101
|
Vostakolaei MA, Hatami-Baroogh L, Babaei G, Molavi O, Kordi S, Abdolalizadeh J. Hsp70 in cancer: A double agent in the battle between survival and death. J Cell Physiol 2020; 236:3420-3444. [PMID: 33169384 DOI: 10.1002/jcp.30132] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/23/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
The heat shock protein (Hsps) superfamily, also known as molecular chaperones, are highly conserved and present in all living organisms and play vital roles in protein fate. The HspA1A (Hsp70-1), called Hsp70 in this review, is expressed at low or undetectable levels in most unstressed normal cells, but numerous studies have shown that diverse types of tumor cells express Hsp70 at the plasma membrane that leads to resistance to programmed cell death and tumor progression. Hsp70 is released into the extracellular milieu in three forms including free soluble, complexed with cancer antigenic peptides, and exosome forms. Therefore, it seems to be a promising therapeutic target in human malignancies. However, a great number of studies have indicated that both intracellular and extracellular Hsp70 have a dual function. A line of evidence presented that intracellular Hsp70 has a cytoprotective function via suppression of apoptosis and lysosomal cell death (LCD) as well as that extracellular Hsp70 can promote tumorigenesis and angiogenesis. Other evidence showed intracellular Hsp70 can promote apoptosis and membrane-associated/extracellular Hsp70 can elicit antitumor innate and adaptive immune responses. Given the contradictory functions, as a "double agent," could Hsp70 be a promising tool in the future of targeted cancer therapies? To answer this question, in this review, we will discuss the functions of Hsp70 in cancers besides inhibition and stimulation strategies for targeting Hsp70 along with their challenges.
Collapse
Affiliation(s)
- Mehdi A Vostakolaei
- Digestive Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Hatami-Baroogh
- Department of Reproduction and Development, Royan Institute for Animal Biotechnology, ACER, Isfahan, Iran
| | - Ghader Babaei
- Department of Biochemistry, Urmia University Medical Sciences, Urmia, Iran
| | - Ommoleila Molavi
- Biotechnology Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirafkan Kordi
- Antimicrobial Resistance Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Abdolalizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
102
|
Zhou Y, Liu L, Tao S, Yao Y, Wang Y, Wei Q, Shao A, Deng Y. Parthanatos and its associated components: Promising therapeutic targets for cancer. Pharmacol Res 2020; 163:105299. [PMID: 33171306 DOI: 10.1016/j.phrs.2020.105299] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023]
Abstract
Parthanatos is a PARP1-dependent, caspase-independent, cell-death pathway that is distinct from apoptosis, necrosis, or other known forms of cell death. Parthanatos is a multistep pathway that plays a pivotal role in tumorigenesis. There are many molecules in the parthanatos cascade that can be exploited to create therapeutic interventions for cancer management, including PARP1, PARG, ARH3, AIF, and MIF. These critical molecules are involved in tumor cell proliferation, progression, invasion, and metastasis. Therefore, these molecular signals in the parthanatos cascade represent promising therapeutic targets for cancer therapy. In addition, intimate interactions occur between parthanatos and other forms of cancer cell death, such as apoptosis and autophagy. Thus, co-targeting a combination of parthanatos and other death pathways may further provide a new avenue for cancer precision treatment. In this review, we elaborate on the signaling pathways of canonical parthanatos and briefly introduce the non-canonical parthanatos. We also shed light on the role parthanatos and its associated components play in tumorigenesis, particularly with respect to the aforementioned five molecules, and discuss the promise targeted therapy of parthanatos and its associated components holds for cancer therapy.
Collapse
Affiliation(s)
- Yunxiang Zhou
- Department of Surgical Oncology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Lihong Liu
- Department of Radiation Oncology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Sifeng Tao
- Department of Surgical Oncology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yihan Yao
- Department of Surgical Oncology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yali Wang
- Department of Surgical Oncology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Qichun Wei
- Department of Radiation Oncology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Anwen Shao
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Yongchuan Deng
- Department of Surgical Oncology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| |
Collapse
|
103
|
Chen Q, Thompson J, Hu Y, Lesnefsky EJ. Cardiomyocyte specific deletion of p53 decreases cell injury during ischemia-reperfusion: Role of Mitochondria. Free Radic Biol Med 2020; 158:162-170. [PMID: 32711023 PMCID: PMC7484321 DOI: 10.1016/j.freeradbiomed.2020.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/15/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
p53 is a tumor suppressor protein with a very low content in the basal condition, but the content rapidly rises during stress conditions including ischemia-reperfusion. An increase in p53 content increases cardiac injury during ischemia-reperfusion. Since mitochondrial damage plays a key role in cardiac injury during ischemia-reperfusion, we asked if genetic ablation of p53 decreases cardiac injury by protecting mitochondria. Isolated, perfused hearts from cardiac specific p53 deletion or wild type underwent 25 min global ischemia at 37 °C and 60 min reperfusion. At the end of reperfusion, hearts were harvested for infarct size measurement. In separate groups, cardiac mitochondria were isolated at 30 min reperfusion. Time control hearts were buffer-perfused without ischemia. Compared to wild type, deletion of p53 improved cardiac functional recovery and decreased infarct size following ischemia-reperfusion. Oxidative phosphorylation was improved in p53 deletion mitochondria following ischemia-reperfusion compared to wild type. The net release of ROS generation from wild type but not in p53 deletion mitochondria was increased following ischemia-reperfusion. Peroxiredoxin 3 (PRDX 3) content was higher in p53 deletion than that in wild type, indicating that p53 deletion increases a key antioxidant. Ischemia-reperfusion led to increased spectrin cleavage (a marker of cytosolic calpain1 activation) in wild type but not in p53 deletion mice. Ischemia-reperfusion increased the truncation of mature AIF (apoptosis inducing factor, an indicator of mitochondrial calpain1 activation) in wild type but not in p53 deletion mice. The loss of cytochrome c from mitochondria was also decreased in p53 deletion following ischemia-reperfusion. Bcl-2 content was decreased in wild type but not in p53 deletion following reperfusion, suggesting that depletion of bcl-2 contributes to permeabilization of the mitochondrial outer membrane. Thus, deletion of p53 decreases cardiac injury by protecting mitochondria through attenuation of oxidative stress and calpain activation during ischemia-reperfusion.
Collapse
Affiliation(s)
- Qun Chen
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA, 23298, USA.
| | - Jeremy Thompson
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Ying Hu
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Edward J Lesnefsky
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA, 23298, USA; Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA; Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, 23298, USA; McGuire Department of Veterans Affairs Medical Center, Richmond, VA, 23298, USA
| |
Collapse
|
104
|
Nagakannan P, Tabeshmehr P, Eftekharpour E. Oxidative damage of lysosomes in regulated cell death systems: Pathophysiology and pharmacologic interventions. Free Radic Biol Med 2020; 157:94-127. [PMID: 32259579 DOI: 10.1016/j.freeradbiomed.2020.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022]
Abstract
Lysosomes are small specialized organelles containing a variety of different hydrolase enzymes that are responsible for degradation of all macromolecules, entering the cells through the endosomal system or originated from the internal sources. This allows for transport and recycling of nutrients and internalization of surface proteins for antigen presentation as well as maintaining cellular homeostasis. Lysosomes are also important storage compartments for metal ions and nutrients. The integrity of lysosomal membrane is central to maintaining their normal function, but like other cellular membranes, lysosomal membrane is subject to damage mediated by reactive oxygen species. This results in spillage of lysosomal enzymes into the cytoplasm, leading to proteolytic damage to cellular systems and organelles. Several forms of lysosomal dependent cell death have been identified in diseases. Examination of these events are important for finding treatment strategies relevant to cancer or neurodegenerative diseases as well as autoimmune deficiencies. In this review, we have examined the current literature on involvement of lysosomes in induction of programed cell death and have provided an extensive list of therapeutic approaches that can modulate cell death. Exploitation of these mechanisms can lead to novel therapies for cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Pandian Nagakannan
- Regenerative Medicine Program and Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Parisa Tabeshmehr
- Regenerative Medicine Program and Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Eftekhar Eftekharpour
- Regenerative Medicine Program and Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
105
|
Lo SM, Martinez PA, Marques EF, Miyamoto S, Valdameri G, Moure VR, Zanata SM, Nakao LS. Oxidation of apoptosis-inducing factor (AIF) to disulfide-linked conjugates. Arch Biochem Biophys 2020; 692:108515. [PMID: 32791141 DOI: 10.1016/j.abb.2020.108515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 07/01/2020] [Accepted: 07/24/2020] [Indexed: 01/09/2023]
Abstract
Apoptosis-inducing factor (AIF) is a flavoprotein and essential partner of the CHCHD4 redox protein during the mitochondrial intermembrane space import machinery. Mammalian AIF has three cysteine residues, which have received little attention. Previous reports have evidenced a redox interaction between AIF and thioredoxin 1 (Trx1), particularly after oxidant conditions. Therefore, we asked whether the cysteine residues of the human AIF could be oxidized. Our data showed that endogenous AIF could be oxidized to disulfide-linked conjugates (DLC). Overexpressed WT AIF in HEK293T cells, as well as recombinant WT AIF, formed DLC. Expression of C256S, C317S or C441S AIF mutants severely inhibited DLC formation in cells exposed to oxidants. In vitro, DLC formation was completely precluded with C256S and C441S AIF mutants and partially inhibited with the C317S mutant. DLC was shown to enhance cellular susceptibility to apoptosis induced by staurosporine, likely by preventing AIF to maintain mitochondrial oxidative phosphorylation. Cells with decreased expression of Trx1 produced more AIF DLC than those with normal Trx1 levels, and in vitro, Trx1 was able to decrease the amount of AIF DLC. Finally, confocal analysis, as well as immunoblotting of mitochondrial fraction, indicated that a fraction of Trx1 is present in mitochondria. Overall, these data provide evidence that all three cysteine residues of AIF can be oxidized to DLC, which can be disrupted by mitochondrial Trx1.
