101
|
Zhao C, Xiong K, Bi D, Zhao F, Lan Y, Jin X, Li X. Redox-associated messenger RNAs identify novel prognostic values and influence the tumor immune microenvironment of lung adenocarcinoma. Front Genet 2023; 14:1079035. [PMID: 36873939 PMCID: PMC9977811 DOI: 10.3389/fgene.2023.1079035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Background: An imbalance of redox homeostasis participates in tumorigenesis, proliferation, and metastasis, which results from the production of reactive oxygen species (ROS). However, the biological mechanism and prognostic significance of redox-associated messenger RNAs (ramRNAs) in lung adenocarcinoma (LUAD) still remain unclear. Methods: Transcriptional profiles and clinicopathological information were retrieved from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) of LUAD patients. A total of 31 overlapped ramRNAs were determined, and patients were separated into three subtypes by unsupervised consensus clustering. Biological functions and tumor immune-infiltrating levels were analyzed, and then, differentially expressed genes (DEGs) were identified. The TCGA cohort was divided into a training set and an internal validation set at a ratio of 6:4. Least absolute shrinkage and selection operator regression were used to compute the risk score and determine the risk cutoff in the training set. Both TCGA and GEO cohort were distinguished into a high-risk or low-risk group at the median cutoff, and then, relationships of mutation characteristics, tumor stemness, immune differences, and drug sensitivity were investigated. Results: Five optimal signatures (ANLN, HLA-DQA1, RHOV, TLR2, and TYMS) were selected. Patients in the high-risk group had poorer prognosis, higher tumor mutational burden, overexpression of PD-L1, and lower immune dysfunction and exclusion score compared with the low-risk group. Cisplatin, docetaxel, and gemcitabine had significantly lower IC50 in the high-risk group. Conclusion: This study constructed a novel predictive signature of LUAD based on redox-associated genes. Risk score based on ramRNAs served as a promising biomarker for prognosis, TME, and anti-cancer therapies of LUAD.
Collapse
Affiliation(s)
- Chen Zhao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kewei Xiong
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China.,School of Mathematics and Statistics, Central China Normal University, Wuhan, China
| | - Dong Bi
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fangrui Zhao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanfang Lan
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaorui Jin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiangpan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
102
|
Yu W, Ilyas I, Hu X, Xu S, Yu H. Therapeutic potential of paeoniflorin in atherosclerosis: A cellular action and mechanism-based perspective. Front Immunol 2022; 13:1072007. [PMID: 36618414 PMCID: PMC9811007 DOI: 10.3389/fimmu.2022.1072007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Epidemiological studies have shown that the incidence, prevalence and mortality of atherosclerotic cardiovascular disease (ASCVD) are increasing globally. Atherosclerosis is characterized as a chronic inflammatory disease which involves inflammation and immune dysfunction. P. lactiflora Pall. is a plant origin traditional medicine that has been widely used for the treatment of various diseases for more than a millennium in China, Japan and Korean. Paeoniflorin is a bioactive monomer extracted from P. lactiflora Pall. with anti-atherosclerosis effects. In this article, we comprehensively reviewed the potential therapeutic effects and molecular mechanism whereby paeoniflorin protects against atherosclerosis from the unique angle of inflammation and immune-related pathway dysfunction in vascular endothelial cells, smooth muscle cells, monocytes, macrophages, platelets and mast cells. Paeoniflorin, with multiple protective effects in atherosclerosis, has the potential to be used as a promising therapeutic agent for the treatment of atherosclerosis and its complications. We conclude with a detailed discussion of the challenges and future perspective of paeoniflorin in translational cardiovascular medicine.
Collapse
Affiliation(s)
- Wei Yu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, China,Center for Drug Research and Development, Anhui Renovo Pharmaceutical Co., Ltd, Center for Drug Research and Development, Hefei, Anhui, China
| | - Iqra Ilyas
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuerui Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hui Yu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interfacial Controlling Technology, Hebei University of Technology, Tianjin, China,*Correspondence: Hui Yu,
| |
Collapse
|
103
|
Li Y, Ouyang Q, Chen Z, Chen W, Zhang B, Zhang S, Cong M, Xu A. Intracellular labile iron is a key regulator of hepcidin expression and iron metabolism. Hepatol Int 2022; 17:636-647. [DOI: 10.1007/s12072-022-10452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/04/2022] [Indexed: 12/15/2022]
|
104
|
Jeong YH, Oh YC, Kim TI, Ma JY. Neuroprotective and Anti-Neuroinflammatory Properties of Vignae Radiatae Semen in Neuronal HT22 and Microglial BV2 Cell Lines. Nutrients 2022; 14:nu14245265. [PMID: 36558424 PMCID: PMC9786594 DOI: 10.3390/nu14245265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The important factors in the pathogenesis of neurodegenerative disorders include oxidative stress and neuron-glia system inflammation. Vignae Radiatae Semen (VRS) exhibits antihypertensive, anticancer, anti-melanogenesis, hepatoprotective, and immunomodulatory properties. However, the neuroprotective effects and anti-neuroinflammatory activities of VRS ethanol extract (VRSE) remained unknown. Thus, this study aimed to investigate the neuroprotective and anti-inflammatory activities of VRSE against hydrogen peroxide (H2O2)-induced neuronal cell death in mouse hippocampal HT22 cells and lipopolysaccharide (LPS)-stimulated BV2 microglial activation, respectively. This study revealed that VRSE pretreatment had significantly prevented H2O2-induced neuronal cell death and attenuated reactive oxygen species generations in HT22 cells. Additionally, VRSE attenuated the apoptosis protein expression while increasing the anti-apoptotic protein expression. Further, VRSE showed significant inhibitory effects on LPS-induced pro-inflammatory cytokines in BV2 microglia. Moreover, VRSE pretreatment significantly activated the tropomyosin-related kinase receptor B/cAMP response element-binding protein, brain-derived neurotrophic factor and nuclear factor erythroid 2-related factor 2, and heme oxygenase-1 signaling pathways in HT22 cells exposed to H2O2 and inhibited the activation of the mitogen-activated protein kinase and nuclear factor-κB mechanism in BV2 cells stimulated with LPS. Therefore, VRSE exerts therapeutic potential against neurodegenerative diseases related to oxidative stress and pathological inflammatory responses.
Collapse
|
105
|
Polyunsaturated fatty acids, vitamin E and lycopene alleviate ambient particulate matter organic extracts-induced oxidative stress in canine lung cells via the Nrf2/HO-1 pathway. Vet Res Commun 2022; 47:791-801. [DOI: 10.1007/s11259-022-10040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022]
|
106
|
Singh M, Guru A, Sudhakaran G, Pachaiappan R, Mahboob S, Al-Ghanim KA, Al-Misned F, Juliet A, Gobi M, Arokiaraj J. Copper sulfate induced toxicological impact on in-vivo zebrafish larval model protected due to acacetin via anti-inflammatory and glutathione redox mechanism. Comp Biochem Physiol C Toxicol Pharmacol 2022; 262:109463. [PMID: 36087706 DOI: 10.1016/j.cbpc.2022.109463] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/26/2022]
Abstract
Copper sulfate (CuSO4) as industrial effluent is intentionally or unintentionally released into water bodies and accumulates in the fish. Because of its numerous applications, CuSO4 can be hazardous to non-target creatures, producing direct alterations in fish habitats. Acacetin is a flavonoid present in all vascular plants that are extensively dispersed in plant pigments and responsible for many natural hues. However, the impact of acacetin on mitigating the toxic effect of CuSO4 in the in-vivo conditions is not known. The toxicity of acacetin was determined by measuring the survival, deformities and heart rate after treatment with various concentrations to larvae. The protective effect of acacetin was also observed in CuSO4 exposed zebrafish larvae by reducing malformation, mortality rate and oxidative stress. Meanwhile, the acacetin-protected larvae from CuSO4 effects through the molecular mechanism by suppressing pro-inflammatory genes (COX-2, TNF-α and IL-1) and upregulating antioxidant genes (GPx, GST and GR). Overall, our findings suggest that acacetin can act as a protective barrier against CuSO4-induced inflammation in an in-vivo zebrafish larval model.
Collapse
Affiliation(s)
- Mahima Singh
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Ajay Guru
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Gokul Sudhakaran
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - K A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - F Al-Misned
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Annie Juliet
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, University Station A4800, Austin, TX 78712, USA
| | - Muthukaruppan Gobi
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India.
| | - Jesu Arokiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
107
|
Sundar V, Ramasamy T, Doke M, Samikkannu T. Psychostimulants influence oxidative stress and redox signatures: the role of DNA methylation. Redox Rep 2022; 27:53-59. [PMID: 35227168 PMCID: PMC8890556 DOI: 10.1080/13510002.2022.2043224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Objective: Psychostimulant use induces oxidative stress and alters redox imbalance, influencing epigenetic signatures in the central nervous system (CNS). Among the various epigenetic changes, DNA methylation is directly linked to oxidative stress metabolism via critical redox intermediates such as NAD+, S-adenosylmethionine (SAM), and 2-oxoglutarate. Fluctuations in these intermediates directly influence epigenetic signatures, which leads to detectable alterations in gene expression and protein modification. This review focuses on recent advances in the impact of psychostimulant use on redox-imbalance-induced DNA methylation to develop novel epigenetics-based early interventions. Methods: This review is based on collective research data obtained from the PubMed, Science Direct, and Medline databases. The keywords used in the electronic search in these databases were redox, substance use disorder, psychostimulants, DNA methylation, and neurological diseases. Results: Instability in DNA methylation levels and redox expression effects are reported in various behavioral models stimulated by psychostimulants and opioids, indicating the widespread involvement of epigenetic changes in DNA methylation signatures in neurological disorders. Discussion: This review summarizes the need for more studies and experimental evaluations of DNA-methylation-based strategies that may help to understand the association between psychostimulant use and oxidative stress or redox-linked metabolic recalibration influencing neuronal impairments.
Collapse
Affiliation(s)
- Vaishnavi Sundar
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, Texas, USA
| | - Tamizhselvi Ramasamy
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, Texas, USA
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Mayur Doke
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, Texas, USA
| | - Thangavel Samikkannu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, Texas, USA
| |
Collapse
|
108
|
Kim N, Lee S, Lee S, Kang J, Choi Y, Park J, Park C, Khang D, Kim S. Portable Cold Atmospheric Plasma Patch-Mediated Skin Anti-Inflammatory Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202800. [PMID: 36180414 PMCID: PMC9731685 DOI: 10.1002/advs.202202800] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/27/2022] [Indexed: 05/29/2023]
Abstract
Although plasma is a promising technology in various fields, its clinical application is restricted by several limitations. A cold atmospheric plasma (CAP) patch is fabricated to help overcome hurdles, especially when treating skin diseases. This patch has surface dielectric barrier discharge, which generates reactive oxygen species (ROS) and reactive nitrogen species (RNS) on a flexible polymer film surface on which the embedded electrode induces a locally strong electric field. The effect of the CAP patch on psoriasis is also evaluated. The distinct characteristics of psoriasis between the lesion and non-lesion area allow the CAP patch to be suitable for only lesion area for its treatment. The CAP patch induces the opening of calcium channels in keratinocytes, thereby restoring abnormal keratinocyte differentiation and the collapse of the tight junction; thus, alleviating psoriatic symptoms. In addition, the favorable effect is due to the induction of ROS/RNS by the CAP patch, not the electric field generated during plasma generation. The findings indicate that the proposed portable CAP patch can help treat inflammatory skin disorders, especially psoriasis. As this can be used easily as a combination therapy with existing drugs, it may help reduce side effects caused by existing drugs.
