101
|
Parkatzidis K, Chatzinikolaidou M, Koufakis E, Kaliva M, Farsari M, Vamvakaki M. Multi-photon polymerization of bio-inspired, thymol-functionalized hybrid materials with biocompatible and antimicrobial activity. Polym Chem 2020. [DOI: 10.1039/d0py00281j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Thymyl-methacrylate functionalized, hybrid 3D scaffolds, fabricated by multi-photon lithography, exhibit excellent biocompatibility and antimicrobial action for bone and dental tissue engineering.
Collapse
Affiliation(s)
- Kostas Parkatzidis
- Institute of Electronic Structure and Laser
- Foundation for Research and Technology-Hellas
- Heraklion
- Greece
- Department of Chemistry
| | - Maria Chatzinikolaidou
- Institute of Electronic Structure and Laser
- Foundation for Research and Technology-Hellas
- Heraklion
- Greece
- Department of Materials Science and Technology
| | - Eleftherios Koufakis
- Institute of Electronic Structure and Laser
- Foundation for Research and Technology-Hellas
- Heraklion
- Greece
- Department of Materials Science and Technology
| | - Maria Kaliva
- Institute of Electronic Structure and Laser
- Foundation for Research and Technology-Hellas
- Heraklion
- Greece
- Department of Materials Science and Technology
| | - Maria Farsari
- Institute of Electronic Structure and Laser
- Foundation for Research and Technology-Hellas
- Heraklion
- Greece
| | - Maria Vamvakaki
- Institute of Electronic Structure and Laser
- Foundation for Research and Technology-Hellas
- Heraklion
- Greece
- Department of Materials Science and Technology
| |
Collapse
|
102
|
Hess A, Funk AJ, Liu Q, De La Cruz JA, Sheetah GH, Fleury B, Smalyukh II. Plasmonic Metamaterial Gels with Spatially Patterned Orientational Order via 3D Printing. ACS OMEGA 2019; 4:20558-20563. [PMID: 31858040 PMCID: PMC6906772 DOI: 10.1021/acsomega.9b02418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/04/2019] [Indexed: 05/08/2023]
Abstract
Optical properties can be programmed on mesoscopic scales by patterning host materials while ordering their nanoparticle inclusions. While liquid crystals are often used to define the ordering of nanoparticles dispersed within them, this approach is typically limited to liquid crystals confined in classic geometries. In this work, the orientational order that liquid crystalline colloidal hosts impose on anisotropic nanoparticle inclusions is combined with an additive manufacturing method that enables engineered, macroscopic three-dimensional (3D) patterns of co-aligned gold nanorods and cellulose nanocrystals. These gels exhibit polarization-dependent plasmonic properties that emerge from the unique interaction between the host medium's anisotropic optical properties defined by orientationally ordered cellulose nanocrystals, from the liquid crystal's gold nanorod inclusions, and from the complexity of spatial patterns accessed with 3D printing. The gels' optical properties that are defined by the interplay of these effects are tuned by controlling the gels' order, which is tuned by adjusting the gels' cellulose nanocrystal concentrations. Lithe optical responsiveness of these composite gels to polarized radiation may enable unique technological applications like polarization-sensitive optical elements.
Collapse
Affiliation(s)
- Andrew
J. Hess
- Department
of Physics, 390 UCB, University of Colorado
Boulder, Boulder, Colorado 80309, United States
| | - Andrew J. Funk
- Department
of Physics, 390 UCB, University of Colorado
Boulder, Boulder, Colorado 80309, United States
| | - Qingkun Liu
- Department
of Physics, 390 UCB, University of Colorado
Boulder, Boulder, Colorado 80309, United States
| | - Joshua A. De La Cruz
- Materials
Science and Engineering, 027 UCB, Sustainability, Energy & Environment
Community, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Ghadah H. Sheetah
- Materials
Science and Engineering, 027 UCB, Sustainability, Energy & Environment
Community, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Blaise Fleury
- Department
of Physics, 390 UCB, University of Colorado
Boulder, Boulder, Colorado 80309, United States
| | - Ivan I. Smalyukh
- Department
of Physics, 390 UCB, University of Colorado
Boulder, Boulder, Colorado 80309, United States
- Materials
Science and Engineering, 027 UCB, Sustainability, Energy & Environment
Community, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Renewable
and Sustainable Energy Institute, National
Renewable Energy Laboratory and University of Colorado, Boulder, Colorado 80309, United States
- E-mail:
| |
Collapse
|
103
|
Clegg JR, Wagner AM, Shin SR, Hassan S, Khademhosseini A, Peppas NA. Modular Fabrication of Intelligent Material-Tissue Interfaces for Bioinspired and Biomimetic Devices. PROGRESS IN MATERIALS SCIENCE 2019; 106:100589. [PMID: 32189815 PMCID: PMC7079701 DOI: 10.1016/j.pmatsci.2019.100589] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
One of the goals of biomaterials science is to reverse engineer aspects of human and nonhuman physiology. Similar to the body's regulatory mechanisms, such devices must transduce changes in the physiological environment or the presence of an external stimulus into a detectable or therapeutic response. This review is a comprehensive evaluation and critical analysis of the design and fabrication of environmentally responsive cell-material constructs for bioinspired machinery and biomimetic devices. In a bottom-up analysis, we begin by reviewing fundamental principles that explain materials' responses to chemical gradients, biomarkers, electromagnetic fields, light, and temperature. Strategies for fabricating highly ordered assemblies of material components at the nano to macro-scales via directed assembly, lithography, 3D printing and 4D printing are also presented. We conclude with an account of contemporary material-tissue interfaces within bioinspired and biomimetic devices for peptide delivery, cancer theranostics, biomonitoring, neuroprosthetics, soft robotics, and biological machines.
Collapse
Affiliation(s)
- John R Clegg
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, Texas, USA
| | - Angela M Wagner
- McKetta Department of Chemical Engineering, the University of Texas at Austin, Austin, Texas, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Shabir Hassan
- Division of Engineering in Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| | - Nicholas A Peppas
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, Texas, USA
- McKetta Department of Chemical Engineering, the University of Texas at Austin, Austin, Texas, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, the University of Texas at Austin, Austin, Texas, USA
- Department of Surgery and Perioperative Care, Dell Medical School, the University of Texas at Austin, Austin, Texas, USA
- Department of Pediatrics, Dell Medical School, the University of Texas at Austin, Austin, Texas, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, the University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
104
|
Shie MY, Shen YF, Astuti SD, Lee AKX, Lin SH, Dwijaksara NLB, Chen YW. Review of Polymeric Materials in 4D Printing Biomedical Applications. Polymers (Basel) 2019; 11:E1864. [PMID: 31726652 PMCID: PMC6918275 DOI: 10.3390/polym11111864] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/30/2022] Open
Abstract
The purpose of 4D printing is to embed a product design into a deformable smart material using a traditional 3D printer. The 3D printed object can be assembled or transformed into intended designs by applying certain conditions or forms of stimulation such as temperature, pressure, humidity, pH, wind, or light. Simply put, 4D printing is a continuum of 3D printing technology that is now able to print objects which change over time. In previous studies, many smart materials were shown to have 4D printing characteristics. In this paper, we specifically review the current application, respective activation methods, characteristics, and future prospects of various polymeric materials in 4D printing, which are expected to contribute to the development of 4D printing polymeric materials and technology.
Collapse
Affiliation(s)
- Ming-You Shie
- School of Dentistry, China Medical University, Taichung City 404, Taiwan;
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung City 404, Taiwan; (A.K.-X.L.); (S.-H.L.)
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 413, Taiwan; (Y.-F.S.); (N.L.B.D.)
| | - Yu-Fang Shen
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 413, Taiwan; (Y.-F.S.); (N.L.B.D.)
- 3D Printing Medical Research Institute, Asia University, Taichung City 413, Taiwan
| | - Suryani Dyah Astuti
- Biomedical Engineering Study Program, Department of Physic, Faculty of Science and Technology, Univerisitas Airlangga, Surabaya 61115, Indonesia;
| | - Alvin Kai-Xing Lee
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung City 404, Taiwan; (A.K.-X.L.); (S.-H.L.)
- School of Medicine, China Medical University, Taichung City 404, Taiwan
| | - Shu-Hsien Lin
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung City 404, Taiwan; (A.K.-X.L.); (S.-H.L.)
| | - Ni Luh Bella Dwijaksara
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 413, Taiwan; (Y.-F.S.); (N.L.B.D.)
- Biomedical Engineering Study Program, Department of Physic, Faculty of Science and Technology, Univerisitas Airlangga, Surabaya 61115, Indonesia;
| | - Yi-Wen Chen
- 3D Printing Medical Research Institute, Asia University, Taichung City 413, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City 404, Taiwan
| |
Collapse
|
105
|
Zuo B, Wang M, Lin BP, Yang H. Visible and infrared three-wavelength modulated multi-directional actuators. Nat Commun 2019; 10:4539. [PMID: 31586123 PMCID: PMC6778143 DOI: 10.1038/s41467-019-12583-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023] Open
Abstract
In recent years, light-guided robotic soft actuators have attracted intense scientific attention and rapidly developed, although it still remains challenging to precisely and reversibly modulate the moving directions and shape morphing modes of soft actuators with ease of stimulating operation. Here we report a strategy of building a multi-stimuli-responsive liquid crystal elastomer soft actuator system capable of performing not only multi-directional movement, but also different shape morphing modes. This strategy is based on the selective stimulation of specific domains of the hierarchical structured actuator through the modulation of three wavelength bands (520, 808, 980 nm) of light stimulus, which release the actuation system from light scanning position/direction restriction. Three near-infrared dual-wavelength modulated actuators and one visible/infrared tri-wavelength modulated multi-directional walker robot are demonstrated in this work. These devices have broad application prospects in robotic and biomimetic technology.
