101
|
Chang JW, Min BK, Kim BS, Chang WS, Lee YH. Neurophysiologic correlates of sonication treatment in patients with essential tremor. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:124-131. [PMID: 25438838 DOI: 10.1016/j.ultrasmedbio.2014.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 07/23/2014] [Accepted: 08/12/2014] [Indexed: 06/04/2023]
Abstract
Transcranial magnetic resonance imaging-guided high-intensity focused ultrasound (MRgHIFU) is gaining attention as a potent substitute for surgical intervention in the treatment of neurologic disorders. To discern the neurophysiologic correlates of its therapeutic effects, we applied MRgHIFU to an intractable neurologic disorder, essential tremor, while measuring magnetoencephalogram mu rhythms from the motor cortex. Focused ultrasound sonication destroyed tissues by focusing a high-energy beam on the ventralis intermedius nucleus of the thalamus. The post-treatment effectiveness was also evaluated using the clinical rating scale for tremors. Thalamic MRgHIFU had substantial therapeutic effects on patients, based on MRgHIFU-mediated improvements in movement control and significant changes in brain mu rhythms. Ultrasonic thalamotomy may reduce hyper-excitable activity in the motor cortex, resulting in normalized behavioral activity after sonication treatment. Thus, non-invasive and spatially accurate MRgHIFU technology can serve as a potent therapeutic tool with broad clinical applications.
Collapse
Affiliation(s)
- Jin Woo Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Byoung-Kyong Min
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea.
| | - Bong-Soo Kim
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Won Seok Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Yong-Ho Lee
- Korea Research Institute of Standards and Science, Daejeon, Korea
| |
Collapse
|
102
|
Shapoori K, Sadler J, Wydra A, Malyarenko EV, Sinclair AN, Maev RG. An Ultrasonic-Adaptive Beamforming Method and Its Application for Trans-skull Imaging of Certain Types of Head Injuries; Part I: Transmission Mode. IEEE Trans Biomed Eng 2014; 62:1253-64. [PMID: 25423646 DOI: 10.1109/tbme.2014.2371752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A new adaptive beamforming algorithm for imaging via small-aperture 1-D ultrasonic-phased arrays through composite layered structures is reported. Such structures cause acoustic phase aberration and wave refraction at undulating interfaces and can lead to significant distortion of an ultrasonic field pattern produced by conventional beamforming techniques. This distortion takes the form of defocusing the ultrasonic field transmitted through the barrier and causes loss of resolution and overall degradation of image quality. To compensate for the phase aberration and the refractional effects, we developed and examined an adaptive beamforming algorithm for small-aperture linear-phased arrays. After accurately assessing the barrier's local geometry and sound speed, the method calculates a new timing scheme to refocus the distorted beam at its original location. As a tentative application, implementation of this method for trans-skull imaging of certain types of head injuries through human skull is discussed. Simulation and laboratory results of applying the method on skull-mimicking phantoms are presented. Correction of up to 2.5 cm focal point displacement at up to 10 cm depth under our skull phantom is demonstrated. Quantitative assessment of the method in a variety of temporal focusing scenarios is also reported. Overall temporal deviation on the order of a few nanoseconds was observed between the simulated and experimental results. The single-point adaptive focusing results demonstrate strong potential of our approach for diagnostic imaging through intact human skull. The algorithms were implemented on an ultrasound advanced open-platform controlling 64 active elements on a 128-element phased array.
Collapse
|
103
|
Koskela J, Vahala E, de Greef M, Lafitte LP, Ries M. Stochastic ray tracing for simulation of high intensity focal ultrasound therapy. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 136:1430. [PMID: 25190416 DOI: 10.1121/1.4892768] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
An algorithm is presented for rapid simulation of high-intensity focused ultrasound (HIFU) fields. Essentially, the method combines ray tracing with Monte Carlo integration to evaluate the Rayleigh-Sommerfeld integral. A large number of computational particles, phonons, are distributed among the elements of a phase-array transducer. The phonons are emitted into random directions and are propagated along trajectories computed with the ray tracing method. As the simulation progresses, an improving stochastic estimate of the acoustic field is obtained. The method can adapt to complicated geometries, and it is well suited to parallelization. The method is verified against reference simulations and pressure measurements from an ex vivo porcine thoracic tissue sample. Results are presented for acceleration with graphics processing units (GPUs). The method is expected to serve in applications, where flexibility and rapid computation time are crucial, in particular clinical HIFU treatment planning.
Collapse
Affiliation(s)
- Julius Koskela
- Philips Healthcare, Philips Medical Systems MR Finland, P.O. Box 185, Vantaa, FI-01511, Finland
| | - Erkki Vahala
- Philips Healthcare, Philips Medical Systems MR Finland, P.O. Box 185, Vantaa, FI-01511, Finland
| | - Martijn de Greef
- Image Sciences Institute, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| | - Luc P Lafitte
- Image Sciences Institute, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| | - Mario Ries
- Image Sciences Institute, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| |
Collapse
|
104
|
Arvanitis CD, McDannold N. Integrated ultrasound and magnetic resonance imaging for simultaneous temperature and cavitation monitoring during focused ultrasound therapies. Med Phys 2014; 40:112901. [PMID: 24320468 DOI: 10.1118/1.4823793] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Ultrasound can be used to noninvasively produce different bioeffects via viscous heating, acoustic cavitation, or their combination, and these effects can be exploited to develop a wide range of therapies for cancer and other disorders. In order to accurately localize and control these different effects, imaging methods are desired that can map both temperature changes and cavitation activity. To address these needs, the authors integrated an ultrasound imaging array into an MRI-guided focused ultrasound (MRgFUS) system to simultaneously visualize thermal and mechanical effects via passive acoustic mapping (PAM) and MR temperature imaging (MRTI), respectively. METHODS The system was tested with an MRgFUS system developed for transcranial sonication for brain tumor ablation in experiments with a tissue mimicking phantom and a phantom-filled ex vivo macaque skull. In experiments on cavitation-enhanced heating, 10 s continuous wave sonications were applied at increasing power levels (30-110 W) until broadband acoustic emissions (a signature for inertial cavitation) were evident. The presence or lack of signal in the PAM, as well as its magnitude and location, were compared to the focal heating in the MRTI. Additional experiments compared PAM with standard B-mode ultrasound imaging and tested the feasibility of the system to map cavitation activity produced during low-power (5 W) burst sonications in a channel filled with a microbubble ultrasound contrast agent. RESULTS When inertial cavitation was evident, localized activity was present in PAM and a marked increase in heating was observed in MRTI. The location of the cavitation activity and heating agreed on average after registration of the two imaging modalities; the distance between the maximum cavitation activity and focal heating was -3.4 ± 2.1 mm and -0.1 ± 3.3 mm in the axial and transverse ultrasound array directions, respectively. Distortions and other MRI issues introduced small uncertainties in the PAM∕MRTI registration. Although there was substantial variation, a nonlinear relationship between the average intensity of the cavitation maps, which was relatively constant during sonication, and the peak temperature rise was evident. A fit to the data to an exponential had a correlation coefficient (R(2)) of 0.62. The system was also found to be capable of visualizing cavitation activity with B-mode imaging and of passively mapping cavitation activity transcranially during cavitation-enhanced heating and during low-power sonication with an ultrasound contrast agent. CONCLUSIONS The authors have demonstrated the feasibility of integrating an ultrasound imaging array into an MRgFUS system to simultaneously map localized cavitation activity and temperature. The authors anticipate that this integrated approach can be utilized to develop controllers for cavitation-enhanced ablation and facilitate the optimization and development of this and other ultrasound therapies. The integrated system may also provide a useful tool to study the bioeffects of acoustic cavitation.