Collapse
Affiliation(s)
- Namkyung Kim
- Cell & Matrix Research InstituteDepartment of PharmacologySchool of MedicineKyungpook National UniversityDaegu41944South Korea
| | - Seunghun Lee
- Department of Nano‐Bio ConvergenceNano Surface Materials DivisionKorea Institute of Materials ScienceChangwon51508South Korea
| | - Soyoung Lee
- Immunoregulatory Materials Research CenterKorea Research Institute of Bioscience and BiotechnologyJeongeup56212South Korea
| | - Jinjoo Kang
- Cell & Matrix Research InstituteDepartment of PharmacologySchool of MedicineKyungpook National UniversityDaegu41944South Korea
| | - Young‐Ae Choi
- Cell & Matrix Research InstituteDepartment of PharmacologySchool of MedicineKyungpook National UniversityDaegu41944South Korea
| | - Jeongsu Park
- Department of PhysiologySchool of MedicineGachon UniversityIncheon21999South Korea
| | - Chul‐Kyu Park
- Department of PhysiologySchool of MedicineGachon UniversityIncheon21999South Korea
| | - Dongwoo Khang
- Department of PhysiologySchool of MedicineGachon UniversityIncheon21999South Korea
| | - Sang‐Hyun Kim
- Cell & Matrix Research InstituteDepartment of PharmacologySchool of MedicineKyungpook National UniversityDaegu41944South Korea
| |
Collapse
|
109
|
Ismail EA, Devnarain N, Govender T, Omolo CA. Stimuli-responsive and biomimetic delivery systems for sepsis and related complications. J Control Release 2022; 352:1048-1070. [PMID: 36372385 DOI: 10.1016/j.jconrel.2022.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/18/2022]
Abstract
Sepsis, a consequence of an imbalanced immune response to infection, is currently one of the leading causes of death globally. Despite advances in the discoveries of potential targets and nanotechnology, sepsis still lacks effective drug delivery systems for optimal treatment. Stimuli-responsive and biomimetic nano delivery systems, specifically, are emerging as advanced bio-inspired nanocarriers for enhancing the treatment of sepsis. Herein, we present a critical review of different stimuli-responsive systems, including pH-; enzyme-; ROS- and toxin-responsive nanocarriers, reported in the delivery of therapeutics for sepsis. Biomimetic nanocarriers, utilizing natural pathways in the inflammatory cascade to optimize sepsis therapy, are also reviewed, in addition to smart, multifunctional vehicles. The review highlights the nanomaterials designed for constructing these systems; their physicochemical properties; the mechanisms of drug release; and their potential for enhancing the therapeutic efficacy of their cargo. Current challenges are identified and future avenues for research into the optimization of bio-inspired nano delivery systems for sepsis are also proposed. This review confirms the potential of stimuli-responsive and biomimetic nanocarriers for enhanced therapy against sepsis and related complications.
Collapse
Affiliation(s)
- Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Pharmaceutics, Faculty of Pharmacy, University of Gezira, Wad Medani, Sudan
| | - Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, Nairobi, Kenya.
| |
Collapse
|
110
|
Ramachandran R, Parthasarathy R, Dhayalan S. Silver nanoparticles synthesized by Euphorbia hirta exhibited antibacterial activity and induced apoptosis through downregulation of PI3Kγ mediated PI3K/Akt/mTOR/p70S6K in human lung adenocarcinoma A549 cells. ENVIRONMENTAL TOXICOLOGY 2022; 37:2865-2876. [PMID: 36073799 DOI: 10.1002/tox.23643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Plant extracts were successfully applied to synthesize nanoparticles, and expected such biological processes of effective for chemotherapeutic applications and safe for human use. Our study planned to evaluate the anticancer efficacy of silver nanoparticles (AgNPs) synthesized by Euphorbia hirta on human lung adenocarcinoma A549 cells. The E. hirta synthesized Eh-AgNPs was investigated by UV-spectroscopy, X-ray diffraction, transmission electron microscopy, and Fourier-transform infrared spectroscopy examination. The bactericidal efficacy of Eh-AgNPs was studied by the agar well method, and the cytotoxicity on A549 cells was assessed by MTT assay. Results showed that Eh-AgNPs exhibited effective antibacterial activity against bacterial pathogens, established dose-dependent cytotoxicity on A549 cells, and persuaded apoptosis, as evidenced by increased lipid peroxidation and decreased levels of antioxidants. Eh-AgNPs significantly increased the early apoptosis in A549 cells in a concentration-dependent way. The Eh-AgNPs administration reduced the Bcl-2 expression; however, it increased the expression of p53, Bax, cleaved caspase-3 and -9 apoptotic members. Eh-AgNPs treatment reduced PI3Kγ, phospho-PI3K, phospho-Akt, phospho-mTOR, and p70S6K levels. The obtained results demonstrated that the Eh-AgNPs induce reactive oxygen species-mediated apoptosis by expressing p53, Bax, and inhibiting PI3K/Akt/mTOR/p70S6K signaling pathway.
Collapse
Affiliation(s)
- Rajalakshmi Ramachandran
- Department of Microbiology, Faculty of Science, Annamalai University, Annamalai Nagar, Chidambaram, India
| | - Ramya Parthasarathy
- Department of Microbiology, Faculty of Science, Annamalai University, Annamalai Nagar, Chidambaram, India
| | - Sangeetha Dhayalan
- Department of Microbiology, Faculty of Science, Annamalai University, Annamalai Nagar, Chidambaram, India
| |
Collapse
|
111
|
Tamagawa S, Sakai D, Schol J, Sako K, Nakamura Y, Matsushita E, Warita T, Hazuki S, Nojiri H, Sato M, Ishijima M, Watanabe M. N-acetylcysteine attenuates oxidative stress-mediated cell viability loss induced by dimethyl sulfoxide in cryopreservation of human nucleus pulposus cells: A potential solution for mass production. JOR Spine 2022; 5:e1223. [PMID: 36601378 PMCID: PMC9799083 DOI: 10.1002/jsp2.1223] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/13/2022] [Accepted: 08/16/2022] [Indexed: 11/06/2022] Open
Abstract
Background Cell therapy is considered a promising strategy for intervertebral disc (IVD) regeneration. However, cell products often require long-term cryopreservation, which compromises cell viability and potency, thus potentially hindering commercialization and off-the-shelf availability. Dimethyl sulfoxide (DMSO) is a commonly used cryoprotectant, however, DMSO is associated with cytotoxicity and cell viability loss. This study aimed to investigate the effects of DMSO on human nucleus pulposus cells (NPC) and the role of oxidative stress in DMSO-induced cytotoxicity. Furthermore, we examined the potential of antioxidant N-acetylcysteine (NAC) supplementation to mitigate the negative effects of DMSO. Methods NPC were exposed to various concentrations of DMSO with or without a freezing cycle. Cell viability, cell apoptosis and necrosis rates, intracellular reactive oxygen species (ROS) levels, and gene expression of major antioxidant enzymes were evaluated. In addition, NAC was added to cryopreservation medium containing 10% DMSO and its effects on ROS levels and cell viability were assessed. Results DMSO concentrations ≤1% for 24 h did not significantly affect the NPC viability, whereas exposure to 5 and 10% DMSO (most commonly used concentration) caused cell viability loss (loss of 57% and 68% respectively after 24 h) and cell death in a dose- and time-dependent manner. DMSO increased intracellular and mitochondrial ROS (1.9-fold and 3.6-fold respectively after 12 h exposure to 10% DMSO) and downregulated gene expression levels of antioxidant enzymes in a dose-dependent manner. Tempering ROS through NAC treatment significantly attenuated DMSO-induced oxidative stress and supported maintenance of cell viability. Conclusions This study demonstrated dose- and time-dependent cytotoxic effects of DMSO on human NPC. The addition of NAC to the cryopreservation medium ameliorated cell viability loss by reducing DMSO-induced oxidative stress in the freeze-thawing cycle. These findings may be useful for future clinical applications of whole cells and cellular products.
Collapse
Affiliation(s)
- Shota Tamagawa
- Department of Medicine for Orthopaedics and Motor OrganJuntendo University Graduate School of MedicineTokyoJapan
- Department of Orthopaedic Surgery, Surgical ScienceTokai University School of MedicineIseharaJapan
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical ScienceTokai University School of MedicineIseharaJapan
| | - Jordy Schol
- Department of Orthopaedic Surgery, Surgical ScienceTokai University School of MedicineIseharaJapan
| | - Kosuke Sako
- Department of Orthopaedic Surgery, Surgical ScienceTokai University School of MedicineIseharaJapan
| | - Yoshihiko Nakamura
- Research Center for Regenerative MedicineTokai University School of MedicineIseharaJapan
| | - Erika Matsushita
- Department of Orthopaedic Surgery, Surgical ScienceTokai University School of MedicineIseharaJapan
| | - Takayuki Warita
- Department of Orthopaedic Surgery, Surgical ScienceTokai University School of MedicineIseharaJapan
- TUNZ Pharma Co., Ltd.OsakaJapan
| | - Soma Hazuki
- Department of Orthopaedic Surgery, Surgical ScienceTokai University School of MedicineIseharaJapan
- TUNZ Pharma Co., Ltd.OsakaJapan
| | - Hidetoshi Nojiri
- Department of Medicine for Orthopaedics and Motor OrganJuntendo University Graduate School of MedicineTokyoJapan
| | - Masato Sato
- Department of Orthopaedic Surgery, Surgical ScienceTokai University School of MedicineIseharaJapan
| | - Muneaki Ishijima
- Department of Medicine for Orthopaedics and Motor OrganJuntendo University Graduate School of MedicineTokyoJapan
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Surgical ScienceTokai University School of MedicineIseharaJapan
| |
Collapse
|
112
|
Retinoic acid-induced 1 gene haploinsufficiency alters lipid metabolism and causes autophagy defects in Smith-Magenis syndrome. Cell Death Dis 2022; 13:981. [PMID: 36411275 PMCID: PMC9678881 DOI: 10.1038/s41419-022-05410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022]
Abstract
Smith-Magenis syndrome (SMS) is a neurodevelopmental disorder characterized by cognitive and behavioral symptoms, obesity, and sleep disturbance, and no therapy has been developed to alleviate its symptoms or delay disease onset. SMS occurs due to haploinsufficiency of the retinoic acid-induced-1 (RAI1) gene caused by either chromosomal deletion (SMS-del) or RAI1 missense/nonsense mutation. The molecular mechanisms underlying SMS are unknown. Here, we generated and characterized primary cells derived from four SMS patients (two with SMS-del and two carrying RAI1 point mutations) and four control subjects to investigate the pathogenetic processes underlying SMS. By combining transcriptomic and lipidomic analyses, we found altered expression of lipid and lysosomal genes, deregulation of lipid metabolism, accumulation of lipid droplets, and blocked autophagic flux. We also found that SMS cells exhibited increased cell death associated with the mitochondrial pathology and the production of reactive oxygen species. Treatment with N-acetylcysteine reduced cell death and lipid accumulation, which suggests a causative link between metabolic dyshomeostasis and cell viability. Our results highlight the pathological processes in human SMS cells involving lipid metabolism, autophagy defects and mitochondrial dysfunction and suggest new potential therapeutic targets for patient treatment.
Collapse
|
113
|
Küçüksolak M, Üner G, Ballar Kırmızıbayrak P, Bedir E. Neuroprotective metabolites via fungal biotransformation of a novel sapogenin, cyclocephagenol. Sci Rep 2022; 12:18481. [PMID: 36323752 PMCID: PMC9630500 DOI: 10.1038/s41598-022-22799-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/19/2022] [Indexed: 01/06/2023] Open
Abstract
Cyclocephagenol (1), a novel cycloartane-type sapogenin with tetrahydropyran unit, is only encountered in Astragalus species. This rare sapogenin has never been a topic of biological activity or modification studies. The objectives of this study were; (i) to perform microbial transformation studies on cyclocephagenol (1) using Astragalus endophyte, Alternaria eureka 1E1BL1, followed by isolation and structural characterization of the metabolites; (ii) to investigate neuroprotective activities of the metabolites; (iii) to understand structure-activity relationships towards neuroprotection. The microbial transformation of cyclocephagenol (1) using Alternaria eureka resulted in the production of twenty-one (2-22) previously undescribed metabolites. Oxidation, monooxygenation, dehydration, methyl migration, epoxidation, and ring expansion reactions were observed on the triterpenoid skeleton. Structures of the compounds were established by 1D-, 2D-NMR, and HR-MS analyses. The neuroprotective activities of metabolites and parent compound (1) were evaluated against H2O2-induced cell injury. The structure-activity relationship (SAR) was established, and the results revealed that 1 and several other metabolites had potent neuroprotective activity. Further studies revealed that selected compounds reduced the amount of ROS and preserved the integrity of the mitochondrial membrane. This is the first report of microbial transformation of cyclocephagenol (1).