Collapse
Affiliation(s)
- Sze M Lo
- Department of Basic Pathology, Universidade Federal do Paraná, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| | - Pierina A Martinez
- Department of Basic Pathology, Universidade Federal do Paraná, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| | - Emerson F Marques
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, 05508-000, São Paulo, Brazil
| | - Sayuri Miyamoto
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, 05508-000, São Paulo, Brazil
| | - Glaucio Valdameri
- Laboratory of Cancer Drug Resistance, Pharmaceutical Sciences Graduate Program, Universidade Federal do Paraná, 80210-170, Curitiba, Paraná, Brazil
| | - Vivian R Moure
- Laboratory of Cancer Drug Resistance, Pharmaceutical Sciences Graduate Program, Universidade Federal do Paraná, 80210-170, Curitiba, Paraná, Brazil
| | - Silvio M Zanata
- Department of Basic Pathology, Universidade Federal do Paraná, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| | - Lia S Nakao
- Department of Basic Pathology, Universidade Federal do Paraná, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil.
| |
Collapse
|
106
|
Dayan A, Yeheskel A, Lamed R, Fleminger G, Ashur-Fabian O. Dihydrolipoamide dehydrogenase moonlighting activity as a DNA chelating agent. Proteins 2020; 89:21-28. [PMID: 32761961 DOI: 10.1002/prot.25991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/14/2020] [Accepted: 07/26/2020] [Indexed: 12/14/2022]
Abstract
Dihydrolipoamide dehydrogenase (DLDH) is a mitochondrial enzyme that comprises an essential component of the pyruvate dehydrogenase complex. Lines of evidence have shown that many dehydrogenases possess unrelated actions known as moonlightings in addition to their oxidoreductase activity. As part of these activities, we have demonstrated that DLDH binds TiO2 as well as produces reactive oxygen species (ROS). This ROS production capability was harnessed for cancer therapy via integrin-mediated drug-delivery of RGD-modified DLDH (DLDHRGD ), leading to apoptotic cell death. In these experiments, DLDHRGD not only accumulated in the cytosol but also migrated to the cell nuclei, suggesting a potential DNA-binding capability of this enzyme. To explore this interaction under cell-free conditions, we have analyzed DLDH binding to phage lambda (λ) DNA by gel-shift assays and analytic ultracentrifugation, showing complex formation between the two, which led to full coverage of the DNA molecule with DLDH molecules. DNA binding did not affect DLDH enzymatic activity, indicating that there are neither conformational changes nor active site hindering in DLDH upon DNA-binding. A Docking algorithm for prediction of protein-DNA complexes, Paradoc, identified a putative DNA binding site at the C-terminus of DLDH. Our finding that TiO2 -bound DLDH failed to form a complex with DNA suggests partial overlapping between the two sites. To conclude, DLDH binding to DNA presents a novel moonlight activity which may be used for DNA alkylating in cancer treatment.
Collapse
Affiliation(s)
- Avraham Dayan
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, Israel
| | - Adva Yeheskel
- Bioinformatics Unit, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Raphael Lamed
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, Israel
| | - Gideon Fleminger
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, Israel
| | - Osnat Ashur-Fabian
- The Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Israel
- Translational Oncology Laboratory, Meir Medical Center, Kfar-Saba, Israel
| |
Collapse
|
107
|
Tolomeo M, Nisco A, Leone P, Barile M. Development of Novel Experimental Models to Study Flavoproteome Alterations in Human Neuromuscular Diseases: The Effect of Rf Therapy. Int J Mol Sci 2020; 21:ijms21155310. [PMID: 32722651 PMCID: PMC7432027 DOI: 10.3390/ijms21155310] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
Inborn errors of Riboflavin (Rf) transport and metabolism have been recently related to severe human neuromuscular disorders, as resulting in profound alteration of human flavoproteome and, therefore, of cellular bioenergetics. This explains why the interest in studying the “flavin world”, a topic which has not been intensively investigated before, has increased much over the last few years. This also prompts basic questions concerning how Rf transporters and FAD (flavin adenine dinucleotide) -forming enzymes work in humans, and how they can create a coordinated network ensuring the maintenance of intracellular flavoproteome. The concept of a coordinated cellular “flavin network”, introduced long ago studying humans suffering for Multiple Acyl-CoA Dehydrogenase Deficiency (MADD), has been, later on, addressed in model organisms and more recently in cell models. In the frame of the underlying relevance of a correct supply of Rf in humans and of a better understanding of the molecular rationale of Rf therapy in patients, this review wants to deal with theories and existing experimental models in the aim to potentiate possible therapeutic interventions in Rf-related neuromuscular diseases.
Collapse
|
108
|
Seo HW, No H, Cheon HJ, Kim JK. Sappanchalcone, a flavonoid isolated from Caesalpinia sappan L., induces caspase-dependent and AIF-dependent apoptosis in human colon cancer cells. Chem Biol Interact 2020; 327:109185. [PMID: 32590072 DOI: 10.1016/j.cbi.2020.109185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/23/2020] [Accepted: 06/17/2020] [Indexed: 01/06/2023]
Abstract
The present study examined the apoptotic effects and the underlying mechanism of sappanchalcone, a major bioactive compound isolated from Caesalpinia sappan L. on human colon cancer cells. To achieve this, we used two different colon cancer cell lines, namely HCT116 (as wild-type p53 cells) and SW480 (as p53-mutant cells) cells. Our results illustrated that sappanchalcone treatment decreased the proliferation and further promoted apoptosis in HCT116 cells compared with the findings in SW480 cells. Sappanchalcone triggered phosphorylation of p53, which is involved in the activation of caspases and increased expression of Bax in HCT116 cells. Conversely, sappanchalcone-treated SW480 cells displayed no change in p53 phosphorylation or caspase activation. In addition, sappanchalcone further increased reactive oxygen species (ROS) levels and apoptosis-inducing factor (AIF) release in both HCT116 and SW480 cells. These data suggest that sappanchalcone induces apoptosis through caspase-dependent and caspases-independent mechanisms that were characterized by decreased Bcl-2 expression, mitochondrial targeting, and altered ROS production and AIF translocation to the nuclei.
Collapse
Affiliation(s)
- Hee Won Seo
- Department of Biomedical Science, Daegu Catholic University, Gyeongsan-Si, Republic of Korea
| | - Huiwon No
- Department of Biomedical Science, Daegu Catholic University, Gyeongsan-Si, Republic of Korea
| | - Hye Jin Cheon
- Department of Biomedical Science, Daegu Catholic University, Gyeongsan-Si, Republic of Korea
| | - Jin-Kyung Kim
- Department of Biomedical Science, Daegu Catholic University, Gyeongsan-Si, Republic of Korea.
| |
Collapse
|
109
|
Petushkova AI, Zamyatnin AA. Redox-Mediated Post-Translational Modifications of Proteolytic Enzymes and Their Role in Protease Functioning. Biomolecules 2020; 10:biom10040650. [PMID: 32340246 PMCID: PMC7226053 DOI: 10.3390/biom10040650] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 12/13/2022] Open
Abstract
Proteolytic enzymes play a crucial role in metabolic processes, providing the cell with amino acids through the hydrolysis of multiple endogenous and exogenous proteins. In addition to this function, proteases are involved in numerous protein cascades to maintain cellular and extracellular homeostasis. The redox regulation of proteolysis provides a flexible dose-dependent mechanism for proteolytic activity control. The excessive reactive oxygen species (ROS) and reactive nitrogen species (RNS) in living organisms indicate pathological conditions, so redox-sensitive proteases can swiftly induce pro-survival responses or regulated cell death (RCD). At the same time, severe protein oxidation can lead to the dysregulation of proteolysis, which induces either protein aggregation or superfluous protein hydrolysis. Therefore, oxidative stress contributes to the onset of age-related dysfunction. In the present review, we consider the post-translational modifications (PTMs) of proteolytic enzymes and their impact on homeostasis.
Collapse
Affiliation(s)
- Anastasiia I. Petushkova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Correspondence:
| |
Collapse
|
110
|
AIF meets the CHCHD4/Mia40-dependent mitochondrial import pathway. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165746. [PMID: 32105825 DOI: 10.1016/j.bbadis.2020.165746] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
In the mitochondria of healthy cells, Apoptosis-Inducing factor (AIF) is required for the optimal functioning of the respiratory chain machinery, mitochondrial integrity, cell survival, and proliferation. In all analysed species, it was revealed that the downregulation or depletion of AIF provokes mainly the post-transcriptional loss of respiratory chain Complex I protein subunits. Recent progress in the field has revealed that AIF fulfils its mitochondrial pro-survival function by interacting physically and functionally with CHCHD4, the evolutionarily-conserved human homolog of yeast Mia40. The redox-regulated CHCHD4/Mia40-dependent import machinery operates in the intermembrane space of the mitochondrion and controls the import of a set of nuclear-encoded cysteine-motif carrying protein substrates. In addition to their participation in the biogenesis of specific respiratory chain protein subunits, CHCHD4/Mia40 substrates are also implicated in the control of redox regulation, antioxidant response, translation, lipid homeostasis and mitochondrial ultrastructure and dynamics. Here, we discuss recent insights on the AIF/CHCHD4-dependent protein import pathway and review current data concerning the CHCHD4/Mia40 protein substrates in metazoan. Recent findings and the identification of disease-associated mutations in AIF or in specific CHCHD4/Mia40 substrates have highlighted these proteins as potential therapeutic targets in a variety of human disorders.
Collapse
|
111
|
Kadam A, Mehta D, Jubin T, Mansuri MS, Begum R. Apoptosis inducing factor: Cellular protective function in Dictyostelium discoideum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148158. [PMID: 31991113 DOI: 10.1016/j.bbabio.2020.148158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/16/2020] [Accepted: 01/24/2020] [Indexed: 01/31/2023]
Abstract
Apoptosis Inducing Factor (AIF), a nuclear encoded mitochondrial inter-membrane space flavoprotein with intrinsic NADH oxidase activity, plays an important role in inducing cell death mechanisms. In response to cell death signals, it undergoes mitochondrio-nuclear translocation leading to DNA fragmentation. In addition to its role in cell death, AIF has a pro-survival role, wherein it contributes to the maintenance of mitochondrial structure and function in a coordinated manner. However, its exact mechanism of controlling mitochondrial homeostasis is unclear. The current study aims to explore the protective functions of AIF by its downregulation and overexpression in Dictyostelium discoideum. Constitutive AIF downregulated (dR) cells exhibited compromised oxidative phosphorylation along with elevated levels of cellular ROS. Interestingly, constitutive AIF dR cells showed amelioration in the activity of the ETC complexes upon antioxidant treatment, strengthening AIF's role as an ROS regulator, by virtue of its oxidoreductase property. Also, constitutive AIF dR cells showed lower transcript levels of the various subunits of ETC. Moreover, loss of AIF affected mtDNA content and mitochondrial fusion-fission mechanism, which subsequently caused morphometric mitochondrial alterations. Constitutive AIF overexpressed (OE) cells also showed higher cellular ROS and mitochondrial fission genes transcript levels along with reduced mitochondrial fusion genes transcript levels and mtDNA content. Thus, the results of the current study provide a paradigm where AIF is implicated in cell survival by maintaining mitochondrial bioenergetics, morphology and fusion-fission mechanism in D. discoideum, an evolutionarily significant model organism for mitochondrial diseases.
Collapse
Affiliation(s)
- Ashlesha Kadam
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Darshan Mehta
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Tina Jubin
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Mohmmad Shoab Mansuri
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India.
| |
Collapse
|
112
|
Miller JJ, Blanchet A, Orvain C, Nouchikian L, Reviriot Y, Clarke RM, Martelino D, Wilson D, Gaiddon C, Storr T. Bifunctional ligand design for modulating mutant p53 aggregation in cancer. Chem Sci 2019; 10:10802-10814. [PMID: 32055386 PMCID: PMC7006507 DOI: 10.1039/c9sc04151f] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/06/2019] [Indexed: 12/19/2022] Open
Abstract
Protein misfolding and aggregation contributes to the development of a wide range of diseases. In cancer, over 50% of diagnoses are attributed to p53 malfunction due to missense mutations, many of which result in protein misfolding and accelerated aggregation. p53 mutations also frequently result in alteration or loss of zinc at the DNA-binding site, which increases aggregation via nucleation with zinc-bound p53. Herein, we designed two novel bifunctional ligands, LI and LH , to modulate mutant p53 aggregation and restore zinc binding using a metallochaperone approach. Interestingly, only the incorporation of iodine function in LI resulted in modulation of mutant p53 aggregation, both in recombinant and cellular environments. Native mass spectrometry shows a protein-ligand interaction for LI , as opposed to LH , which is hypothesized to lead to the distinct difference in the p53 aggregation profile for the two ligands. Incorporation of a di-2-picolylamine binding unit into the ligand design provided efficient intracellular zinc uptake, resulting in metallochaperone capability for both LI and LH . The ability of LI to reduce mutant p53 aggregation results in increased restoration of p53 transcriptional function and mediates both caspase-dependent and -independent cell death pathways. We further demonstrate that LI exhibits minimal toxicity in non-cancerous organoids, and that it is well tolerated in mice. These results demonstrate that iodination of our ligand framework restores p53 function by interacting with and inhibiting mutant p53 aggregation and highlights LI as a suitable candidate for comprehensive in vivo anticancer preclinical evaluations.