Collapse
Affiliation(s)
- Costas D Arvanitis
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, Massachusetts 02115
| | | |
Collapse
|
105
|
Wintermark M, Tustison NJ, Elias WJ, Patrie JT, Xin W, Demartini N, Eames M, Sumer S, Lau B, Cupino A, Snell J, Hananel A, Kassell N, Aubry JF. T1-weighted MRI as a substitute to CT for refocusing planning in MR-guided focused ultrasound. Phys Med Biol 2014; 59:3599-614. [DOI: 10.1088/0031-9155/59/13/3599] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
106
|
Wu SY, Tung YS, Marquet F, Downs M, Sanchez C, Chen C, Ferrera V, Konofagou E. Transcranial cavitation detection in primates during blood-brain barrier opening--a performance assessment study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014; 61:966-78. [PMID: 24859660 PMCID: PMC4034133 DOI: 10.1109/tuffc.2014.2992] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Focused ultrasound (FUS) has been shown promise in treating the brain locally and noninvasively. Transcranial passive cavitation detection (PCD) provides methodology for monitoring the treatment in real time, but the skull effects remain a major challenge for its translation to the clinic. In this study, we investigated the sensitivity, reliability, and limitations of PCD through primate (macaque and human) skulls in vitro. The results were further correlated with the in vivo macaque studies including the transcranial PCD calibration and real-time monitoring of blood-brain barrier (BBB) opening, with magnetic resonance imaging assessing the opening and safety. The stable cavitation doses using harmonics (SCDh) and ultraharmonics (SCDu), the inertial cavitation dose (ICD), and the cavitation SNR were quantified based on the PCD signals. Results showed that through the macaque skull, the pressure threshold for detecting the SCDh remained the same as without the skull in place, whereas it increased for the SCDu and ICD; through the human skull, it increased for all cavitation doses. The transcranial PCD was found to be reliable both in vitro and in vivo when the transcranial cavitation SNR exceeded the 1-dB detection limit through the in vitro macaque (attenuation: 4.92 dB/mm) and human (attenuation: 7.33 dB/ mm) skull. In addition, using long pulses enabled reliable PCD monitoring and facilitate BBB opening at low pressures. The in vivo results showed that the SCDh became detectable at pressures as low as 100 kPa; the ICD became detectable at 250 kPa, although it could occur at lower pressures; and the SCDu became detectable at 700 kPa and was less reliable at lower pressures. Real-time monitoring of PCD was further implemented during BBB opening, with successful and safe opening achieved at 250 to 600 kPa in both the thalamus and the putamen. In conclusion, this study shows that transcranial PCD in macaques in vitro and in vivo, and in humans in vitro, is reliable by improving the cavitation SNR beyond the 1-dB detection limit.
Collapse
|
107
|
Bouchoux G, Shivashankar R, Abruzzo TA, Holland CK. In silico study of low-frequency transcranial ultrasound fields in acute ischemic stroke patients. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:1154-66. [PMID: 24631377 PMCID: PMC4012005 DOI: 10.1016/j.ultrasmedbio.2013.12.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/21/2013] [Accepted: 12/29/2013] [Indexed: 05/08/2023]
Abstract
Ultrasound in the sub-megahertz range enhances thrombolysis and may be applied transcranially to ischemic stroke patients. The consistency of transcranial insonification needs to be evaluated. Acoustic and thermal simulations based on computed-tomography (CT) scans of 20 patients were performed. An unfocused 120-kHz transducer allowed homogeneous insonification of the thrombus, and positioning based on external landmarks performed similarly to an optimized placement based on CT data. With a weakly focused 500-kHz transducer, the landmark-based positioning underperformed. The predicted inter-patient variation of in situ acoustic pressure was similar with both the 120 and 500-kHz transducers for the optimized placement (18.0-26.4% relative standard deviation). The simulated maximum acoustic pressure in intervening tissues was 2.6 ± 0.6 and 2.0 ± 0.7 times the pressure in the thrombus for the 120-kHz and 500-kHz transducers, respectively. A 1 W/cm(2) insonification of the thrombus caused a 3.8 ± 2.2 °C increase in the bone for the 120-kHz transducer, and a 13.4 ± 3.3 °C increase for the 500-kHz transducer. Contralateral local maxima up to 1.1 times the pressure amplitude in the targeted zone were predicted for the 120-kHz transducer. We established two transducer placement approaches, one based on analysis of a head CT and the other using simple external, visible landmarks. Both approaches allowed consistent insonification of the thrombus.
Collapse
Affiliation(s)
- Guillaume Bouchoux
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | | | - Todd A Abruzzo
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA
| | - Christy K Holland
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA; Biomedical Engineering Program, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
108
|
Pulkkinen A, Werner B, Martin E, Hynynen K. Numerical simulations of clinical focused ultrasound functional neurosurgery. Phys Med Biol 2014; 59:1679-700. [PMID: 24619067 DOI: 10.1088/0031-9155/59/7/1679] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A computational model utilizing grid and finite difference methods were developed to simulate focused ultrasound functional neurosurgery interventions. The model couples the propagation of ultrasound in fluids (soft tissues) and solids (skull) with acoustic and visco-elastic wave equations. The computational model was applied to simulate clinical focused ultrasound functional neurosurgery treatments performed in patients suffering from therapy resistant chronic neuropathic pain. Datasets of five patients were used to derive the treatment geometry. Eight sonications performed in the treatments were then simulated with the developed model. Computations were performed by driving the simulated phased array ultrasound transducer with the acoustic parameters used in the treatments. Resulting focal temperatures and size of the thermal foci were compared quantitatively, in addition to qualitative inspection of the simulated pressure and temperature fields. This study found that the computational model and the simulation parameters predicted an average of 24 ± 13% lower focal temperature elevations than observed in the treatments. The size of the simulated thermal focus was found to be 40 ± 13% smaller in the anterior-posterior direction and 22 ± 14% smaller in the inferior-superior direction than in the treatments. The location of the simulated thermal focus was off from the prescribed target by 0.3 ± 0.1 mm, while the peak focal temperature elevation observed in the measurements was off by 1.6 ± 0.6 mm. Although the results of the simulations suggest that there could be some inaccuracies in either the tissue parameters used, or in the simulation methods, the simulations were able to predict the focal spot locations and temperature elevations adequately for initial treatment planning performed to assess, for example, the feasibility of sonication. The accuracy of the simulations could be improved if more precise ultrasound tissue properties (especially of the skull bone) could be obtained.
Collapse
Affiliation(s)
- Aki Pulkkinen
- University of Eastern Finland, Kuopio Campus, PO Box 1627, FI-70211 Kuopio, Finland
| | | | | | | |
Collapse
|
109
|
Younan Y, Deffieux T, Larrat B, Fink M, Tanter M, Aubry JF. Influence of the pressure field distribution in transcranial ultrasonic neurostimulation. Med Phys 2014; 40:082902. [PMID: 23927357 DOI: 10.1118/1.4812423] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Low-intensity focused ultrasound has been shown to stimulate the brain noninvasively and without noticeable tissue damage. Such a noninvasive and localized neurostimulation is expected to have a major impact in neuroscience in the coming years. This emerging field will require many animal experiments to fully understand the link between ultrasound and stimulation. The primary goal of this paper is to investigate transcranial ultrasonic neurostimulation at low frequency (320 kHz) on anesthetized rats for different acoustic pressures and estimate the in situ pressure field distribution and the corresponding motor threshold, if any. The corresponding acoustic pressure distribution inside the brain, which cannot be measured in vivo, is investigated based on numerical simulations of the ultrasound propagation inside the head cavity, reproducing at best the experiments conducted in the first part, both in terms of transducer and head geometry and in terms of acoustic parameters. METHODS In this study, 37 ultrasonic neurostimulation sessions were achieved in rats (N=8) using a 320 kHz transducer. The corresponding beam profile in the entire head was simulated in order to investigate the in situ pressure and intensity level as well as the spatial pressure distribution, thanks to a rat microcomputed tomography scan (CT)-based 3D finite differences time domain solver. RESULTS Ultrasound pulse evoked a motor response in more than 60% of the experimental sessions. In those sessions, the stimulation was always present, repeatable with a pressure threshold under which no motor response occurred. This average acoustic pressure threshold was found to be 0.68±0.1 MPa (corresponding mechanical index, MI=1.2 and spatial peak, pulse averaged intensity, Isppa=7.5 W cm(-2)), as calibrated in free water. A slight variation was observed between deep anesthesia stage (0.77±0.04 MPa) and light anesthesia stage (0.61±0.03 MPa), assessed from the pedal reflex. Several kinds of motor responses were observed: movements of the tail, the hind legs, the forelimbs, the eye, and even a single whisker were induced separately. Numerical simulations of an equivalent experiment with identical acoustic parameters showed that the acoustic field was spread over the whole rat brain with the presence of several secondary pressure peaks. Due to reverberations, a 1.8-fold increase of the spatial peak, temporal peak acoustic pressure (Psptp) (±0.4 standard deviation), a 3.6-fold increase (±1.8) for the spatial peak, temporal peak acoustic intensity (Isptp), and 2.3 for the spatial peak, pulse averaged acoustic intensity (Isppa), were found compared to simulations of the beam in free water. Applying such corrections due to reverberations on the experimental results would yield a higher estimation for the average acoustic pressure threshold for motor neurostimulation at 320 KHz at 1.2±0.3 MPa (MI=2.2±0.5 and Isppa=17.5±7.5 W cm(-2)). CONCLUSIONS Transcranial ultrasonic stimulation is pressure- and anesthesia-dependent in the rat model. Numerical simulations have shown that the acoustic pattern can be complex inside the rat head and that special care must be taken for small animal studies relating acoustic parameters to neurostimulation effects, especially at a low frequency.
