, Sontani Y, Pursglove SE, Dunwoodie SL. A cell autonomous role for the Notch ligand Delta-like 3 in αβ T-cell development. Immunol Cell Biol 2010; 89:696-705. [PMID: 21151194 DOI: 10.1038/icb.2010.154] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Notch signalling is critical to help direct T-cell lineage commitment in early T-cell progenitors and in the development of αβ T-cells. Epithelial and stromal cell populations in the thymus express the Notch DSL (Delta, Serrate and Lag2)ligands Delta-like 1 (Dll1), Delta-like 4 (Dll4), Jagged 1 and Jagged 2, and induce Notch signalling in thymocytes that express the Notch receptor. At present there is nothing known about the role of the Delta-like 3 (Dll3) ligand in the immune system. Here we describe a novel cell autonomous role for Dll3 in αβ T-cell development. We show that Dll3 cannot activate Notch when expressed in trans but like other Notch ligands it can inhibit Notch signalling when expressed in cis with the receptor. The loss of Dll3 leads to an increase in Hes5 expression in double positive thymocytes and their increased production of mature CD4(+) and CD8(+) T cells. Studies using competitive irradiation chimeras proved that Dll3 acts in a cell autonomous manner to regulate positive selection but not negative selection of autoreactive T cells. Our results indicate that Dll3 has a unique function during T-cell development that is distinct from the role played by the other DSL ligands of Notch and is in keeping with other recent studies indicating that Dll1 and Dll3 ligands have non-overlapping roles during embryonic development.
Collapse
Affiliation(s)
- Gerard F Hoyne
- The Laboratory of T Cell Development and Regulation, John Curtin School of Medical Research, Australian National University Canberra, Canberra, Australian Capital Territory, Australia.
| | | | | | | | | |
Collapse
|
121
|
Chapman G, Sparrow DB, Kremmer E, Dunwoodie SL. Notch inhibition by the ligand Delta-Like 3 defines the mechanism of abnormal vertebral segmentation in spondylocostal dysostosis. Hum Mol Genet 2010; 20:905-16. [DOI: 10.1093/hmg/ddq529] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
122
|
|
123
|
Baldridge D, Shchelochkov O, Kelley, B, Lee B. Signaling Pathways in Human Skeletal Dysplasias. Annu Rev Genomics Hum Genet 2010; 11:189-217. [DOI: 10.1146/annurev-genom-082908-150158] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dustin Baldridge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030; , , ,
| | - Oleg Shchelochkov
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030; , , ,
- Department of Pediatrics, Division of Genetics, University of Iowa, Iowa City, Iowa 52242
| | - Brian Kelley,
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030; , , ,
- Howard Hughes Medical Institute, Houston, Texas 77009
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030; , , ,
- Howard Hughes Medical Institute, Houston, Texas 77009
| |
Collapse
|
124
|
Gucev ZS, Tasic V, Pop-Jordanova N, Sparrow DB, Dunwoodie SL, Ellard S, Young E, Turnpenny PD. Autosomal dominant spondylocostal dysostosis in three generations of a Macedonian family: Negative mutation analysis of DLL3, MESP2, HES7, and LFNG. Am J Med Genet A 2010; 152A:1378-82. [PMID: 20503311 DOI: 10.1002/ajmg.a.33471] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The spondylocostal dysostoses (SCDs) are a heterogeneous group of axial skeletal disorders characterized by multiple segmentation defects of the vertebrae (SDV) and abnormality of the thoracic cage with mal-aligned ribs and often a reduction in rib number. The four known monogenic forms of SCD follow autosomal recessive inheritance, have generalized SDV, a broadly symmetrical thoracic cage, and result from mutations in Notch signaling pathway genes-DLL3, MESP2, LFNG, and HES7. Autosomal dominant (AD) SCD has been reported less often, is very variable, and molecular genetic mechanisms remain elusive. Here, we report a three-generation, non-consanguineous family with four affected individuals demonstrating multiple or generalized SDV. Scoliosis was present and the trunk shortened but the ribs were relatively mildly affected. There were no other significant organ abnormalities, no obvious dysmorphic features, neurodevelopment was normal, and all investigations, including mutation analysis of DLL3, MESP2, LFNG, and HES7, were normal. A non-pathogenic variant was detected in LFNG but it did not segregate with the phenotype. This Macedonian kindred adds to knowledge of AD SCD and to our knowledge is the first to be tested for the four Notch pathway genes known to be associated with SCD.