Collapse
Affiliation(s)
- Jessica J Miller
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| | - Anaïs Blanchet
- Inserm UMR_S 1113 , Université de Strasbourg , Molecular Mechanisms of Stress Response and Pathologies , Strasbourg , France .
| | - Christophe Orvain
- Inserm UMR_S 1113 , Université de Strasbourg , Molecular Mechanisms of Stress Response and Pathologies , Strasbourg , France .
| | - Lucienne Nouchikian
- Chemistry Department , York University , 6 Thompson Road , Toronto , Ontario M3J 1L3 , Canada
| | - Yasmin Reviriot
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| | - Ryan M Clarke
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| | - Diego Martelino
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| | - Derek Wilson
- Chemistry Department , York University , 6 Thompson Road , Toronto , Ontario M3J 1L3 , Canada
| | - Christian Gaiddon
- Inserm UMR_S 1113 , Université de Strasbourg , Molecular Mechanisms of Stress Response and Pathologies , Strasbourg , France .
| | - Tim Storr
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| |
Collapse
|
113
|
Banik S, Akter M, Corpus Bondad SE, Saito T, Hosokawa T, Kurasaki M. Carvacrol inhibits cadmium toxicity through combating against caspase dependent/independent apoptosis in PC12 cells. Food Chem Toxicol 2019; 134:110835. [DOI: 10.1016/j.fct.2019.110835] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 01/03/2023]
|
114
|
Rewiring of Cancer Cell Metabolism by Mitochondrial VDAC1 Depletion Results in Time-Dependent Tumor Reprogramming: Glioblastoma as a Proof of Concept. Cells 2019; 8:cells8111330. [PMID: 31661894 PMCID: PMC6912264 DOI: 10.3390/cells8111330] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022] Open
Abstract
Reprograming of the metabolism of cancer cells is an event recognized as a hallmark of the disease. The mitochondrial gatekeeper, voltage-dependent anion channel 1 (VDAC1), mediates transport of metabolites and ions in and out of mitochondria, and is involved in mitochondria-mediated apoptosis. Here, we compared the effects of reducing hVDAC1 expression in a glioblastoma xenograft using human-specific si-RNA (si-hVDAC1) for a short (19 days) and a long term (40 days). Tumors underwent reprograming, reflected in rewired metabolism, eradication of cancer stem cells (CSCs) and differentiation. Short- and long-term treatments of the tumors with si-hVDAC1 similarly reduced the expression of metabolism-related enzymes, and translocator protein (TSPO) and CSCs markers. In contrast, differentiation into cells expressing astrocyte or neuronal markers was noted only after a long period during which the tumor cells were hVDAC1-depleted. This suggests that tumor cell differentiation is a prolonged process that precedes metabolic reprograming and the “disappearance” of CSCs. Tumor proteomics analysis revealing global changes in the expression levels of proteins associated with signaling, synthesis and degradation of proteins, DNA structure and replication and epigenetic changes, all of which were highly altered after a long period of si-hVDAC1 tumor treatment. The depletion of hVDAC1 greatly reduced the levels of the multifunctional translocator protein TSPO, which is overexpressed in both the mitochondria and the nucleus of the tumor. The results thus show that VDAC1 depletion-mediated cancer cell metabolic reprograming involves a chain of events occurring in a sequential manner leading to a reversal of the unique properties of the tumor, indicative of the interplay between metabolism and oncogenic signaling networks.
Collapse
|
115
|
Perrone S, Laschi E, Buonocore G. Biomarkers of oxidative stress in the fetus and in the newborn. Free Radic Biol Med 2019; 142:23-31. [PMID: 30954545 DOI: 10.1016/j.freeradbiomed.2019.03.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/18/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023]
Abstract
The dynamic field of perinatology entails ever-increasing search for molecular mechanisms of neonatal diseases, especially in the domain of fetal growth and neurodevelopmental outcome. There is an urgent need for new molecular biomarkers, to early identify newborn at high risk for developing diseases and to provide new treatment targets. The interest in biomarkers of oxidative stress in perinatal period have begun to grow in the last century, when it was evidenced the importance of the free radicals generation underlying the various disease conditions. To date, interesting researches have been carried out, representing milestones for implementation of oxidative stress biomarkers in perinatal medicine. Use of a panel of "oxidative stress biomarkers", particularly non protein bound iron, advanced oxidative protein products and isoprostanes, may provide valuable information regarding functional pathways underlying free radical mediated diseases of newborns and their early identification and prevention. Here, we will review recent advances and the current knowledge on the application of biomarkers of oxidative stress in neonatal/perinatal medicine including novel biomarker discovery, defining yet unrecognized biologic therapeutic targets, and linking of oxidative stress biomarkers to relevant standard indices and long-term outcomes.
Collapse
Affiliation(s)
- Serafina Perrone
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.
| | - Elisa Laschi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
116
|
Anderson AJ, Jackson TD, Stroud DA, Stojanovski D. Mitochondria-hubs for regulating cellular biochemistry: emerging concepts and networks. Open Biol 2019; 9:190126. [PMID: 31387448 PMCID: PMC6731593 DOI: 10.1098/rsob.190126] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are iconic structures in biochemistry and cell biology, traditionally referred to as the powerhouse of the cell due to a central role in energy production. However, modern-day mitochondria are recognized as key players in eukaryotic cell biology and are known to regulate crucial cellular processes, including calcium signalling, cell metabolism and cell death, to name a few. In this review, we will discuss foundational knowledge in mitochondrial biology and provide snapshots of recent advances that showcase how mitochondrial function regulates other cellular responses.
Collapse
Affiliation(s)
- Alexander J Anderson
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Thomas D Jackson
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - David A Stroud
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
117
|
Villanueva R, Romero-Tamayo S, Laplaza R, Martínez-Olivan J, Velázquez-Campoy A, Sancho J, Ferreira P, Medina M. Redox- and Ligand Binding-Dependent Conformational Ensembles in the Human Apoptosis-Inducing Factor Regulate Its Pro-Life and Cell Death Functions. Antioxid Redox Signal 2019; 30:2013-2029. [PMID: 30450916 DOI: 10.1089/ars.2018.7658] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Aims: The human apoptosis-inducing factor (hAIF) supports OXPHOS biogenesis and programmed cell death, with missense mutations producing neurodegenerative phenotypes. hAIF senses the redox environment of cellular compartments, stabilizing a charge transfer complex (CTC) dimer that modulates the protein interaction network. In this context, we aimed to evaluate the subcellular pH, CTC formation, and pathogenic mutations effects on hAIF stability, and a thermal denaturation high-throughput screening (HTS) assay to discover AIF binders. Results: Apoptotic hAIFΔ1-101 is not stable at intermembrane mitochondrial space (IMS) pH, but the 77-101 residues confer stability to the mitochondrial isoform. hAIF and its CTC populate different conformational ensembles with redox switch to the CTC producing a less stable and compact protein. The pathogenic G308E, ΔR201, and E493V mutations modulate hAIF stability; particularly, ΔR201 causes a population shift to a less stable conformation that remodels active site structure and dynamics. We have identified new molecules that modulate the hAIF reduced nicotinamide adenine dinucleotide (NADH)/oxidized nicotinamide adenine dinucleotide (NAD+) association/dissociation equilibrium and regulate its catalytic efficiency. Innovation: Biophysical methods allow evaluating the regulation of hAIF functional ensembles and to develop an HTS assay to discover small molecules that might modulate hAIF stability and activities. Conclusions: The mitochondrial soluble 54-77 portion stabilizes hAIF at the IMS pH. NADH-redox-linked conformation changes course with strong NAD+ binding and protein dimerization, but they produce a negative impact in overall hAIF stability. Loss of functionality in the R201 deletion is due to distortion of the active site architecture. We report molecules that may serve as leads in the development of hAIF bioactive compounds.
Collapse
Affiliation(s)
- Raquel Villanueva
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| | - Silvia Romero-Tamayo
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| | - Ruben Laplaza
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain.,2 Departamento de Química Física, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Juan Martínez-Olivan
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain.,3 Fundación ARAID, Diputación General de Aragón, Zaragoza, Spain.,4 Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain.,5 Biomedical Research Networking Centre for Liver and Digestive Diseases (CIBERehd), Madrid, Spain
| | - Javier Sancho
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain.,4 Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| | - Patricia Ferreira
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| | - Milagros Medina
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
118
|
Babbar M, Huang Y, Curtiss CM, Sheikh MS. CHTM1 regulates cancer cell sensitivity to metabolic stress via p38-AIF1 pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:271. [PMID: 31221176 PMCID: PMC6587271 DOI: 10.1186/s13046-019-1253-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/28/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND Recently, we have reported the characterization of a novel protein named Coiled-coil Helix Tumor and Metabolism 1 (CHTM1). CHTM1 localizes to both cytosol and mitochondria. Sequence corresponding to CHTM1 is also annotated in the database as CHCHD5. CHTM1 is deregulated in human breast and colon cancers and its deficiency in human cancer cells leads to defective lipid metabolism and poor growth under glucose/glutamine starvation. METHODS Human cancer cell lines and tissue specimens were used. CHTM1 knockdown was done via lentiviral approach. CHTM1-expresssion constructs were developed and mutants were generated via site-directed mutagenesis approach. Western blotting, immunostaining, immunohistochemistry, cell fractionation and luciferase assays were performed. Reactive oxygen species and reactive nitrogen species were also measured. RESULTS Here we report that CHTM1 deficiency sensitizes human lung cancer cells to metabolic stress-induced cell death mediated by glucose/glutamine deprivation and metformin treatment. CHTM1 interacts with Apoptosis Inducing Factor 1 (AIF1) that is one of the important death inducing molecules. CHTM1 appears to negatively regulate AIF1 by preventing AIF1 translocation to cytosol/nucleus and thereby inhibit AIF1-mediated caspase-independent cell death. Our results also indicate that p38, a stress kinase, plays a critical role in metabolic stress-induced cell death in CHTM1-deficient cells. Furthermore, p38 appears to enhance AIF1 translocation from mitochondria to cytosol particularly in metabolically stressed CHTM1-deficient cells and CHTM1 negatively regulates p38 kinase activity. The expression status of CHTM1 in lung cancer patient samples is also investigated and our results indicate that CHTM1 levels are increased in the majority of lung tumors when compared to their matching normal tissues. CONCLUSION Thus, CHTM1 appears to be an important metabolic marker that regulates cancer cell survival under metabolic stress conditions, and has the potential to be developed as a predictive tumor marker.