Collapse
Affiliation(s)
- Bo Zuo
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Institute of Advanced Materials, Southeast University, 211189, Nanjing, China
| | - Meng Wang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Institute of Advanced Materials, Southeast University, 211189, Nanjing, China
| | - Bao-Ping Lin
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Institute of Advanced Materials, Southeast University, 211189, Nanjing, China
| | - Hong Yang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Institute of Advanced Materials, Southeast University, 211189, Nanjing, China.
| |
Collapse
|
106
|
Yang Q, Gao B, Xu F. Recent Advances in 4D Bioprinting. Biotechnol J 2019; 15:e1900086. [DOI: 10.1002/biot.201900086] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/23/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Qingzhen Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and TechnologyXi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Bin Gao
- Department of Endocrinology, Tangdu HospitalAir Force Military Medical University Xi'an 710038 P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and TechnologyXi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong University Xi'an 710049 P. R. China
| |
Collapse
|
107
|
Leberfinger AN, Dinda S, Wu Y, Koduru SV, Ozbolat V, Ravnic DJ, Ozbolat IT. Bioprinting functional tissues. Acta Biomater 2019; 95:32-49. [PMID: 30639351 PMCID: PMC6625952 DOI: 10.1016/j.actbio.2019.01.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/31/2018] [Accepted: 01/09/2019] [Indexed: 12/23/2022]
Abstract
Despite the numerous lives that have been saved since the first successful procedure in 1954, organ transplant has several shortcomings which prevent it from becoming a more comprehensive solution for medical care than it is today. There is a considerable shortage of organ donors, leading to patient death in many cases. In addition, patients require lifelong immunosuppression to prevent graft rejection postoperatively. With such issues in mind, recent research has focused on possible solutions for the lack of access to donor organs and rejections, with the possibility of using the patient's own cells and tissues for treatment showing enormous potential. Three-dimensional (3D) bioprinting is a rapidly emerging technology, which holds great promise for fabrication of functional tissues and organs. Bioprinting offers the means of utilizing a patient's cells to design and fabricate constructs for replacement of diseased tissues and organs. It enables the precise positioning of cells and biologics in an automated and high throughput manner. Several studies have shown the promise of 3D bioprinting. However, many problems must be overcome before the generation of functional tissues with biologically-relevant scale is possible. Specific focus on the functionality of bioprinted tissues is required prior to clinical translation. In this perspective, this paper discusses the challenges of functionalization of bioprinted tissue under eight dimensions: biomimicry, cell density, vascularization, innervation, heterogeneity, engraftment, mechanics, and tissue-specific function, and strives to inform the reader with directions in bioprinting complex and volumetric tissues. STATEMENT OF SIGNIFICANCE: With thousands of patients dying each year waiting for an organ transplant, bioprinted tissues and organs show the potential to eliminate this ever-increasing organ shortage crisis. However, this potential can only be realized by better understanding the functionality of the organ and developing the ability to translate this to the bioprinting methodologies. Considering the rate at which the field is currently expanding, it is reasonable to expect bioprinting to become an integral component of regenerative medicine. For this purpose, this paper discusses several factors that are critical for printing functional tissues including cell density, vascularization, innervation, heterogeneity, engraftment, mechanics, and tissue-specific function, and inform the reader with future directions in bioprinting complex and volumetric tissues.
Collapse
Affiliation(s)
- Ashley N Leberfinger
- Department of Surgery, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Shantanab Dinda
- Department of Industrial and Manufacturing Engineering, The Pennsylvania State University, University Park, PA 16802, USA; The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yang Wu
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Srinivas V Koduru
- Department of Surgery, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Veli Ozbolat
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Ceyhan Engineering Faculty, Cukurova University, Ceyhan, Adana 01950, Turkey
| | - Dino J Ravnic
- Department of Surgery, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Ibrahim T Ozbolat
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
108
|
Aaron F, Clare M, Bastian B, Fredrick K, Tim D, Aurelien F. Dehydration-induced folding of poly(ε-caprolactone)-agarose hydrogel composites. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
109
|
Elkasabgy NA, Mahmoud AA. Fabrication Strategies of Scaffolds for Delivering Active Ingredients for Tissue Engineering. AAPS PharmSciTech 2019; 20:256. [PMID: 31332631 DOI: 10.1208/s12249-019-1470-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/08/2019] [Indexed: 01/28/2023] Open
Abstract
Designing scaffolds with optimum properties is an essential factor for tissue engineering success. They can be seeded with isolated cells or loaded with drugs to stimulate the body ability to repair or regenerate the injured tissues by acting as centers for new tissue formation. Recently, scaffolds gained a significant interest as principal candidates for tissue engineering due to overcoming the autograft or allograft's associated problems. The advancement of the tissue engineering field relies mainly on the introduction of new biomaterials for scaffolds' fabrication. This review presents and criticizes different scaffolds' fabrication techniques with particular emphasis on the fibrous, injectable in situ forming, foam, 3D freeze-dried, 3D printed, and 4D scaffolds. This article highlights on scaffolds' composition which would be beneficial for developing scaffolds that could potentially help to meet the demand for both drug delivery and tissue regeneration.
Collapse
|
110
|
Tamay DG, Dursun Usal T, Alagoz AS, Yucel D, Hasirci N, Hasirci V. 3D and 4D Printing of Polymers for Tissue Engineering Applications. Front Bioeng Biotechnol 2019; 7:164. [PMID: 31338366 PMCID: PMC6629835 DOI: 10.3389/fbioe.2019.00164] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/21/2019] [Indexed: 12/18/2022] Open
Abstract
Three-dimensional (3D) and Four-dimensional (4D) printing emerged as the next generation of fabrication techniques, spanning across various research areas, such as engineering, chemistry, biology, computer science, and materials science. Three-dimensional printing enables the fabrication of complex forms with high precision, through a layer-by-layer addition of different materials. Use of intelligent materials which change shape or color, produce an electrical current, become bioactive, or perform an intended function in response to an external stimulus, paves the way for the production of dynamic 3D structures, which is now called 4D printing. 3D and 4D printing techniques have great potential in the production of scaffolds to be applied in tissue engineering, especially in constructing patient specific scaffolds. Furthermore, physical and chemical guidance cues can be printed with these methods to improve the extent and rate of targeted tissue regeneration. This review presents a comprehensive survey of 3D and 4D printing methods, and the advantage of their use in tissue regeneration over other scaffold production approaches.
Collapse
Affiliation(s)
- Dilara Goksu Tamay
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, Turkey
- Department of Biotechnology, Middle East Technical University, Ankara, Turkey
| | - Tugba Dursun Usal
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, Turkey
- Department of Biotechnology, Middle East Technical University, Ankara, Turkey
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Ayse Selcen Alagoz
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, Turkey
| | - Deniz Yucel
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, Turkey
- Department of Histology and Embryology, School of Medicine, Acıbadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Nesrin Hasirci
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, Turkey
- Department of Biotechnology, Middle East Technical University, Ankara, Turkey
- Department of Biomedical Engineering, Middle East Technical University, Ankara, Turkey
- Department of Chemistry, Middle East Technical University, Ankara, Turkey
| | - Vasif Hasirci
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, Turkey
- Department of Biotechnology, Middle East Technical University, Ankara, Turkey
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- Department of Medical Engineering, School of Engineering, Acıbadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
111
|
Lukin I, Musquiz S, Erezuma I, Al-Tel TH, Golafshan N, Dolatshahi-Pirouz A, Orive G. Can 4D bioprinting revolutionize drug development? Expert Opin Drug Discov 2019; 14:953-956. [DOI: 10.1080/17460441.2019.1636781] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Izeia Lukin
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Saioa Musquiz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Itsasne Erezuma
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Taleb H. Al-Tel
- Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Nasim Golafshan
- Department of Orthopedics, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Alireza Dolatshahi-Pirouz
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Denmark
- Department of Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
- Singapore Eye Research Institute, The Academia, Singapore
| |
Collapse
|
112
|
Rana Khalid I, Darakhshanda I, Rafi a R. 3D Bioprinting: An attractive alternative to traditional organ transplantation. ACTA ACUST UNITED AC 2019. [DOI: 10.17352/abse.000012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
113
|
Zhu W, Webster TJ, Zhang LG. 4D printing smart biosystems for nanomedicine. Nanomedicine (Lond) 2019; 14:1643-1645. [DOI: 10.2217/nnm-2019-0134] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Wei Zhu
- Department of Mechanical & Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Lijie G Zhang
- Department of Mechanical & Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
- Departments of Electrical & Computer Engineering, The George Washington University, Washington, DC 20052, USA
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
- Department of Medicine, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
114
|
Yoon C. Advances in biomimetic stimuli responsive soft grippers. NANO CONVERGENCE 2019; 6:20. [PMID: 31257552 PMCID: PMC6599812 DOI: 10.1186/s40580-019-0191-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/05/2019] [Indexed: 05/28/2023]
Abstract
A variety of biomimetic stimuli-responsive soft grippers that can be utilized as intelligent actuators, sensors, or biomedical tools have been developed. This review covers stimuli-responsive materials, fabrication methods, and applications of soft grippers. This review specifically describes the current research progress in stimuli-responsive grippers composed of N-isopropylacrylamide hydrogel, thermal and light-responding liquid crystalline and/or pneumatic-driven shape-morphing elastomers. Furthermore, this article provides a brief overview of high-throughput assembly methods, such as photolithography and direct printing approaches, to create stimuli-responsive soft grippers. This review primarily focuses on stimuli-responsive soft gripping robots that can be utilized as tethered/untethered multiscale smart soft actuators, manipulators, or biomedical devices.