Collapse
Affiliation(s)
- Zoran S Gucev
- Medical Faculty Skopje, Divizija BB, Skopje, Macedonia.
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Offiah A, Alman B, Cornier AS, Giampietro PF, Tassy O, Wade A, Turnpenny PD. Pilot assessment of a radiologic classification system for segmentation defects of the vertebrae. Am J Med Genet A 2010; 152A:1357-71. [PMID: 20503308 DOI: 10.1002/ajmg.a.33361] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Existing nomenclature systems for describing and reporting congenital segmentation defects of the vertebrae (SDV) are confusing, inconsistently applied, and lack molecular genetic advances. Our aim was to develop and assess a new classification system for SDV. A multidisciplinary group of the International Consortium for Vertebral Anomalies and Scoliosis (ICVAS) developed a new classification system for SDV, and 5 members group (Group 1) independently classified 10 previously unseen cases using this system. Inter-observer reliability was assessed using kappa, which compares observed agreement with that expected by chance. Seven independent general radiologists unaffiliated with the ICVAS (Group 2) classified the same 10 cases (total, 70 scores) before and after the ICVAS system was explained. We demonstrated the following: Inter-observer reliability for Group 1 yielded a kappa value of 0.21 (95% confidence intervals (CI) 0.052, 0.366, P = 0.0046); A consensus diagnosis was established for the 10 cases. For Group 2, before the ICVAS system was explained, 1 of 70 scores (1.4%) agreed with the Group 1 consensus diagnoses; Group 2 offered 12 different diagnoses, but 38 of 70 (54.3%) responses were "Don't Know." After the ICVAS system was explained, 47 of 70 responses (67.1%; 95% CI 55.5, 77.0) agreed with the Group 1 consensus, an improvement of 65.7% (95% CI 52.5, 75.6, P < 0.00005), with no "Don't Know" responses. Group 2 average reporting times, before and after explanation of the ICVAS system, were 148 and 48 min, respectively. We conclude that the ICVAS radiological classification system was found to be reliable and applicable for 10 SDV phenotypes.
Collapse
Affiliation(s)
- Amaka Offiah
- Department of Radiology, Great Ormond Hospital for Children, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
126
|
|
127
|
Jafar-Nejad H, Leonardi J, Fernandez-Valdivia R. Role of glycans and glycosyltransferases in the regulation of Notch signaling. Glycobiology 2010; 20:931-49. [PMID: 20368670 DOI: 10.1093/glycob/cwq053] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The evolutionarily conserved Notch signaling pathway plays broad and important roles during embryonic development and in adult tissue homeostasis. Unlike most other pathways used during animal development, Notch signaling does not rely on second messengers and intracellular signaling cascades. Instead, pathway activation results in the cleavage of the Notch intracellular domain and its translocation into the nucleus, where it functions as a transcriptional co-activator of the Notch target genes. To ensure tight spatial and temporal regulation of a pathway with such an unusually direct signaling transduction, animal cells have devised a variety of specialized modulatory mechanisms. One such mechanism takes advantage of decorating the Notch extracellular domain with rare types of O-linked glycans. In this review, we will discuss the genetic and biochemical data supporting the notion that carbohydrate modification is essential for Notch signaling and attempt to provide a brief historical overview of how we have learned what we know about the glycobiology of Notch. We will also summarize what is known about the contribution of specific nucleotide-sugar transporters to Notch biology and the roles-enzymatic and non-enzymatic-played by specific glycosyltransferases in the regulation of this pathway. Mutations in the Notch pathway components cause a variety of human diseases, and manipulation of Notch signaling is emerging as a powerful tool in regenerative medicine. Therefore, studying how sugar modification modulates Notch signaling provides a framework for better understanding the role of glycosylation in animal development and might offer new tools to manipulate Notch signaling for therapeutic purposes.