Collapse
Affiliation(s)
- Mansi Babbar
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.,Present address: Mansi Babbar, Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, 21224, USA
| | - Ying Huang
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Christopher M Curtiss
- Department of Pathology, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - M Saeed Sheikh
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
119
|
Wang Q, Xingxing L, Ding Z, Qi Y, Liu Y. Whole exome sequencing identifies a novel variant in an apoptosis-inducing factor gene associated with X-linked recessive hearing loss in a Chinese family. Genet Mol Biol 2019; 42:543-548. [PMID: 31188924 PMCID: PMC6905455 DOI: 10.1590/1678-4685-gmb-2018-0051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 01/30/2019] [Indexed: 11/22/2022] Open
Abstract
We report on the genetic analysis of a Chinese family in which four male patients presented with postlingual progressive hearing loss, associated with distal muscle wasting and unsteady ataxic gait. Using whole exome sequencing, we identified a new pathogenic variant (c.1463C>T, p.Pro488Leu) in the AIFM1 gene, which encodes the apoptosis-inducing factor mitochondrion-associated 1 precursor. AIFM1 is involved in the mitochondrial respiratory chain and cellular caspase-independent apoptosis pathway and has been reported to cause multiple phenotypes including hearing loss. The p.Pro488Leu missense variant segregated with symptoms in the pedigree. It was not found in the dbSNP database, databases of genomes and SNPs in the Chinese population, in 74 patients with sporadic hearing loss, or in 108 normal individuals.We also verified that this AIFM1variant enhanced cell apoptosis rates compared in 293T cells transfected with wild-type AIFM1. Different variations of AIFM1 give rise to different phenotypes in patients, and this is the second reported family with a variant in the C-terminal domain of AIFM1 showing the phenotype of hearing loss and peripheral neuropathy.
Collapse
Affiliation(s)
- Qi Wang
- Department of Otolaryngology, Head and Neck Surgery, Peking University First Hospital, Beijing, China.,Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lu Xingxing
- Department of Otolaryngology, Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Zhiwei Ding
- Department of Otolaryngology, Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Yu Qi
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Yuhe Liu
- Department of Otolaryngology, Head and Neck Surgery, Peking University First Hospital, Beijing, China
| |
Collapse
|
120
|
Liao X, Fan Y, Hou J, Chen X, Xu X, Yang Y, Shen J, Mi P, Huang X, Zhang W, Cao H, Hong X, Hu T, Zhan YY. Identification of Chaetocin as a Potent non-ROS-mediated Anticancer Drug Candidate for Gastric Cancer. J Cancer 2019; 10:3678-3690. [PMID: 31333785 PMCID: PMC6636309 DOI: 10.7150/jca.32803] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/14/2019] [Indexed: 01/08/2023] Open
Abstract
Chaetocin, a natural product extracted from Chaetomium species, possesses anticancer effects in several kinds of tumors. However, it remains unclear whether the potential indication for chaetocin could also include human gastric cancer. We found here that chaetocin induced caspase-dependent and -independent apoptosis in human gastric cancer cell lines, which greatly depended on BID-mediated AIF translocation. Despite not increasing the intercellular ROS levels in gastric cancer cells, chaetocin did cause a reduction in mitochondrial membrane potential probably through its regulation on the expression of Bcl-2 and BAX. Chaetocin could also induce autophagy in gastric cancer cells; blocking autophagy by chloroquine enhanced the cytotoxicity of chaetocin. Chaetocin was further found to suppress the growth of gastric cancer xenograft in nude mice. Therefore, our study provides first evidence that chaetocin has an anticancer efficacy against gastric cancer and the combined use of chaetocin with autophagy inhibitors may enhance the therapeutic effect for gastric cancer. As chronic and exorbitant ROS levels instigate drug resistance, chaetocin, which eradicates gastric cancer cells without increasing ROS levels, may initiate a new line of non-ROS-mediated anti-tumor strategy.
Collapse
Affiliation(s)
- Xinwen Liao
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, P.R. China
| | - Yaqiong Fan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, P.R. China
| | - Jihuan Hou
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, P.R. China
| | - Xiong Chen
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, P.R. China
| | - Xiaolin Xu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, P.R. China
| | - Yifan Yang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, P.R. China
| | - Jinying Shen
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, P.R. China
| | - Panying Mi
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, P.R. China
| | - Xiaohua Huang
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen 361102, Fujian, P.R. China
| | - Wenqing Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, P.R. China
| | - Hanwei Cao
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, P.R. China
| | - Xiaoting Hong
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen 361102, Fujian, P.R. China
| | - Tianhui Hu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, P.R. China
| | - Yan-Yan Zhan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, P.R. China
| |
Collapse
|
121
|
Lee YK, Lee KW, Kim M, Lee Y, Yoo J, Hwangbo C, Park KH, Kim KD. Chelidonine Induces Caspase-Dependent and Caspase-Independent Cell Death through G 2/M Arrest in the T98G Human Glioblastoma Cell Line. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:6318179. [PMID: 31239863 PMCID: PMC6556348 DOI: 10.1155/2019/6318179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/07/2019] [Indexed: 11/18/2022]
Abstract
Chelidonium majus L. (family Papaveraceae), commonly known as greater celandine or tetterwort, has been reported to have antibacterial and anticancer effects and chelidonine is known as a functional metabolite extracted from C.
Collapse
Affiliation(s)
- Yeon-Kyeong Lee
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Ki Won Lee
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Minju Kim
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Yerin Lee
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Jiyun Yoo
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 660-701, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Cheol Hwangbo
- Division of Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Ki Hun Park
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Kwang Dong Kim
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 660-701, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
- PMBBRC, Gyeongsang National University, Jinju 660-701, Republic of Korea
| |
Collapse
|
122
|
Bagley JR, Szumlinski KK, Kippin TE. Discovery of early life stress interacting and sex-specific quantitative trait loci impacting cocaine responsiveness. Br J Pharmacol 2019; 176:4159-4172. [PMID: 30874305 DOI: 10.1111/bph.14661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/12/2019] [Accepted: 02/18/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Addiction vulnerability involves complex gene X environment interactions leading to a pathological response to drugs. Identification of the genes involved in these interactions is an important step in understanding the underlying neurobiology and rarely have such analyses examined sex-specific influences. To dissect this interaction, we examined the impact of prenatal stress (PNS) on cocaine responsiveness in male and female mice of the BXD recombinant inbred panel. EXPERIMENTAL APPROACH BXD strains were subjected to timed mating and assigned to PNS or control groups. PNS dams were subjected to restraint stress (1-hr restraint, three times daily) starting between embryonic day (E) 11 and 14 and continued until parturition. Adult male and female, control and PNS offspring were tested for locomotor response to initial and repeated cocaine injections (sensitization) as well as cocaine-induced conditioned place preference (CPP). KEY RESULTS Strain, PNS, and sex interacted to modulate initial and sensitized cocaine-induced locomotion, as well as CPP. Moreover, a quantitative trait locus (QTL) interacting with PNS regulating initial locomotor response to cocaine (chromosome X, 37.91 to 50.95 Mb) was identified. Also PNS-independent, female-specific QTLs regulating CPP (chromosome 11, 65.50 to 81.31 Mb) and sensitized cocaine-induced locomotion (chromosome 16, 95.79 to 98.32 Mb) were identified. Publicly available mRNA expression data were utilized to identify cis-eQTL and transcript covariation with the behavioural phenotype to prioritize candidate genes; including Aifm1. CONCLUSIONS AND IMPLICATIONS These QTL encompass genes that may moderate genetic susceptibility to PNS and interact with sex to determine adult responsiveness to cocaine and addiction vulnerability. LINKED ARTICLES This article is part of a themed section on The Importance of Sex Differences in Pharmacology Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.21/issuetoc.
Collapse
Affiliation(s)
- Jared R Bagley
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California.,Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California.,Department of Molecular Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California.,Institute for Collaborative Biotechnologies, University of California Santa Barbara, Santa Barbara, California
| | - Tod E Kippin
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California.,Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California.,Department of Molecular Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California.,Institute for Collaborative Biotechnologies, University of California Santa Barbara, Santa Barbara, California
| |
Collapse
|
123
|
Lkhagvasuren K, Kim JK. Ziyuglycoside II induces caspases-dependent and caspases-independent apoptosis in human colon cancer cells. Toxicol In Vitro 2019; 59:255-262. [PMID: 31029785 DOI: 10.1016/j.tiv.2019.04.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 12/22/2022]
Abstract
The development of chemopreventive approaches using natural products including phytochemicals is a potentially useful cancer treatment. The aims of this study were to examine the apoptotic effects of ziyuglycoside II, a major bioactive compound isolated from Sanguisorba officinalis L., on human colon cancer cells. The anticancer effect of ziyuglycoside II was examined in HCT116 (as p53 normal cells) and SW480 (as p53 mutant cells) colon cancer cells. Ziyuglycoside II treatment decreased HCT116 and SW480 cell proliferation. Cell death following ziyuglycoside II treatment was predominantly apoptosis but not cell cycle arrest. Apoptosis caused by p53 phosphorylation following ziyuglycoside II treatment in HCT116 cells involved activation of caspases, increased expression of BAX, mitochondrial cytochrome c and apoptosis inducing factor (AIF) release, while BCL-2 became down-regulated. In contrast, ziyuglycoside II treated SW480 cells displayed no change in phosphorylated-p53 and activation of caspases. Overall, these results suggest that ziyuglycoside II induces apoptosis through caspase-dependent and caspases-independent apoptosis, which was characterized by decreased expression of BCL-2, mitochondrial targeting, and altered production of ROS and translocation of AIF to the nuclei.
Collapse
Affiliation(s)
- Khaliunaa Lkhagvasuren
- Department of Biomedical Science, Catholic University of Daegu, Gyeongsan-Si 38430, Republic of Korea
| | - Jin-Kyung Kim
- Department of Biomedical Science, Catholic University of Daegu, Gyeongsan-Si 38430, Republic of Korea.
| |
Collapse
|
124
|
|
125
|
Hatami S, White CW, Shan S, Haromy A, Qi X, Ondrus M, Kinnear A, Himmat S, Michelakis E, Nagendran J, Freed DH. Myocardial Functional Decline During Prolonged Ex Situ Heart Perfusion. Ann Thorac Surg 2019; 108:499-507. [PMID: 30872100 DOI: 10.1016/j.athoracsur.2019.01.076] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/14/2018] [Accepted: 01/21/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND Myocardial function declines in a time-dependent fashion during ex situ heart perfusion. Cell death and metabolic alterations may contribute to this phenomenon, limiting the safe perfusion period and the potential of ex situ heart perfusion to expand the donor pool. Our aim was to investigate the etiology of myocardial functional decline in ex situ perfused hearts. METHODS Cardiac function, apoptosis, effectors and markers of cell death, and metabolic function were assessed in healthy pig hearts perfused for 12 hours. These hearts were perfused in nonworking mode or working mode. RESULTS Cardiac function declined during ex situ heart perfusion regardless of perfusion mode but was significantly better preserved in the hearts perfused in working mode (11-hour cardiac index/1-hour cardiac index: working mode, 33%; nonworking mode, 10%; p = 0.025). The rate of apoptosis was higher in the ex situ perfused hearts compared with in vivo samples (apoptotic cells: in vivo, 0.13%; working mode, 0.54%; nonworking mode, 0.88%; p < 0.001), but the absolute values were low and out of proportion to the decline in function in either group. Myocardial dysfunction at the end of the perfusion interval was partially rescued by delivery of a pyruvate bolus. CONCLUSIONS A significant decline in myocardial function occurs over time in hearts preserved ex situ that is out of proportion to the magnitude of myocyte cell death present in dysfunctional hearts. Alterations in myocardial substrate utilization during prolonged ex situ heart perfusion may contribute to this phenomenon and represent an avenue to improve donor heart preservation.