Collapse
Affiliation(s)
- ChangKyu Yoon
- Department of Mechanical Systems Engineering, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
115
|
Heinrich MA, Liu W, Jimenez A, Yang J, Akpek A, Liu X, Pi Q, Mu X, Hu N, Schiffelers RM, Prakash J, Xie J, Zhang YS. 3D Bioprinting: from Benches to Translational Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805510. [PMID: 31033203 PMCID: PMC6752725 DOI: 10.1002/smll.201805510] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/03/2019] [Indexed: 05/07/2023]
Abstract
Over the last decades, the fabrication of 3D tissues has become commonplace in tissue engineering and regenerative medicine. However, conventional 3D biofabrication techniques such as scaffolding, microengineering, and fiber and cell sheet engineering are limited in their capacity to fabricate complex tissue constructs with the required precision and controllability that is needed to replicate biologically relevant tissues. To this end, 3D bioprinting offers great versatility to fabricate biomimetic, volumetric tissues that are structurally and functionally relevant. It enables precise control of the composition, spatial distribution, and architecture of resulting constructs facilitating the recapitulation of the delicate shapes and structures of targeted organs and tissues. This Review systematically covers the history of bioprinting and the most recent advances in instrumentation and methods. It then focuses on the requirements for bioinks and cells to achieve optimal fabrication of biomimetic constructs. Next, emerging evolutions and future directions of bioprinting are discussed, such as freeform, high-resolution, multimaterial, and 4D bioprinting. Finally, the translational potential of bioprinting and bioprinted tissues of various categories are presented and the Review is concluded by exemplifying commercially available bioprinting platforms.
Collapse
Affiliation(s)
- Marcel Alexander Heinrich
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, Enschede 7500AE, The Netherlands
| | - Wanjun Liu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Key Laboratory of Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, P.R. China
| | - Andrea Jimenez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Biomedical Engineering Laboratory, Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, Nuevo León 64849, Mexico
| | - Jingzhou Yang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Center of Biomedical Materials 3D Printing, National Engineering Laboratory for Polymer Complex Structure Additive Manufacturing, Baoding 071000, P.R. China
| | - Ali Akpek
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Biomedical Engineering, Istanbul Yeni Yuzyil University, Istanbul 34010, Turkey
| | - Xiao Liu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, P.R. China
| | - Qingmeng Pi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Plastic and Reconstructive Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, P.R. China
| | - Xuan Mu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Ning Hu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Raymond Michel Schiffelers
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Jai Prakash
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, Enschede 7500AE, The Netherlands
| | - Jingwei Xie
- Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
116
|
Cui H, Miao S, Esworthy T, Lee SJ, Zhou X, Hann SY, Webster TJ, Harris BT, Zhang LG. A novel near-infrared light responsive 4D printed nanoarchitecture with dynamically and remotely controllable transformation. NANO RESEARCH 2019; 12:1381-1388. [PMID: 33312444 PMCID: PMC7731938 DOI: 10.1007/s12274-019-2340-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/24/2019] [Accepted: 02/14/2019] [Indexed: 05/23/2023]
Abstract
Four-dimensional (4D) printing is an emerging and highly innovative additive manufacturing process by which to fabricate pre-designed, self-assembly structures with the ability to transform over time. However, one of the critical challenges of 4D printing is the lack of advanced 4D printing systems that not only meet all the essential requirements of shape change but also possess smart, dynamic capabilities to spatiotemporally and instantly control the shape-transformation process. Here, we present a facile 4D printing platform which incorporates nanomaterials into the conventional stimuli-responsive polymer, allowing the 4D printed object to achieve a dynamic and remote controlled, on-time and position shape transformation. A proof-of-concept 4D printed brain model was created using near-infrared light (NIR) responsive nanocomposite to evaluate the capacity for controllable 4D transformation, and the feasibility of photothermal stimulation for modulating neural stem cell behaviors. This novel 4D printing strategy can not only be used to create dynamic 3D patterned biological structures that can spatiotemporally control their shapes or behaviors of transformation under a human benign stimulus (NIR), but can also provide a potential method for building complex self-morphing objects for widespread applications.
Collapse
Affiliation(s)
- Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Shida Miao
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Se-Jun Lee
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Xuan Zhou
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Sung Yun Hann
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Brent T Harris
- Department of Neurology and Pathology, Georgetown University, Washington, DC 20007, USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
- Departments of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052, USA
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
- Department of Medicine, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
117
|
Eswaramoorthy SD, Ramakrishna S, Rath SN. Recent advances in three-dimensional bioprinting of stem cells. J Tissue Eng Regen Med 2019; 13:908-924. [PMID: 30866145 DOI: 10.1002/term.2839] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 02/01/2019] [Accepted: 02/21/2019] [Indexed: 12/29/2022]
Abstract
In spite of being a new field, three-dimensional (3D) bioprinting has undergone rapid growth in the recent years. Bioprinting methods offer a unique opportunity for stem cell distribution, positioning, and differentiation at the microscale to make the differentiated architecture of any tissue while maintaining precision and control over the cellular microenvironment. Bioprinting introduces a wide array of approaches to modify stem cell fate. This review discusses these methodologies of 3D bioprinting stem cells. Fabricating a fully operational tissue or organ construct with a long life will be the most significant challenge of 3D bioprinting. Once this is achieved, a whole human organ can be fabricated for the defect place at the site of surgery.
Collapse
Affiliation(s)
- Sindhuja D Eswaramoorthy
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad (IITH), Sangareddy, Telangana, India
| | - Seeram Ramakrishna
- Centre for Nanofibers & Nanotechnology, NUS Nanoscience & Nanotechnology Initiative, Singapore
| | - Subha N Rath
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad (IITH), Sangareddy, Telangana, India
| |
Collapse
|
118
|
Yamagishi K, Takeoka S, Fujie T. Printed nanofilms mechanically conforming to living bodies. Biomater Sci 2019; 7:520-531. [PMID: 30648703 DOI: 10.1039/c8bm01290c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
It is anticipated that flexible wearable/implantable devices for biomedical applications will be established for the development of medical diagnostics and therapeutics. However, these devices need to be compatible with the physical and mechanical properties of the living body. In this minireview, we introduce free-standing polymer ultra-thin films (referred to as "polymer nanosheets"), for which a variety of polymers can be selected as building blocks (e.g., biodegradable polymers, conductive polymers, and elastomers), as a platform for flexible biomedical devices that are mechanically compatible with the living body, and then we demonstrate the use of "printed nanofilms" by combining nanosheets and printing technologies with a variety of inks represented by drugs, conductive nanomaterials, chemical dyes, bio-mimetic polymers, and cells. Owing to the low flexural rigidity (<10-2 nN m) of the polymer nanosheets, which is within the range of living brain slices (per unit width), the flexible printed nanofilms realize bio-integrated structure and display various functions with unique inks that continually monitor or detect biological activities, such as performing surface electromyography, measuring epidermal strain, imaging tissue temperature, organizing cells, and treating lesions in wounds and tumors.
Collapse
Affiliation(s)
- Kento Yamagishi
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo 162-8480, Japan
| | | | | |
Collapse
|
119
|
Morouço P, Fernandes C, Santos-Rocha R. Osteoarthritis, Exercise, and Tissue Engineering: A Stimulating Triad for Health Professionals. J Aging Res 2019; 2019:1935806. [PMID: 31192012 PMCID: PMC6525949 DOI: 10.1155/2019/1935806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/13/2019] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative disease, promoted by abnormal chronic mechanical loading over the joint, for instance, due to excessive body mass. Patients frequently report pain, fatigue, and limitations in specific functional daily activities. Regarding the treatment of OA, two nonpharmacological options are available. However, it is not clear which type and intensity of exercise have better outcomes in treatment and how tissue engineering can be a promising field due to the mechanical load implants will suffer. The aims of this work were to investigate (1) the main characteristics, prevalence, and consequences of OA; (2) the exercise prescription guidelines and whether exercise interventions have a positive effect on OA treatment; and (3) the novel improvements on tissue engineering for OA treatment. Both patients and practitioners should be aware that benefits may come from prescribed and supervised exercise. Recent studies have highlighted that an optimal balance between exercise and nutritional income should be widely recommended. Regarding tissue engineering, significant steps towards the development of implants that mimic the native tissue have been taken. Thus, further studies should focus on the impact that exercise (repetitive loading) might have on cartilage regeneration. Finally, suggestions for future research were proposed.