Collapse
|
128
|
Takeuchi H, Haltiwanger RS. Role of glycosylation of Notch in development. Semin Cell Dev Biol 2010; 21:638-45. [PMID: 20226260 DOI: 10.1016/j.semcdb.2010.03.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/02/2010] [Accepted: 03/03/2010] [Indexed: 11/26/2022]
Abstract
The Notch pathway is one of the major signaling pathways required for proper development in metazoans. Notch activity is regulated at numerous levels, and increasing evidence reveals the importance of "protein glycosylation" (modification of Notch receptors with sugars) for its regulation. In this review we summarize the significance of the Notch pathway in development and the players responsible for its glycosylation, and then discuss the molecular mechanisms by which protein glycosylation may regulate Notch function.
Collapse
Affiliation(s)
- Hideyuki Takeuchi
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | |
Collapse
|
129
|
Sparrow DB, Sillence D, Wouters MA, Turnpenny PD, Dunwoodie SL. Two novel missense mutations in HAIRY-AND-ENHANCER-OF-SPLIT-7 in a family with spondylocostal dysostosis. Eur J Hum Genet 2010; 18:674-9. [PMID: 20087400 DOI: 10.1038/ejhg.2009.241] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Spondylocostal dysostosis (SCD) is an inherited disorder with abnormal vertebral segmentation that results in extensive hemivertebrae, truncal shortening and abnormally aligned ribs. It arises during embryonic development by a disruption of formation of somites (the precursor tissue of the vertebrae, ribs and associated tendons and muscles). Four genes causing a subset of autosomal recessive forms of this disease have been identified: DLL3 (SCDO1: MIM 277300), MESP2 (SCDO2: MIM 608681), LFNG (SCDO3: MIM609813) and HES7 (SCDO4). These genes are all essential components of the Notch signalling pathway, which has multiple roles in development and disease. Previously, only a single SCD-causative missense mutation was described in HES7. In this study, we have identified two new missense mutations in the HES7 gene in a single family, with only individuals carrying both mutant alleles being affected by SCD. In vitro functional analysis revealed that one of the mutant HES7 proteins was unable to repress gene expression by DNA binding or protein heterodimerization.
Collapse
Affiliation(s)
- Duncan B Sparrow
- ] Developmental Biology Division, Victor Chang Cardiac Research Institute, Sydney, Australia
| | | | | | | | | |
Collapse
|
130
|
Abstract
Notch and the DSL Notch ligands Delta and Serrate/Jagged are glycoproteins with a single transmembrane domain. The extracellular domain (ECD) of both Notch receptors and Notch ligands contains numerous epidermal growth factor (EGF)-like repeats which are post-translationally modified by a variety of glycans. Inactivation of a subset of genes that encode glycosyltransferases which initiate and elongate these glycans inhibits Notch signaling. In the formation of developmental boundaries in Drosophila and mammals, in mouse T-cell and marginal zone B-cell development, and in co-culture Notch signaling assays, the regulation of Notch signaling by glycans is to date a cell-autonomous effect of the Notch-expressing cell. The regulation of Notch signaling by glycans represents a new paradigm of signal transduction. O-fucose glycans modulate the strength of Notch binding to DSL Notch ligands, while O-glucose glycans facilitate juxta-membrane cleavage of Notch, generating the substrate for intramembrane cleavage and Notch activation. Identifying precisely how the addition of particular sugars at specific locations on Notch modifies Notch signaling is a challenge for the future.
Collapse
Affiliation(s)
- Pamela Stanley
- Department of Cell Biology, Albert Einstein College Medicine, New York, USA
| | | |
Collapse
|
131
|
Abstract
Notch receptors are transmembrane receptors that regulate cell fate decisions. There are four Notch receptors in mammals. Upon binding to members of the Delta and Jagged family of transmembrane proteins, Notch is cleaved and the Notch intracellular domain (NICD) is released. NICD then translocates to the nucleus, where it associates with the CBF-1, Suppressor of Hairless, and Lag-2 (CSL) and Mastermind-Like (MAML) proteins. This complex activates the transcription of Notch target genes, such as Hairy Enhancer of Split (Hes) and Hes-related with YRPF motif (Hey). Notch signaling is critical for the regulation of mesenchymal stem cell differentiation. Misexpression of Notch in skeletal tissue indicates a role as an inhibitor of skeletal development and postnatal bone formation. Overexpression of Notch inhibits endochondral bone formation and osteoblastic differentiation, causing severe osteopenia. Conditional inactivation of Notch in the skeleton causes an increase in cancellous bone volume and enhanced osteoblastic differentiation. Notch ligands are expressed in the hematopoietic stem cell niche and are critical for the regulation of hematopoietic stem cell self-renewal. Dysregulation of Notch signaling is the underlying cause of diseases affecting the skeletal tissue, including Alagille syndrome, spondylocostal dysostosis, and possibly, osteosarcoma.