Collapse
Affiliation(s)
- Sanaz Hatami
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada; Canadian Transplant Research Program, Canada
| | - Christopher W White
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada; Canadian Transplant Research Program, Canada
| | - Shubham Shan
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Alois Haromy
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Xiao Qi
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada; Canadian Transplant Research Program, Canada
| | - Martin Ondrus
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Alexandra Kinnear
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Sayed Himmat
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada; Canadian Transplant Research Program, Canada
| | | | - Jayan Nagendran
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada; Canadian Transplant Research Program, Canada; Alberta Transplant Institute, Edmonton, Alberta, Canada
| | - Darren H Freed
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada; Canadian Transplant Research Program, Canada; Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; Alberta Transplant Institute, Edmonton, Alberta, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
126
|
Patel A, Soni A, Siddiqi NJ, Sharma P. An insight into the anticancer mechanism of Tribulus terrestris extracts on human breast cancer cells. 3 Biotech 2019; 9:58. [PMID: 30729082 DOI: 10.1007/s13205-019-1585-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/17/2019] [Indexed: 01/18/2023] Open
Abstract
Tribulus terrestris (TT), a herb belonging to Zygophyllaceae family is widely used due to its medicinal properties. This study was undertaken to elucidate the anticancer mechanism of TT on MCF-7 breast cancer cells. Cytotoxic effect of the herb was assessed by 3-(4,5-diethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Apoptotic potential was assessed through DNA fragmentation, TUNEL and caspase 3 activity assays. Expressions of genes regulating the apoptotic pathway were examined by RT-PCR and expression of proteins was analyzed by immunocytochemistry. The result of MTT assay revealed that methanolic and saponin extracts from leaves and seeds of TT were cytotoxic to MCF-7 cells. Cytotoxicity studies on peripheral blood mononuclear cells (PBMC) proved that TT extracts were non-toxic to non-malignant cells. Treatment of human breast cancer MCF-7 cells with seed and leaf methanol and saponin extracts of TT resulted in fragmentation of DNA and induction of apoptosis. This was evident by agarose gel electrophoresis of DNA and TUNNEL assay. The extracts of TT also caused a significant increase in caspase 3 activity in MCF-7 cells. TT extracts caused an induction of intrinsic apoptotic pathway which was evident by the upregulation in the expression of Bax and p53 genes and downregulation in the expression of Bcl-2. FADD, AIF and caspase 8 genes were also upregulated indicating the possible induction of extrinsic apoptotic pathway. Therefore, our results suggest that the Tribulus terrestris (TT) extracts may exert their anticancer activity by both extrinsic and intrinsic apoptotic pathways.
Collapse
Affiliation(s)
- Apurva Patel
- 1Department of Biotechnology, Veer Narmad South Gujarat University, Surat, Gujarat 395007 India
| | - Anjali Soni
- 1Department of Biotechnology, Veer Narmad South Gujarat University, Surat, Gujarat 395007 India
| | - Nikhat J Siddiqi
- 2Department of Biochemistry, College of Science, King Saud University, Riyadh, 11495 Saudi Arabia
| | - Preeti Sharma
- 1Department of Biotechnology, Veer Narmad South Gujarat University, Surat, Gujarat 395007 India
| |
Collapse
|
127
|
Liang H, Xu J, Wang W. Ran1 is essential for parental macronuclear import of apoptosis-inducing factor and programmed nuclear death in Tetrahymena thermophila. FEBS J 2019; 286:913-929. [PMID: 30663224 DOI: 10.1111/febs.14761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/30/2018] [Accepted: 01/17/2019] [Indexed: 01/30/2023]
Abstract
During programmed nuclear death (PND), apoptosis-inducing factor (AIF) translocates from mitochondria to the parental macronucleus (MAC) in Tetrahymena thermophila. In the degenerating parental MAC, AIF induces chromatin condensation and large-scale DNA fragmentation in a caspase-independent manner. However, the regulation of AIF nuclear translocation and molecular mechanism of PND are less clear. In this study, we demonstrated that the asymmetric distribution of nuclear GDP-bound Ran1-mimetic mutant Ran1T25N and cytoplasmic GTP-bound Ran1-mimetic mutant Ran1Q70L exists across the parental macronuclear-cytoplasmic barrier during PND. Knockdown of RAN1 led to defects in PND progression and failure of parental macronuclear accumulation of AIF. Moreover, AIF parental macronuclear import occurred in Ran1T25N mutants, while it was inhibited in Ran1Q70L mutants. Importantly, artificial accumulation of AIF in the parental MAC rescued PND progression defects in RAN1 knockdown mutants. These data suggest that Ran1 is essential for parental macronuclear import of AIF and PND in T. thermophila.
Collapse
Affiliation(s)
- Haixia Liang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,MicroNano System Research Center, Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, College of Information & Computer Engineering, Taiyuan University of Technology, China
| | - Jing Xu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| |
Collapse
|
128
|
Cheng CY, Kao ST, Lee YC. Ferulic Acid Exerts Anti-apoptotic Effects against Ischemic Injury by Activating HSP70/Bcl-2- and HSP70/Autophagy-Mediated Signaling after Permanent Focal Cerebral Ischemia in Rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:39-61. [PMID: 30612456 DOI: 10.1142/s0192415x19500034] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study assessed the anti-apoptotic effects of the administration of ferulic acid (FrA) in rats 30 min before middle cerebral artery occlusion (MCAo) followed by 3 d of ischemia and the involvement of 70 kDa heat shock protein (HSP70)-mediated signaling in the penumbral cortex. Our results demonstrated that FrA pretreatment at doses of 80 mg/kg (FrA-80 mg) and 100 mg/kg (FrA-100 mg) effectively ameliorated neurological functions and reduced the numbers of cytochrome c-, cleaved caspase-3-, and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive cells in the penumbral cortex 3 d after ischemia. Moreover, FrA-80 mg and FrA-100 mg pretreatment markedly upregulated cytosolic HSP70, Beclin-1, microtubule-associated protein 1 light chain 3 (LC3) A/B-II and autophagy-related protein 5 (Atg5) expression; cytosolic and mitochondrial X-linked inhibitor of apoptosis (XIAP) expression and the Bcl-2/Bax ratio. FrA pretreatment downregulated cytosolic cytochrome c, apoptosis-inducing factor (AIF), procathepsin B, and cathepsin B expression and mitochondrial and cytosolic second mitochondria-derived activator of caspase/direct inhibitor of apoptosis protein-binding protein with a low isoelectric point (Smac/DIABLO) expression in the penumbral cortex. Pretreatment with VER155008, a HSP70 family inhibitor, significantly inhibited the effects of FrA-100 mg on the expression of the aforementioned proteins expression in the penumbral cortex. FrA-80 mg and FrA-100 mg pretreatment exerts neuroprotective effects against caspase-dependent and -independent apoptosis through activating HSP70/Bcl-2- and HSP70/autophagy-induced signaling pathways. Furthermore, the HSP70/Bcl-2- and HSP70/autophagy-induced anti-apoptotic effects of FrA pretreatment can be attributed to the regulation of Bax/cytochrome c/Smac/DIABLO/XIAP/ caspase-3- (or Bax/AIF-) and Beclin-1/LC3A/B-II/Atg5-mediated signaling, respectively, in the penumbral cortex 3 d after permanent MCAo.
Collapse
Affiliation(s)
- Chin-Yi Cheng
- * School of Post-Baccalaureate Chinese Medicine, College of Chinese medicine, China Medical University, Taichung 40402, Taiwan.,¶ Department of Chinese Medicine, Hui-Sheng Hospital 42056, Taichung, Taiwan
| | - Shung-Te Kao
- † School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Yu-Chen Lee
- ‡ Research Center for Chinese Medicine & Acupuncture Science, China Medical University, Taichung 40402, Taiwan.,§ Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan.,∥ Department of Chinese Medicine, China Medical University Hospital 40447, Taichung, Taiwan
| |
Collapse
|
129
|
A. Assirey E, M. Wagih H, N. Mahran H. Phoenix dactylifera L. Extract Diminished Apoptotic Effect in Cirrhotic Liver of a Rat Model. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2019.92.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
130
|
Huang FM, Chang YC, Lee SS, Ho YC, Yang ML, Lin HW, Kuan YH. Bisphenol A exhibits cytotoxic or genotoxic potential via oxidative stress-associated mitochondrial apoptotic pathway in murine macrophages. Food Chem Toxicol 2018; 122:215-224. [PMID: 30312649 DOI: 10.1016/j.fct.2018.09.078] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/10/2018] [Accepted: 09/29/2018] [Indexed: 01/28/2023]
Abstract
Bisphenol A (BPA) is primarily used in production of polycarbonate plastics and epoxy resins including plastic containers. BPA is an endocrine disruptor and supposes to induce asthma and cancer. However, so far only a few evidences have shown the BPA-induced toxic effect and its related mechanism in macrophages. BPA demonstrated cytotoxic effect on RAW264.7 macrophages in a concentration and time-dependent manner. BPA induces necrosis, apoptosis, and genotoxicity in a concentration-dependent manner. Phosphorylation of cytochrome C (cyto C) and p53 was due to mitochondrial disruption via BCL2 and BCL-XL downregulation and BAX, BID, and BAD upregulation. Both caspase-dependent, including caspase-9, caspase-3, and PARP-1 cleavage, and caspase-independent, such as nuclear translocation of AIF, pathways were activated by BPA. Furthermore, generation of reactive oxygen species (ROS) and reduction of antioxidative enzyme activities were induced by BPA. Parallel trends were observed in the effect of BPA on cytotoxicity, apoptosis, genotoxicity, p53 phosphorylation, BCL2 family expression exchange, caspase-dependent and independent apoptotic pathways, and ROS generation in RAW264.7 macrophages. Finally, BPA-exhibited cytotoxicity, apoptosis, and genotoxicity could be inhibited by N-acetylcysteine. These results indicated that the toxic effect of BPA was functioning via oxidative stress-associated mitochondrial apoptotic pathway in macrophages.