Collapse
Affiliation(s)
- Melis Küçüksolak
- Department of Bioengineering, Faculty of Engineering, İzmir Institute of Technology, Urla, 35430, İzmir, Türkiye
| | - Göklem Üner
- Department of Bioengineering, Faculty of Engineering, İzmir Institute of Technology, Urla, 35430, İzmir, Türkiye
| | | | - Erdal Bedir
- Department of Bioengineering, Faculty of Engineering, İzmir Institute of Technology, Urla, 35430, İzmir, Türkiye.
| |
Collapse
|
114
|
Ibrahim KA, Eleyan M, Khwanes SA, Mohamed RA, Ayesh BM. Alpha-mangostin attenuates the apoptotic pathway of abamectin in the fetal rats' brain by targeting pro-oxidant stimulus, catecholaminergic neurotransmitters, and transcriptional regulation of reelin and nestin. Drug Chem Toxicol 2022; 45:2496-2508. [PMID: 34338122 DOI: 10.1080/01480545.2021.1960856] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abamectin, an avermectin member, can induce significant neurodegeneration symptoms in non-target organisms. However, its neurodevelopmental influences in mammals are unclear. Here, we focus on the antiapoptotic action of alpha-mangostin against the developmental neurotoxicity of abamectin with the possible involvement of reelin and nestin mRNA gene expression. Thirty-two pregnant rats were allocated to four groups (8 rats/group); control, alpha-mangostin (20 mg/kg/d), abamectin (0.5 mg/kg), and co-treated group (alpha-mangostin + abamectin). The animals have gavaged their doses during the gestation period. The fetotoxicity and many signs of growth retardation were observed in the abamectin-intoxicated rats. In comparison with the control group, abamectin prompted a significant elevation (p < 0.05) in the levels of malondialdehyde and nitric oxide, along with many symptoms of histopathological changes in the fetal cerebral cortex. However, the glutathione, dopamine, and serotonin concentrations together with the activities of glutathione-S-transferase, catalase, and superoxide dismutase were markedly decreased (p < 0.05) in the abamectin group. Moreover, abamectin remarkably upregulated (p < 0.05) the brain mRNA gene expression of reelin, nestin, and caspase-9 as well as the immunoreactivity of Bax and caspase-3 proteins in the cerebral cortex. It should be noted that alpha-mangostin mitigated the developmental neurotoxicity of abamectin to the normal range by recovering the levels of oxidant/antioxidant biomarkers, catecholamines; and apoptosis-related proteins with the involvement of reelin and nestin genes regulation. Those records revealed that the transcription regulation of reelin and nestin could be involved in the neuroprotective efficacy of alpha-mangostin, especially avermectin's developmental neurotoxicity.
Collapse
Affiliation(s)
- Khairy A Ibrahim
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Giza, Egypt
| | - Mohammed Eleyan
- Department of Laboratory Medical Sciences, Al-Aqsa University, Gaza, Palestine
| | - Soad A Khwanes
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Giza, Egypt
| | - Rania A Mohamed
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Giza, Egypt
| | - Basim M Ayesh
- Department of Laboratory Medical Sciences, Al-Aqsa University, Gaza, Palestine
| |
Collapse
|
115
|
Zhu Z, Lian X, Bhatia M. Hydrogen Sulfide: A Gaseous Mediator and Its Key Role in Programmed Cell Death, Oxidative Stress, Inflammation and Pulmonary Disease. Antioxidants (Basel) 2022; 11:2162. [PMID: 36358533 PMCID: PMC9687070 DOI: 10.3390/antiox11112162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/21/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Hydrogen sulfide (H2S) has been acknowledged as a novel gaseous mediator. The metabolism of H2S in mammals is tightly controlled and is mainly achieved by many physiological reactions catalyzed by a suite of enzymes. Although the precise actions of H2S in regulating programmed cell death, oxidative stress and inflammation are yet to be fully understood, it is becoming increasingly clear that H2S is extensively involved in these crucial processes. Since programmed cell death, oxidative stress and inflammation have been demonstrated as three important mechanisms participating in the pathogenesis of various pulmonary diseases, it can be inferred that aberrant H2S metabolism also functions as a critical contributor to pulmonary diseases, which has also been extensively investigated. In the meantime, substantial attention has been paid to developing therapeutic approaches targeting H2S for pulmonary diseases. In this review, we summarize the cutting-edge knowledge on the metabolism of H2S and the relevance of H2S to programmed cell death, oxidative stress and inflammation. We also provide an update on the crucial roles played by H2S in the pathogenesis of several pulmonary diseases. Finally, we discuss the perspective on targeting H2S metabolism in the treatment of pulmonary diseases.
Collapse
Affiliation(s)
- Zhixing Zhu
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China
| | - Xihua Lian
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
| |
Collapse
|
116
|
Zheng X, Zhao J, Wang S, Hu L. Research Progress of Antioxidant Nanomaterials for Acute Pancreatitis. Molecules 2022; 27:7238. [PMID: 36364064 PMCID: PMC9658789 DOI: 10.3390/molecules27217238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/16/2022] [Accepted: 10/21/2022] [Indexed: 08/30/2023] Open
Abstract
Acute pancreatitis (AP) is a complex inflammatory disease caused by multiple etiologies, the pathogenesis of which has not been fully elucidated. Oxidative stress is important for the regulation of inflammation-related signaling pathways, the recruitment of inflammatory cells, the release of inflammatory factors, and other processes, and plays a key role in the occurrence and development of AP. In recent years, antioxidant therapy that suppresses oxidative stress by scavenging reactive oxygen species has become a research highlight of AP. However, traditional antioxidant drugs have problems such as poor drug stability and low delivery efficiency, which limit their clinical translation and applications. Nanomaterials bring a brand-new opportunity for the antioxidant treatment of AP. This review focuses on the multiple advantages of nanomaterials, including small size, good stability, high permeability, and long retention effect, which can be used not only as effective carriers of traditional antioxidant drugs but also directly as antioxidants. In this review, after first discussing the association between oxidative stress and AP, we focused on summarizing the literature related to antioxidant nanomaterials for the treatment of AP and highlighting the effects of these nanomaterials on the indicators related to oxidative stress in pathological states, aiming to provide references for follow-up research and promote clinical application.
Collapse
Affiliation(s)
- Xiaoyi Zheng
- Ningxia Medical University, Postgraduate Training Base in Shanghai Gongli Hospital, Pudong New Area, No. 219 Miao Pu Road, Shanghai 200135, China
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Lianghao Hu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| |
Collapse
|
117
|
ROS: Basic Concepts, Sources, Cellular Signaling, and its Implications in Aging Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1225578. [PMID: 36312897 PMCID: PMC9605829 DOI: 10.1155/2022/1225578] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022]
Abstract
Reactive oxygen species (ROS) are bioproducts of cellular metabolism. There is a range of molecules with oxidizing properties known as ROS. Despite those molecules being implied negatively in aging and numerous diseases, their key role in cellular signaling is evident. ROS control several biological processes such as inflammation, proliferation, and cell death. The redox signaling underlying these cellular events is one characteristic of the new generation of scientists aimed at defining the role of ROS in the cellular environment. The control of redox potential, which includes the balance of the sources of ROS and the antioxidant system, implies an important target for understanding the cells' fate derived from redox signaling. In this review, we summarized the chemical, the redox balance, the signaling, and the implications of ROS in biological aging.
Collapse
|
118
|
Lichen Extracts from Cetrarioid Clade Provide Neuroprotection against Hydrogen Peroxide-Induced Oxidative Stress. Molecules 2022; 27:molecules27196520. [PMID: 36235056 PMCID: PMC9573381 DOI: 10.3390/molecules27196520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 01/24/2023] Open
Abstract
Oxidative stress is involved in the pathophysiology of many neurodegenerative diseases. Lichens have antioxidant properties attributed to their own secondary metabolites with phenol groups. Very few studies delve into the protective capacity of lichens based on their antioxidant properties and their action mechanism. The present study evaluates the neuroprotective role of Dactylina arctica, Nephromopsis stracheyi, Tuckermannopsis americana and Vulpicida pinastri methanol extracts in a hydrogen peroxide (H2O2) oxidative stress model in neuroblastoma cell line "SH-SY5Y cells". Cells were pretreated with different concentrations of lichen extracts (24 h) before H2O2 (250 µM, 1 h). Our results showed that D. arctica (10 µg/mL), N. stracheyi (25 µg/mL), T. americana (50 µg/mL) and V. pinastri (5 µg/mL) prevented cell death and morphological changes. Moreover, these lichens significantly inhibited reactive oxygen species (ROS) production and lipid peroxidation and increased superoxide dismutase (SOD) and catalase (CAT) activities and glutathione (GSH) levels. Furthermore, they attenuated mitochondrial membrane potential decline and calcium homeostasis disruption. Finally, high-performance liquid chromatography (HPLC) analysis revealed that the secondary metabolites were gyrophoric acid and lecanoric acid in D. artica, usnic acid, pinastric acid and vulpinic acid in V. pinastri, and alectoronic acid in T. americana. In conclusion, D. arctica and V. pinastri are the most promising lichens to prevent and to treat oxidative stress-related neurodegenerative diseases.
Collapse
|
119
|
Zhang YM, Xu WB, Cheng YX, Chen DY, Lin CY, Li BZ, Dong WR, Shu MA. Effects of air exposure stress on crustaceans: Histopathological changes, antioxidant and immunity of the red swamp crayfish Procambarus clarkii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104480. [PMID: 35772591 DOI: 10.1016/j.dci.2022.104480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Air exposure stress may result in oxidative damage and ultimately disease or death in crustaceans. Using the Procambarus clarkia, one of the main commercial aquaculture species in China, as a study model, the molecular mechanism including histopathological changes, antioxidant capacity and immunity response under the air exposure stress were firstly evaluated. Results showed that the surfaces of gill were wrinkled while the morphologies of the nuclei and mitochondria in the hepatopancreas were altered after 48 h of air exposure stress, and the damage of mitochondria was more serious after additional bacterial infection. Moreover, the activity of antioxidant enzymes increased at first and then decreased along with increasement of air exposure time. The concentration of malondialdehyde (MDA) in hepatopancreas was significantly increased under the air exposure stress, while the bacterial infection further aggravated such oxidative damage. The transcriptome analysis exhibited that the stress- and immunity-related genes in hepatopancreas altered when response to the air exposure stress. This study could help uncover the mechanisms of aerial exposure stress responses in Procambarus clarkii.
Collapse
Affiliation(s)
- Yan-Mei Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Bin Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuan-Xin Cheng
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Da-Yong Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chen-Yang Lin
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bang-Ze Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei-Ren Dong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
120
|
Laskowska AK, Wilczak A, Skowrońska W, Michel P, Melzig MF, Czerwińska ME. Fruits of Hippophaë rhamnoides in human leukocytes and Caco-2 cell monolayer models—A question about their preventive role in lipopolysaccharide leakage and cytokine secretion in endotoxemia. Front Pharmacol 2022; 13:981874. [PMID: 36249809 PMCID: PMC9561609 DOI: 10.3389/fphar.2022.981874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Preparations from Hippophaë rhamnoides L. (sea buckthorn) have been traditionally used in the treatment of skin and digestive disorders, such as gastritis, gastric and duodenal ulcers, uterine erosions, as well as oral, rectal, and vaginal mucositis, in particular in the Himalayan and Eurasian regions. An influence of an aqueous extract from the fruits of H. rhamnoides (HR) on leakage of lipopolysaccharide (LPS) from Escherichia coli through gut epithelium developed from the human colorectal adenocarcinoma (Caco-2) monolayer in vitro and glucose transporter 2 (GLUT2) translocation were the principal objectives of the study. Additionally, the effect of HR on the production of pro- and anti-inflammatory cytokines (interleukins: IL-8, IL-1β, IL-10, IL-6; tumor necrosis factor: TNF-α) by the Caco-2 cell line, human neutrophils (PMN), and peripheral blood mononuclear cells (PBMC) was evaluated. The concentration of LPS on the apical and basolateral sides of the Caco-2 monolayer was evaluated with a Limulus Amebocyte Lysate (LAL) assay. GLUT2 translocation was evaluated using an immunostaining assay, whereas secretion of cytokines by cell cultures was established with an enzyme-linked immunosorbent (ELISA) assay. HR (500 μg/ml) significantly inhibited LPS leakage through epithelial monolayer in vitro in comparison with non-treated control. The treatment of Caco-2 cells with HR (50–100 μg/ml) showed GLUT2 expression similar to the non-treated control. HR decreased the secretion of most pro-inflammatory cytokines in all tested models. HR might prevent low-grade chronic inflammation caused by metabolic endotoxemia through the prevention of the absorption of LPS and decrease of chemotactic factors released by immune and epithelial cells, which support its use in metabolic disorders in traditional medicine.