Collapse
|
132
|
Stanley P, Guidos CJ. Regulation of Notch signaling during T- and B-cell development by O-fucose glycans. Immunol Rev 2009; 230:201-15. [PMID: 19594638 DOI: 10.1111/j.1600-065x.2009.00791.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Notch signaling is required for the development of all T cells and marginal zone (MZ) B cells. Specific roles in T- and B-cell differentiation have been identified for different Notch receptors, the canonical Delta-like (Dll) and Jagged (Jag) Notch ligands, and downstream effectors of Notch signaling. Notch receptors and ligands are post-translationally modified by the addition of glycans to extracellular domain epidermal growth factor-like (EGF) repeats. The O-fucose glycans of Notch cell-autonomously modulate Notch-ligand interactions and the strength of Notch signaling. These glycans are initiated by protein O-fucosyltransferase 1 (Pofut1), and elongated by the transfer of N-acetylglucosamine (GlcNAc) to the fucose by beta1,3GlcNAc-transferases termed lunatic, manic, or radical fringe. This review discusses T- and B-cell development from progenitors deficient in O-fucose glycans. The combined data show that Lfng and Mfng regulate T-cell development by enhancing the interactions of Notch1 in T-cell progenitors with Dll4 on thymic epithelial cells. In the spleen, Lfng and Mfng cooperate to modify Notch2 in MZ B progenitors, enhancing their interaction with Dll1 on endothelial cells and regulating MZ B-cell production. Removal of O-fucose affects Notch signaling in myelopoiesis and lymphopoiesis, and the O-fucose glycan in the Notch1 ligand-binding domain is required for optimal T-cell development.
Collapse
Affiliation(s)
- Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10461, USA.
| | | |
Collapse
|
133
|
Rosa RFM, Zen PRG, Rosa RCM, Graziadio C, Paskulin GA. Disostose espôndilo-costal associada a defeitos de fechamento do tubo neural. REVISTA PAULISTA DE PEDIATRIA 2009. [DOI: 10.1590/s0103-05822009000300016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJETIVO: Salientar a relação dos defeitos de fechamento do tubo neural com a disostose espôndilo-costal (DEC) por meio da descrição de três pacientes. DESCRIÇÃO DOS CASOS: Paciente 1: menina branca, 22 meses, nascida com mielomeningocele lombar. Na avaliação, apresentava hipotonia, baixa estatura, dolicocefalia, fendas palpebrais oblíquas para cima, pregas epicânticas e tronco curto com tórax assimétrico. A avaliação radiográfica revelou hemivértebras múltiplas, vértebras em borboleta e fusão e ausência de algumas costelas. Paciente 2: menina branca, 22 meses, com moderado atraso do desenvolvimento neuropsicomotor, baixa estatura, olhos profundos, pregas epicânticas, pescoço e tronco curtos com assimetria do tórax, abdome protruso, hemangioma plano na altura da transição lombossacra e fosseta sacral profunda no dorso. A avaliação radiográfica identificou hemivértebras, fusão incompleta de vértebras e vértebras em borboleta, malformações de costelas e espinha bífida oculta em L5/S1. Paciente 3: menina branca, 9 dias de vida, com fendas palpebrais oblíquas para cima, ponte nasal alargada, orelhas baixo implantadas e rotadas posteriormente, tronco curto, tórax assimétrico e meningocele tóraco-lombar. A avaliação radiográfica evidenciou hemivértebras, malformação e ausência de algumas costelas e agenesia diafragmática à esquerda. A tomografia computadorizada de encéfalo mostrou estenose de aqueduto. COMENTÁRIOS: Vários defeitos de fechamento do tubo neural, de espinha bífida oculta a grandes mielomeningoceles, são observados em pacientes com DEC, indicando que tais pacientes devem ser cuidadosamente avaliados quanto à possível presença desses defeitos.