Collapse
Affiliation(s)
- Fu-Mei Huang
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Chao Chang
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Shiuan-Shinn Lee
- School of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Yung-Chyuan Ho
- School of Medical Applied Chemistry, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Ling Yang
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hui-Wen Lin
- Department of Optometry, Asia University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan; Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
131
|
ARL3 subcellular localization and its suspected role in autophagy. Biochimie 2018; 154:187-193. [DOI: 10.1016/j.biochi.2018.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/13/2018] [Indexed: 11/23/2022]
|
132
|
Desa DE, Nichols MG, Smith HJ. Aminoglycosides rapidly inhibit NAD(P)H metabolism increasing reactive oxygen species and cochlear cell demise. JOURNAL OF BIOMEDICAL OPTICS 2018; 24:1-14. [PMID: 30411553 PMCID: PMC6225535 DOI: 10.1117/1.jbo.24.5.051403] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/21/2018] [Indexed: 06/04/2023]
Abstract
Despite causing permanent hearing loss by damaging inner ear sensory cells, aminoglycosides (AGs) remain one of the most widely used classes of antibiotics in the world. Although the mechanisms of cochlear sensory cell damage are not fully known, reactive oxygen species (ROS) are clearly implicated. Mitochondrial-specific ROS formation was evaluated in acutely cultured murine cochlear explants exposed to gentamicin (GM), a representative ototoxic AG antibiotic. Superoxide (O2·-) and hydrogen peroxide (H2O2) were measured using MitoSOX Red and Dihydrorhodamine 123, respectively, in sensory and supporting cells. A 1-h GM exposure significantly increased O2·- formation in IHCs and increased H2O2 formation in all cell types. At the same time point, GM significantly increased manganese superoxide dismutase (MnSOD) levels while significantly decreasing copper/zinc superoxide dismutase (CuZnSOD) in cochlear sensory cells. This suggests (1) a rapid conversion of highly reactive O2·- to H2O2 during the acute stage of ototoxic antibiotic exposure and (2) that the endogenous antioxidant system is significantly altered by AGs. Fluorescence intensity-based measurements of reduced nicotinamide adenine dinucleotide (phosphate) [NAD(P)H] and mitochondrial membrane potential were measured to determine if increases in GM-induced ROS production were correlated with changes in mitochondrial metabolism. This project provides a basis for understanding the mechanisms of mitochondrial ROS production in cochlear cells exposed to ototoxic antibiotics. Understanding the nature of ototoxic antibiotic-induced changes in mitochondrial metabolism is critical for developing hearing loss treatment and prevention strategies.
Collapse
Affiliation(s)
- Danielle E. Desa
- University of Rochester, Department of Biomedical Engineering, Rochester, New York, United States
| | - Michael G. Nichols
- Creighton University, Department of Physics, Omaha, Nebraska, United States
- Creighton University, Department of Biomedical Sciences, Omaha, Nebraska, United States
| | - Heather Jensen Smith
- University of Nebraska Medical Center, The Eppley Institute for Cancer and Allied Diseases, Omaha, Nebraska, United States
| |
Collapse
|
133
|
Zhu J, Xu S, Li S, Yang X, Yu X, Zhang X. Up-regulation of GluN2A-containing NMDA receptor protects cultured cortical neuron cells from oxidative stress. Heliyon 2018; 4:e00976. [PMID: 30555952 PMCID: PMC6275848 DOI: 10.1016/j.heliyon.2018.e00976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/14/2018] [Accepted: 11/21/2018] [Indexed: 01/28/2023] Open
Abstract
Neuronal excitotoxicity induced by spreading depolarization occurs during multiple brain diseases. The subsequent extensive releasing of neuronal transmitter glutamate results in over activation of the ionic glutamate receptors and then triggers neuronal cell death. The N-methyl-D-aspartate (NMDA) receptor is one major type of excitatory ionic glutamate receptors in the central nervous system, and it exerts vital functions on the membrane of neurons. Distinct subtypes of the NMDA receptor play different roles and their expression was dynamically regulated according to both physiological and pathological stimulations. During neuronal excitotoxicity the expression of the GluN2A-containing NMDA receptor is specifically up-regulated, and as a result, the ratio of GluN2A- versus GluN2B-containing NMDA receptors is altered. However the physiological significance of this phenomenon is still not clear. In this research, we specifically inhibited the increase of the GluN2A-containing NMDA receptor by a peptide without affecting the basic expression of both GluN2A- and GluN2B-containing NMDA receptors, and found that the oxidative stress of neurons was intensified, with increased endogenous reactive oxygen species (ROS), loss of mitochondrial membrane potential, and elevated expressions of Bcl-2-associated X protein (Bax) and apoptosis-inducing factor (AIF). Furthermore, the phosphorylation of Akt and ERK were also inhibited. These results indicated that the dynamic expression of the GluN2A-containing NMDA receptor played crucial roles in protecting neurons from excitotoxicity.
Collapse
Affiliation(s)
- Jia Zhu
- Department of Immunopathology and Diabetes Institute, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Shilian Xu
- School of Basic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Shengpei Li
- School of Basic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Xueling Yang
- School of Basic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Xianhui Yu
- School of Basic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Xiaomin Zhang
- School of Basic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| |
Collapse
|
134
|
Hribljan V, Salamon I, Đemaili A, Alić I, Mitrečić D. Transplantation of neural stem cells in the mouse model of ischemic brain stroke and expression of genes involved in programmed cell death. Croat Med J 2018; 59:203-212. [PMID: 30394012 PMCID: PMC6240818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 09/12/2018] [Indexed: 12/17/2023] Open
Abstract
Aim To analyze how neural stem cells (NSC) transplantation in the stroke-affected mouse brain influences the expression of genes involved in apoptosis-inducing factor (AIF)-mediated cell death – apoptosis inducing factor mitochondria associated 1 (Aifm1 ), ring finger protein 146 (Rnf146, Iduna ), and cyclophilin A (CypA ); necroptosis –receptor interaction protein kinase 1 (Ripk1 ), Ripk3 , and mixed-lineage kinase domain-like protein (Mlkl ); and apoptosis – Caspase 3 (Casp3 ) and Casp8 . Methods Four groups of animals were used to obtain mRNA for quantitative reverse transcription polymerase chain reaction analysis: healthy animals (n = 3), animals with stroke (n = 4), animals with stroke treated by stem cell transplantation (n = 7), and animals with stroke treated by proliferation-supporting medium (n = 5). Ischemic brain injury was induced by transient left middle cerebral artery occlusion. Statistical analysis was performed using one-way analysis of variance with post-hoc Tukey test. Results NSC transplantation in the stroke-affected mouse brain significantly increased the expression of Iduna (P < 0.05), a gene-encoding protein with well-known protective effects on hypoxic damage, and significantly down-regulated the expression of damage-supportive genes, Casp3 (P < .01) and Aifm1 (P < 0.001). We were able to distinguish between the effect produced by stem cell transplantation (Iduna , Aifm1 , Ripk3 , Mlkl ) and the effect produced by supporting the tissue with proliferation-supporting medium (Ripk1 , Casp8 ). Conclusion Beside revealing some clearly positive effects of stem cells transplantation on the stroke-affected brain, our results suggest that the tissue response triggered by stem cells points toward the desired, regeneration-supporting levels of expression of a certain gene at a certain time point.
Collapse
Affiliation(s)
| | | | | | | | - Dinko Mitrečić
- Dinko Mitrečić, Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, Zagreb, Croatia,
| |
Collapse
|
135
|
Khalo IV, Konokhova AI, Orlova DY, Trusov KV, Yurkin MA, Bartova E, Kozubek S, Maltsev VP, Chernyshev AV. Nuclear apoptotic volume decrease in individual cells: Confocal microscopy imaging and kinetic modeling. J Theor Biol 2018; 454:60-69. [PMID: 29859212 DOI: 10.1016/j.jtbi.2018.05.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 05/13/2018] [Accepted: 05/28/2018] [Indexed: 11/29/2022]
Abstract
The dynamics of nuclear morphology changes during apoptosis remains poorly investigated and understood. Using 3D time-lapse confocal microscopy we performed a study of early-stage apoptotic nuclear morphological changes induced by etoposide in single living HepG2 cells. These observations provide a definitive evidence that nuclear apoptotic volume decrease (AVD) is occurring simultaneously with peripheral chromatin condensation (so called "apoptotic ring"). In order to describe quantitatively the dynamics of nuclear morphological changes in the early stage of apoptosis we suggest a general molecular kinetic model, which fits well the obtained experimental data in our study. Results of this work may clarify molecular mechanisms of nuclear morphology changes during apoptosis.
Collapse
Affiliation(s)
- Irina V Khalo
- Voevodsky Institute of Chemical Kinetics and Combustion, Institutskaya 3, Novosibirsk 630090, Russia
| | - Anastasiya I Konokhova
- Voevodsky Institute of Chemical Kinetics and Combustion, Institutskaya 3, Novosibirsk 630090, Russia
| | - Darya Y Orlova
- Department of Genetics, Stanford University, Campus Drive 279, Stanford, CA 94305, USA
| | - Konstantin V Trusov
- Voevodsky Institute of Chemical Kinetics and Combustion, Institutskaya 3, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Maxim A Yurkin
- Voevodsky Institute of Chemical Kinetics and Combustion, Institutskaya 3, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Eva Bartova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, Brno CZ-612 65, Czech Republic
| | - Stanislav Kozubek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, Brno CZ-612 65, Czech Republic
| | - Valeri P Maltsev
- Voevodsky Institute of Chemical Kinetics and Combustion, Institutskaya 3, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia; Novosibirsk State Medical University, Krasny Prospect 52, Novosibirsk 630091, Russia
| | - Andrei V Chernyshev
- Voevodsky Institute of Chemical Kinetics and Combustion, Institutskaya 3, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia.
| |
Collapse
|
136
|
Mitochondrial diseases caused by dysfunctional mitochondrial protein import. Biochem Soc Trans 2018; 46:1225-1238. [PMID: 30287509 DOI: 10.1042/bst20180239] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/20/2018] [Accepted: 08/31/2018] [Indexed: 12/18/2022]
Abstract
Mitochondria are essential organelles which perform complex and varied functions within eukaryotic cells. Maintenance of mitochondrial health and functionality is thus a key cellular priority and relies on the organelle's extensive proteome. The mitochondrial proteome is largely encoded by nuclear genes, and mitochondrial proteins must be sorted to the correct mitochondrial sub-compartment post-translationally. This essential process is carried out by multimeric and dynamic translocation and sorting machineries, which can be found in all four mitochondrial compartments. Interestingly, advances in the diagnosis of genetic disease have revealed that mutations in various components of the human import machinery can cause mitochondrial disease, a heterogenous and often severe collection of disorders associated with energy generation defects and a multisystem presentation often affecting the cardiovascular and nervous systems. Here, we review our current understanding of mitochondrial protein import systems in human cells and the molecular basis of mitochondrial diseases caused by defects in these pathways.