Collapse
Affiliation(s)
- Anna K. Laskowska
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Wilczak
- Student Scientific Association, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Weronika Skowrońska
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Michel
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| | | | - Monika E. Czerwińska
- Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
- *Correspondence: Monika E. Czerwińska,
| |
Collapse
|
121
|
Development of an In Vitro Model of SARS-CoV-Induced Acute Lung Injury for Studying New Therapeutic Approaches. Antioxidants (Basel) 2022; 11:antiox11101910. [PMID: 36290634 PMCID: PMC9598130 DOI: 10.3390/antiox11101910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 12/15/2022] Open
Abstract
One of the causes of death of patients infected by SARS-CoV-2 is the induced respiratory failure caused by excessive activation of the immune system, the so-called “cytokine storm”, leading to damage to lung tissue. In vitro models reproducing various stages of the disease can be used to explore the pathogenetic mechanisms and therapeutic approaches to treating the consequences of a cytokine storm. We have developed an in vitro test system for simulating damage to the pulmonary epithelium as a result of the development of a hyperinflammatory reaction based on the co-cultivation of pulmonary epithelial cells (A549 cells) and human peripheral blood mononuclear cells (PBMC) primed with lipopolysaccharide (LPS). In this model, after 24 h of co-cultivation, a sharp decrease in the rate of proliferation of A549 cells associated with the intrinsic development of oxidative stress and, ultimately, with the induction of PANoptotic death were observed. There was a significant increase in the concentration of 40 cytokines/chemokines in a conditioned medium, including TNF-α, IFN-α, IL-6, and IL-1a, which corresponded to the cytokine profile in patients with severe manifestation of COVID-19. In order to verify the model, the analysis of the anti-inflammatory effects of well-known substances (dexamethasone, LPS from Rhodobacter sphaeroides (LPS-RS), polymyxin B), as well as multipotent mesenchymal stem cells (MSC) and MSC-derived extracellular vesicles (EVs) was carried out. Dexamethasone and polymyxin B restored the proliferative activity of A549 cells and reduced the concentration of proinflammatory cytokines. MSC demonstrated an ambivalent effect through stimulated production of both pro-inflammatory cytokines and growth factors that regenerate lung tissue. LPS-RS and EVs showed no significant effect. The developed test system can be used to study molecular and cellular pathological processes and to evaluate the effectiveness of various therapeutic approaches for the correction of hyperinflammatory response in COVID-19 patients.
Collapse
|
122
|
de Guzman AV, Kang S, Kim EJ, Kim JH, Jang N, Cho JH, Choi SS. High-Glucose Diet Attenuates the Dopaminergic Neuronal Function in C. elegans, Leading to the Acceleration of the Aging Process. ACS OMEGA 2022; 7:32339-32348. [PMID: 36120016 PMCID: PMC9475632 DOI: 10.1021/acsomega.2c03384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the selective degeneration of neurons, primarily in the substantia nigra. Environmental or exogenous factors that cause Parkinson's disease have not been sufficiently elucidated. Our study aims to investigate the causative effect of a high-glucose diet on Parkinson's disease-relevant dopaminergic neuronal system in Caenorhabditis elegans. Aging parameters were first observed by measuring the lifespan, body movement, and body sizes with and without the background of high glucose. The toxic effect of a high-glucose diet was further explored by observing the dopaminergic neurons using transgenic Pdat-1::gfp strains, BZ555, under a Zeiss microscope, and the experiments were extended by assessing dopamine-related behavioral analysis including basal slowing response and alcohol avoidance. The aggregation of the α-synucleins was also assessed by observing the NL5901 mutants. Worms fed with 250 mM glucose showed daf-2-independent regulation of aging, displaying a short lifespan (≤15 days), long body size (max. 140%), and slow movement (min. 30%, 10 bends/min). Anterior dopaminergic neurons were rapidly inactivated (70%) by a glucose-rich diet from 12 h of exposure, suggesting specific degeneration in ADE neurons. The dysregulation of neurons led to deteriorations in dopaminergic behaviors including basal slowing response (BSR). A high-glucose diet decreased dopamine synthesis (40 pg/mg vs 15 pg/mg protein) and induced α-synuclein aggregation in the muscles. Results demonstrate the potential of a high-glucose diet as a trigger of dopaminergic neuronal dysregulation conjugating aging acceleration.
Collapse
Affiliation(s)
| | - Seunghun Kang
- Department
of Food and Nutrition, Myongji University, Yongin 17058, South Korea
| | - Eun Ji Kim
- Department
of Food and Nutrition, Myongji University, Yongin 17058, South Korea
| | - Jin Ho Kim
- Department
of Energy Science and Technology, Myongji
University, Yongin 17058, South Korea
| | - Nari Jang
- Department
of Food and Nutrition, Myongji University, Yongin 17058, South Korea
| | - Joong Hee Cho
- Department
of Food and Nutrition, Myongji University, Yongin 17058, South Korea
| | - Shin Sik Choi
- Department
of Energy Science and Technology, Myongji
University, Yongin 17058, South Korea
- Department
of Food and Nutrition, Myongji University, Yongin 17058, South Korea
| |
Collapse
|
123
|
Rahman ANA, Mohamed AAR, Dahran N, Farag MFM, Alqahtani LS, Nassan MA, AlThobaiti SA, El-Naseery NI. Appraisal of sub-chronic exposure to lambada-cyhalothrin and/or methomyl on the behavior and hepato-renal functioning in Oreochromis niloticus: Supportive role of taurine-supplemented feed. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 250:106257. [PMID: 35933907 DOI: 10.1016/j.aquatox.2022.106257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/31/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The existing study was designed to inspect the toxicological consequences of two pesticides; lambda-cyhalothrin (LCT) and methomyl (MTM) and their combination on Nile tilapia (Oreochromis niloticus) behaviors, oxidative stress, hepato-renal function indices and microarchitectural alterations. In addition, the efficiency of taurine (TUR) to rescue their toxicity was also considered. Juvenile O. niloticus were assigned into eight groups. The control and TUR groups were fed on a basal diet and TUR-enriched (10 g kg1) diet, respectively. The other groups were fed on a basal diet, and exposed to LCT (0.079 µg L-1), MTM (20.39 µg L-1 and (LCT + MTM). The last three groups were (LCT + TUR), (MTM + TUR), and (LCT + MTM + TUR) and fed on a TUR-enriched diet during exposure to LCT and/or MTM for 60 days. The exposure to LCT and/or MTM resulted in several behavioral alterations and stress via enhanced cortisol and nor-epinephrine levels. A significant elevation of serum 8-hydroxy-2- deoxyguanosine, aspartate and alanine aminotransferases, lactate dehydrogenase, Alkaline phosphatase, urea, creatinine was also observed in these groups. Furthermore, reduced antioxidant enzymes activities, including (catlase, glutathione peroxidase, and superoxide dismutase) with marked histopathological lesions in both liver and kidney tissues were detected. The up-regulated Bax and down-regulated Bcl-2 proteins were expressed in the liver and kidney tissues of LCT and/or MTM -exposed groups. Interestingly, all the observed alterations in behaviors, biochemical indices, and histo-architecture of renal and hepatic tissues were mitigated by TUR supplementation. The findings suggest that feeding O. niloticus dietary TUR may help to reduce the negative effects of LCT and/or MTM, and can also support kidney and liver health in O. niloticus, making it a promising aquaculture feed supplement.
Collapse
Affiliation(s)
- Afaf N Abdel Rahman
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Sharkia, Zagazig, Egypt.
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Egypt.
| | - Naief Dahran
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohamed F M Farag
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Leena S Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 23445, Saudi Arabia
| | - Mohamed A Nassan
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Saed Ayidh AlThobaiti
- Biology Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia
| | - Nesma I El-Naseery
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Egypt
| |
Collapse
|
124
|
Firat CK, Ozkan BN, Guler EM. Beneficial effects of vitamin B 12 treatment in pediatric patients diagnosed with vitamin B 12 deficiency regarding total-native thiol, oxidative stress, and mononuclear leukocyte DNA damage. Free Radic Res 2022; 56:631-639. [PMID: 36571212 DOI: 10.1080/10715762.2022.2162392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Vitamin B12 is involved in biochemical metabolic pathways. B12 deficiency is common in childhood when the need for the vitamin increases and growth and development occur. Various hematological, neurological, psychiatric, and gastrointestinal disorders are observed in its deficiency. In addition, B12 deficiency is associated with oxidative stress and DNA damage. Therefore, the aim of our study is to evaluate oxidative stress, thiol/disulfide homeostasis, and DNA damage pre and post-treatment in children diagnosed with B12 deficiency. A total of 40 children with B12 deficiency were included in the study after the consent form was approved. Blood was drawn from children pre and posttreatment. Hemoglobin (HGB), hematocrit (HCT), and red blood cells (RBC) were measured by autoanalyzer; total antioxidant status (TAS), total oxidant status (TOS), total thiol (TT), and native thiol (NT) were measured by the photometric method, and DNA damage was analyzed by the comet assay method. Oxidative stress index (OSI) and disulfide (DIS) values were calculated. As a result of the experiments, HGB, HCT, and RBC increased with treatment. While TAS, TT, and NT as antioxidant parameters increased; TOS, OSI, and DIS decreased with treatment compared to pretreatment. DNA damage was also found to decrease with treatment. Additionally, these data were statistically significant (p < 0.001). It was found that oxidative stress and DNA damage decreased with oral B12 treatment in children with B12 deficiency, and clinical parameters were also improved.
Collapse
Affiliation(s)
- Cem Koray Firat
- Department of Pediatry, Bezmialem Vakif University School of Medicine, Istanbul, Turkey
| | - Beyza Nur Ozkan
- Department of Medical Biochemistry, University of Health Sciences Turkey, Hamidiye School of Medicine, Istanbul, Turkey
| | - Eray Metin Guler
- Department of Medical Biochemistry, University of Health Sciences Turkey, Hamidiye School of Medicine, Istanbul, Turkey.,Department of Medical Biochemistry, University of Health Sciences Turkey, Hamidiye Faculty of Medicine, Haydarpasa Numune Health Application and Research Center, Istanbul, Turkey
| |
Collapse
|
125
|
Li S, Chen Z, Chen R, Xue N, Shen X, Zhu H, Peng Y. Preoperative Free Ferrous Protoporphyrin and Reactive Oxygen Species Status of Voided Urine Predicts Potential Recurrence Risk in NMIBC. Cancer Manag Res 2022; 14:2291-2297. [PMID: 35945922 PMCID: PMC9357380 DOI: 10.2147/cmar.s371974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/22/2022] [Indexed: 12/14/2022] Open
Abstract
Purpose This study aimed to assess the relationship between the preoperative reactive oxygen species and free ferrous protoporphyrin (ROS and FH) combined test and the risk of recurrence in a pathologically confirmed non-muscular invasive bladder cancer (NMIBC) patients. Patients and Methods The retrospective study included 218 patients, newly diagnosed with NMIBC between January 2019 and February 2022. According to the results of FH and ROS combined test of voided urine, all patients were classified as FH(-)/ROS(-), FH(+)/ROS(-), or FH(+) /ROS(+). We reviewed demographic information, pathological results, and the FH and ROS combined test status. The clinicopathological characteristics were evaluated, and the survival rates of each group were compared. Finally, we also analyzed the association between preoperative free ferrous protoporphyrin and reactive oxygen species status and the tumor stage and grade. Results This study included 218 NMIBC patients with a median age of 68 years (interquartile range [IQR] 60–76 years). The number and proportion of patients in FH(-)/ROS(-), FH(+)/ROS(-) and FH(+) /ROS(+) were 95(43.6%), 79(36.2%) and 44(20.2%), respectively. And the pathological stages for those with FH(+) and ROS(+), FH(+) and ROS(-), FH(-) and ROS(-) at diagnosis were 0.5% Tis, 6.4% Ta, 13.3% T1; 2.3% Tis, 20.6% Ta, 13.3% T1; 5.5% Tis, 28.9% Ta, 9.2% T1, respectively. After adjusting for clinical factors, including tumor grade, tumor stage and FH/ROS status were independent risk factors for RFS In the multivariate Cox regression analysis. Through logistics regression analysis, FH(+)/ROS(+) were found to be corelated with high grade and more high stage (T1). Kaplan–Meier analysis showed that 1-year RFS of FH(+)/ROS(+), FH(+)/ROS(-) and FH(-)/ROS(-) were 46.0%, 87.8% and 93.4%, respectively (P=0.000). Conclusion In newly diagnosed NMIBC patients, the status of FH(+)/ROS(+) has an association with a higher risk in recurrence. Furthermore, FH(+)/ROS(+) at diagnosis was correlated with high grade and higher stage (T1). Hence, the FH/ROS combined test can help specify treatment options for patients diagnosed with NMIBC.