Collapse
|
134
|
The role of Notch in patterning the human vertebral column. Curr Opin Genet Dev 2009; 19:329-37. [PMID: 19608404 DOI: 10.1016/j.gde.2009.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 06/01/2009] [Accepted: 06/05/2009] [Indexed: 01/11/2023]
Abstract
The components of the Notch signaling pathway and the mechanics of signal transduction have largely been established in Drosophila. Although essential for many developmental processes in invertebrates and vertebrates, this review focuses on Notch signaling in the vertebrate-specific process of somitogenesis. More specifically it describes that mutations in genes encoding Notch pathway components (DLL3, MESP2, LFNG and HES7) cause severe congenital vertebral defects in humans. Importantly, this review highlights studies demonstrating that Dll3 is unique amongst DSL ligands acting as an inhibitor and not an activator of Notch signaling.
Collapse
|
135
|
Sewell W, Sparrow DB, Smith AJ, Gonzalez DM, Rappaport EF, Dunwoodie SL, Kusumi K. Cyclical expression of the Notch/Wnt regulator Nrarp requires modulation by Dll3 in somitogenesis. Dev Biol 2009; 329:400-9. [PMID: 19268448 PMCID: PMC2697309 DOI: 10.1016/j.ydbio.2009.02.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2008] [Revised: 01/19/2009] [Accepted: 02/19/2009] [Indexed: 11/30/2022]
Abstract
Delta-like 3 (Dll3) is a divergent ligand and modulator of the Notch signaling pathway only identified so far in mammals. Null mutations of Dll3 disrupt cycling expression of Notch targets Hes1, Hes5, and Lfng, but not of Hes7. Compared with Dll1 or Notch1, the effects of Dll3 mutations are less severe for gene expression in the presomitic mesoderm, yet severe segmentation phenotypes and vertebral defects result in both human and mouse. Reasoning that Dll3 specifically disrupts key regulators of somite cycling, we carried out functional analysis to identify targets accounting for the segmental phenotype. Using microdissected embryonic tissue from somitic and presomitic mesodermal tissue, we identified new genes enriched in these tissues, including Limch1, Rhpn2, and A130022J15Rik. Surprisingly, we only identified a small number of genes disrupted by the Dll3 mutation. These include Uncx, a somite gene required for rib and vertebral patterning, and Nrarp, a regulator of Notch/Wnt signaling in zebrafish and a cycling gene in mouse. To determine the effects of Dll3 mutation on Nrarp, we characterized the cycling expression of this gene from early (8.5 dpc) to late (10.5 dpc) somitogenesis. Nrarp displays a distinct pattern of cycling phases when compared to Lfng and Axin2 (a Wnt pathway gene) at 9.5 dpc but appears to be in phase with Lfng by 10.5 dpc. Nrarp cycling appears to require Dll3 but not Lfng modulation. In Dll3 null embryos, Nrarp displayed static patterns. However, in Lfng null embryos, Nrarp appeared static at 8.5 dpc but resumed cycling expression by 9.5 and dynamic expression at 10.5 dpc stages. By contrast, in Wnt3a null embryos, Nrarp expression was completely absent in the presomitic mesoderm. Towards identifying the role of Dll3 in regulating somitogenesis, Nrarp emerges as a potentially important regulator that requires Dll3 but not Lfng for normal function.
Collapse
Affiliation(s)
- William Sewell
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Duncan B. Sparrow
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, NSW 2052, Australia
| | | | | | - Eric F. Rappaport
- The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sally L. Dunwoodie
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, NSW 2052, Australia
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, NSW 2052, Australia
| | - Kenro Kusumi
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Dept. of Basic Medical Sciences, The University of Arizona College of Medicine–Phoenix in partnership with Arizona State University, Phoenix, AZ 85004, USA
| |
Collapse
|
136
|
Abstract
Cell–cell signaling mediated by the Notch receptor is iteratively involved in numerous developmental contexts, and its dysregulation has been associated with inherited genetic disorders and cancers. The core components of the signaling pathway have been identified for some time, but the study of the modulation of the pathway in different cellular contexts has revealed many layers of regulation. These include complex sugar modifications in the extracellular domain as well as transit of Notch through defined cellular compartments, including specific endosomes.