Collapse
|
137
|
Yu JS, Roh HS, Baek KH, Lee S, Kim S, So HM, Moon E, Pang C, Jang TS, Kim KH. Bioactivity-guided isolation of ginsenosides from Korean Red Ginseng with cytotoxic activity against human lung adenocarcinoma cells. J Ginseng Res 2018; 42:562-570. [PMID: 30337817 PMCID: PMC6190500 DOI: 10.1016/j.jgr.2018.02.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/31/2018] [Accepted: 02/08/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related death worldwide. In this study, we used a bioactivity-guided isolation technique to identify constituents of Korean Red Ginseng (KRG) with antiproliferative activity against human lung adenocarcinoma cells. METHODS Bioactivity-guided fractionation and preparative/semipreparative HPLC purification were used with LC/MS analysis to separate the bioactive constituents. Cell viability and apoptosis in human lung cancer cell lines (A549, H1264, H1299, and Calu-6) after treatment with KRG extract fractions and constituents thereof were assessed using the water-soluble tetrazolium salt (WST-1) assay and terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining, respectively. Caspase activation was assessed by detecting its surrogate marker, cleaved poly adenosine diphosphate (ADP-ribose) polymerase, using an immunoblot assay. The expression and subcellular localization of apoptosis-inducing factor were assessed using immunoblotting and immunofluorescence, respectively. RESULTS AND CONCLUSION Bioactivity-guided fractionation of the KRG extract revealed that its ethyl acetate-soluble fraction exerts significant cytotoxic activity against all human lung cancer cell lines tested by inducing apoptosis. Chemical investigation of the ethyl acetatesoluble fraction led to the isolation of six ginsenosides, including ginsenoside Rb1 (1), ginsenoside Rb2 (2), ginsenoside Rc (3), ginsenoside Rd (4), ginsenoside Rg1 (5), and ginsenoside Rg3 (6). Among the isolated ginsenosides, ginsenoside Rg3 exhibited the most cytotoxic activity against all human lung cancer cell lines examined, with IC50 values ranging from 161.1 μM to 264.6 μM. The cytotoxicity of ginsenoside Rg3 was found to be mediated by induction of apoptosis in a caspase-independent manner. These findings provide experimental evidence for a novel biological activity of ginsenoside Rg3 against human lung cancer cells.
Collapse
Affiliation(s)
- Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyun-Soo Roh
- Department of Molecular and Cellular Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kwan-Hyuck Baek
- Department of Molecular and Cellular Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Seul Lee
- Department of Molecular and Cellular Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Sil Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hae Min So
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Eunjung Moon
- Charmzone R&D Center, Charmzone Co. LTD., Seoul, Republic of Korea
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Tae Su Jang
- Institute of Green Bio Science & Technology, Seoul National University, Pyeong Chang, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
138
|
Scott AJ, Walker SA, Krank JJ, Wilkinson AS, Johnson KM, Lewis EM, Wilkinson JC. AIF promotes a JNK1-mediated cadherin switch independently of respiratory chain stabilization. J Biol Chem 2018; 293:14707-14722. [PMID: 30093403 DOI: 10.1074/jbc.ra118.004022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/26/2018] [Indexed: 12/18/2022] Open
Abstract
Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein occasionally involved in cell death that primarily regulates mitochondrial energy metabolism under normal cellular conditions. AIF catalyzes the oxidation of NADH in vitro, yet the significance of this redox activity in cells remains unclear. Here, we show that through its enzymatic activity AIF is a critical factor for oxidative stress-induced activation of the mitogen-activated protein kinases JNK1 (c-Jun N-terminal kinase), p38, and ERK (extracellular signal-regulated kinase). AIF-dependent JNK1 signaling culminates in the cadherin switch, and genetic reversal of this switch leads to apoptosis when AIF is suppressed. Notably, this widespread ability of AIF to promote JNK signaling can be uncoupled from its more limited role in respiratory chain stabilization. Thus, AIF is a transmitter of extra-mitochondrial signaling cues with important implications for human development and disease.
Collapse
Affiliation(s)
- Andrew J Scott
- From the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108 and
| | - Sierra A Walker
- From the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108 and
| | - Joshua J Krank
- From the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108 and
| | - Amanda S Wilkinson
- From the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108 and
| | - Kaitlyn M Johnson
- From the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108 and
| | - Eric M Lewis
- the Department of Chemistry, Mathematics and Physics, Clarion University of Pennsylvania, Clarion, Pennsylvania 16214
| | - John C Wilkinson
- From the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108 and
| |
Collapse
|
139
|
Binding mode of AIF(370-394) peptide to CypA: insights from NMR, label-free and molecular docking studies. Biochem J 2018; 475:2377-2393. [PMID: 29891613 DOI: 10.1042/bcj20180177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/28/2018] [Accepted: 06/11/2018] [Indexed: 01/16/2023]
Abstract
The complex formation between the proteins apoptosis-inducing factor (AIF) and cyclophilin A (CypA) following oxidative stress in neuronal cells has been suggested as a main target for reverting ischemia-stroke damage. Recently, a peptide encompassing AIF residues 370-394 has been developed to target the AIF-binding site on CypA, to prevent the association between the two proteins and suppress glutamate-induced cell death in neuronal cells. Using a combined approach based on NMR spectroscopy, synthesis and in vitro testing of all Ala-scan mutants of the peptide and molecular docking/molecular dynamics, we have generated a detailed model of the AIF (370-394)/CypA complex. The model suggests us that the central region of the peptide spanning residues V374-K384 mostly interacts with the protein and that for efficient complex inhibition and preservation of CypA activity, it is bent around amino acids F46-G75 of the protein. The model is consistent with experimental data also from previous works and supports the concept that the peptide does not interfere with other CypA activities unrelated to AIF activation; therefore, it may serve as an ideal template for generating future non-peptidic antagonists.
Collapse
|
140
|
Wischhof L, Gioran A, Sonntag-Bensch D, Piazzesi A, Stork M, Nicotera P, Bano D. A disease-associated Aifm1 variant induces severe myopathy in knockin mice. Mol Metab 2018; 13:10-23. [PMID: 29780003 PMCID: PMC6026322 DOI: 10.1016/j.molmet.2018.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Mutations in the AIFM1 gene have been identified in recessive X-linked mitochondrial diseases. Functional and molecular consequences of these pathogenic AIFM1 mutations have been poorly studied in vivo. METHODS/RESULTS Here we provide evidence that the disease-associated apoptosis-inducing factor (AIF) deletion arginine 201 (R200 in rodents) causes pathology in knockin mice. Within a few months, posttranslational loss of the mutant AIF protein induces severe myopathy associated with a lower number of cytochrome c oxidase-positive muscle fibers. At a later stage, Aifm1 (R200 del) knockin mice manifest peripheral neuropathy, but they do not show neurodegenerative processes in the cerebellum, as observed in age-matched hypomorphic Harlequin (Hq) mutant mice. Quantitative proteomic and biochemical data highlight common molecular signatures of mitochondrial diseases, including aberrant folate-driven one-carbon metabolism and sustained Akt/mTOR signaling. CONCLUSION Our findings indicate metabolic defects and distinct tissue-specific vulnerability due to a disease-causing AIFM1 mutation, with many pathological hallmarks that resemble those seen in patients.
Collapse
Affiliation(s)
- Lena Wischhof
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Anna Gioran
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Antonia Piazzesi
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Miriam Stork
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
141
|
Song Z, Fan TJ. Tetracaine induces apoptosis through a mitochondrion-dependent pathway in human corneal stromal cells in vitro. Cutan Ocul Toxicol 2018; 37:350-358. [PMID: 29742927 DOI: 10.1080/15569527.2018.1468342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
PURPOSE Tetracaine is a local anesthetic widely used in ocular diagnosis and ophthalmic surgery and may lead to some adverse effects and complications at a clinical dose. To assess the cytotoxicity and molecular toxicity mechanisms of tetracaine, we used human corneal stromal (HCS) cells as an in vitro model to study the effects of tetracaine on HCS cells. MATERIALS AND METHODS The cytotoxicity of tetracaine on HCS cells was investigated by examining the changes of cell growth, morphology, viability and cell cycle progressing when HCS cells were treated with tetracaine at concentrations from 10 g/L to 0.078125 g/L. To prove the hypothesis that the cytotoxicity of tetracaine on HCS cells was related with apoptosis induction, we further detected multiple changes in HCS cells, including plasma membrane (PM) permeability, phosphatidylserine (PS) orientation, genomic DNA integrality, and cell ultrastrcuture after treated with tetracaine. Furthermore, the pro-apoptotic signalling pathway induced by tetracaine was explored through detecting the activation of various caspases, the changes of mitochondrial transmembrane potential (MTP), the expression level of Bcl-2 family proteins and the amount of mitochondria-released apoptosis regulating proteins in cytoplasm. RESULTS Tetracaine at concentrations above 0.15625 g/L had a dose- and time-dependent cytotoxicity to HCS cells, which resulted cell growth inhibition, proliferation retardation, morphological abnormalities and decreased viability. Meanwhile, we found that the HCS cells treated with tetracaine had typical features associated with apoptosis, including an increase in PM permeability, PS externalization, DNA fragmentation and apoptotic body formation. Tetracaine not only resulted in caspase-3, caspase-8 and caspase-9 activation and disruption of MTP but also downregulated Bcl-2 and Bcl-xL and upregulated Bad and Bax, along with the upregulation of cytoplasmic cytochrome c (Cyt. c) and apoptosis-inducing factor (AIF). CONCLUSIONS These results suggested that tetracaine-induced apoptosis might be triggered through Fas death receptors and mediated by Bcl-2 family proteins in the mitochondria-dependent pathway. Our findings identified the cytotoxicity and molecular mechanisms of tetracaine, which could provide a reference value for the safety of this medication and prospective therapeutic interventions in eye clinic.
Collapse
Affiliation(s)
- Zhan Song
- a Laboratory for Corneal Tissue Engineering , College of Marine Life Sciences, Ocean University of China , Qingdao , Shandong province , P. R. China
| | - Ting-Jun Fan
- a Laboratory for Corneal Tissue Engineering , College of Marine Life Sciences, Ocean University of China , Qingdao , Shandong province , P. R. China
| |
Collapse
|
142
|
Osman AHK, Caceci T, Shintani M. Immunohistochemical expression of apoptosis-related biomarkers in normal tissues of camel (Camelus dromedarius): A survey in a desert-dwelling mammalian model. Acta Histochem 2018; 120:385-394. [PMID: 29685720 DOI: 10.1016/j.acthis.2018.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 11/25/2022]
Abstract
Programmed cell death is a fundamental event that takes place during organ development and plays an important role in cellular homeostasis. Since various body organs of the camel are under high ecological and physiological stress during food and water deprivation, desiccation, and the long exposure to solar radiation in these desert nomads, we aimed to examine the immunohistochemical expression of apoptosis-related biomarkers in some of its normal body organs to illustrate a basic track for further pathological investigation. Regarding apoptosis, the present study has revealed that the higher expression of cleaved caspase-9 (CC9) [initiator of the intrinsic pathway] and CC3 (effector caspase), and the scanty expression of CC8 (initiator of the extrinsic pathway), highlight the role of the caspase-dependent, intrinsic apoptotic pathway particularly in the intestines and lymphoid organs. The apoptosis- inducing factor (AIF)-immunoexpression was completely missing in the cell nuclei of the examined tissues, indicating the absence of the caspase-independent pathway. The nuclear overexpression of the phospho-histone H2AX (γ H2AX) and the occasional expression of single-stranded DNA, particularly among the CNS neurons, suggest an efficient, protective DNA-repair mechanism in such cells. Thus, despite efficient anti-apoptotic mechanisms intrinsic apoptotic pathways exists in brain, intestine and lymph organs of adult desert camels.