Collapse
Affiliation(s)
- Pedro Morouço
- Polytechnic Institute of Leiria, School of Education and Social Sciences (ESECS), Leiria, Portugal
- Universidade de Lisboa, Faculdade de Motricidade Humana, Laboratory of Biomechanics and Functional Morphology, Interdisciplinary Centre for the Study of Human Performance (CIPER), Cruz Quebrada, Portugal
| | - Cristiana Fernandes
- Polytechnic Institute of Leiria, Centre for Rapid and Sustainable Product Development (CDRsp), Marinha Grande, Portugal
| | - Rita Santos-Rocha
- Universidade de Lisboa, Faculdade de Motricidade Humana, Laboratory of Biomechanics and Functional Morphology, Interdisciplinary Centre for the Study of Human Performance (CIPER), Cruz Quebrada, Portugal
- Polytechnic Institute of Santarém, Sport Sciences School of Rio Maior (ESDRM), Rio Maior, Portugal
| |
Collapse
|
120
|
Ashammakhi N, Ahadian S, Pountos I, Hu SK, Tellisi N, Bandaru P, Ostrovidov S, Dokmeci MR, Khademhosseini A. In situ three-dimensional printing for reparative and regenerative therapy. Biomed Microdevices 2019; 21:42. [PMID: 30955134 DOI: 10.1007/s10544-019-0372-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Three-dimensional (3D) bioprinting is an emerging biofabrication technology, driving many innovations and opening new avenues in regenerative therapeutics. The aim of 3D bioprinting is to fabricate grafts in vitro, which can then be implanted in vivo. However, the tissue culture ex vivo carries safety risks and thereby complicated manufacturing equipment and practice are required for tissues to be implanted in the humans. The implantation of printed tissues also adds complexities due to the difficulty in maintaining the structural integrity of fabricated constructs. To tackle this challenge, the concept of in situ 3D bioprinting has been suggested in which tissues are directly printed at the site of injury or defect. Such approach could be combined with cells freshly isolated from patients to produce custom-made grafts that resemble target tissue and fit precisely to target defects. Moreover, the natural cellular microenvironment in the body can be harnessed for tissue maturation resulting in the tissue regeneration and repair. Here, we discuss literature reports on in situ 3D printing and we describe future directions and challenges for in situ 3D bioprinting. We expect that this novel technology would find great attention in different biomedical fields in near future.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, California, Los Angeles, USA.
- California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Building 114, Room 4528, Los Angeles, CA, 90095, USA.
- Department of Radiological Sciences, University of California - Los Angeles, California, Los Angeles, USA.
- Department of Bioengineering, University of California - Los Angeles, California, Los Angeles, USA.
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, Finland.
- School of Technology and Innovations, University of Vaasa, Vaasa, Finland.
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, California, Los Angeles, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Building 114, Room 4528, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California - Los Angeles, California, Los Angeles, USA
| | - Ippokratis Pountos
- Department of Trauma and Orthopaedics, University of Leeds, Leeds, UK
- Chapel Allerton Hospital, Leeds Teaching Hospitals, Leeds, UK
| | - Shu-Kai Hu
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, California, Los Angeles, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Building 114, Room 4528, Los Angeles, CA, 90095, USA
- Department of Radiological Sciences, University of California - Los Angeles, California, Los Angeles, USA
| | - Nazzar Tellisi
- Department of Trauma and Orthopaedics, University of Leeds, Leeds, UK
| | - Praveen Bandaru
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, California, Los Angeles, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Building 114, Room 4528, Los Angeles, CA, 90095, USA
- Department of Radiological Sciences, University of California - Los Angeles, California, Los Angeles, USA
| | - Serge Ostrovidov
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, California, Los Angeles, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Building 114, Room 4528, Los Angeles, CA, 90095, USA
- Department of Radiological Sciences, University of California - Los Angeles, California, Los Angeles, USA
| | - Mehmet Remzi Dokmeci
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, California, Los Angeles, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Building 114, Room 4528, Los Angeles, CA, 90095, USA
- Department of Radiological Sciences, University of California - Los Angeles, California, Los Angeles, USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, California, Los Angeles, USA.
- California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Building 114, Room 4528, Los Angeles, CA, 90095, USA.
- Department of Radiological Sciences, University of California - Los Angeles, California, Los Angeles, USA.
- Department of Bioengineering, University of California - Los Angeles, California, Los Angeles, USA.
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, California, Los Angeles, USA.
- Center of Nanotechnology, Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
121
|
Abstract
This review describes available smart biomaterials for biomedical applications. Biomaterials have gained special attention because of their characteristics, along with biocompatibility, biodegradability, renewability, and inexpensiveness. In addition, they are also sensitive towards various stimuli such as temperature, light, magnetic, electro, pH and can respond to two or more stimuli at the same time. In this manuscript, the suitability of stimuli-responsive smart polymers was examined, providing examples of its usefulness in the biomedical applications.
Collapse
|
122
|
Ashammakhi N, Hasan A, Kaarela O, Byambaa B, Sheikhi A, Gaharwar AK, Khademhosseini A. Advancing Frontiers in Bone Bioprinting. Adv Healthc Mater 2019; 8:e1801048. [PMID: 30734530 DOI: 10.1002/adhm.201801048] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/26/2018] [Indexed: 12/20/2022]
Abstract
Three-dimensional (3D) bioprinting of cell-laden biomaterials is used to fabricate constructs that can mimic the structure of native tissues. The main techniques used for 3D bioprinting include microextrusion, inkjet, and laser-assisted bioprinting. Bioinks used for bone bioprinting include hydrogels loaded with bioactive ceramics, cells, and growth factors. In this review, a critical overview of the recent literature on various types of bioinks used for bone bioprinting is presented. Major challenges, such as the vascularity, clinically relevant size, and mechanical properties of 3D printed structures, that need to be addressed to successfully use the technology in clinical settings, are discussed. Emerging approaches to solve these problems are reviewed, and future strategies to design customized 3D printed structures are proposed.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California – Los Angeles Los Angeles CA 90095 USA
- California NanoSystems Institute (CNSI)University of California – Los Angeles Los Angeles CA 90095 USA
- Department of BioengineeringUniversity of California – Los Angeles Los Angeles CA 90095 USA
- Division of Plastic SurgeryDepartment of SurgeryOulu Univesity Hospital Oulu FI‐90014 Finland
| | - Anwarul Hasan
- Department of Mechanical and Industrial EngineeringCollege of EngineeringQatar University Doha 2713 Qatar
- Biomedical Research CenterQatar University Doha 2713 Qatar
| | - Outi Kaarela
- Division of Plastic SurgeryDepartment of SurgeryOulu Univesity Hospital Oulu FI‐90014 Finland
| | - Batzaya Byambaa
- Center for Biomedical EngineeringDepartment of MedicineBrigham and Women's HospitalHarvard Medical School Cambridge MA 02115 USA
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of Technology Cambridge MA 02139 USA
| | - Amir Sheikhi
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California – Los Angeles Los Angeles CA 90095 USA
| | - Akhilesh K. Gaharwar
- Department of Biomedical EngineeringDepartment of Materials Science and Engineeringand Center for Remote Health and TechnologiesTexas A&M University College Station TX 77841 USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California – Los Angeles Los Angeles CA 90095 USA
- California NanoSystems Institute (CNSI)University of California – Los Angeles Los Angeles CA 90095 USA
- Department of BioengineeringUniversity of California – Los Angeles Los Angeles CA 90095 USA
| |
Collapse
|
123
|
Affiliation(s)
- Yi-Chen Ethan Li
- Department of Chemical Engineering, Feng Chia University, 40724 Taichung, Taiwan
| |
Collapse
|
124
|
Li X, Moosavi-Basri SM, Sheth R, Wang X, Zhang YS. Bioengineered in vitro Vascular Models for Applications in Interventional Radiology. Curr Pharm Des 2019; 24:5367-5374. [PMID: 30734672 DOI: 10.2174/1381612824666180416114325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/02/2019] [Indexed: 01/01/2023]
Abstract
The role of endovascular interventions has progressed rapidly over the past several decades. While animal models have long-served as the mainstay for the advancement of this field, the use of in vitro models has become increasingly widely adopted with recent advances in engineering technologies. Here, we review the strategies, mainly including bioprinting and microfabrication, which allow for fabrication of biomimetic vascular models that will potentially serve to supplement the conventional animal models for convenient investigations of endovascular interventions. Besides normal blood vessels, those in diseased states, such as thrombosis, may also be modeled by integrating cues that simulate the microenvironment of vascular disorders. These novel engineering strategies for the development of biomimetic in vitro vascular structures will possibly enable unconventional means of studying complex endovascular intervention problems that are otherwise hard to address using existing models.
Collapse
Affiliation(s)
- Xiaoyun Li
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, United States.,State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | - Seyed M Moosavi-Basri
- Civil & Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - Rahul Sheth
- Department of Interventional Radiology, MD Anderson Cancer Center, Houston, United States
| | - Xiaoying Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, United States.,State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | - Yu S Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, United States
| |
Collapse
|
125
|
Gao G, Kim BS, Jang J, Cho DW. Recent Strategies in Extrusion-Based Three-Dimensional Cell Printing toward Organ Biofabrication. ACS Biomater Sci Eng 2019; 5:1150-1169. [PMID: 33405637 DOI: 10.1021/acsbiomaterials.8b00691] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reconstructing human organs is one of the ultimate goals of the medical industry. Organ printing utilizing three-dimensional cell printing technology to fabricate artificial living organ equivalents has shed light on the advancement of this field into a new era. Among three currently applied techniques (inkjet, laser-assisted, and extrusion-based), extrusion-based cell printing (ECP) has evoked the majority of interest due to its low cost, wide range of applicable materials, and ease of spatial and depositional controllability. Major challenges in organ reconstruction include difficulties in precisely fabricating complex structural features, creating perfusable and functional vasculatures, and mimicking biophysical and biochemical characteristics in the printed constructs. In this review, we describe the merits and limitations of ECP for organ fabrication and discuss its recent advances aimed at overcoming these challenges. In addition, we delineate the expected future techniques for printing live tissue or organ substitutes.