Collapse
Affiliation(s)
- An-Chi Tien
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
137
|
Giampietro PF, Dunwoodie SL, Kusumi K, Pourquié O, Tassy O, Offiah AC, Cornier AS, Alman BA, Blank RD, Raggio CL, Glurich I, Turnpenny PD. Progress in the understanding of the genetic etiology of vertebral segmentation disorders in humans. Ann N Y Acad Sci 2009; 1151:38-67. [PMID: 19154516 DOI: 10.1111/j.1749-6632.2008.03452.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vertebral malformations contribute substantially to the pathophysiology of kyphosis and scoliosis, common health problems associated with back and neck pain, disability, cosmetic disfigurement, and functional distress. This review explores (1) recent advances in the understanding of the molecular embryology underlying vertebral development and relevance to elucidation of etiologies of several known human vertebral malformation syndromes; (2) outcomes of molecular studies elucidating genetic contributions to congenital and sporadic vertebral malformation; and (3) complex interrelationships between genetic and environmental factors that contribute to the pathogenesis of isolated syndromic and nonsyndromic congenital vertebral malformation. Discussion includes exploration of the importance of establishing improved classification systems for vertebral malformation, future directions in molecular and genetic research approaches to vertebral malformation, and translational value of research efforts to clinical management and genetic counseling of affected individuals and their families.
Collapse
Affiliation(s)
- Philip F Giampietro
- Department of Medical Genetic Services, Marshfield Clinic, 1000 North Oak Avenue, Marshfield, WI 54449, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Mutation of the fucose-specific β1,3 N-acetylglucosaminyltransferase LFNG results in abnormal formation of the spine. Biochim Biophys Acta Mol Basis Dis 2009; 1792:100-11. [DOI: 10.1016/j.bbadis.2008.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 10/31/2008] [Accepted: 11/04/2008] [Indexed: 01/24/2023]
|
139
|
Abstract
Notch signaling plays crucial roles in many developmental pathways, with Notch mutations linked to several developmental disorders. Because many pediatric malignancies arise from dysregulated development, roles for Notch signaling in these cancers are to be expected. Evidence to support this is now emerging as the Notch pathway is being explored in more pediatric cancers. Not surprisingly, Notch appears to play diverse roles in different malignancies, effecting differentiation, metastasis, cancer "stem cells," and angiogenesis. As examples, although activating mutations of Notch1 are found in the majority of T-cell acute lymphoblastic leukemia (ALL) cases, Notch/HES1 signaling appears to play a tumor suppressor role in precursor B-cell ALL; although Notch/HES1 signaling appears to contribute to osteosarcoma metastasis, Notch signaling also promotes medulloblastoma "stem cell" survival and contributes to angiogenesis in neuroblastoma. Further understanding of the roles of Notch signaling in specific pediatric cancers will provide a rationale for Notch-based therapeutic strategies.
Collapse
|
140
|
Turnpenny PD. Defective somitogenesis and abnormal vertebral segmentation in man. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 638:164-89. [PMID: 21038776 DOI: 10.1007/978-0-387-09606-3_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
In recent years molecular genetics has revolutionized the study of somitogenesis in developmental biology and advances that have taken place in animal models have been applied successfully to human disease. Abnormal segmentation in man is a relatively common birth defect and advances in understanding have come through the study of cases clustered in families using DNA linkage analysis and candidate gene approaches, the latter stemming directly from knowledge gained through the study of animal models. Only a minority of abnormal segmentation phenotypes appear to follow Mendelian inheritance but three genes--DLL3, MESP2 and LNFG--have now been identified for spondylocostal dysostosis (SCD), a spinal malformation characterized by extensive hemivertebrae, trunkal shortening and abnormally aligned ribs with points of fusion. In affected families autosomal recessive inheritance is followed. These genes are all important components of the Notch signaling pathway. Other genes within the pathway cause diverse phenotypes such as Alagille syndrome (AGS) and CADASIL, conditions that may have their origin in defective vasculogenesis. This review deals mainly with SCD, with some consideration of AGS. Significant future challenges lie in identifying causes of the many abnormal segmentation phenotypes in man but it is hoped that combined approaches in collaboration with developmental biologists will reap rewards.