Collapse
Affiliation(s)
- Youliana Younan
- Institut Langevin, ESPCI-ParisTech, CNRS UMR7587, INSERM U979, 1 rue Jussieu, Paris 75005, France
| | | | | | | | | | | |
Collapse
|
110
|
Vyas U, Kaye E, Pauly KB. Transcranial phase aberration correction using beam simulations and MR-ARFI. Med Phys 2014; 41:032901. [PMID: 24593740 PMCID: PMC3978249 DOI: 10.1118/1.4865778] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 12/20/2013] [Accepted: 01/31/2014] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Transcranial magnetic resonance-guided focused ultrasound surgery is a noninvasive technique for causing selective tissue necrosis. Variations in density, thickness, and shape of the skull cause aberrations in the location and shape of the focal zone. In this paper, the authors propose a hybrid simulation-MR-ARFI technique to achieve aberration correction for transcranial MR-guided focused ultrasound surgery. The technique uses ultrasound beam propagation simulations with MR Acoustic Radiation Force Imaging (MR-ARFI) to correct skull-caused phase aberrations. METHODS Skull-based numerical aberrations were obtained from a MR-guided focused ultrasound patient treatment and were added to all elements of the InSightec conformal bone focused ultrasound surgery transducer during transmission. In the first experiment, the 1024 aberrations derived from a human skull were condensed into 16 aberrations by averaging over the transducer area of 64 elements. In the second experiment, all 1024 aberrations were applied to the transducer. The aberrated MR-ARFI images were used in the hybrid simulation-MR-ARFI technique to find 16 estimated aberrations. These estimated aberrations were subtracted from the original aberrations to result in the corrected images. Each aberration experiment (16-aberration and 1024-aberration) was repeated three times. RESULTS The corrected MR-ARFI image was compared to the aberrated image and the ideal image (image with zero aberrations) for each experiment. The hybrid simulation-MR-ARFI technique resulted in an average increase in focal MR-ARFI phase of 44% for the 16-aberration case and 52% for the 1024-aberration case, and recovered 83% and 39% of the ideal MR-ARFI phase for the 16-aberrations and 1024-aberration case, respectively. CONCLUSIONS Using one MR-ARFI image and noa priori information about the applied phase aberrations, the hybrid simulation-MR-ARFI technique improved the maximum MR-ARFI phase of the beam's focus.
Collapse
Affiliation(s)
- Urvi Vyas
- Department of Radiology, Stanford University, Stanford, California 94305
| | - Elena Kaye
- Department of Radiology, Stanford University, Stanford, California 94305
| | - Kim Butts Pauly
- Department of Radiology, Stanford University, Stanford, California 94305
| |
Collapse
|
111
|
Kyriakou A, Neufeld E, Werner B, Paulides MM, Szekely G, Kuster N. A review of numerical and experimental compensation techniques for skull-induced phase aberrations in transcranial focused ultrasound. Int J Hyperthermia 2013; 30:36-46. [PMID: 24325307 DOI: 10.3109/02656736.2013.861519] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The development of phased array transducers and their integration with magnetic resonance (MR) guidance and thermal monitoring has established transcranial MR-guided focused ultrasound (tcMRgFUS) as an attractive non-invasive modality for neurosurgical interventions. The presence of the skull, however, compromises the efficiency of transcranial FUS (tcFUS) therapy, as its heterogeneous nature and acoustic characteristics induce significant phase aberrations and energy attenuation, especially at the higher acoustic frequencies employed in tcFUS thermal therapy. These aberrations may distort and shift the acoustic focus as well as induce heating at the patient's scalp and skull bone. Phased array transducers feature hundreds of elements that can be driven individually, each with its own phase and amplitude. This feature allows for compensation of skull-induced aberrations by calculation and application of appropriate phase and amplitude corrections. In this paper, we illustrate the importance of precise refocusing and provide a comprehensive review of the wide variety of numerical and experimental techniques that have been used to estimate these corrections.
Collapse
Affiliation(s)
- Adamos Kyriakou
- IT'IS Foundation for Research on Information Technologies in Society , Zurich , Switzerland
| | | | | | | | | | | |
Collapse
|
112
|
Dervishi E, Aubry JF, Delattre JY, Boch AL. [Focused ultrasound therapy: current status and potential applications in neurosurgery]. Neurochirurgie 2013; 59:201-9. [PMID: 24210288 DOI: 10.1016/j.neuchi.2013.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 05/19/2013] [Accepted: 06/09/2013] [Indexed: 01/26/2023]
Abstract
High Intensity Focused Ultrasound (HIFU) therapy is an innovative approach for tissue ablation, based on high intensity focused ultrasound beams. At the focus, HIFU induces a temperature elevation and the tissue can be thermally destroyed. In fact, this approach has been tested in a number of clinical studies for the treatment of several tumors, primarily the prostate, uterine, breast, bone, liver, kidney and pancreas. For transcranial brain therapy, the skull bone is a major limitation, however, new adaptive techniques of phase correction for focusing ultrasound through the skull have recently been implemented by research systems, paving the way for HIFU therapy to become an interesting alternative to brain surgery and radiotherapy.
Collapse
Affiliation(s)
- E Dervishi
- Équipe de neuro-oncologie expérimentale, Inserm, UMRS 975, CNRS 7225, institut du cerveau et de la moelle épinière, groupe hospitalier La Pitié Salpêtrière-Charles-Foix, Assistance publique-Hôpitaux de Paris, 47-83, boulevard de l'Hôpital, 75651 Paris, France.
| | | | | | | |
Collapse
|
113
|
Wang T, Jing Y. Transcranial ultrasound imaging with speed of sound-based phase correction: a numerical study. Phys Med Biol 2013; 58:6663-81. [PMID: 24018632 DOI: 10.1088/0031-9155/58/19/6663] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This paper presents a numerical study for ultrasound transcranial imaging. To correct for the phase aberration from the skull, two critical steps are needed prior to brain imaging. In the first step, the skull shape and speed of sound are acquired by either CT scans or ultrasound scans. In the ultrasound scan approach, phased array and double focusing technique are utilized, which are able to estimate the thickness of the skull with a maximum error of around 10% and the average speed of sound in the skull is underestimated by less than 2%. In the second step, the fast marching method is used to compute the phase delay based on the known skull shape and sound speed from the first step, and the computation can be completed in seconds for 2D problems. The computed phase delays are then used in combination with the conventional delay-and-sum algorithm for generating B-mode images. Images of wire phantoms with CT or ultrasound scan-based phase correction are shown to have much less artifact than the ones without correction. Errors of deducing speed of sound from CT scans are also discussed regarding its effect on the transcranial ultrasound images. Assuming the speed of sound grows linearly with the density, this study shows that, the CT-based phase correction approach can provide clear images of wire phantoms even if the speed of sound is overestimated by 400 m s(-1), or the linear coefficient is overestimated by 40%. While in this study, ultrasound scan-based phase correction performs almost equally well with the CT-based approach, potential problems are identified and discussed.