Collapse
Affiliation(s)
- Shuaishuai Li
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Zeyu Chen
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Rui Chen
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Ning Xue
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Xihao Shen
- The First Clinical Medical College of Nanjing Medical University, NanJing, People’s Republic of China
| | - Haitao Zhu
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
- Correspondence: Haitao Zhu; Yunpeng Peng, Department of Urology, The Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, 221100, People’s Republic of China, Tel +8615055521680; +8617826444501, Email ;
| | - Yunpeng Peng
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| |
Collapse
|
126
|
Lacy B, Rahman MS, Rahman MS. Potential mechanisms of Na +/K +-ATPase attenuation by heat and pesticides co-exposure in goldfish: role of cellular apoptosis, oxidative/nitrative stress, and antioxidants in gills. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57376-57394. [PMID: 35352221 DOI: 10.1007/s11356-022-19779-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
In this study, we examined the dose-dependent effects of an environmentally relevant pesticide cocktail (metalachlor, linuron, isoproturon, tebucanazole, aclonifen, atrazine, pendimethalin, and azinphos-methyl) and temperature change (22 vs. 32 °C for 4-week exposure) on Na+/K+-ATPase, 3-nitrotyrosine protein (NTP), dinitrophenyl protein (DNP), catalase (CAT), and superoxide dismutase (SOD) expressions in gills of goldfish (Carassius auratus). Histopathological analysis showed widespread damage to gill in elevated temperature (32 °C) and pesticide co-exposure groups, including fusion of secondary lamellae, club-shaped primary lamellae, rupture of epithelial layer, loss of normal architecture, and hemorrhaging. Immunohistochemical and qRT-PCR analyses showed significant decreases in Na+/K+-ATPase protein and mRNA expressions in gills exposed to higher temperature and pesticides; however, combined exposure to heat and pesticides significantly increases NTP, DNP, CAT, and SOD expressions. In situ TUNEL assay revealed elevated levels of apoptotic cells in response to combined exposure. Collectively, our results suggest the combined effects of heat and pesticide stress cause cellular damage, upregulate oxidative/nitrative stress biomarkers, and increase apoptotic cells, downregulate Na+/K+-ATPase expression in gills. This provides new evidence for oxidant/antioxidant-dependent mechanisms for downregulation of Na+/K+-ATPase expression in gills during combined exposure.
Collapse
Affiliation(s)
- Brittney Lacy
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, 1 West University Drive, Brownsville, TX, 78520, USA
| | - Md Sadequr Rahman
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, 1 West University Drive, Brownsville, TX, 78520, USA
| | - Md Saydur Rahman
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, 1 West University Drive, Brownsville, TX, 78520, USA.
- Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, USA.
| |
Collapse
|
127
|
Buettmann EG, Goldscheitter GM, Hoppock GA, Friedman MA, Suva LJ, Donahue HJ. Similarities Between Disuse and Age-Induced Bone Loss. J Bone Miner Res 2022; 37:1417-1434. [PMID: 35773785 PMCID: PMC9378610 DOI: 10.1002/jbmr.4643] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 11/07/2022]
Abstract
Disuse and aging are known risk factors associated with low bone mass and quality deterioration, resulting in increased fracture risk. Indeed, current and emerging evidence implicate a large number of shared skeletal manifestations between disuse and aging scenarios. This review provides a detailed overview of current preclinical models of musculoskeletal disuse and the clinical scenarios they seek to recapitulate. We also explore and summarize the major similarities between bone loss after extreme disuse and advanced aging at multiple length scales, including at the organ/tissue, cellular, and molecular level. Specifically, shared structural and material alterations of bone loss are presented between disuse and aging, including preferential loss of bone at cancellous sites, cortical thinning, and loss of bone strength due to enhanced fragility. At the cellular level bone loss is accompanied, during disuse and aging, by increased bone resorption, decreased formation, and enhanced adipogenesis due to altered gap junction intercellular communication, WNT/β-catenin and RANKL/OPG signaling. Major differences between extreme short-term disuse and aging are discussed, including anatomical specificity, differences in bone turnover rates, periosteal modeling, and the influence of subject sex and genetic variability. The examination also identifies potential shared mechanisms underlying bone loss in aging and disuse that warrant further study such as collagen cross-linking, advanced glycation end products/receptor for advanced glycation end products (AGE-RAGE) signaling, reactive oxygen species (ROS) and nuclear factor κB (NF-κB) signaling, cellular senescence, and altered lacunar-canalicular connectivity (mechanosensation). Understanding the shared structural alterations, changes in bone cell function, and molecular mechanisms common to both extreme disuse and aging are paramount to discovering therapies to combat both age-related and disuse-induced osteoporosis. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Evan G Buettmann
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Galen M Goldscheitter
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Gabriel A Hoppock
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael A Friedman
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
128
|
Mlejnek P. Direct Interaction between N-Acetylcysteine and Cytotoxic Electrophile—An Overlooked In Vitro Mechanism of Protection. Antioxidants (Basel) 2022; 11:antiox11081485. [PMID: 36009205 PMCID: PMC9405167 DOI: 10.3390/antiox11081485] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
In laboratory experiments, many electrophilic cytotoxic agents induce cell death accompanied by reactive oxygen species (ROS) production and/or by glutathione (GSH) depletion. Not surprisingly, millimolar concentrations of N-acetylcysteine (NAC), which is used as a universal ROS scavenger and precursor of GSH biosynthesis, inhibit ROS production, restore GSH levels, and prevent cell death. The protective effect of NAC is generally used as corroborative evidence that cell death induced by a studied cytotoxic agent is mediated by an oxidative stress-related mechanism. However, any simple interpretation of the results of the protective effects of NAC may be misleading because it is unable to interact with superoxide (O2•−), the most important biologically relevant ROS, and is a very weak scavenger of H2O2. In addition, NAC is used in concentrations that are unnecessarily high to stimulate GSH synthesis. Unfortunately, the possibility that NAC as a nucleophile can directly interact with cytotoxic electrophiles to form non-cytotoxic NAC–electrophile adduct is rarely considered, although it is a well-known protective mechanism that is much more common than expected. Overall, apropos the possible mechanism of the cytoprotective effect of NAC in vitro, it is appropriate to investigate whether there is a direct interaction between NAC and the cytotoxic electrophile to form a non-cytotoxic NAC–electrophilic adduct(s).
Collapse
Affiliation(s)
- Petr Mlejnek
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 77515 Olomouc, Czech Republic
| |
Collapse
|
129
|
Folate-Targeted Curcumin-Loaded Niosomes for Site-Specific Delivery in Breast Cancer Treatment: In Silico and In Vitro Study. Molecules 2022; 27:molecules27144634. [PMID: 35889513 PMCID: PMC9322601 DOI: 10.3390/molecules27144634] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/21/2022] Open
Abstract
As the most common cancer in women, efforts have been made to develop novel nanomedicine-based therapeutics for breast cancer. In the present study, the in silico curcumin (Cur) properties were investigated, and we found some important drawbacks of Cur. To enhance cancer therapeutics of Cur, three different nonionic surfactants (span 20, 60, and 80) were used to prepare various Cur-loaded niosomes (Nio-Cur). Then, fabricated Nio-Cur were decorated with folic acid (FA) and polyethylene glycol (PEG) for breast cancer suppression. For PEG-FA@Nio-Cur, the gene expression levels of Bax and p53 were higher compared to free drug and Nio-Cur. With PEG-FA-decorated Nio-Cur, levels of Bcl2 were lower than the free drug and Nio-Cur. When MCF7 and 4T1 cell uptake tests of PEG-FA@Nio-Cur and Nio-Cur were investigated, the results showed that the PEG-FA-modified niosomes exhibited the most preponderant endocytosis. In vitro experiments demonstrate that PEG-FA@Nio-Cur is a promising strategy for the delivery of Cur in breast cancer therapy. Breast cancer cells absorbed the prepared nanoformulations and exhibited sustained drug release characteristics.
Collapse
|
130
|
Upregulation of Thioredoxin Reductase 1 Expression by Flavan-3-Ols Protects Human Kidney Proximal Tubular Cells from Hypoxia-Induced Cell Death. Antioxidants (Basel) 2022; 11:antiox11071399. [PMID: 35883890 PMCID: PMC9311547 DOI: 10.3390/antiox11071399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 01/13/2023] Open
Abstract
Renal hypoxia and its associated oxidative stress is a common pathway for the development of kidney diseases, and using dietary antioxidants such as flavan-3-ols to prevent kidney failure has received much attention. This study investigates the molecular mechanism by which flavan-3-ols prevent hypoxia-induced cell death in renal tubular epithelial cells. Human kidney proximal tubular cells (HKC-8) were exposed to hypoxia (1% O2) in the presence of flavan-3-ols (catechin, epicatechin, procyanidin B1, and procyanidin B2). Cell death was examined using flow cytometric analysis. Gene expression was determined using a PCR array and Western blotting, and its network and functions were investigated using STRING databases. Here, we show that the cytoprotective activity of catechin was the highest among these flavan-3-ols against hypoxia-induced cell death in cultured HKC-8 cells. Exposure of HKC-8 cells to hypoxia induced oxidative stress leading to up-regulation of DUOX2, NOX4, CYBB and PTGS2 and down-regulation of TXNRD1 and HSP90AA1. Treatment with catechin or other flavan-3-ols prevented the down-regulation of TXNRD1 expression in hypoxic HKC-8 cells. Overexpression of TXNRD1 prevented hypoxia-induced cell death, and inactivation of TXNRD1 with TRi-1, a specific TXNRD1 inhibitor, reduced the catechin cytoprotection against hypoxia-induced HKC-8 cell death. In conclusion, flavan-3-ols prevent hypoxia-induced cell death in human proximal tubular epithelial cells, which might be mediated by their maintenance of TXNRD1 expression, suggesting that enhancing TXNRD1 expression or activity may become a novel therapeutic strategy to prevent hypoxia-induced kidney damage.
Collapse
|
131
|
Berg J, Halvorsen AR, Bengtson MB, Lindberg M, Halvorsen B, Aukrust P, Helland Å, Ueland T. Circulating T Cell Activation and Exhaustion Markers Are Associated With Radiation Pneumonitis and Poor Survival in Non-Small-Cell Lung Cancer. Front Immunol 2022; 13:875152. [PMID: 35911763 PMCID: PMC9329944 DOI: 10.3389/fimmu.2022.875152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction Persistent inflammation and immune activation in the lungs are associated with adverse outcomes such as radiation pneumonitis (RP) and poor survival in non-small-cell lung cancer (NSCLC) patients. However, it is unknown how this is reflected by leukocyte activation markers in serum. Objective The aim was to evaluate the serum levels of activation of different leukocyte subsets and to examine those in relation to the pathogenesis of RP and survival in NSCLC. Methods We analyzed the serum levels of MPO, sCD25, sTIM-3, sPD-L1, sCD14, sCD163, CCL19 and CCL21 in 66 inoperable NSCLC patients with stage IA-IIIA disease. The patients were treated with stereotactic body radiation therapy (SBRT) or concurrent chemoradiation therapy (CCRT), followed by regular blood sampling for 12 months after treatment and for 5 years for survival. Results Nineteen (29%) patients developed RP, which occurred more frequently and earlier in patients receiving CCRT than in those receiving SBRT. Increases in sCD25, sTIM-3 and CCL21 levels were observed at the last 6 months of follow-up in patients who had RP after SBRT. Patients who had RP after CCRT had higher sTIM-3 levels during the first 3 months of follow-up. Baseline sCD25 was independently associated with both 2- and 5-year mortality outcomes, while baseline sTIM-3 was independently associated with 2-year mortality. Conclusion We showed that T cell activation and exhaustion markers such as sCD25 and sTIM-3 are enhanced in patients developing RP and are associated with poor survival in NSCLC.