Collapse
|
143
|
Nitric Oxide and Mitochondrial Function in Neurological Diseases. Neuroscience 2018; 376:48-71. [DOI: 10.1016/j.neuroscience.2018.02.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/20/2018] [Accepted: 02/09/2018] [Indexed: 12/17/2022]
|
144
|
Srivaths A, Ramanathan S, Sakthivel S, Habeeb SKM. Insights from the Molecular Modelling and Docking Analysis of AIF-NLS complex to infer Nuclear Translocation of the Protein. Bioinformation 2018; 14:132-139. [PMID: 29785072 PMCID: PMC5953855 DOI: 10.6026/97320630014132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 11/29/2022] Open
Abstract
Apoptosis Inducing Factor protein has a dual role depending on its localization in mitochondrion (energy production) and nucleus (induces apoptosis). Cell damage transports this protein to nucleus which otherwise favors mitochondrion. The alteration of Nuclear Localisation Signal tags could aid nuclear translocation. In this study, apoptosis inducing factor protein (AIF) was conjugated with strong NLS tags and its binding affinity with Importin was studied using in silico approaches such as molecular modeling and docking. This aims to improve the docking affinity of the AIF-Importin complex thus allowing for nuclear translocation, in order to induce caspase-independent apoptosis of the cell.
Collapse
Affiliation(s)
- Akash Srivaths
- Department of Genetic Engineering, School of Bioengineering, SRM University, Kattankulathur, Chennai - 603203
| | - Shyam Ramanathan
- Department of Genetic Engineering, School of Bioengineering, SRM University, Kattankulathur, Chennai - 603203
| | - Seethalakshmi Sakthivel
- Department of Genetic Engineering, School of Bioengineering, SRM University, Kattankulathur, Chennai - 603203
| | - SKM Habeeb
- Department of Genetic Engineering, School of Bioengineering, SRM University, Kattankulathur, Chennai - 603203
| |
Collapse
|
145
|
Bano D, Prehn JHM. Apoptosis-Inducing Factor (AIF) in Physiology and Disease: The Tale of a Repented Natural Born Killer. EBioMedicine 2018; 30:29-37. [PMID: 29605508 PMCID: PMC5952348 DOI: 10.1016/j.ebiom.2018.03.016] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/05/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022] Open
Abstract
Apoptosis-inducing factor (AIF) is a mitochondrial oxidoreductase that contributes to cell death programmes and participates in the assembly of the respiratory chain. Importantly, AIF deficiency leads to severe mitochondrial dysfunction, causing muscle atrophy and neurodegeneration in model organisms as well as in humans. The purpose of this review is to describe functions of AIF and AIF-interacting proteins as regulators of cell death and mitochondrial bioenergetics. We describe how AIF deficiency induces pathogenic processes that alter metabolism and ultimately compromise cellular homeostasis. We report the currently known AIFM1 mutations identified in humans and discuss the variability of AIFM1-related disorders in terms of onset, organ involvement and symptoms. Finally, we summarize how the study of AIFM1-linked pathologies may help to further expand our understanding of rare inherited forms of mitochondrial diseases. AIF is a mitochondrial NADH-dependent oxidoreductase. Nuclear translocation of AIF occurs during cell death and has been associated with human disorders. Under physiological settings, AIF participates to the biogenesis of the respiratory complexes. AIFM1 mutations have been identified in patients with impaired mitochondrial bioenergetics. Inherited AIFM1 mutations lead to a variety of clinical manifestations, including severe childhood-onset mitochondrial diseases.
Collapse
Affiliation(s)
- Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| |
Collapse
|
146
|
Cheng SY, Wang SC, Lei M, Wang Z, Xiong K. Regulatory role of calpain in neuronal death. Neural Regen Res 2018; 13:556-562. [PMID: 29623944 PMCID: PMC5900522 DOI: 10.4103/1673-5374.228762] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2017] [Indexed: 12/19/2022] Open
Abstract
Calpains are a group of calcium-dependent proteases that are over activated by increased intracellular calcium levels under pathological conditions. A wide range of substrates that regulate necrotic, apoptotic and autophagic pathways are affected by calpain. Calpain plays a very important role in neuronal death and various neurological disorders. This review introduces recent research progress related to the regulatory mechanisms of calpain in neuronal death. Various neuronal programmed death pathways including apoptosis, autophagy and regulated necrosis can be divided into receptor interacting protein-dependent necroptosis, mitochondrial permeability transition-dependent necrosis, pyroptosis and poly (ADP-ribose) polymerase 1-mediated parthanatos. Calpains cleave series of key substrates that may lead to cell death or participate in cell death. Regarding the investigation of calpain-mediated programed cell death, it is necessary to identify specific inhibitors that inhibit calpain mediated neuronal death and nervous system diseases.
Collapse
Affiliation(s)
- Si-ying Cheng
- Xiangya Medical School, Central South University, Changsha, Hunan Province, China
| | - Shu-chao Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Ming Lei
- Xiangya Medical School, Central South University, Changsha, Hunan Province, China
| | - Zhen Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
147
|
Madungwe NB, Feng Y, Lie M, Tombo N, Liu L, Kaya F, Bopassa JC. Mitochondrial inner membrane protein (mitofilin) knockdown induces cell death by apoptosis via an AIF-PARP-dependent mechanism and cell cycle arrest. Am J Physiol Cell Physiol 2018; 315:C28-C43. [PMID: 29489384 DOI: 10.1152/ajpcell.00230.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mitofilin is an inner membrane protein that has been defined as a mitochondria-shaping protein in controlling and maintaining mitochondrial cristae structure and remodeling. We determined the role of mitofilin in cell survival by investigating the mechanism underlying mitofilin knockdown-induced cell death by apoptosis. Cultured H9c2 myoblasts and HEK 293 cells were treated with mitofilin siRNA or scrambled siRNA for 24 h. Cell death (apoptosis), caspase 3 activity and cell cycle phases were assessed by flow cytometry, while cytochrome c release and intracellular ATP production were measured by ELISA. Mitofilin, apoptosis-inducing factor (AIF) and poly(ADP-ribose) polymerase (PARP) expression were measured by Western blot analysis and calpain activity was assessed using a calpain activity kit. Mitochondrial images were taken using electron microscopy. We found that mitofilin knockdown increases apoptosis mainly via activation of the AIF-PARP pathway leading to nuclear fragmentation that is correlated with S phase arrest of the cell cycle. Knockdown of mitofilin also led to mitochondrial swelling and damage of cristae that is associated with the increase in reactive oxygen species production and mitochondrial calpain activity, as well as a marked decrease in intracellular ATP production and mitochondrial membrane potential. Together, these results indicate that mitofilin knockdown by siRNA increases calpain activity that presumably leads to mitochondrial structural degradation resulting in a critical reduction of mitochondrial function that is responsible for the increase in cell death by apoptosis via an AIF-PARP mechanism and associated with nuclear fragmentation, and S phase arrest of the cell cycle.
Collapse
Affiliation(s)
- Ngonidzashe B Madungwe
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio , San Antonio, Texas.,Department of Biomedical Engineering, University of Texas at San Antonio , San Antonio, Texas
| | - Yansheng Feng
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio , San Antonio, Texas.,Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - Mihaela Lie
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Nathalie Tombo
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Li Liu
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Ferdinand Kaya
- Department of Ophthalmology, University of California , Davis, California
| | - Jean C Bopassa
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| |
Collapse
|
148
|
Lamazares E, Vega S, Ferreira P, Medina M, Galano-Frutos JJ, Martínez-Júlvez M, Velázquez-Campoy A, Sancho J. Direct examination of the relevance for folding, binding and electron transfer of a conserved protein folding intermediate. Phys Chem Chem Phys 2018; 19:19021-19031. [PMID: 28702545 DOI: 10.1039/c7cp02606d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Near the minimum free energy basin of proteins where the native ensemble resides, partly unfolded conformations of slightly higher energy can be significantly populated under native conditions. It has been speculated that they play roles in molecular recognition and catalysis, but they might represent contemporary features of the evolutionary process without functional relevance. Obtaining conclusive evidence on these alternatives is difficult because it requires comparing the performance of a given protein when populating and when not populating one such intermediate, in otherwise identical conditions. Wild type apoflavodoxin populates under native conditions a partly unfolded conformation (10% of molecules) whose unstructured region includes the binding sites for the FMN cofactor and for redox partner proteins. We recently engineered a thermostable variant where the intermediate is no longer detectable. Using the wild type and variant, we assess the relevance of the intermediate comparing folding kinetics, cofactor binding kinetics, cofactor affinity, X-ray structure, intrinsic dynamics, redox potential of the apoflavodoxin-cofactor complex (Fld), its affinity for partner protein FNR, and electron transfer rate within the Fld/FNR physiological complex. Our data strongly suggest the intermediate state, conserved in long-chain apoflavodoxins, is not required for the correct assembly of flavodoxin nor does it contribute to shape its electron transfer properties. This analysis can be applied to evaluate other native basin intermediates.
Collapse
Affiliation(s)
- Emilio Lamazares
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, Universidad de Zaragoza, Zaragoza, Spain and Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Sonia Vega
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, Universidad de Zaragoza, Zaragoza, Spain
| | - Patricia Ferreira
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, Universidad de Zaragoza, Zaragoza, Spain and Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Milagros Medina
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, Universidad de Zaragoza, Zaragoza, Spain and Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Juan J Galano-Frutos
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, Universidad de Zaragoza, Zaragoza, Spain and Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Marta Martínez-Júlvez
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, Universidad de Zaragoza, Zaragoza, Spain and Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, Universidad de Zaragoza, Zaragoza, Spain and Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain and Fundación ARAID, Gobierno de Aragón, Spain and Aragon Health Research Institute (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain.
| | - Javier Sancho
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, Universidad de Zaragoza, Zaragoza, Spain and Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain and Aragon Health Research Institute (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain.
| |
Collapse
|
149
|
Abstract
Impaired mitochondrial energy metabolism contributes to a wide range of pathologic conditions, including neurodegenerative diseases. Mitochondrial apoptosis-inducing factor (AIF) is required for the correct maintenance of mitochondrial electron transport chain. An emerging body of clinical evidence indicates that several mutations in the AIFM1 gene are causally linked to severe forms of mitochondrial disorders. Here we investigate the consequence of WAH-1/AIF deficiency in the survival of the nematode Caenorhabditis elegans. Moreover, we assess the survival of C. elegans strains expressing a disease-associated WAH-1/AIF variant. We demonstrate that wah-1 downregulation compromises the function of the oxidative phosphorylation system and reduces C. elegans lifespan. Notably, the loss of respiratory subunits induces a nuclear-encoded mitochondrial stress response independently of an evident increase of oxidative stress. Overall, our data pinpoint an evolutionarily conserved role of WAH-1/AIF in the maintenance of proper mitochondrial activity.
Collapse
|
150
|
de Oliveira MR. Carnosic Acid as a Promising Agent in Protecting Mitochondria of Brain Cells. Mol Neurobiol 2018; 55:6687-6699. [DOI: 10.1007/s12035-017-0842-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/14/2017] [Indexed: 12/21/2022]
|