Collapse
|
126
|
Abstract
Implants are being continuously developed to achieve personalized therapy. With the advent of 3-dimensional (3D) printing, it is becoming possible to produce customized precisely fitting implants that can be derived from 3D images fed into 3D printers. In addition, it is possible to combine various materials, such as ceramics, to render these constructs osteoconductive or growth factors to make them osteoinductive. Constructs can be seeded with cells to engineer bone tissue. Alternatively, it is possible to load cells into the biomaterial to form so called bioink and print them together to from 3D bioprinted constructs that are characterized by having more homogenous cell distribution in their matrix. To date, 3D printing was applied in the clinic mostly for surgical training and for planning of surgery, with limited use in producing 3D implants for clinical application. Few examples exist so far, which include mostly the 3D printed implants applied in maxillofacial surgery and in orthopedic surgery, which are discussed in this report. Wider clinical application of 3D printing will help the adoption of 3D printers as essential tools in the clinics in future and thus, contribute to realization of personalized medicine.
Collapse
|
127
|
Wang LC, Song WL, Fang D. Twistable Origami and Kirigami: from Structure-Guided Smartness to Mechanical Energy Storage. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3450-3458. [PMID: 30560654 DOI: 10.1021/acsami.8b17776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
For achieving active shape transformable materials and structures, smart materials with shape memory effects along with deliberate structure design are generally used as the critical parameters in realizing structure transformation. Beyond such conventional approaches, here a novel structure-guided multimaterial three-dimensional (3D) printing strategy based on twistable origami structures is demonstrated to realize dynamic smart shape transformation. By thermally or photothermally triggering the prestored energy in the twisted structures, the 3D-printed integrated origami structures based on Miura and square-twist origami structures coupled with modifying by kirigami approaches are enabled to present a variable multistep transformable feature as well as a manipulatable stimulus-response behavior. Such shape transformation configuration allows the integrated origami and kirigami structures for constructing smart structures in delivering dynamic multifunction. More importantly, the shape transformation mechanism also suggests a unique capability in mechanical energy storage and release, promising a novel prototype of mechanical actuators. Implication of the results offers a great platform to construct smart and active structures using structure-guided strategies.
Collapse
|
128
|
Zhang L, Yang G, Johnson BN, Jia X. Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomater 2019; 84:16-33. [PMID: 30481607 DOI: 10.1016/j.actbio.2018.11.039] [Citation(s) in RCA: 401] [Impact Index Per Article: 80.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/06/2018] [Accepted: 11/23/2018] [Indexed: 12/15/2022]
Abstract
Critical-sized bone defect repair remains a substantial challenge in clinical settings and requires bone grafts or bone substitute materials. However, existing biomaterials often do not meet the clinical requirements of structural support, osteoinductive property, and controllable biodegradability. To treat large-scale bone defects, the development of three-dimensional (3D) porous scaffolds has received considerable focus within bone engineering. A variety of biomaterials and manufacturing methods, including 3D printing, have emerged to fabricate patient-specific bioactive scaffolds that possess controlled micro-architectures for bridging bone defects in complex configurations. During the last decade, with the development of the 3D printing industry, a large number of tissue-engineered scaffolds have been created for preclinical and clinical applications using novel materials and innovative technologies. Thus, this review provides a brief overview of current progress in existing biomaterials and tissue engineering scaffolds prepared by 3D printing technologies, with an emphasis on the material selection, scaffold design optimization, and their preclinical and clinical applications in the repair of critical-sized bone defects. Furthermore, it will elaborate on the current limitations and potential future prospects of 3D printing technology. STATEMENT OF SIGNIFICANCE: 3D printing has emerged as a critical fabrication process for bone engineering due to its ability to control bulk geometry and internal structure of tissue scaffolds. The advancement of bioprinting methods and compatible ink materials for bone engineering have been a major focus to develop optimal 3D scaffolds for bone defect repair. Achieving a successful balance of cellular function, cellular viability, and mechanical integrity under load-bearing conditions is critical. Hybridization of natural and synthetic polymer-based materials is a promising approach to create novel tissue engineered scaffolds that combines the advantages of both materials and meets various requirements, including biological activity, mechanical strength, easy fabrication and controllable degradation. 3D printing is linked to the future of bone grafts to create on-demand patient-specific scaffolds.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Orthopaedics, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325200, China
| | - Guojing Yang
- Department of Orthopaedics, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325200, China
| | - Blake N Johnson
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
129
|
Bioprinting Technologies in Tissue Engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 171:279-319. [DOI: 10.1007/10_2019_108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
130
|
Ashammakhi N, Ahadian S, Xu C, Montazerian H, Ko H, Nasiri R, Barros N, Khademhosseini A. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater Today Bio 2019; 1:100008. [PMID: 32159140 PMCID: PMC7061634 DOI: 10.1016/j.mtbio.2019.100008] [Citation(s) in RCA: 248] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 12/12/2022] Open
Abstract
The native tissues are complex structures consisting of different cell types, extracellular matrix materials, and biomolecules. Traditional tissue engineering strategies have not been able to fully reproduce biomimetic and heterogeneous tissue constructs because of the lack of appropriate biomaterials and technologies. However, recently developed three-dimensional bioprinting techniques can be leveraged to produce biomimetic and complex tissue structures. To achieve this, multicomponent bioinks composed of multiple biomaterials (natural, synthetic, or hybrid natural-synthetic biomaterials), different types of cells, and soluble factors have been developed. In addition, advanced bioprinting technologies have enabled us to print multimaterial bioinks with spatial and microscale resolution in a rapid and continuous manner, aiming to reproduce the complex architecture of the native tissues. This review highlights important advances in heterogeneous bioinks and bioprinting technologies to fabricate biomimetic tissue constructs. Opportunities and challenges to further accelerate this research area are also described.
Collapse
Affiliation(s)
- N. Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, 8000, Finland
| | - S. Ahadian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
| | - C. Xu
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
- School of Dentistry, The University of Queensland, Herston, QLD, 4006, Australia
| | - H. Montazerian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
| | - H. Ko
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
| | - R. Nasiri
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran
| | - N. Barros
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
| | - A. Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Radiological Sciences, University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
131
|
Johnston TG, Fellin CR, Carignano A, Nelson A. Poly(alkyl glycidyl ether) hydrogels for harnessing the bioactivity of engineered microbes. Faraday Discuss 2019; 219:58-72. [DOI: 10.1039/c9fd00019d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Herein, we describe a method to produce yeast-laden hydrogel inks for the direct-write 3D printing of cuboidal lattices for immobilized whole-cell catalysis.
Collapse
Affiliation(s)
| | | | - Alberto Carignano
- Department of Electrical Engineering
- University of Washington
- Seattle
- USA
| | | |
Collapse
|
132
|
Velasco-Hogan A, Xu J, Meyers MA. Additive Manufacturing as a Method to Design and Optimize Bioinspired Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800940. [PMID: 30133816 DOI: 10.1002/adma.201800940] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/11/2018] [Indexed: 06/08/2023]
Abstract
Additive manufacturing (AM) is a current technology undergoing rapid development that is utilized in a wide variety of applications. In the field of biological and bioinspired materials, additive manufacturing is being used to generate intricate prototypes to expand our understanding of the fundamental structure-property relationships that govern nature's spectacular mechanical performance. Herein, recent advances in the use of AM for improving the understanding of the structure-property relationship in biological materials and for the production of bioinspired materials are reviewed. There are four essential components to this work: a) extracting defining characteristics of biological designs, b) designing 3D-printed prototypes, c) performing mechanical testing on 3D-printed prototypes to understand fundamental mechanisms at hand, and d) optimizing design for tailorable performance. It is intended to highlight how the various types of additive manufacturing methods are utilized, to unravel novel discoveries in the field of biological materials. Since AM processing techniques have surpassed antiquated limitations, especially with respect to spatial scales, there has been a surge in their demand as an integral tool for research. In conclusion, current challenges and the technical perspective for further development of bioinspired materials using AM are discussed.
Collapse
Affiliation(s)
| | - Jun Xu
- Department of Automotive Engineering, School of Transportation Science and Engineering, Advanced Vehicle Research Center (AVRC), Beihang University, Beijing, 100191, China
| | - Marc A Meyers
- University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
133
|
Tadyszak K, Wychowaniec JK, Litowczenko J. Biomedical Applications of Graphene-Based Structures. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E944. [PMID: 30453490 PMCID: PMC6267346 DOI: 10.3390/nano8110944] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/24/2018] [Accepted: 11/12/2018] [Indexed: 12/23/2022]
Abstract
Graphene and graphene oxide (GO) structures and their reduced forms, e.g., GO paper and partially or fully reduced three-dimensional (3D) aerogels, are at the forefront of materials design for extensive biomedical applications that allow for the proliferation and differentiation/maturation of cells, drug delivery, and anticancer therapies. Various viability tests that have been conducted in vitro on human cells and in vivo on mice reveal very promising results, which make graphene-based materials suitable for real-life applications. In this review, we will give an overview of the latest studies that utilize graphene-based structures and their composites in biological applications and show how the biomimetic behavior of these materials can be a step forward in bridging the gap between nature and synthetically designed graphene-based nanomaterials.