Collapse
Affiliation(s)
- Tianren Wang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | | |
Collapse
|
114
|
Foley JL, Eames M, Snell J, Hananel A, Kassell N, Aubry JF. Image-guided focused ultrasound: state of the technology and the challenges that lie ahead. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/iim.13.38] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
115
|
Elias WJ, Khaled M, Hilliard JD, Aubry JF, Frysinger RC, Sheehan JP, Wintermark M, Lopes MB. A magnetic resonance imaging, histological, and dose modeling comparison of focused ultrasound, radiofrequency, and Gamma Knife radiosurgery lesions in swine thalamus. J Neurosurg 2013; 119:307-17. [DOI: 10.3171/2013.5.jns122327] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
The purpose of this study was to use MRI and histology to compare stereotactic lesioning modalities in a large brain model of thalamotomy.
Methods
A unilateral thalamotomy was performed in piglets utilizing one of 3 stereotactic lesioning modalities: focused ultrasound (FUS), radiofrequency, and radiosurgery. Standard clinical lesioning parameters were used for each treatment; and clinical, MRI, and histological assessments were made at early (< 72 hours), subacute (1 week), and later (1–3 months) time intervals.
Results
Histological and MRI assessment showed similar development for FUS and radiofrequency lesions. T2-weighted MRI revealed 3 concentric lesional zones at 48 hours with resolution of perilesional edema by 1 week. Acute ischemic infarction with macrophage infiltration was most prominent at 72 hours, with subsequent resolution of the inflammatory reaction and coalescence of the necrotic zone. There was no apparent difference in ischemic penumbra or “sharpness” between FUS or radiofrequency lesions. The radiosurgery lesions presented differently, with latent effects, less circumscribed lesions at 3 months, and apparent histological changes seen in white matter beyond the thalamic target. Additionally, thermal and radiation lesioning gradients were compared with modeling by dose to examine the theoretical penumbra.
Conclusions
In swine thalamus, FUS and radiosurgery lesions evolve similarly as determined by MRI, histological examination, and theoretical modeling. Radiosurgery produces lesions with more delayed effects and seemed to result in changes in the white matter beyond the thalamic target.
Collapse
|
116
|
Marquet F, Boch AL, Pernot M, Montaldo G, Seilhean D, Fink M, Tanter M, Aubry JF. Non-invasive ultrasonic surgery of the brain in non-human primates. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:1632-1639. [PMID: 23927203 DOI: 10.1121/1.4812888] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
High-intensity focused ultrasound causes selective tissue necrosis efficiently and safely, namely, in the prostate, liver, and uterine fibroid. Nevertheless, ablation of brain tissue using focused ultrasound remains limited due to strong aberrations induced by the skull. To achieve ultrasonic transcranial brain ablation, such aberrations have to be compensated. In this study, non-invasive therapy was performed on monkeys using adaptive correction of the therapeutic beam and 3D simulations of transcranial wave propagation based on 3D computed tomographic (CT) scan information. The aim of the study was two-fold: induce lesions in a non-human primate brain non-invasively and investigate the potential side effects. Stereotactic targeting was performed on five Macaca fascicularis individuals. Each hemisphere was treated separately with a 15-day interval and animals were sacrificed two days after the last treatment. The ultrasonic dose delivered at the focus was increased from one treatment location to the other to estimate the thermal dose for tissue alteration. Thermal doses in the brain were determined by numerical computations. Treatment efficiency and safety were evaluated histologically. The threshold for tissue damage in the brain was measured to be between 90 and 280 cumulative equivalent minutes at 43 °C. Intravenous injection of corticoids before the treatment limited the side effects.
Collapse
Affiliation(s)
- Fabrice Marquet
- Institut Langevin, ESPCI-ParisTech, CNRS UMR7587, INSERM U979, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Ma J, Guo S, Wu D, Geng X, Jiang X. Design, fabrication, and characterization of a single-aperture 1.5-MHz/3-MHz dual-frequency HIFU transducer. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:1519-1529. [PMID: 25004519 DOI: 10.1109/tuffc.2013.2724] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
High-intensity focused ultrasound (HIFU) treatment efficiency is critical in maximizing the hyperthermia and reducing the surgery time. In this paper, a single-aperture, 1.5 MHz/3 MHz dual-frequency HIFU transducer was designed, fabricated, and characterized for tissue ablation enhancement. Double PZT-2 layers were configured in serial and dual-frequency ultrasound waves can be concurrently generated by exciting one of the PZT-2 layers. Impulse responses from the prototype showed that the wave amplitudes at 1.5 and 3 MHz were about the same, and both are more than 12 dB larger than those of higher orders of harmonics. Tissue ablation tests demonstrated that higher temperature rise can be achieved with dual-frequency ultrasound than with single-frequency ablation at the same acoustic power.
Collapse
|
118
|
Paulides MM, Stauffer PR, Neufeld E, Maccarini PF, Kyriakou A, Canters RAM, Diederich CJ, Bakker JF, Van Rhoon GC. Simulation techniques in hyperthermia treatment planning. Int J Hyperthermia 2013; 29:346-57. [PMID: 23672453 PMCID: PMC3711016 DOI: 10.3109/02656736.2013.790092] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract Clinical trials have shown that hyperthermia (HT), i.e. an increase of tissue temperature to 39-44 °C, significantly enhance radiotherapy and chemotherapy effectiveness [1]. Driven by the developments in computational techniques and computing power, personalised hyperthermia treatment planning (HTP) has matured and has become a powerful tool for optimising treatment quality. Electromagnetic, ultrasound, and thermal simulations using realistic clinical set-ups are now being performed to achieve patient-specific treatment optimisation. In addition, extensive studies aimed to properly implement novel HT tools and techniques, and to assess the quality of HT, are becoming more common. In this paper, we review the simulation tools and techniques developed for clinical hyperthermia, and evaluate their current status on the path from 'model' to 'clinic'. In addition, we illustrate the major techniques employed for validation and optimisation. HTP has become an essential tool for improvement, control, and assessment of HT treatment quality. As such, it plays a pivotal role in the quest to establish HT as an efficacious addition to multi-modality treatment of cancer.
Collapse
Affiliation(s)
- Margarethus M Paulides
- Hyperthermia Unit, Department of Radiation Oncology, Daniel den Hoed Cancer Centre, Erasmus Medical Centre, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Chauvet D, Marsac L, Pernot M, Boch AL, Guillevin R, Salameh N, Souris L, Darrasse L, Fink M, Tanter M, Aubry JF. Targeting accuracy of transcranial magnetic resonance-guided high-intensity focused ultrasound brain therapy: a fresh cadaver model. J Neurosurg 2013; 118:1046-52. [PMID: 23451909 DOI: 10.3171/2013.1.jns12559] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT This work aimed at evaluating the accuracy of MR-guided high-intensity focused ultrasound (MRgHIFU) brain therapy in human cadaver heads. METHODS Eighteen heads of fresh human cadavers were removed with a dedicated protocol preventing intracerebral air penetration. The MR images allowed determination of the ultrasonic target: a part of the thalamic nucleus ventralis intermedius implicated in essential tremor. Osseous aberrations were corrected with simulation-based time reversal by using CT data from the heads. The ultrasonic session was performed with a 512-element phased-array transducer system operating at 1 MHz under stereotactic conditions with thermometric real-time MR monitoring performed using a 1.5-T imager. RESULTS Dissection, imaging, targeting, and planning have validated the feasibility of this human cadaver model. The average temperature elevation measured by proton resonance frequency shift was 7.9°C ± 3°C. Based on MRI data, the accuracy of MRgHIFU is 0.4 ± 1 mm along the right/left axis, 0.7 ± 1.2 mm along the dorsal/ventral axis, and 0.5 ± 2.4 mm in the rostral/caudal axis. CONCLUSIONS Despite its limits (temperature, vascularization), the human cadaver model is effective for studying the accuracy of MRgHIFU brain therapy. With the 1-MHz system investigated here, there is millimetric accuracy.