Collapse
Affiliation(s)
- Peter D Turnpenny
- Clinical Genetics Department, Royal Devon & Exeter Hospital, Gladstone Road, Exeter EX1 2ED, United Kingdom.
| |
Collapse
|
141
|
Hass MR, Sato C, Kopan R, Zhao G. Presenilin: RIP and beyond. Semin Cell Dev Biol 2008; 20:201-10. [PMID: 19073272 DOI: 10.1016/j.semcdb.2008.11.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 11/19/2008] [Accepted: 11/19/2008] [Indexed: 12/22/2022]
Abstract
Over the years the presenilins (PSENs), a family of multi-transmembrane domain proteins, have been ascribed a number of diverse potential functions. Recent in vivo evidence has supported the existence of PSEN functions beyond its well-established role in regulated intramembrane proteolysis. In this review, we will briefly discuss the ability of PSEN to modulate cellular signaling pathways through gamma-secretase cleavage of transmembrane proteins. Additionally, we will critically examine the proposed roles of PSEN in the regulation of beta-catenin function, protein trafficking, calcium regulation, and apoptosis.
Collapse
Affiliation(s)
- Matthew R Hass
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, United States
| | | | | | | |
Collapse
|
142
|
Luther KB, Schindelin H, Haltiwanger RS. Structural and mechanistic insights into lunatic fringe from a kinetic analysis of enzyme mutants. J Biol Chem 2008; 284:3294-3305. [PMID: 19028689 DOI: 10.1074/jbc.m805502200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Notch receptor is critical for proper development where it orchestrates numerous cell fate decisions. The Fringe family of beta1,3-N-acetylglucosaminyltransferases are regulators of this pathway. Fringe enzymes add N-acetylglucosamine to O-linked fucose on the epidermal growth factor repeats of Notch. Here we have analyzed the reaction catalyzed by Lunatic Fringe (Lfng) in detail. A mutagenesis strategy for Lfng was guided by a multiple sequence alignment of Fringe proteins and solutions from docking an epidermal growth factor-like O-fucose acceptor substrate onto a homology model of Lfng. We targeted three main areas as follows: residues that could help resolve where the fucose binds, residues in two conserved loops not observed in the published structure of Manic Fringe, and residues predicted to be involved in UDP-N-acetylglucosamine (UDP-GlcNAc) donor specificity. We utilized a kinetic analysis of mutant enzyme activity toward the small molecule acceptor substrate 4-nitrophenyl-alpha-L-fucopyranoside to judge their effect on Lfng activity. Our results support the positioning of O-fucose in a specific orientation to the catalytic residue. We also found evidence that one loop closes off the active site coincident with, or subsequent to, substrate binding. We propose a mechanism whereby the ordering of this short loop may alter the conformation of the catalytic aspartate. Finally, we identify several residues near the UDP-GlcNAc-binding site, which are specifically permissive toward UDP-GlcNAc utilization.
Collapse
Affiliation(s)
- Kelvin B Luther
- Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, Stony Brook University, Stony Brook, New York 11794-5215
| | - Hermann Schindelin
- Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, Stony Brook University, Stony Brook, New York 11794-5215
| | - Robert S Haltiwanger
- Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, Stony Brook University, Stony Brook, New York 11794-5215.
| |
Collapse
|
143
|
Glycosylation diseases: quo vadis? Biochim Biophys Acta Mol Basis Dis 2008; 1792:925-30. [PMID: 19061954 DOI: 10.1016/j.bbadis.2008.11.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 11/03/2008] [Accepted: 11/06/2008] [Indexed: 12/29/2022]
Abstract
About 250 to 500 glycogenes (genes that are directly involved in glycan assembly) are in the human genome representing about 1-2% of the total genome. Over 40 human congenital diseases associated with glycogene mutations have been described to date. It is almost certain that the causative glycogene mutations for many more congenital diseases remain to be discovered. Some glycogenes are involved in the synthesis of only a specific protein and/or a specific class of glycan whereas others play a role in the biosynthesis of more than one glycan class. Mutations in the latter type of glycogene result in complex clinical phenotypes that present difficult diagnostic problems to the clinician. In order to understand in biochemical terms the clinical signs and symptoms of a patient with a glycogene mutation, one must understand how the glycogene works. That requires, first of all, determination of the target protein or proteins of the glycogene followed by an understanding of the role, if any, of the glycogene-dependent glycan in the functions of the protein. Many glycogenes act on thousands of glycoproteins. There are unfortunately no general methods to identify all the potentially large number of glycogene target proteins and which of these proteins are responsible for the mutant phenotypes. Whereas biochemical methods have been highly successful in the discovery of glycogenes responsible for many congenital diseases, it has more recently been necessary to use other methods such as homozygosity mapping. Accurate diagnosis of many recently discovered diseases has become difficult and new diagnostic procedures must be developed. Last but not least is the lack of effective treatment for most of these children and of animal models that can be used to test new therapies.