Collapse
Affiliation(s)
- Krzysztof Tadyszak
- NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, PL61614 Poznań, Poland.
| | - Jacek K Wychowaniec
- NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, PL61614 Poznań, Poland.
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Jagoda Litowczenko
- NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, PL61614 Poznań, Poland.
- Department of Molecular Virology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, PL61614 Poznań, Poland.
| |
Collapse
|
134
|
Betsch M, Cristian C, Lin YY, Blaeser A, Schöneberg J, Vogt M, Buhl EM, Fischer H, Duarte Campos DF. Incorporating 4D into Bioprinting: Real-Time Magnetically Directed Collagen Fiber Alignment for Generating Complex Multilayered Tissues. Adv Healthc Mater 2018; 7:e1800894. [PMID: 30221829 DOI: 10.1002/adhm.201800894] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/20/2018] [Indexed: 12/15/2022]
Abstract
In vitro multilayered tissues with mimetic architectures resembling native tissues are valuable tools for application in medical research. In this study, an advanced bioprinting strategy is presented for aligning collagen fibers contained in functional bioinks. Streptavidin-coated iron nanoparticles are embedded in printable bioinks with varying concentrations of low gelling temperature agarose and type I collagen. By applying a straightforward magnetic-based mechanism in hydrogels during bioprinting, it is possible to align collagen fibers in less concentrated hydrogel blends with a maximum agarose concentration of 0.5 w/v%. Conversely, more elevated concentrations of agarose in printable blends show random collagen fiber distribution. Interestingly, hydrogel blends with unidirectionally aligned collagen fibers show significantly higher compression moduli compared to hydrogel blends including random fibers. Considering its application in the field of cartilage tissue engineering, bioprinted constructs with alternating layers of aligned and random fibers are fabricated. After 21 days of culture, cell-loaded constructs with alternating layers of aligned and random fibers express markedly more collagen II in comparison to solely randomly oriented fiber constructs. These encouraging results translate the importance of the structure and architecture of bioinks used in bioprinting in light of their use for tissue engineering and personalized medical applications.
Collapse
Affiliation(s)
- Marcel Betsch
- Department of Orthopaedics; RWTH Aachen University Hospital; 52074 Aachen Germany
| | - Catalin Cristian
- Department of Dental Materials and Biomaterials Research; RWTH Aachen University Hospital; 52074 Aachen Germany
| | - Ying-Ying Lin
- Department of Dental Materials and Biomaterials Research; RWTH Aachen University Hospital; 52074 Aachen Germany
| | - Andreas Blaeser
- Department of Dental Materials and Biomaterials Research; RWTH Aachen University Hospital; 52074 Aachen Germany
| | - Jan Schöneberg
- Department of Dental Materials and Biomaterials Research; RWTH Aachen University Hospital; 52074 Aachen Germany
| | - Michael Vogt
- Interdisciplinary Center for Clinical Research; Two-Photon Imaging Facility; RWTH Aachen University Hospital; 52074 Aachen Germany
| | - Eva Miriam Buhl
- Institute of Pathology; Electron Microscopy Facility; RWTH Aachen University Hospital; 52074 Aachen Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research; RWTH Aachen University Hospital; 52074 Aachen Germany
| | | |
Collapse
|
135
|
Zhu P, Yang W, Wang R, Gao S, Li B, Li Q. 4D Printing of Complex Structures with a Fast Response Time to Magnetic Stimulus. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36435-36442. [PMID: 30270611 DOI: 10.1021/acsami.8b12853] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A poly(dimethylsiloxane)/Fe (PDMS/Fe) composite ink was developed for reversible four-dimensional (4D) printing to create magnetically responsive three-dimensional (3D) structures with a fast response time for their structure evolvements under external magnetic field. These 3D structures could obtain or lose high magnetization immediately by the on or off of an external magnetic field due to the low magnetic coercive force and the high magnetic permittivity of soft magnetic Fe particles in this composite ink, whereas PDMS in this composite ink served as the flexible matrix component to ensure their shape recovery. As exampled by a 3D butterfly with the fast flapping of its wings under an external magnetic field, complex 3D structures created by 4D printing with this PDMS/Fe ink could have the reversible magnetically stimulated structure evolvement property and develop designed magnetically induced motions with a fast response time for various magnetomechanical applications. Furthermore, structure evolvements of these 3D structures could also induce structure-related property changes, as demonstrated by a 3D terahertz photonic crystal (3D-TPC) device with remotely tunable terahertz properties, which could create novel functionalities for various functional devices created by 4D printing from this kind of ink through external magnetic field stimulation.
Collapse
Affiliation(s)
- Pengfei Zhu
- Environment Functional Materials Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research , Chinese Academy of Sciences , Shenyang 110016 , P. R. China
- School of Materials Science and Engineering , University of Science and Technology of China , Wenhua Road , Shenyang 110016 , P. R. China
| | - Weiyi Yang
- Environment Functional Materials Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research , Chinese Academy of Sciences , Shenyang 110016 , P. R. China
| | - Rong Wang
- Division of Energy and Environment, Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P. R. China
| | - Shuang Gao
- Division of Energy and Environment, Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P. R. China
| | - Bo Li
- Division of Energy and Environment, Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P. R. China
| | - Qi Li
- Environment Functional Materials Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research , Chinese Academy of Sciences , Shenyang 110016 , P. R. China
| |
Collapse
|
136
|
Ashammakhi N, Wesseling-Perry K, Hasan A, Elkhammas E, Zhang YS. Kidney-on-a-chip: untapped opportunities. Kidney Int 2018; 94:1073-1086. [PMID: 30366681 DOI: 10.1016/j.kint.2018.06.034] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 06/11/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
Abstract
The organs-on-a-chip technology has shown strong promise in mimicking the complexity of native tissues in vitro and ex vivo, and recently significant advances have been made in applying this technology to studies of the kidney and its diseases. Individual components of the nephron, including the glomerulus, proximal tubule, and distal tubule/medullary collecting duct, have been successfully mimicked using organs-on-a-chip technology and yielding strong promises in advancing the field of ex vivo drug toxicity testing and augmenting renal replacement therapies. Although these models show promise over 2-dimensional cell systems in recapitulating important nephron features in vitro, nephron functions, such as tubular secretion, intracellular metabolism, and renin and vitamin D production, as well as prostaglandin synthesis are still poorly recapitulated in on-chip models. Moreover, construction of multiple-renal-components-on-a-chip models, in which various structures and cells of the renal system interact with each other, has remained a challenge. Overall, on-chip models show promise in advancing models of normal and pathological renal physiology, in predicting nephrotoxicity, and in advancing treatment of chronic kidney diseases.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Division of Plastic Surgery, Department of Surgery, Oulu University Hospital, Oulu, Finland; Biotechnology Research Center, Libyan Authority for Research, Science and Technology, Tripoli, Libya.
| | - Katherine Wesseling-Perry
- Division of Nephrology, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar.
| | - Elmahdi Elkhammas
- Division of Transplantation Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Comprehensive Transplant Center, Columbus, Ohio, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| |
Collapse
|
137
|
Casanellas I, García-Lizarribar A, Lagunas A, Samitier J. Producing 3D Biomimetic Nanomaterials for Musculoskeletal System Regeneration. Front Bioeng Biotechnol 2018; 6:128. [PMID: 30294596 PMCID: PMC6159749 DOI: 10.3389/fbioe.2018.00128] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022] Open
Abstract
The human musculoskeletal system is comprised mainly of connective tissues such as cartilage, tendon, ligaments, skeletal muscle, and skeletal bone. These tissues support the structure of the body, hold and protect the organs, and are responsible of movement. Since it is subjected to continuous strain, the musculoskeletal system is prone to injury by excessive loading forces or aging, whereas currently available treatments are usually invasive and not always effective. Most of the musculoskeletal injuries require surgical intervention facing a limited post-surgery tissue regeneration, especially for widespread lesions. Therefore, many tissue engineering approaches have been developed tackling musculoskeletal tissue regeneration. Materials are designed to meet the chemical and mechanical requirements of the native tissue three-dimensional (3D) environment, thus facilitating implant integration while providing a good reabsorption rate. With biological systems operating at the nanoscale, nanoengineered materials have been developed to support and promote regeneration at the interprotein communication level. Such materials call for a great precision and architectural control in the production process fostering the development of new fabrication techniques. In this mini review, we would like to summarize the most recent advances in 3D nanoengineered biomaterials for musculoskeletal tissue regeneration, with especial emphasis on the different techniques used to produce them.