Collapse
Affiliation(s)
- Dorian Chauvet
- Department of Neurosurgery, Groupe Hospitalier Pitié Salpêtrière, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Malietzis G, Monzon L, Hand J, Wasan H, Leen E, Abel M, Muhammad A, Price P, Abel P. High-intensity focused ultrasound: advances in technology and experimental trials support enhanced utility of focused ultrasound surgery in oncology. Br J Radiol 2013; 86:20130044. [PMID: 23403455 DOI: 10.1259/bjr.20130044] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
High-intensity focused ultrasound (HIFU) is a rapidly maturing technology with diverse clinical applications. In the field of oncology, the use of HIFU to non-invasively cause tissue necrosis in a defined target, a technique known as focused ultrasound surgery (FUS), has considerable potential for tumour ablation. In this article, we outline the development and underlying principles of HIFU, overview the limitations and commercially available equipment for FUS, then summarise some of the recent technological advances and experimental clinical trials that we predict will have a positive impact on extending the role of FUS in cancer therapy.
Collapse
Affiliation(s)
- G Malietzis
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Thermally targeted delivery of a c-Myc inhibitory polypeptide inhibits tumor progression and extends survival in a rat glioma model. PLoS One 2013; 8:e55104. [PMID: 23372821 PMCID: PMC3555869 DOI: 10.1371/journal.pone.0055104] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 12/17/2012] [Indexed: 11/19/2022] Open
Abstract
Treatment of glioblastoma is complicated by the tumors' high resistance to chemotherapy, poor penetration of drugs across the blood brain barrier, and damaging effects of chemotherapy and radiation to normal neural tissue. To overcome these limitations, a thermally responsive polypeptide was developed for targeted delivery of therapeutic peptides to brain tumors using focused hyperthermia. The peptide carrier is based on elastin-like polypeptide (ELP), which is a thermally responsive biopolymer that forms aggregates above a characteristic transition temperature. ELP was modified with cell penetrating peptides (CPPs) to enhance delivery to brain tumors and mediate uptake across the tumor cells' plasma membranes and with a peptide inhibitor of c-Myc (H1). In rats with intracerebral gliomas, brain tumor targeting of ELP following systemic administration was enhanced up to 5-fold by the use of CPPs. When the lead CPP-ELP-fused c-Myc inhibitor was combined with focused hyperthermia of the tumors, an additional 3 fold increase in tumor polypeptide levels was observed, and 80% reduction in tumor volume, delayed onset of tumor-associated neurological deficits, and at least doubled median survival time including complete regression in 80% of animals was achieved. This work demonstrates that a c-Myc inhibitory peptide can be effectively delivered to brain tumors.
Collapse
|
122
|
Abstract
High-intensity focused ultrasound (HIFU) provides focal delivery of mechanical energy deep into the body. This energy can be used to elevate the tissue temperature to such a degree that ablation is achieved. The elevated temperature can also be used to release drugs from temperature-sensitive carriers or activate therapeutic molecules using mechanical or thermal energy. Lower dose exposures modify the vasculature to allow large molecules to diffuse from blood in the surrounding tissue for local drug delivery. The energy delivery can be targeted and monitored using magnetic resonance imaging (MRI). The online image guidance and monitoring provides treatment delivery that is customized to each patient such that optimal, effective treatment can be achieved. This ability to localize and customize treatment delivery may further enhance the future potential of targeted drugs that are personalized for each patient. This review examines the rapid development of MRI-guided HIFU (MRIgHIFU) methods over the past few years and discuss their future potential.
Collapse
Affiliation(s)
- Kullervo Hynynen
- Imaging Research, Sunnybrook Health Sciences Centre, and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
123
|
Targeted drug delivery across the blood-brain barrier using ultrasound technique. Ther Deliv 2012; 1:819-48. [PMID: 21785679 DOI: 10.4155/tde.10.66] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Effective delivery of therapeutic agents into the brain can greatly improve the treatments of neurological and neurodegenerative diseases. Application of focused ultrasound facilitated by microbubbles has shown the potential to deliver drugs across the blood-brain barrier into targeted sites within the brain noninvasively. This review provides a summary of the technological background and principle, highlights of recent significant developments and research progress, as well as a critical commentary on the challenges and future directions in the field. This review also outlines and discusses the tasks that researchers face in order to successfully translate the technology into a clinical reality, including obtaining improved understanding of the mechanisms, demonstration of therapeutic efficacy and safety for specific applications, and development of methodology for rational design to achieve optimized and consistent outcomes.
Collapse
|
124
|
Improved otutcome of targeted delivery of chemotherapy drugs to the brain using a combined strategy of ultrasound, magnetic targeting and drug-loaded nanoparticles. Ther Deliv 2012; 2:137-41. [PMID: 22833939 DOI: 10.4155/tde.10.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
125
|
Cotté B, Lafon C, Dehollain C, Chapelon JY. Theoretical study for safe and efficient energy transfer to deeply implanted devices using ultrasound. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2012; 59:1674-1685. [PMID: 22899115 DOI: 10.1109/tuffc.2012.2373] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The goal of this paper is to prove that a safe and efficient energy transfer is possible between an external transducer located on the patient's skin and a device deeply implanted in the abdomen. An ultrasound propagation model based on the Rayleigh-Sommerfeld diffraction integral is coupled with the data from the Visible Human Project to account for the geometry of the organs in the body. The model is able to predict the amount of acoustic power received by the device for different acoustic paths. The acoustic model is validated by comparison with measurements in water and in heterogeneous liquid phantoms. Care is taken to minimize adverse bioeffects-mainly temperature rise and cavitation in tissues. Simulations based on the bio-heat transfer equation are performed to check that thermal effects are indeed small.
Collapse
Affiliation(s)
- Benjamin Cotté
- Institut National de la Santé et de la Recherche Médicale (INSERM), Lyon, France
| | | | | | | |
Collapse
|
126
|
Pinton GF, Aubry JF, Tanter M. Direct phase projection and transcranial focusing of ultrasound for brain therapy. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2012; 59:1149-1159. [PMID: 22711410 DOI: 10.1109/tuffc.2012.2305] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Ultrasound can be used to noninvasively treat the human brain with hyperthermia by focusing through the skull. To obtain an accurate focus, especially at high frequencies (>500 kHz), the phase of the transmitted wave must be modified to correct the aberrations introduced by the patient's individual skull morphology. Currently, three-dimensional finite-difference time-domain simulations are used to model a point source at the target. The outward-propagating wave crosses the measured representation of the human skull and is recorded at the therapy array transducer locations. The signal is then time reversed and experimentally transmitted back to its origin. These simulations are resource intensive and add a significant delay to treatment planning. Ray propagation is computationally efficient because it neglects diffraction and only describes two propagation parameters: the wave's direction and the phase. We propose a minimal method that is based only on the phase. The phase information is projected from the external skull surface to the array locations. This replaces computationally expensive finite-difference computations with an almost instantaneous direct phase projection calculation. For the five human skull samples considered, the phase distribution outside of the skull is shown to vary by less than λ/20 as it propagates over a 5 cm distance and the validity of phase projection is established over these propagation distances. The phase aberration introduced by the skull is characterized and is shown to have a good correspondence with skull morphology. The shape of this aberration is shown to have little variation with propagation distance. The focusing quality with the proposed phase-projection algorithm is shown to be indistinguishable from the gold-standard full finite-difference simulation. In conclusion, a spherical wave that is aberrated by the skull has a phase propagation that can be accurately described as radial, even after it has been distorted. By combining finite-difference simulations with a phase-projection algorithm, the time required for treatment planning is significantly reduced. The correlation length of the phase is used to validate the algorithm and it can also be used to provide guiding parameters for clinical array transducer design in terms of transducer spacing and phase error.