Collapse
Affiliation(s)
- Janna Berg
- Department of Medicine, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Clinical Medicine, University of Oslo, Oslo, Norway
- *Correspondence: Janna Berg,
| | - Ann Rita Halvorsen
- Department of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | | | - Morten Lindberg
- Department of Medical Biochemistry, Vestfold Hospital Trust, Tønsberg, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Åslaug Helland
- Department of Cancer Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| |
Collapse
|
132
|
McDougall RM, Cahill HF, Power ME, MacCormack TJ, Meli MV, Rourke JL. Multiparametric cytotoxicity assessment: the effect of gold nanoparticle ligand functionalization on SKOV3 ovarian carcinoma cell death. Nanotoxicology 2022; 16:355-374. [PMID: 35787735 DOI: 10.1080/17435390.2022.2095312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Gold nanoparticles (AuNP) are promising anti-cancer agents because of their modifiable properties and high biocompatibility. This study used multiple parallel analyses to investigate the cytotoxic properties of 5 nm AuNP conjugated to four different ligands with distinct surface chemistry: polyethylene glycol (PEG), trimethylammonium bromide (TMAB), 4-dimethylaminopyridine (DMAP), and carboxyl (COOH). We used a range of biochemical and high-content microscopy methods to evaluate the metabolic function, oxidative stress, cell health, cell viability, and cell morphology in SKOV3 ovarian cancer cells. Each AuNP displayed a distinct cytotoxicity profile. All AuNP species assessed exhibited signs of dose-dependent cytotoxicity when morphology, clonogenic survival, lysosomal uptake, or cell number were measured as the marker of toxicity. All particles except for AuNP-COOH increased SKOV3 apoptosis. In contrast, AuNP-TMAB was the only particle that did not alter the metabolic function or induce significant signs of oxidative stress. These results demonstrate that AuNP surface chemistry impacts the magnitude and mechanism of SKOV3 cell death. Together, these findings reinforce the important role for multiparametric cytotoxicity characterization when considering the utility of novel particles and surface chemistries.
Collapse
Affiliation(s)
- Rachel M McDougall
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, Canada
| | - Hannah F Cahill
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, Canada
| | - Madeline E Power
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, Canada
| | - Tyson J MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, Canada
| | - M-Vicki Meli
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, Canada
| | - Jillian L Rourke
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, Canada
| |
Collapse
|
133
|
A Comprehensive Study on the Mechanistic Way of Hexaflumuron and Hymexazol Induced Neurobehavioral Toxicity in Rats. Neurochem Res 2022; 47:3051-3062. [PMID: 35773501 PMCID: PMC9470636 DOI: 10.1007/s11064-022-03654-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/21/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022]
Abstract
Pesticides are widely used in agriculture to kill pests, but their action is non-selective and results in several hazardous effects on humans and animals. Pesticide toxicity has been demonstrated to alter a variety of neurological functions and predisposes to various neurodegenerative diseases. Although, there is no data available for hexaflumuron (HFM) and hymexazol (HML) neurotoxicity. Hence, the present study aims to investigate the possible mechanisms of HFM and HML neurotoxicity. 21 male Wistar rats were divided into three groups and daily received the treatment via oral gavage for 14 days as follows: group (1) normal saline, group (2) HFM (1/100LD50), and group (3) HML (1/100 LD50). Our results revealed that both HFM and HML produced a significant increase in MDA levels and a decrease in GSH and CAT activity in some brain areas. There were severe histopathological alterations mainly neuronal necrosis and gliosis in different examined areas. Upregulation of mRNA levels of JNK and Bax with downregulation of Bcl-2 was also recorded in both pesticides exposed groups. In all studied toxicological parameters, HML produced neurotoxicity more than HFM. HFM targets the cerebral cortex and striatum, while HML targets the cerebral cortex, striatum, hippocampus, and cerebellum. We can conclude that both HFM and HML provoke neurobehavioral toxicity through oxidative stress that impairs the mitochondrial function and activates the JNK-dependent apoptosis pathway.
Collapse
|
134
|
Zhang Q, Wei Z, Weng H, Chen Y, Zhang J, Mei S, Wei J, Zhu X, Nong Y, Ruan J, Liu W, Zhou R, Wang F, Xie Y, Huang J, Zhang X, Liu F. Folic Acid Preconditioning Alleviated Radiation-Induced Ovarian Dysfunction in Female Mice. Front Nutr 2022; 9:854655. [PMID: 35836584 PMCID: PMC9274203 DOI: 10.3389/fnut.2022.854655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
Radiological therapy/examination is the primary source of artificial radiation exposure in humans. While its application has contributed to major advances in disease diagnosis and treatment, ionizing radiation exposure is associated with ovarian damage. The use of natural products, either alone or as an adjunct, has become increasingly common for reducing the side effects of radiological therapy during disease treatment. Herein, we explored the protective effect of folic acid (FA), a widely used B vitamin, against radiation-induced ovarian injury and its mechanism of action. Female mice with normal ovarian function were randomly divided into control, FA, radiation, and radiation + FA groups. The intervention strategy included daily intragastric administration of FA (5 mg/kg) for 3 weeks prior to radiation exposure. Mice in the radiation and radiation + FA groups received a single dose of 5 Gy X-ray irradiation. Changes in the estrous cycle were then recorded, and ovarian tissues were collected. Pathophysiological changes as well as reproductive and endocrine-related indexes were determined via H&E staining, immunohistochemistry, Western blot, and ELISA. The reproductive performance and emotional symptoms of animals were also monitored. Our results indicated that FA intervention effectively alleviated ovarian damage, leading to more regular estrous cycles, lesser impairment of follicular morphology and endocrine status, as well as greater germ cell preservation. Reduced levels of oxidative stress, inflammation, and enhanced DNA repair were associated these changes. FA pre-administration improved the reproductive performance, leading to higher pregnancy rates and greater litter sizes. Further, the anxiety levels of animals were significantly reduced. Our results indicate that FA pre-administration significantly alleviates radiation-induced ovarian damage in rodents, highlighting its potential as a protective strategy against radiation exposure in the female population.
Collapse
Affiliation(s)
- Qianyu Zhang
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
- Jinan University, Guangzhou, China
| | - Zhifu Wei
- Department of Gynaecology, The Affiliated Shunde Hospital of Jinan University, Foshan, China
| | - Huinan Weng
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ye Chen
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jie Zhang
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
| | - Shiwei Mei
- Department of Radiation, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jiahui Wei
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
| | - Xiulan Zhu
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yingqi Nong
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jianxing Ruan
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
| | - Wenjuan Liu
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ruiqiong Zhou
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
| | - Fang Wang
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yanni Xie
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Junjiu Huang
| | - Xiqian Zhang
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
- Xiqian Zhang
| | - Fenghua Liu
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
- *Correspondence: Fenghua Liu
| |
Collapse
|
135
|
Wu H, Zhu B, Li D, Xu J, Chang J, Du X, Cui J, Zhang N, Zhang T, Chen Y. Cuscuta chinensis Lam. Protects Against Light-Induced Retinal Degeneration: Therapeutic Implications for Photoreceptor Degenerative Disorders. Front Pharmacol 2022; 13:904849. [PMID: 35754507 PMCID: PMC9214205 DOI: 10.3389/fphar.2022.904849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Cuscuta chinensis Lam. (CCL) is a medicinal herb widely used in traditional Chinese medicine for the treatment of ophthalmic diseases, including age-dependent vision-threatening retinal degenerative disorders that involve irreversible loss of the first-order retinal neurons, photoreceptors. However, evidence is lacking if CCL is pharmacologically active at protecting against loss of photoreceptors and photoreceptor degeneration-associated retinal structural and functional impairment. The current study thus evaluates the potential photoreceptor protective effects of CCL to better support its clinical applications in the prevention and treatment of photoreceptor degenerative diseases. Non-invasive full-retinal optical coherence tomography, electroretinography, histological examination, immunohistochemistry and real-time qPCR analysis were performed to assess the retinal protective effects of CCL in light-exposed BALB/c mice characterized by photooxidative stress-mediated photoreceptor loss and associated retinal morphological and functional impairment. The results showed that CCL treatment protected against light-induced degeneration of the photoreceptor structure and deterioration of the retinal function. Furthermore, CCL treatment increased the retinal expression of rhodopsin, S-opsin and M-opsin, supporting the protective effects of CCL in both rod and cone photoreceptors. CCL treatment suppressed photoreceptor cell death in the light-exposed retinas. The morphological integrity of the second-order retinal neurons was also preserved as a result of CCL treatment. In addition, CCL treatment attenuated light-induced reactive müller gliosis, microglial activation and inflammation in the retina. In conclusion, the current work demonstrates for the first time that CCL protects against photooxidative stress-mediated degeneration of photoreceptors and associated disturbance of structural, functional and immune homeostasis of the retina. The findings here thus provide novel experimental evidence supporting the clinical application of CCL in the prevention and treatment photoreceptor degenerative diseases.
Collapse
Affiliation(s)
- Hanhan Wu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Beijing Zhu
- Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Daijin Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Xu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jie Chang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoye Du
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jingang Cui
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ning Zhang
- Science and Technology Laboratory Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Teng Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yu Chen
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
136
|
Wang S, Qi X. The Putative Role of Astaxanthin in Neuroinflammation Modulation: Mechanisms and Therapeutic Potential. Front Pharmacol 2022; 13:916653. [PMID: 35814201 PMCID: PMC9263351 DOI: 10.3389/fphar.2022.916653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/07/2022] [Indexed: 12/03/2022] Open
Abstract
Neuroinflammation is a protective mechanism against insults from exogenous pathogens and endogenous cellular debris and is essential for reestablishing homeostasis in the brain. However, excessive prolonged neuroinflammation inevitably leads to lesions and disease. The use of natural compounds targeting pathways involved in neuroinflammation remains a promising strategy for treating different neurological and neurodegenerative diseases. Astaxanthin, a natural xanthophyll carotenoid, is a well known antioxidant. Mounting evidence has revealed that astaxanthin is neuroprotective and has therapeutic potential by inhibiting neuroinflammation, however, its functional roles and underlying mechanisms in modulating neuroinflammation have not been systematically summarized. Hence, this review summarizes recent progress in this field and provides an update on the medical value of astaxanthin. Astaxanthin modulates neuroinflammation by alleviating oxidative stress, reducing the production of neuroinflammatory factors, inhibiting peripheral inflammation and maintaining the integrity of the blood-brain barrier. Mechanistically, astaxanthin scavenges radicals, triggers the Nrf2-induced activation of the antioxidant system, and suppresses the activation of the NF-κB and mitogen-activated protein kinase pathways. With its good biosafety and high bioavailability, astaxanthin has strong potential for modulating neuroinflammation, although some outstanding issues still require further investigation.