Collapse
Affiliation(s)
- Ignasi Casanellas
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| | - Andrea García-Lizarribar
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| | - Anna Lagunas
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Networking Biomedical Research Center (CIBER), Madrid, Spain
| | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain
- Networking Biomedical Research Center (CIBER), Madrid, Spain
| |
Collapse
|
138
|
Bolaños Quiñones VA, Zhu H, Solovev AA, Mei Y, Gracias DH. Origami Biosystems: 3D Assembly Methods for Biomedical Applications. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800230] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Vladimir A. Bolaños Quiñones
- Department of Materials Science State Key Laboratory of ASIC and Systems Fudan University Shanghai 200433 P. R. China
| | - Hong Zhu
- Department of Materials Science State Key Laboratory of ASIC and Systems Fudan University Shanghai 200433 P. R. China
| | - Alexander A. Solovev
- Department of Materials Science State Key Laboratory of ASIC and Systems Fudan University Shanghai 200433 P. R. China
| | - Yongfeng Mei
- Department of Materials Science State Key Laboratory of ASIC and Systems Fudan University Shanghai 200433 P. R. China
| | - David H. Gracias
- Department of Chemical and Biomolecular Engineering Johns Hopkins University 3400 N Charles Street, 221 Maryland Hall Baltimore MD 21218 USA
| |
Collapse
|
139
|
Ionov L. 4D Biofabrication: Materials, Methods, and Applications. Adv Healthc Mater 2018; 7:e1800412. [PMID: 29978564 DOI: 10.1002/adhm.201800412] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/11/2018] [Indexed: 12/12/2022]
Abstract
The mission of regenerative medicine is the development of methods to regrow, repair, or replace damaged or diseased cells, organs, or tissues. 3D bioprinting techniques are one of the most promising approaches for engineering the design of artificial tissues. Current 3D bioprinting technologies possess, however, several intrinsic limitations. 4D biofabrication, a recently developed technology with the embedded ability of shape transformation upon response to intrinsic and/or external stimuli, may solve challenges of 3D bioprinting as well as more accurately mimic the dynamics of the native tissues. This article covers recent advances in 4D biofabrication. It gives a detailed picture of used materials and technologies, provides critical comparisons of methods, discusses possibilities and limitations of different 4D biofabrication technologies, and gives examples of applications.
Collapse
Affiliation(s)
- Leonid Ionov
- Faculty of Engineering Science; University of Bayreuth; Universitätsstr. 30 95440 Bayreuth Germany
| |
Collapse
|
140
|
Affiliation(s)
- Samad Ahadian
- Department of Bioengineering, University of California, Los Angeles, CA 90095-1600, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA 90095-1600, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095-1600, USA
| | - Ali Khademhosseini
- Department of Bioengineering, University of California, Los Angeles, CA 90095-1600, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA 90095-1600, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095-1600, USA
- Department of Radiological Sciences, University of California, Los Angeles, CA 90095-1600, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095-1600, USA
| |
Collapse
|
141
|
Béduer A, Piacentini N, Aeberli L, Da Silva A, Verheyen C, Bonini F, Rochat A, Filippova A, Serex L, Renaud P, Braschler T. Additive manufacturing of hierarchical injectable scaffolds for tissue engineering. Acta Biomater 2018; 76:71-79. [PMID: 29883809 DOI: 10.1016/j.actbio.2018.05.056] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/28/2018] [Accepted: 05/31/2018] [Indexed: 12/22/2022]
Abstract
We present a 3D-printing technology allowing free-form fabrication of centimetre-scale injectable structures for minimally invasive delivery. They result from the combination of 3D printing onto a cryogenic substrate and optimisation of carboxymethylcellulose-based cryogel inks. The resulting highly porous and elastic cryogels are biocompatible, and allow for protection of cell viability during compression for injection. Implanted into the murine subcutaneous space, they are colonized with a loose fibrovascular tissue with minimal signs of inflammation and remain encapsulation-free at three months. Finally, we vary local pore size through control of the substrate temperature during cryogenic printing. This enables control over local cell seeding density in vitro and over vascularization density in cell-free scaffolds in vivo. In sum, we address the need for 3D-bioprinting of large, yet injectable and highly biocompatible scaffolds and show modulation of the local response through control over local pore size. STATEMENT OF SIGNIFICANCE This work combines the power of 3D additive manufacturing with clinically advantageous minimally invasive delivery. We obtain porous, highly compressible and mechanically rugged structures by optimizing a cryogenic 3D printing process. Only a basic commercial 3D printer and elementary control over reaction rate and freezing are required. The porous hydrogels obtained are capable of withstanding delivery through capillaries up to 50 times smaller than their largest linear dimension, an as yet unprecedented compression ratio. Cells seeded onto the hydrogels are protected during compression. The hydrogel structures further exhibit excellent biocompatibility 3 months after subcutaneous injection into mice. We finally demonstrate that local modulation of pore size grants control over vascularization density in vivo. This provides proof-of-principle that meaningful biological information can be encoded during the 3D printing process, deploying its effect after minimally invasive implantation.
Collapse
|
142
|
Oliveira MB, Bastos HXS, Mano JF. Sequentially Moldable and Bondable Four-Dimensional Hydrogels Compatible with Cell Encapsulation. Biomacromolecules 2018; 19:2742-2749. [PMID: 29698598 PMCID: PMC6450509 DOI: 10.1021/acs.biomac.8b00337] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrogels have captivated the attention of several research and industry segments, including bioengineering, tissue engineering, implantable/wearable sensors and actuators, bioactive agent delivery, food processing, and industrial processes optimization. A common limitation of these systems is their fixed shape. The concept of hydrogel moldability is often assigned to the injectability potential of liquid precursors, and this feature is often lost right after hydrogel formation. Hydrogel modulation is a recent trend that advocates the importance of designing materials with shape fitting ability targeting on-demand responses or defect filling purposes. Here, we present a compliant and cell encapsulation-compatible hydrogel prepared from unmodified natural origin polymers with the ability to undergo extreme sequential shape alterations with high recovery of its mechanical properties. Different fragments of these hydrogels could be bonded together in spatiotemporally controlled shape- and formulation-morphing structures. This material is prepared with affordable off-the-shelf polysaccharides of natural origin using a mild and safe processing strategy based solely on polyelectrolyte complexation followed by an innovative partial coacervate compaction and dehydration step. These unique hydrogels hold potential for multifield industrial and healthcare applications. In particular, they may find application as defect filling agents or highly compliant wound healing patches for cargo release and/or cell delivery for tissue regeneration and cell-based therapies.
Collapse
Affiliation(s)
- Mariana B. Oliveira
- Department of Chemistry, CICECO – Aveiro Institute of Materials. University of Aveiro. 3810-193 Aveiro, Portugal
| | - Henrique X. S. Bastos
- Department of Chemistry, CICECO – Aveiro Institute of Materials. University of Aveiro. 3810-193 Aveiro, Portugal
| | - João F. Mano
- Department of Chemistry, CICECO – Aveiro Institute of Materials. University of Aveiro. 3810-193 Aveiro, Portugal
| |
Collapse
|
143
|
Yang Y, Song X, Li X, Chen Z, Zhou C, Zhou Q, Chen Y. Recent Progress in Biomimetic Additive Manufacturing Technology: From Materials to Functional Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706539. [PMID: 29920790 DOI: 10.1002/adma.201706539] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/25/2018] [Indexed: 05/11/2023]
Abstract
Nature has developed high-performance materials and structures over millions of years of evolution and provides valuable sources of inspiration for the design of next-generation structural materials, given the variety of excellent mechanical, hydrodynamic, optical, and electrical properties. Biomimicry, by learning from nature's concepts and design principles, is driving a paradigm shift in modern materials science and technology. However, the complicated structural architectures in nature far exceed the capability of traditional design and fabrication technologies, which hinders the progress of biomimetic study and its usage in engineering systems. Additive manufacturing (three-dimensional (3D) printing) has created new opportunities for manipulating and mimicking the intrinsically multiscale, multimaterial, and multifunctional structures in nature. Here, an overview of recent developments in 3D printing of biomimetic reinforced mechanics, shape changing, and hydrodynamic structures, as well as optical and electrical devices is provided. The inspirations are from various creatures such as nacre, lobster claw, pine cone, flowers, octopus, butterfly wing, fly eye, etc., and various 3D-printing technologies are discussed. Future opportunities for the development of biomimetic 3D-printing technology to fabricate next-generation functional materials and structures in mechanical, electrical, optical, and biomedical engineering are also outlined.
Collapse
Affiliation(s)
- Yang Yang
- Epstein Department of Industrial and Systems Engineering, Viterbi School of Engineering, University of Southern California, 3715 McClintock Ave, Los Angeles, CA, 90089-0192, USA
| | - Xuan Song
- Department of Mechanical and Industrial Engineering, University of Iowa, Iowa City, IA, 52242, USA
- Center for Computer-Aided Design, University of Iowa, Iowa City, IA, 52242, USA
| | - Xiangjia Li
- Epstein Department of Industrial and Systems Engineering, Viterbi School of Engineering, University of Southern California, 3715 McClintock Ave, Los Angeles, CA, 90089-0192, USA
| | - Zeyu Chen
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA, 90089, USA
| | - Chi Zhou
- Department of Industrial and Systems Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA, 90089, USA
| | - Yong Chen
- Epstein Department of Industrial and Systems Engineering, Viterbi School of Engineering, University of Southern California, 3715 McClintock Ave, Los Angeles, CA, 90089-0192, USA
| |
Collapse
|
144
|
Qing Y, Cheng L, Li R, Liu G, Zhang Y, Tang X, Wang J, Liu H, Qin Y. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomedicine 2018; 13:3311-3327. [PMID: 29892194 PMCID: PMC5993028 DOI: 10.2147/ijn.s165125] [Citation(s) in RCA: 434] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Infection, as a common postoperative complication of orthopedic surgery, is the main reason leading to implant failure. Silver nanoparticles (AgNPs) are considered as a promising antibacterial agent and always used to modify orthopedic implants to prevent infection. To optimize the implants in a reasonable manner, it is critical for us to know the specific antibacterial mechanism, which is still unclear. In this review, we analyzed the potential antibacterial mechanisms of AgNPs, and the influences of AgNPs on osteogenic-related cells, including cellular adhesion, proliferation, and differentiation, were also discussed. In addition, methods to enhance biocompatibility of AgNPs as well as advanced implants modifications technologies were also summarized.