Collapse
|
144
|
Luther KB, Haltiwanger RS. Role of unusual O-glycans in intercellular signaling. Int J Biochem Cell Biol 2008; 41:1011-24. [PMID: 18952191 DOI: 10.1016/j.biocel.2008.10.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 09/22/2008] [Accepted: 10/03/2008] [Indexed: 01/09/2023]
Abstract
In the last two decades, our knowledge of the role of glycans in development and signal transduction has expanded enormously. While most work has focused on the importance of N-linked or mucin-type O-linked glycosylation, recent work has highlighted the importance of several more unusual forms of glycosylation that are the focus of this review. In particular, the ability of O-fucose glycans on the epidermal growth factor-like (EGF) repeats of Notch to modulate signaling places glycosylation alongside phosphorylation as a means to modulate protein-protein interactions and their resultant downstream signals. The recent discovery that O-glucose modification of Notch EGF repeats is also required for Notch function has further expanded the range of glycosylation events capable of modulating Notch signaling. The prominent role of Notch during development and in later cell-fate decisions underscores the importance of these modifications in human biology. The role of glycans in intercellular signaling events is only beginning to be understood and appears ready to expand into new areas with the discovery that thrombospondin type 1 repeats are also modified with O-fucose glycans. Finally, a rare form of glycosylation called C-mannosylation modifies tryptophans in some signaling competent molecules and may be a further layer of complexity in the field. We will review each of these areas focusing on the glycan structures produced, the consequence of their presence, and the enzymes responsible.
Collapse
Affiliation(s)
- Kelvin B Luther
- Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | |
Collapse
|
145
|
Abstract
Although scoliosis at birth is rare, conditions at birth and in the newborn period predispose newborns to the development of scoliosis in later life. Scoliosis is congenital when associated with abnormal vertebral segmentation regardless of the age of diagnosis. Other conditions may predispose neonates to vertebral damage or the development of sustained uneven forces on the developing spine. Although it is difficult to know which newborns will progress to developing scoliosis, it is important to be aware of risk factors to provide anticipatory education for parents and to arrange appropriate follow-up after discharge. This article reviews the embryology of vertebral formation and risk factors for the development of scoliosis. The discussion includes the incidence, risk factors, genetics, associated problems, physical examination, and nursing implications of the infant with congenital scoliosis.
Collapse
|
146
|
Sparrow DB, Guillen-Navarro E, Fatkin D, Dunwoodie SL. Mutation of HAIRY-AND-ENHANCER-OF-SPLIT-7 in humans causes spondylocostal dysostosis. Hum Mol Genet 2008; 17:3761-6. [DOI: 10.1093/hmg/ddn272] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
147
|
The vertebrate segmentation clock: the tip of the iceberg. Curr Opin Genet Dev 2008; 18:317-23. [DOI: 10.1016/j.gde.2008.06.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 06/17/2008] [Indexed: 01/03/2023]
|
148
|
Coman D, Bacic S, Boys A, Sparrow DB, Dunwoodie SL, Savarirayan R, Amor DJ. Spondylocostal dysostosis in a pregnancy complicated by confined placental mosaicism for tetrasomy 9p. Am J Med Genet A 2008; 146A:1972-6. [DOI: 10.1002/ajmg.a.32299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
149
|
Tassabehji M, Fang ZM, Hilton EN, McGaughran J, Zhao Z, de Bock CE, Howard E, Malass M, Donnai D, Diwan A, Manson FD, Murrell D, Clarke RA. Mutations in GDF6 are associated with vertebral segmentation defects in Klippel-Feil syndrome. Hum Mutat 2008; 29:1017-27. [DOI: 10.1002/humu.20741] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
150
|
|