Collapse
Affiliation(s)
- Gianmarco F Pinton
- Ecole Superieure de Physique et de Chimie Industrielles, Centre National de la Recherche Scientifique, Institut National de la Sante et de la Recherche Medicale, Paris, France.
| | | | | |
Collapse
|
127
|
Marsac L, Chauvet D, Larrat B, Pernot M, Robert B, Fink M, Boch AL, Aubry JF, Tanter M. MR-guided adaptive focusing of therapeutic ultrasound beams in the human head. Med Phys 2012; 39:1141-9. [PMID: 22320825 DOI: 10.1118/1.3678988] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE This study aims to demonstrate, using human cadavers the feasibility of energy-based adaptive focusing of ultrasonic waves using magnetic resonance acoustic radiation force imaging (MR-ARFI) in the framework of non-invasive transcranial high intensity focused ultrasound (HIFU) therapy. METHODS Energy-based adaptive focusing techniques were recently proposed in order to achieve aberration correction. The authors evaluate this method on a clinical brain HIFU system composed of 512 ultrasonic elements positioned inside a full body 1.5 T clinical magnetic resonance (MR) imaging system. Cadaver heads were mounted onto a clinical Leksell stereotactic frame. The ultrasonic wave intensity at the chosen location was indirectly estimated by the MR system measuring the local tissue displacement induced by the acoustic radiation force of the ultrasound (US) beams. For aberration correction, a set of spatially encoded ultrasonic waves was transmitted from the ultrasonic array and the resulting local displacements were estimated with the MR-ARFI sequence for each emitted beam. A noniterative inversion process was then performed in order to estimate the spatial phase aberrations induced by the cadaver skull. The procedure was first evaluated and optimized in a calf brain using a numerical aberrator mimicking human skull aberrations. The full method was then demonstrated using a fresh human cadaver head. RESULTS The corrected beam resulting from the direct inversion process was found to focus at the targeted location with an acoustic intensity 2.2 times higher than the conventional non corrected beam. In addition, this corrected beam was found to give an acoustic intensity 1.5 times higher than the focusing pattern obtained with an aberration correction using transcranial acoustic simulation-based on X-ray computed tomography (CT) scans. CONCLUSIONS The proposed technique achieved near optimal focusing in an intact human head for the first time. These findings confirm the strong potential of energy-based adaptive focusing of transcranial ultrasonic beams for clinical applications.
Collapse
Affiliation(s)
- L Marsac
- Université Paris 7, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Pinton G, Aubry JF, Fink M, Tanter M. Numerical prediction of frequency dependent 3D maps of mechanical index thresholds in ultrasonic brain therapy. Med Phys 2012; 39:455-67. [PMID: 22225316 DOI: 10.1118/1.3670376] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Therapeutic ultrasound has been used in the brain for thrombolysis and high intensity focused ultrasound (HIFU) therapy. A low-frequency clinical study of sonothrombolysis, called the transcranial low-frequency ultrasound-mediated thrombolysis in brain ischemia (TRUMBI), has revealed an increased incidence of hemorrhage, which may have been caused by cavitation. The goal of this study is to determine if there is a comparable risk of generating cavitation during HIFU brain therapy at different frequencies. METHODS Two approaches are used to transmit acoustic energy through the skull to the brain: low-frequency ultrasound, with a wavelength that is larger than the skull thickness, and high frequency ultrasound, that is sensitive to aberrations and must use corrective techniques. At high frequency, the mechanical index (MI) is lower, which translates to a higher cavitation threshold. In addition to the nonfocused geometry of the 300 kHz sonothrombolysis treatment device, two types of focused therapeutic transducers were modeled: a low frequency 220 kHz transducer and a 1 MHz transducer that required aberration correction with a time-reversal approach, representing the lowest and highest frequencies currently used. The acoustic field was modeled with a finite difference fullwave acoustic code developed for large scale computations, that is, capable of simulating the entire brain volume. Various MI thresholds and device geometries were considered to determine the regions of the brain that have an increased probability of cavitation events. RESULTS For an equivalent energy deposition rate, it is shown that at a low frequency there is a significant volume of the brain that is above the MI thresholds. At a high frequency, the volume is over 3 orders of magnitude smaller, and it is entirely confined to a compact focal spot. CONCLUSIONS The significant frequency dependence of the volumes with an increased probability of cavitation can be attributed to two factors: First, the volume encompassed by the focal region depends on the cube of the frequency. Second, the heat deposition increases with frequency. In conclusion, according to these simulations, the acoustic environment during HIFU brain therapy at 1 MHz is not conducive to a high probability of cavitation in extended regions of the brain.
Collapse
|
129
|
Marquet F, Tung YS, Konofagou EE. FEASIBILITY STUDY OF A CLINICAL BLOOD-BRAIN BARRIER OPENING ULTRASOUND SYSTEM. ACTA ACUST UNITED AC 2012; 1:309. [PMID: 24860623 DOI: 10.1142/s1793984410000286] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, we investigate the focalization properties of single-element transducers at intermediate frequencies (500 kHz) through primate and human skulls. The study addresses the transcranial targeting involved in ultrasound-induced blood brain barrier (BBB) opening with clinically relevant targets such as the hippocampus and the basal ganglia, which are typically affected by early Alzheimer's and Parkinson's disease, respectively. The targeted brain structures were extracted from three-dimensional (3D) brain atlases registered with the skulls and used to virtually position and orient the transducers. The frequency dependence is first investigated and the capability of targeting of different structures is explored. Preliminary in vivo feasibility is investigated in mice at this frequency. A simple, affordable and convenient system is found to be feasible for BBB opening in primates and humans capable of successfully targeting the hippocampus, putamen and substantia nigra and could thus allow for its broader impact and applications.
Collapse
Affiliation(s)
- Fabrice Marquet
- Department of Biomedical Engineering Columbia University, Vanderbilt Clinic 12-232 622 W 168th St., New York, NY 10032, USA
| | - Yao-Sheng Tung
- Department of Biomedical Engineering Columbia University, Vanderbilt Clinic 12-232 622 W 168th St., New York, NY 10032, USA
| | - Elisa E Konofagou
- Department of Biomedical Engineering Columbia University, 1210 Amsterdam Ave New York, NY 10027, USA
| |
Collapse
|
130
|
Mougenot C, Tillander M, Koskela J, Köhler MO, Moonen C, Ries M. High intensity focused ultrasound with large aperture transducers: A MRI based focal point correction for tissue heterogeneity. Med Phys 2012; 39:1936-45. [DOI: 10.1118/1.3693051] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
131
|
Jing Y, Meral FC, Clement GT. Time-reversal transcranial ultrasound beam focusing using a k-space method. Phys Med Biol 2012; 57:901-17. [PMID: 22290477 PMCID: PMC3366238 DOI: 10.1088/0031-9155/57/4/901] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This paper proposes the use of a k-space method to obtain the correction for transcranial ultrasound beam focusing. Mirroring past approaches, a synthetic point source at the focal point is numerically excited, and propagated through the skull, using acoustic properties acquired from registered computed tomography of the skull being studied. The received data outside the skull contain the correction information and can be phase conjugated (time reversed) and then physically generated to achieve a tight focusing inside the skull, by assuming quasi-plane transmission where shear waves are not present or their contribution can be neglected. Compared with the conventional finite-difference time-domain method for wave propagation simulation, it will be shown that the k-space method is significantly more accurate even for a relatively coarse spatial resolution, leading to a dramatically reduced computation time. Both numerical simulations and experiments conducted on an ex vivo human skull demonstrate that precise focusing can be realized using the k-space method with a spatial resolution as low as only 2.56 grid points per wavelength, thus allowing treatment planning computation on the order of minutes.