Collapse
Affiliation(s)
- Yun’an Qing
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, People’s Republic of China
| | - Lin Cheng
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, People’s Republic of China
| | - Ruiyan Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, People’s Republic of China
| | - Guancong Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, People’s Republic of China
| | - Yanbo Zhang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, People’s Republic of China
| | - Xiongfeng Tang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, People’s Republic of China
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, People’s Republic of China
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, People’s Republic of China
| | - Yanguo Qin
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, People’s Republic of China
| |
Collapse
|
145
|
Ahadian S, Khademhosseini A. Smart scaffolds in tissue regeneration. Regen Biomater 2018; 5:125-128. [PMID: 29977595 PMCID: PMC6007551 DOI: 10.1093/rb/rby007] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/23/2018] [Accepted: 03/29/2018] [Indexed: 12/12/2022] Open
Abstract
Recent advances in biofabrication technologies and chemical synthesis approaches have enabled the fabrication of smart scaffolds that aim to mimic the dynamic nature of the native extracellular matrix. These scaffolds have paved the way for tissue regeneration in a dynamic and controllable manner.
Collapse
Affiliation(s)
- Samad Ahadian
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Ali Khademhosseini
- Department of Bioengineering
- Department of Radiology
- Department of Chemical and Biomolecular Engineering
- Center for Minimally Invasive Therapeutics (C-MIT)
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095-1600, USA
| |
Collapse
|
146
|
Abstract
The therapeutic replacement of diseased tubular tissue is hindered by the availability and suitability of current donor, autologous and synthetically derived protheses. Artificially created, tissue engineered, constructs have the potential to alleviate these concerns with reduced autoimmune response, high anatomical accuracy, long-term patency and growth potential. The advent of 3D bioprinting technology has further supplemented the technological toolbox, opening up new biofabrication research opportunities and expanding the therapeutic potential of the field. In this review, we highlight the challenges facing those seeking to create artificial tubular tissue with its associated complex macro- and microscopic architecture. Current biofabrication approaches, including 3D printing techniques, are reviewed and future directions suggested.
Collapse
|
147
|
Booth MJ, Restrepo Schild V, Downs FG, Bayley H. Functional aqueous droplet networks. MOLECULAR BIOSYSTEMS 2018; 13:1658-1691. [PMID: 28766622 DOI: 10.1039/c7mb00192d] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Droplet interface bilayers (DIBs), comprising individual lipid bilayers between pairs of aqueous droplets in an oil, are proving to be a useful tool for studying membrane proteins. Recently, attention has turned to the elaboration of networks of aqueous droplets, connected through functionalized interface bilayers, with collective properties unachievable in droplet pairs. Small 2D collections of droplets have been formed into soft biodevices, which can act as electronic components, light-sensors and batteries. A substantial breakthrough has been the development of a droplet printer, which can create patterned 3D droplet networks of hundreds to thousands of connected droplets. The 3D networks can change shape, or carry electrical signals through defined pathways, or express proteins in response to patterned illumination. We envisage using functional 3D droplet networks as autonomous synthetic tissues or coupling them with cells to repair or enhance the properties of living tissues.
Collapse
Affiliation(s)
- Michael J Booth
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | | | | | | |
Collapse
|
148
|
Saha A, Johnston TG, Shafranek RT, Goodman CJ, Zalatan JG, Storti DW, Ganter MA, Nelson A. Additive Manufacturing of Catalytically Active Living Materials. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13373-13380. [PMID: 29608267 DOI: 10.1021/acsami.8b02719] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Living materials, which are composites of living cells residing in a polymeric matrix, are designed to utilize the innate functionalities of the cells to address a broad range of applications such as fermentation and biosensing. Herein, we demonstrate the additive manufacturing of catalytically active living materials (AMCALM) for continuous fermentation. A multi-stimuli-responsive yeast-laden hydrogel ink, based on F127-dimethacrylate, was developed and printed using a direct-write 3D printer. The reversible stimuli-responsive behaviors of the polymer hydrogel inks to temperature and pressure are critical, as they enabled the facile incorporation of yeast cells and subsequent fabrication of 3D lattice constructs. Subsequent photo-cross-linking of the printed polymer hydrogel afforded a robust elastic material. These yeast-laden living materials were metabolically active in the fermentation of glucose into ethanol for 2 weeks in a continuous batch process without significant reduction in efficiency (∼90% yield of ethanol). This cell immobilization platform may potentially be applicable toward other genetically modified yeast strains to produce other high-value chemicals in a continuous biofermentation process.
Collapse
Affiliation(s)
- Abhijit Saha
- Department of Chemistry , University of Washington , Box 351700, Seattle , Washington 98195 , United States
| | - Trevor G Johnston
- Department of Chemistry , University of Washington , Box 351700, Seattle , Washington 98195 , United States
| | - Ryan T Shafranek
- Department of Chemistry , University of Washington , Box 351700, Seattle , Washington 98195 , United States
| | - Cassandra J Goodman
- Department of Mechanical Engineering , University of Washington , Seattle , Washington 98195 , United States
| | - Jesse G Zalatan
- Department of Chemistry , University of Washington , Box 351700, Seattle , Washington 98195 , United States
| | - Duane W Storti
- Department of Mechanical Engineering , University of Washington , Seattle , Washington 98195 , United States
| | - Mark A Ganter
- Department of Mechanical Engineering , University of Washington , Seattle , Washington 98195 , United States
| | - Alshakim Nelson
- Department of Chemistry , University of Washington , Box 351700, Seattle , Washington 98195 , United States
| |
Collapse
|
149
|
Lee S, Esworthy T, Stake S, Miao S, Zuo YY, Harris BT, Zhang LG. Advances in 3D Bioprinting for Neural Tissue Engineering. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201700213] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Se‐Jun Lee
- Department of Mechanical and Aerospace Engineering George Washington University Washington DC 20052 USA
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering George Washington University Washington DC 20052 USA
| | - Seth Stake
- Department of Medicine George Washington University Washington DC 20052 USA
| | - Shida Miao
- Department of Mechanical and Aerospace Engineering George Washington University Washington DC 20052 USA
| | - Yi Y. Zuo
- Department of Mechanical Engineering University of Hawaii at Manoa Honolulu HI 96822 USA
| | - Brent T. Harris
- Department of Neurology and Pathology Georgetown University Washington DC 20007 USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering George Washington University Washington DC 20052 USA
- Department of Medicine George Washington University Washington DC 20052 USA
- Department of Biomedical Engineering George Washington University Washington DC 20052 USA
| |
Collapse
|
150
|
Zhu X, Yang H. Turing Instability-Driven Biofabrication of Branching Tissue Structures: A Dynamic Simulation and Analysis Based on the Reaction⁻Diffusion Mechanism †. MICROMACHINES 2018; 9:E109. [PMID: 30424043 PMCID: PMC6187743 DOI: 10.3390/mi9030109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/20/2018] [Accepted: 03/01/2018] [Indexed: 12/17/2022]
Abstract
Four-dimensional (4D) biofabrication techniques aim to dynamically produce and control three-dimensional (3D) biological structures that would transform their shapes or functionalities with time, when a stimulus is imposed or cell post-printing self-assembly occurs. The evolution of 3D branching patterns via self-assembly of cells is critical for the 4D biofabrication of artificial organs or tissues with branched geometry. However, it is still unclear how the formation and evolution of these branching patterns are biologically encoded. Here, we study the biofabrication of lung branching structures utilizing a simulation model based on Turing instability that raises a dynamic reaction⁻diffusion (RD) process of the biomolecules and cells. The simulation model incorporates partial differential equations of four variables, describing the tempo-spatial distribution of the variables in 3D over time. The simulation results present the formation and evolution process of 3D branching patterns over time and also interpret both the behaviors of side-branching and tip-splitting as the stalk grows and the fabrication style under an external concentration gradient of morphogen, through 3D visualization. This provides a theoretical framework for rationally guiding the 4D biofabrication of lung airway grafts via cellular self-organization, which would potentially reduce the complexity of future experimental research and number of trials.
Collapse
Affiliation(s)
- Xiaolu Zhu
- College of Mechanical & Electrical Engineering, Hohai University, Changzhou 213022, Jiangsu, China.
- Changzhou Key Laboratory of Digital Manufacture Technology, Hohai University, Changzhou 213022, Jiangsu, China.
| | - Hao Yang
- College of Mechanical & Electrical Engineering, Hohai University, Changzhou 213022, Jiangsu, China.
- Jiangsu Key Laboratory of Special Robot Technology, Hohai University, Changzhou 213022, Jiangsu, China.
| |
Collapse
|