Collapse
|
137
|
Phyllostachys nigra Variety Henosis, a Domestic Bamboo Species, Protects PC12 Cells from Oxidative Stress-mediated Cell Injury through Nrf2 Activation. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0395-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
138
|
Zaarour RF, Sharda M, Azakir B, Hassan Venkatesh G, Abou Khouzam R, Rifath A, Nizami ZN, Abdullah F, Mohammad F, Karaali H, Nawafleh H, Elsayed Y, Chouaib S. Genomic Analysis of Waterpipe Smoke-Induced Lung Tumor Autophagy and Plasticity. Int J Mol Sci 2022; 23:ijms23126848. [PMID: 35743294 PMCID: PMC9225041 DOI: 10.3390/ijms23126848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
The role of autophagy in lung cancer cells exposed to waterpipe smoke (WPS) is not known. Because of the important role of autophagy in tumor resistance and progression, we investigated its relationship with WP smoking. We first showed that WPS activated autophagy, as reflected by LC3 processing, in lung cancer cell lines. The autophagy response in smokers with lung adenocarcinoma, as compared to non-smokers with lung adenocarcinoma, was investigated further using the TCGA lung adenocarcinoma bulk RNA-seq dataset with the available patient metadata on smoking status. The results, based on a machine learning classification model using Random Forest, indicate that smokers have an increase in autophagy-activating genes. Comparative analysis of lung adenocarcinoma molecular signatures in affected patients with a long-term active exposure to smoke compared to non-smoker patients indicates a higher tumor mutational burden, a higher CD8+ T-cell level and a lower dysfunction level in smokers. While the expression of the checkpoint genes tested-PD-1, PD-L1, PD-L2 and CTLA-4-remains unchanged between smokers and non-smokers, B7-1, B7-2, IDO1 and CD200R1 were found to be higher in non-smokers than smokers. Because multiple factors in the tumor microenvironment dictate the success of immunotherapy, in addition to the expression of immune checkpoint genes, our analysis explains why patients who are smokers with lung adenocarcinoma respond better to immunotherapy, even though there are no relative differences in immune checkpoint genes in the two groups. Therefore, targeting autophagy in lung adenocarcinoma patients, in combination with checkpoint inhibitor-targeted therapies or chemotherapy, should be considered in smoker patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Rania Faouzi Zaarour
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; (R.F.Z.); (G.H.V.); (R.A.K.); (A.R.); (Z.N.N.); (F.A.); (F.M.); (H.N.)
| | - Mohak Sharda
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India;
- School of Life Science, The University of Trans-Disciplinary Health Sciences & Technology (TDU), Bangalore 560064, India
| | - Bilal Azakir
- Molecular and Translational Medicine Laboratory, Faculty of Medicine, Beirut Arab University, Beirut 11072809, Lebanon; (B.A.); (H.K.)
| | - Goutham Hassan Venkatesh
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; (R.F.Z.); (G.H.V.); (R.A.K.); (A.R.); (Z.N.N.); (F.A.); (F.M.); (H.N.)
| | - Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; (R.F.Z.); (G.H.V.); (R.A.K.); (A.R.); (Z.N.N.); (F.A.); (F.M.); (H.N.)
| | - Ayesha Rifath
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; (R.F.Z.); (G.H.V.); (R.A.K.); (A.R.); (Z.N.N.); (F.A.); (F.M.); (H.N.)
| | - Zohra Nausheen Nizami
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; (R.F.Z.); (G.H.V.); (R.A.K.); (A.R.); (Z.N.N.); (F.A.); (F.M.); (H.N.)
| | - Fatima Abdullah
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; (R.F.Z.); (G.H.V.); (R.A.K.); (A.R.); (Z.N.N.); (F.A.); (F.M.); (H.N.)
| | - Fatin Mohammad
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; (R.F.Z.); (G.H.V.); (R.A.K.); (A.R.); (Z.N.N.); (F.A.); (F.M.); (H.N.)
| | - Hajar Karaali
- Molecular and Translational Medicine Laboratory, Faculty of Medicine, Beirut Arab University, Beirut 11072809, Lebanon; (B.A.); (H.K.)
| | - Husam Nawafleh
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; (R.F.Z.); (G.H.V.); (R.A.K.); (A.R.); (Z.N.N.); (F.A.); (F.M.); (H.N.)
| | - Yehya Elsayed
- Department of Biology, Chemistry and Environmental Sciences (BCE), American University of Sharjah, Sharjah 26666, United Arab Emirates;
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; (R.F.Z.); (G.H.V.); (R.A.K.); (A.R.); (Z.N.N.); (F.A.); (F.M.); (H.N.)
- Inserm Umr 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France
- Correspondence:
| |
Collapse
|
139
|
Lalami ZA, Tafvizi F, Naseh V, Salehipour M. Characterization and optimization of co-delivery Farnesol-Gingerol Niosomal formulation to enhance anticancer activities against breast cancer cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
140
|
Costanzo-Garvey DL, Case AJ, Watson GF, Alsamraae M, Chatterjee A, Oberley-Deegan RE, Dutta S, Abdalla MY, Kielian T, Lindsey ML, Cook LM. Prostate cancer addiction to oxidative stress defines sensitivity to anti-tumor neutrophils. Clin Exp Metastasis 2022; 39:641-659. [PMID: 35604506 PMCID: PMC9338904 DOI: 10.1007/s10585-022-10170-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/24/2022] [Indexed: 01/17/2023]
Abstract
Bone metastatic prostate cancer (BM-PCa) remains one of the most difficult cancers to treat due to the complex interactions of cancer and stromal cells. We previously showed that bone marrow neutrophils elicit an anti-tumor immune response against BM-PCa. Further, we demonstrated that BM-PCa induces neutrophil oxidative burst, which has previously been identified to promote primary tumor growth of other cancers, and a goal of this study was to define the importance of neutrophil oxidative burst in BM-PCa. To do this, we first examined the impact of depletion of reactive oxygen species (ROS), via systemic deletion of the main source of ROS in phagocytes, NADPH oxidase (Nox)2, which we found to suppress prostate tumor growth in bone. Further, using pharmacologic ROS inhibitors and Nox2-null neutrophils, we found that ROS depletion specifically suppresses growth of androgen-insensitive prostate cancer cells. Upon closer examination using bulk RNA sequencing analysis, we identified that metastatic prostate cancer induces neutrophil transcriptomic changes that activates pathways associated with response to oxidative stress. In tandem, prostate cancer cells resist neutrophil anti-tumor response via extracellular (i.e., regulation of neutrophils) and intracellular alterations of glutathione synthesis, the most potent cellular antioxidant. These findings demonstrate that BM-PCa thrive under oxidative stress conditions and such that regulation of ROS and glutathione programming could be leveraged for targeting of BM-PCa progression.
Collapse
Affiliation(s)
- Diane L Costanzo-Garvey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Med Center, Omaha, NE, 68198, USA
| | - Adam J Case
- Department of Psychiatry and Behavioral Sciences, Texas A&M College of Medicine, Bryan, TX, USA.,Department of Medical Physiology, Texas A&M College of Medicine, Bryan, TX, USA
| | - Gabrielle F Watson
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center and Omaha VA Medical Center, Omaha, NE, USA
| | - Massar Alsamraae
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Med Center, Omaha, NE, 68198, USA
| | - Arpita Chatterjee
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rebecca E Oberley-Deegan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Samikshan Dutta
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maher Y Abdalla
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Med Center, Omaha, NE, 68198, USA
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Med Center, Omaha, NE, 68198, USA
| | - Merry L Lindsey
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center and Omaha VA Medical Center, Omaha, NE, USA
| | - Leah M Cook
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Med Center, Omaha, NE, 68198, USA.
| |
Collapse
|
141
|
Jovanović M, Podolski-Renić A, Krasavin M, Pešić M. The Role of the Thioredoxin Detoxification System in Cancer Progression and Resistance. Front Mol Biosci 2022; 9:883297. [PMID: 35664671 PMCID: PMC9161637 DOI: 10.3389/fmolb.2022.883297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/22/2022] [Indexed: 12/20/2022] Open
Abstract
The intracellular redox homeostasis is a dynamic balancing system between the levels of free radical species and antioxidant enzymes and small molecules at the core of cellular defense mechanisms. The thioredoxin (Trx) system is an important detoxification system regulating the redox milieu. This system is one of the key regulators of cells’ proliferative potential as well, through the reduction of key proteins. Increased oxidative stress characterizes highly proliferative, metabolically hyperactive cancer cells, which are forced to mobilize antioxidant enzymes to balance the increase in free radical concentration and prevent irreversible damage and cell death. Components of the Trx system are involved in high-rate proliferation and activation of pro-survival mechanisms in cancer cells, particularly those facing increased oxidative stress. This review addresses the importance of the targetable redox-regulating Trx system in tumor progression, as well as in detoxification and protection of cancer cells from oxidative stress and drug-induced cytotoxicity. It also discusses the cancer cells’ counteracting mechanisms to the Trx system inhibition and presents several inhibitors of the Trx system as prospective candidates for cytostatics’ adjuvants. This manuscript further emphasizes the importance of developing novel multitarget therapies encompassing the Trx system inhibition to overcome cancer treatment limitations.
Collapse
Affiliation(s)
- Mirna Jovanović
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mikhail Krasavin
- Organic Chemistry Division, Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
- *Correspondence: Milica Pešić, , orcid.org/0000-0002-9045-8239
| |
Collapse
|
142
|
Wu Z, Chen H, Lin L, Lu J, Zhao Q, Dong Z, Hai X. Sacubitril/valsartan protects against arsenic trioxide induced cardiotoxicity in vivo and in vitro. Toxicol Res (Camb) 2022; 11:451-459. [PMID: 35782642 PMCID: PMC9244229 DOI: 10.1093/toxres/tfac018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abstract
The cardiotoxicity induced by arsenic trioxide (ATO) limits its clinical application in acute promyelocytic leukemia treatment. Sacubitril/valsartan (LCZ696) is an effective drug for the treatment of heart failure. In this study, we aimed to investigate the protective effect and mechanisms of LCZ696 against the ATO-induced cardiotoxicity in mice and H9c2 cells. We found that LCZ696 could alleviate the decrease of ejection fraction and fractional shortening induced by ATO, thereby improving mouse cardiac contractile function. LCZ696 could also reduce the myocardial enzyme, resist oxidative stress, mitigate myocardial fibrosis, and ameliorate myocardial structure, thereby alleviating myocardial damage caused by ATO. In addition, LCZ696 could significantly increase the cell viability and reduce the accumulation of reactive oxygen species in ATO-treated H9c2 cells. Besides, in vivo and in vitro studies have been found that LCZ696 could restore the expression of Bcl-2 and reduce Bax and Caspase-3 levels, inhibiting ATO-induced apoptosis. Meanwhile, LCZ696 decreased the levels of IL-1, IL-6, and TNF-α, alleviating the inflammatory injury caused by ATO. Furthermore, LCZ696 prevented NF-κB upregulation induced by ATO. Our findings revealed that LCZ696 has a considerable effect on preventing cardiotoxicity induced by ATO, which attributes to its capability to suppress oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Zhiqiang Wu
- Department of Pharmacy, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Hongzhu Chen
- Department of Pharmacy, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Liwang Lin
- Department of Pharmacy, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jing Lu
- Department of Pharmacy, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Qilei Zhao
- Department of Pharmacy, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zengxiang Dong
- Department of Pharmacy, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xin Hai
- Department of Pharmacy, First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
143
|
Systemic Effects of Tamm-Horsfall Protein in Kidney Disease. Semin Nephrol 2022; 42:151277. [PMID: 36411194 DOI: 10.1016/j.semnephrol.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tamm-Horsfall protein (THP) is produced exclusively by the kidney, where it is released into both the urine and the circulation. Although the primary form of circulating THP is nonpolymerizing, urinary THP exists as a mix of polymerizing and nonpolymerizing forms. Urinary THP has been shown to play roles in such disparate processes as prevention of urinary tract infections and kidney stone formation, along with the regulation of multiple ion channels within the kidney. The generation of THP knockout mouse models has allowed the investigation of these phenomena and shown a prospective role for circulating THP in ischemia-reperfusion acute kidney injury as well as sepsis. Recent studies have suggested that THP is protective in ischemic injury owing to its inhibition of oxidative stress via the calcium channel transient receptor potential cation channel, subfamily M, member 2 t(TRPM2), and protection in sepsis is at least partially due to THP's promotion of macrophage function.