Collapse
Affiliation(s)
- Yun Jing
- Department of Mechanical and Aerospace Engineering, North Carolina State University Raleigh, NC 27695, USA.
| | | | | |
Collapse
|
132
|
Combination treatments of tumors with thermoablation: principles and review of preclinical studies. J Drug Deliv Sci Technol 2012. [DOI: 10.1016/s1773-2247(12)50070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
133
|
Song J, Pulkkinen A, Huang Y, Hynynen K. Investigation of standing-wave formation in a human skull for a clinical prototype of a large-aperture, transcranial MR-guided focused ultrasound (MRgFUS) phased array: an experimental and simulation study. IEEE Trans Biomed Eng 2011; 59:435-44. [PMID: 22049360 DOI: 10.1109/tbme.2011.2174057] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Standing-wave formation in an ex vivo human skull was investigated using a clinical prototype of a 30-cm diameter with 15-cm radius of curvature, low-frequency (230 kHz), hemispherical transcranial magnetic resonance-guided focused ultrasound phased array. Experimental and simulation studies were conducted with changing aperture size and f -number configurations of the phased array and qualitatively and quantitatively examined the acoustic pressure variation at the focus due to standing waves. The results demonstrated that the nodes and antinodes of standing wave produced by the small-aperture array were clearly seen at approximately every 3 mm. The effect of the standing wave became more pronounced as the focus was moved closer to skull base. However, a sharp focus was seen for the full array, and there was no such standing-wave pattern in the acoustic plane or near the skull base. This study showed that the fluctuation pressure amplitude would be greatly reduced by using a large-scale, hemispherical phased array with a low f-number.
Collapse
Affiliation(s)
- Junho Song
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada.
| | | | | | | |
Collapse
|
134
|
Marquet F, Aubry JF, Pernot M, Fink M, Tanter M. Optimal transcostal high-intensity focused ultrasound with combined real-time 3D movement tracking and correction. Phys Med Biol 2011; 56:7061-80. [DOI: 10.1088/0031-9155/56/22/005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
135
|
Cochard E, Aubry JF, Tanter M, Prada C. Adaptive projection method applied to three-dimensional ultrasonic focusing and steering through the ribs. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 130:716-723. [PMID: 21877786 DOI: 10.1121/1.3607419] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
An adaptive projection method for ultrasonic focusing through the rib cage, with minimal energy deposition on the ribs, was evaluated experimentally in 3D geometry. Adaptive projection is based on decomposition of the time-reversal operator (DORT method) and projection on the "noise" subspace. It is shown that 3D implementation of this method is straightforward, and not more time-consuming than 2D. Comparisons are made between adaptive projection, spherical focusing, and a previously proposed time-reversal focusing method, by measuring pressure fields in the focal plane and rib region using the three methods. The ratio of the specific absorption rate at the focus over the one at the ribs was found to be increased by a factor of up to eight, versus spherical emission. Beam steering out of geometric focus was also investigated. For all configurations projecting steered emissions were found to deposit less energy on the ribs than steering time-reversed emissions: thus the non-invasive method presented here is more efficient than state-of-the-art invasive techniques. In fact, this method could be used for real-time treatment, because a single acquisition of back-scattered echoes from the ribs is enough to treat a large volume around the focus, thanks to real time projection of the steered beams.
Collapse
Affiliation(s)
- E Cochard
- Laboratoire Ondes et Acoustique, Université Paris VII, Inserm, ESPCI, Paris, France
| | | | | | | |
Collapse
|
136
|
Marquet F, Tung YS, Teichert T, Ferrera VP, Konofagou EE. Noninvasive, transient and selective blood-brain barrier opening in non-human primates in vivo. PLoS One 2011; 6:e22598. [PMID: 21799913 PMCID: PMC3142168 DOI: 10.1371/journal.pone.0022598] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 06/30/2011] [Indexed: 01/30/2023] Open
Abstract
The blood-brain barrier (BBB) is a specialized vascular system that impedes entry of all large and the vast majority of small molecules including the most potent central nervous system (CNS) disease therapeutic agents from entering from the lumen into the brain parenchyma. Microbubble-enhanced, focused ultrasound (ME-FUS) has been previously shown to disrupt noninvasively, selectively, and transiently the BBB in small animals in vivo. For the first time, the feasibility of transcranial ME-FUS BBB opening in non-human primates is demonstrated with subsequent BBB recovery. Sonications were combined with two different types of microbubbles (customized 4–5 µm and Definity®). 3T MRI was used to confirm the BBB disruption and to assess brain damage.
Collapse
Affiliation(s)
- Fabrice Marquet
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
| | - Yao-Sheng Tung
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
| | - Tobias Teichert
- Department of Neuroscience, Columbia University, New York, New York, United States of America
| | - Vincent P. Ferrera
- Department of Neuroscience, Columbia University, New York, New York, United States of America
- Department of Psychiatry, Columbia University, New York, New York, United States of America
| | - Elisa E. Konofagou
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
- Department of Radiology, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
137
|
Pulkkinen A, Huang Y, Song J, Hynynen K. Simulations and measurements of transcranial low-frequency ultrasound therapy: skull-base heating and effective area of treatment. Phys Med Biol 2011; 56:4661-83. [PMID: 21734333 DOI: 10.1088/0031-9155/56/15/003] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Measurements of temperature elevations induced by sonications in a single intact cadaver skull filled with soft-tissue mimicking phantom material were performed using magnetic resonance thermometry. The sonications were done using a clinical transcranial ultrasound therapy device operating at 230 kHz and the measurements were compared with simulations done using a model incorporating both the longitudinal and shear wave propagation. Both the measurements and simulations showed that in some situations the temperature increase could be higher in the phantom material adjacent to the skull-base than at the focus, which could lead to undesired soft-tissue damage in treatment situations. On average the measurements of the sonicated locations, as well as the comparative simulations, showed 32 ± 64% and 49 ± 32% higher temperature elevations adjacent to the skull-base than at the focus, respectively. The simulation model was used to extend the measurements by simulating multiple sonications of brain tissue in five different skulls with and without correcting the aberrations caused by the skull on the ultrasound. Without aberration correction the closest sonications to the skulls that were treatable in any brain location without undesired tissue damage were at a distance of 19.1 ± 2.6 mm. None of the sonications beyond a distance of 41.2 ± 5.3 mm were found to cause undesired tissue damage. When using the aberration correction closest treatable, safe distances for sonications were found to be 16.0 ± 1.6 and 38.8 ± 3.8 mm, respectively. New active cooling of the skull-base through the nasal cavities was introduced and the treatment area was investigated. The closest treatable distance without aberration correction reduced to 17.4 ± 1.9 mm with the new cooling method. All sonications beyond a distance of 39.7 ± 6.6 mm were found treatable. With the aberration correction no difference in the closest treatable or the safety distance was found in comparison to sonications without nasal cavity cooling. To counteract undesired skull-base heating a new anti-focus within solid media was developed along with a new regularized phasing method. Mathematical bases for both the methods and simulations utilizing them were presented. It was found that utilizing the anti-focus in solid media and regularized phasing, the fraction of temperature increase of the brain tissue at the focus and the peak temperature increase adjacent to the skull-base can be increased from 1.00 to 1.95. This improves the efficiency of the sonication by reducing the energy transfer to the skull-base.
Collapse
Affiliation(s)
- Aki Pulkkinen
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.
| | | | | | | |
Collapse
|
138
|
Tempany CMC, McDannold NJ, Hynynen K, Jolesz FA. Focused ultrasound surgery in oncology: overview and principles. Radiology 2011; 259:39-56. [PMID: 21436096 DOI: 10.1148/radiol.11100155] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Focused ultrasound surgery (FUS) is a noninvasive image-guided therapy and an alternative to surgical interventions. It presents an opportunity to revolutionize cancer therapy and to affect or change drug delivery of therapeutic agents in new focally targeted ways. In this article the background, principles, technical devices, and clinical cancer applications of image-guided FUS are reviewed.