Collapse
|
144
|
Pucci C, Martinelli C, De Pasquale D, Battaglini M, di Leo N, Degl’Innocenti A, Belenli Gümüş M, Drago F, Ciofani G. Tannic Acid-Iron Complex-Based Nanoparticles as a Novel Tool against Oxidative Stress. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15927-15941. [PMID: 35352893 PMCID: PMC9011352 DOI: 10.1021/acsami.1c24576] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Accumulation of reactive oxygen species in cells leads to oxidative stress, with consequent damage for cellular components and activation of cell-death mechanisms. Oxidative stress is often associated with age-related conditions, as well as with several neurodegenerative diseases. For this reason, antioxidant molecules have attracted a lot of attention, especially those derived from natural sources─like polyphenols and tannins. The main issue related to the use of antioxidants is their inherent tendency to be oxidized, their quick enzymatic degradation in biological fluids, and their poor bioavailability. Nanomedicine, in this sense, has helped in finding new solutions to deliver and protect antioxidants; however, the concentration of the encapsulated molecule in conventional nanosystems could be very low and, therefore, less effective. We propose to exploit the properties of tannic acid, a known plant-derived antioxidant, to chelate iron ions, forming hydrophobic complexes that can be coated with a biocompatible and biodegradable phospholipid to improve stability in biological media. By combining nanoprecipitation and hot sonication procedures, we obtained three-dimensional networks composed of tannic acid-iron with a hydrodynamic diameter of ≈200 nm. These nanostructures show antioxidant properties and scavenging activity in cells after induction of an acute chemical pro-oxidant insult; moreover, they also demonstrated to counteract damage induced by oxidative stress both in vitro and on an in vivo model organism (planarians).
Collapse
Affiliation(s)
- Carlotta Pucci
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Chiara Martinelli
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Daniele De Pasquale
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Matteo Battaglini
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Nicoletta di Leo
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
- The
Biorobotics Institute, Scuola Superiore
Sant’Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Andrea Degl’Innocenti
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Melike Belenli Gümüş
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
- The
Biorobotics Institute, Scuola Superiore
Sant’Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Filippo Drago
- Electron
Microscopy Facility, Istituto Italiano di
Tecnologia, Via Morego
30, 16163 Genova, Italy
| | - Gianni Ciofani
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| |
Collapse
|
145
|
Lawrence C, Waechter S, Alsanius BW. Blue Light Inhibits E. coli, but Decisive Parameters Remain Hidden in the Dark: Systematic Review and Meta-Analysis. Front Microbiol 2022; 13:867865. [PMID: 35464944 PMCID: PMC9023763 DOI: 10.3389/fmicb.2022.867865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/15/2022] [Indexed: 12/02/2022] Open
Abstract
Blue light (400-500 nm) alleviates overexposure risks associated to UV light and has therefore gained increased interest in multiple applications. This meta-analysis deals with decontamination of E. coli through the use of blue light based from nine recent publications identified via a systematic literature search. In these studies, various pathogenic and non-pathogenic E. coli strains grown in nutritional broths were exposed to wavelengths ranging from 395 to 460 nm. Five meta-analyses were performed using Cochrane's software for meta-analyses (Review Manager): one including all studies to estimate the effect of E. coli reduction and four subgroup-analyses considering reported intensities, wavelengths, exposure dose as well as serovars/pathovars. Random effects models were used. All included studies used colony-forming units to estimate the impact of E. coli reduction. None of the included studies involved an organic matrix (e.g., skin, food related surface). Exposure to blue light had a significant and large reducing effect on viable counts of E. coli. However, substantial heterogeneity across studies was observed. Among subgroups, reported intensity and wavelength showed the clearest impact on E. coli reduction. With respect to the reported exposure dose, the picture across the spectrum was scattered, but effect sizes tend to increase with increasing exposure dose. Substantial heterogeneity was also present with respect to all serovar/pathovar subgroups among the included studies. The present body of reports does not display a strong basis for recommendation of relevant intensities, wavelengths and exposure doses for superficial blue light decontamination in medical or food safety contexts. A serious shortcoming in most studies is the absence of a clear documentation of inoculum preparation and of study parameters. We suggest improvement for study protocols for future investigations.
Collapse
Affiliation(s)
- Connor Lawrence
- Microbial Horticulture Unit, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | | - Beatrix W. Alsanius
- Microbial Horticulture Unit, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
146
|
Saquib Q, Al-Salem AM, Siddiqui MA, Ansari SM, Zhang X, Al-Khedhairy AA. Cyto-Genotoxic and Transcriptomic Alterations in Human Liver Cells by Tris (2-Ethylhexyl) Phosphate (TEHP): A Putative Hepatocarcinogen. Int J Mol Sci 2022; 23:ijms23073998. [PMID: 35409358 PMCID: PMC8999606 DOI: 10.3390/ijms23073998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023] Open
Abstract
Tris (2-ethylhexyl) phosphate (TEHP) is an organophosphate flame retardant (OPFRs) which is extensively used as a plasticizer and has been detected in human body fluids. Contemporarily, toxicological studies on TEHP in human cells are very limited and there are few studies on its genotoxicity and cell death mechanism in human liver cells (HepG2). Herein, we find that HepG2 cells exposed to TEHP (100, 200, 400 µM) for 72 h reduced cell survival to 19.68%, 49.83%, 58.91% and 29.08%, 47.7% and 57.90%, measured by MTT and NRU assays. TEHP did not induce cytotoxicity at lower concentrations (5, 10, 25, 50 µM) after 24 h and 48 h of exposure. Flow cytometric analysis of TEHP-treated cells elevated intracellular reactive oxygen species (ROS), nitric oxide (NO), Ca++ influx and esterase levels, leading to mitochondrial dysfunction (ΔΨm). DNA damage analysis by comet assay showed 4.67, 9.35, 13.78-fold greater OTM values in TEHP (100, 200, 400 µM)-treated cells. Cell cycle analysis exhibited 23.1%, 29.6%, and 50.8% of cells in SubG1 apoptotic phase after TEHP (100, 200 and 400 μM) treatment. Immunofluorescence data affirmed the activation of P53, caspase 3 and 9 proteins in TEHP-treated cells. In qPCR array of 84 genes, HepG2 cells treated with TEHP (100 µM, 72 h) upregulated 10 genes and downregulated 4 genes belonging to a human cancer pathway. Our novel data categorically indicate that TEHP is an oxidative stressor and carcinogenic entity, which exaggerates mitochondrial functions to induce cyto- and genotoxicity and cell death, implying its hepatotoxic features.
Collapse
Affiliation(s)
- Quaiser Saquib
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.A.-S.); (M.A.S.); (A.A.A.-K.)
- Correspondence: or ; Tel.: +966-114-675-768
| | - Abdullah M. Al-Salem
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.A.-S.); (M.A.S.); (A.A.A.-K.)
| | - Maqsood A. Siddiqui
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.A.-S.); (M.A.S.); (A.A.A.-K.)
| | - Sabiha M. Ansari
- Botany and Microbiology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China;
| | - Abdulaziz A. Al-Khedhairy
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.A.-S.); (M.A.S.); (A.A.A.-K.)
| |
Collapse
|
147
|
Gu L, Duan Z, Chen X, Li X, Luo Q, Bhamra A, Pan D, Zhu H, Tian X, Chen R, Gu Z, Zhang H, Qian Z, Gong Q, Luo K. A Transformable Amphiphilic and Block Polymer-Dendron Conjugate for Enhanced Tumor Penetration and Retention with Cellular Homeostasis Perturbation via Membrane Flow. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200048. [PMID: 35170102 DOI: 10.1002/adma.202200048] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/04/2022] [Indexed: 02/05/2023]
Abstract
Efficient penetration and retention of therapeutic agents in tumor tissues can be realized through rational design of drug delivery systems. Herein, a polymer-dendron conjugate, POEGMA-b-p(GFLG-Dendron-Ppa) (GFLG-DP), is presented, which allows a cathepsin-B-triggered stealthy-to-sticky structural transformation. The compositions and ratios are optimized through dissipative particle dynamics simulations. GFLG-DP displays tumor-specific transformation and the consequently released dendron-Ppa is found to effectively accumulate on the tumor cell membrane. The interaction between the dendron-Ppa and the tumor cell membrane results in intracellular and intercellular transport via membrane flow, thus achieving efficient deep penetration and prolonged retention of therapeutic agents in the solid tumor tissues. Meanwhile, the interaction of dendron-Ppa with the endoplasmic reticulum disrupts cell homeostasis, making tumor cells more vulnerable and susceptible to photodynamic therapy. This platform represents a versatile approach to augmenting the tumor therapeutic efficacy of a nanomedicine via manipulation of its interactions with tumor membrane systems.
Collapse
Affiliation(s)
- Lei Gu
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Zhenyu Duan
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Xiaoting Chen
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Xiaoling Li
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Qiang Luo
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Apanpreet Bhamra
- Department of Chemical Engineering Imperial College London South Kensington Campus London SW7 2AZ UK
| | - Dayi Pan
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Hongyan Zhu
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Xiaohe Tian
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| | - Rongjun Chen
- Department of Chemical Engineering Imperial College London South Kensington Campus London SW7 2AZ UK
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Hu Zhang
- Amgen Bioprocessing Centre Keck Graduate Institute Claremont CA 91711 USA
| | - Zhiyong Qian
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC) Animal Experimental Center Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| |
Collapse
|
148
|
Fish Collagen Peptides Protect against Cisplatin-Induced Cytotoxicity and Oxidative Injury by Inhibiting MAPK Signaling Pathways in Mouse Thymic Epithelial Cells. Mar Drugs 2022; 20:md20040232. [PMID: 35447905 PMCID: PMC9032569 DOI: 10.3390/md20040232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
Thymic epithelial cells (TECs) account for the most abundant and dominant stromal component of the thymus, where T cells mature. Oxidative- or cytotoxic-stress associated injury in TECs, a significant and common problem in many clinical settings, may cause a compromised thymopoietic capacity of TECs, resulting in clinically significant immune deficiency disorders or impairment in the adaptive immune response in the body. The present study demonstrated that fish collagen peptides (FCP) increase cell viability, reduce intracellular levels of reactive oxygen species (ROS), and impede apoptosis by repressing the expression of Bax and Bad and the release of cytochrome c, and by upregulating the expression of Bcl-2 and Bcl-xL in cisplatin-treated TECs. These inhibitory effects of FCP on TEC damage occur via the suppression of ROS generation and MAPK (p38 MAPK, JNK, and ERK) activity. Taken together, our data suggest that FCP can be used as a promising protective agent against cytotoxic insults- or ROS-mediated TEC injury. Furthermore, our findings provide new insights into a therapeutic approach for the future application of FCP in the prevention and treatment of various types of oxidative- or cytotoxic stress-related cell injury in TECs as well as age-related or acute thymus involution.
Collapse
|
149
|
Programmed cell death: the pathways to severe COVID-19? Biochem J 2022; 479:609-628. [PMID: 35244141 PMCID: PMC9022977 DOI: 10.1042/bcj20210602] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023]
Abstract
Two years after the emergence of SARS-CoV-2, our understanding of COVID-19 disease pathogenesis is still incomplete. Despite unprecedented global collaborative scientific efforts and rapid vaccine development, an uneven vaccine roll-out and the emergence of novel variants of concern such as omicron underscore the critical importance of identifying the mechanisms that contribute to this disease. Overt inflammation and cell death have been proposed to be central drivers of severe pathology in COVID-19 patients and their pathways and molecular components therefore present promising targets for host-directed therapeutics. In our review, we summarize the current knowledge on the role and impact of diverse programmed cell death (PCD) pathways on COVID-19 disease. We dissect the complex connection of cell death and inflammatory signaling at the cellular and molecular level and identify a number of critical questions that remain to be addressed. We provide rationale for targeting of cell death as potential COVID-19 treatment and provide an overview of current therapeutics that could potentially enter clinical trials in the near future.
Collapse
|
150
|
Mitochondrial Oxidative Stress and Cell Death in Podocytopathies. Biomolecules 2022; 12:biom12030403. [DOI: 10.3390/biom12030403] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 02/05/2023] Open
Abstract
Podocytopathies are kidney diseases that are driven by podocyte injury with proteinuria and proteinuria-related symptoms as the main clinical presentations. Albeit podocytopathies are the major contributors to end-stage kidney disease, the underlying molecular mechanisms of podocyte injury remain to be elucidated. Mitochondrial oxidative stress is associated with kidney diseases, and increasing evidence suggests that oxidative stress plays a vital role in the pathogenesis of podocytopathies. Accumulating evidence has placed mitochondrial oxidative stress in the focus of cell death research. Excessive generated reactive oxygen species over antioxidant defense under pathological conditions lead to oxidative damage to cellular components and regulate cell death in the podocyte. Conversely, exogenous antioxidants can protect podocyte from cell death. This review provides an overview of the role of mitochondrial oxidative stress in podocytopathies and discusses its role in the cell death of the podocyte, aiming to identify the novel targets to improve the treatment of patients with podocytopathies.
Collapse
|