Collapse
Affiliation(s)
- Clare M C Tempany
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Room 050, L1, Boston, MA 02129, USA.
| | | | | | | |
Collapse
|
139
|
Li D, Shen G, Bai J, Chen Y. Focus shift and phase correction in soft tissues during focused ultrasound surgery. IEEE Trans Biomed Eng 2011; 58:1621-8. [PMID: 21245005 DOI: 10.1109/tbme.2011.2106210] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
During the treatment of soft tissue tumors using focused ultrasound surgery (FUS), the focus can shift away from the desired point due to tissue inhomogeneity. In this paper, a numerical method to calculate the focus shift in multiple-layered tissues and a faster phase-correction method to restore the focus were developed. Data from the simulations showed that the focus shifted about 2 mm along the transducer axis in multiple-layered soft tissues. After phase correction, the focus was restored at the desired point. The ex vivo experiments were conducted to verify the simulations, and the results agreed well with those of the simulations. An empirical formula was obtained to estimate the focus shift in a two-layered water-tissue model and was verified by numerical calculations. Moreover, the focus shift in multiple-layered tissues can be summed by the shifts in the component of each layer of tissues. The factors affecting the focus shift were studied. The focus shift varied linearly with the tissue acoustic speed and tissue thickness, whereas it slightly changed with transducer F number (radius of curvature/diameter). Overall, the findings of this study can help in the development of a better treatment plan for FUS in soft tissues.
Collapse
Affiliation(s)
- Dehui Li
- Department of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | | | | | | |
Collapse
|
140
|
Zhou YF. High intensity focused ultrasound in clinical tumor ablation. World J Clin Oncol 2011; 2:8-27. [PMID: 21603311 PMCID: PMC3095464 DOI: 10.5306/wjco.v2.i1.8] [Citation(s) in RCA: 286] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 07/26/2010] [Accepted: 08/02/2010] [Indexed: 02/06/2023] Open
Abstract
Recent advances in high intensity focused ultrasound (HIFU), which was developed in the 1940s as a viable thermal tissue ablation approach, have increased its popularity. In clinics, HIFU has been applied to treat a variety of solid malignant tumors in a well-defined volume, including the pancreas, liver, prostate, breast, uterine fibroids, and soft-tissue sarcomas. In comparison to conventional tumor/cancer treatment modalities, such as open surgery, radio- and chemo-therapy, HIFU has the advantages of non-invasion, non-ionization, and fewer complications after treatment. Over 100 000 cases have been treated throughout the world with great success. The fundamental principles of HIFU ablation are coagulative thermal necrosis due to the absorption of ultrasound energy during transmission in tissue and the induced cavitation damage. This paper reviews the clinical outcomes of HIFU ablation for applicable cancers, and then summarizes the recommendations for a satisfactory HIFU treatment according to clinical experience. In addition, the current challenges in HIFU for engineers and physicians are also included. More recent horizons have broadened the application of HIFU in tumor treatment, such as HIFU-mediated drug delivery, vessel occlusion, and soft tissue erosion (“histotripsy”). In summary, HIFU is likely to play a significant role in the future oncology practice.
Collapse
Affiliation(s)
- Yu-Feng Zhou
- Yu-Feng Zhou, Division of Engineering Mechanics, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
141
|
Deffieux T, Konofagou EE. Numerical study of a simple transcranial focused ultrasound system applied to blood-brain barrier opening. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2010; 57:2637-53. [PMID: 21156360 PMCID: PMC3968803 DOI: 10.1109/tuffc.2010.1738] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In this paper, we investigate the focalization properties of single-element transducers at low frequencies (300 to 1000 kHz) through primate and human skulls. The study addresses the transcranial targeting involved in ultrasound- induced blood-brain barrier (BBB) opening with clinically relevant targets such as the hippocampus and the basal ganglia, which are typically affected by early Alzheimer's and Parkinson's disease, respectively. A finite-difference, timedomain simulation platform is used to solve the 3-D linear acoustic wave equation with CT-based acoustic maps of the skulls. The targeted brain structures were extracted from 3-D brain atlases registered with the skulls and used to virtually position and orient the transducers. The effect of frequency is first investigated and the targeting of the different structures is then tested. The frequency of 500 kHz provided the best tradeoff between phase aberrations and standing wave effects in the human case, whereas the frequency of 800 kHz was most suitable in the case of the primate skull. A fast periodic linear chirp method was developed and found capable of reducing the standing wave effects. Such a simple, affordable, and convenient system is concluded to be feasible for BBB opening in primates and humans and could thus allow for its broader impact and applications.
Collapse
Affiliation(s)
- Thomas Deffieux
- Department of Biomedical Engineering, Columbia, University, New York, NY
| | - Elisa E. Konofagou
- Department of Biomedical Engineering, Columbia, University, New York, NY
- E. E. Konofagou is also with the Department of Radiology, Columbia, University, New York, NY
| |
Collapse
|
142
|
Gâteau J, Marsac L, Pernot M, Aubry JF, Tanter M, Fink M. Transcranial ultrasonic therapy based on time reversal of acoustically induced cavitation bubble signature. IEEE Trans Biomed Eng 2009; 57:134-44. [PMID: 19770084 DOI: 10.1109/tbme.2009.2031816] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Brain treatment through the skull with high-intensity focused ultrasound can be achieved with multichannel arrays and adaptive focusing techniques such as time reversal. This method requires a reference signal to be either emitted by a real source embedded in brain tissues or computed from a virtual source, using the acoustic properties of the skull derived from computed tomography images. This noninvasive computational method focuses with precision, but suffers from modeling and repositioning errors that reduce the accessible acoustic pressure at the focus in comparison with fully experimental time reversal using an implanted hydrophone. In this paper, this simulation-based targeting has been used experimentally as a first step for focusing through an ex vivo human skull at a single location. It has enabled the creation of a cavitation bubble at focus that spontaneously emitted an ultrasonic wave received by the array. This active source signal has allowed 97 +/- 1.1% of the reference pressure (hydrophone-based) to be restored at the geometrical focus. To target points around the focus with an optimal pressure level, conventional electronic steering from the initial focus has been combined with bubble generation. Thanks to step-by-step bubble generation, the electronic steering capabilities of the array through the skull were improved.
Collapse
Affiliation(s)
- Jérôme Gâteau
- Langevin Institute (CNRS UMR 7587), Inserm U979 Wave Physics for Medicine, Ecole Superieure de Physique et Chimie Industrielles de la Ville de Paris, Université Paris VII, Paris, France.
| | | | | | | | | | | |
Collapse
|
143
|
Computational aspects in high intensity ultrasonic surgery planning. Comput Med Imaging Graph 2009; 34:69-78. [PMID: 19740625 DOI: 10.1016/j.compmedimag.2009.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 07/24/2009] [Accepted: 08/07/2009] [Indexed: 01/04/2023]
Abstract
Therapeutic ultrasound treatment planning is discussed and computational aspects regarding it are reviewed. Nonlinear ultrasound simulations were solved with a combined frequency domain Rayleigh and KZK model. Ultrasonic simulations were combined with thermal simulations and were used to compute heating of muscle tissue in vivo for four different focused ultrasound transducers. The simulations were compared with measurements and good agreement was found for large F-number transducers. However, at F# 1.9 the simulated rate of temperature rise was approximately a factor of 2 higher than the measured ones. The power levels used with the F# 1 transducer were too low to show any nonlinearity. The simulations were used to investigate the importance of nonlinarities generated in the coupling water, and also the importance of including skin in the simulations. Ignoring either of these in the model would lead to larger errors. Most notably, the nonlinearities generated in the water can enhance the focal temperature by more than 100%. The simulations also demonstrated that pulsed high power sonications may provide an opportunity to significantly (up to a factor of 3) reduce the treatment time. In conclusion, nonlinear propagation can play an important role in shaping the energy distribution during a focused ultrasound treatment and it should not be ignored in planning. However, the current simulation methods are accurate only with relatively large F-numbers and better models need to be developed for sharply focused transducers.
Collapse
|