101
|
Sandvig I, Gadjanski I, Vlaski-Lafarge M, Buzanska L, Loncaric D, Sarnowska A, Rodriguez L, Sandvig A, Ivanovic Z. Strategies to Enhance Implantation and Survival of Stem Cells After Their Injection in Ischemic Neural Tissue. Stem Cells Dev 2017; 26:554-565. [PMID: 28103744 DOI: 10.1089/scd.2016.0268] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
High post-transplantation cell mortality is the main limitation of various approaches that are aimed at improving regeneration of injured neural tissue by an injection of neural stem cells (NSCs) and mesenchymal stromal cells (MStroCs) in and/or around the lesion. Therefore, it is of paramount importance to identify efficient ways to increase cell transplant viability. We have previously proposed the "evolutionary stem cell paradigm," which explains the association between stem cell anaerobic/microaerophilic metabolic set-up and stem cell self-renewal and inhibition of differentiation. Applying these principles, we have identified the main critical point in the collection and preparation of these cells for experimental therapy: exposure of the cells to atmospheric O2, that is, to oxygen concentrations that are several times higher than the physiologically relevant ones. In this way, the primitive anaerobic cells become either inactivated or adapted, through commitment and differentiation, to highly aerobic conditions (20%-21% O2 in atmospheric air). This inadvertently compromises the cells' survival once they are transplanted into normal tissue, especially in the hypoxic/anoxic/ischemic environment, which is typical of central nervous system (CNS) lesions. In addition to the findings suggesting that stem cells can shift to glycolysis and can proliferate in anoxia, recent studies also propose that stem cells may be able to proliferate in completely anaerobic or ischemic conditions by relying on anaerobic mitochondrial respiration. In this systematic review, we propose strategies to enhance the survival of NSCs and MStroCs that are implanted in hypoxic/ischemic neural tissue by harnessing their anaerobic nature and maintaining as well as enhancing their anaerobic properties via appropriate ex vivo conditioning.
Collapse
Affiliation(s)
- Ioanna Sandvig
- 1 Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ivana Gadjanski
- 2 Innovation Center, Faculty of Mechanical Engineering, University of Belgrade , Belgrade, Serbia .,3 Belgrade Metropolitan University , Belgrade, Serbia
| | - Marija Vlaski-Lafarge
- 4 French Blood Institute (EFS) , Aquitaine-Limousin Branch, Bordeaux, France .,5 U1035 INSERM/Bordeaux University , Bordeaux Cedex, France
| | - Leonora Buzanska
- 6 Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre Polish Academy Sciences, Warsaw, Poland
| | - Darija Loncaric
- 4 French Blood Institute (EFS) , Aquitaine-Limousin Branch, Bordeaux, France .,5 U1035 INSERM/Bordeaux University , Bordeaux Cedex, France
| | - Ana Sarnowska
- 6 Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre Polish Academy Sciences, Warsaw, Poland
| | - Laura Rodriguez
- 4 French Blood Institute (EFS) , Aquitaine-Limousin Branch, Bordeaux, France .,5 U1035 INSERM/Bordeaux University , Bordeaux Cedex, France
| | - Axel Sandvig
- 1 Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway .,7 Division of Pharmacology and Clinical Neurosciences, Department of Neurosurgery and Clinical Neurophysiology, Umeå University Hospital , Umeå, Sweden
| | - Zoran Ivanovic
- 4 French Blood Institute (EFS) , Aquitaine-Limousin Branch, Bordeaux, France .,5 U1035 INSERM/Bordeaux University , Bordeaux Cedex, France
| |
Collapse
|
102
|
Gambhir HS, Raharjo E, Forden J, Kumar R, Mishra C, Guo GF, Grochmal J, Shapira Y, Midha R. Improved method to track and precisely count Schwann cells post-transplantation in a peripheral nerve injury model. J Neurosci Methods 2016; 273:86-95. [PMID: 27546200 DOI: 10.1016/j.jneumeth.2016.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/05/2016] [Accepted: 08/17/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND To optimize survival evaluation of Schwann cells (SCs) in vivo, we tested fluorescent labeling of the nucleus as an improved method of tracking and counting the transplanted SCs at sciatic nerve injury sites in rodents. We also investigated if co-administering cells with the glial growth factor Neuregulin-1 β (NRG1β) improves in vivo survival. NEW METHOD We transduced SCs using a Lentiviral vector with a nuclear localization signal (NLS) fused with mCherry and transplanted them in the sciatic nerve of rat post-crush injury (bilateral) either in the presence or absence of NRG1β in the injectate media. For comparison, in a separate group of similar injury, GFP-labeled cells were transplanted. After 10 days, nerves were harvested and sections (14μm) were counterstained with Hoechst and imaged. Cells showing co-localization with Hoechst and GFP or mCherry were exhaustively counted and data analyzed. RESULTS Percentage cells counted in with- and without-NRG condition in both the groups were 0.83±0.13% and 0.06±0.04% (Group 1) & 2.83*±1.95% and 0.23*±0.29% (Group 2). COMPARISON TO EXISTING METHOD We are introducing fluorescent labeling of the nucleus as a reliable and efficient technique to perform survival assessments in Schwann cell based treatment studies in animal model. This method can overcome the challenges and limitations of the existing method that could result in underestimation of the therapeutic outcome. CONCLUSIONS Nucleus-restricted fluorescent labeling technique offer improved method of tracking as well as accurately counting transplanted SCs in vivo while NRG1β in the injectate media can improve survival.
Collapse
Affiliation(s)
- Hardeep S Gambhir
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Eko Raharjo
- Department of Comparative Biology and Experimental Medicine and Alberta Children Hospital Research Institute, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Joanne Forden
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Ranjan Kumar
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada; Department of Comparative Biology and Experimental Medicine and Alberta Children Hospital Research Institute, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Chinmaya Mishra
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Gui Fang Guo
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Joey Grochmal
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Yuval Shapira
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Rajiv Midha
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
103
|
Kim PH, Cho JY. Myocardial tissue engineering using electrospun nanofiber composites. BMB Rep 2016; 49:26-36. [PMID: 26497579 PMCID: PMC4914209 DOI: 10.5483/bmbrep.2016.49.1.165] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Indexed: 01/18/2023] Open
Abstract
Emerging trends for cardiac tissue engineering are focused on increasing the biocompatibility and tissue regeneration ability of artificial heart tissue by incorporating various cell sources and bioactive molecules. Although primary cardiomyocytes can be successfully implanted, clinical applications are restricted due to their low survival rates and poor proliferation. To develop successful cardiovascular tissue regeneration systems, new technologies must be introduced to improve myocardial regeneration. Electrospinning is a simple, versatile technique for fabricating nanofibers. Here, we discuss various biodegradable polymers (natural, synthetic, and combinatorial polymers) that can be used for fiber fabrication. We also describe a series of fiber modification methods that can increase cell survival, proliferation, and migration and provide supporting mechanical properties by mimicking micro-environment structures, such as the extracellular matrix (ECM). In addition, the applications and types of nanofiber-based scaffolds for myocardial regeneration are described. Finally, fusion research methods combined with stem cells and scaffolds to improve biocompatibility are discussed. [BMB Reports 2016; 49(1): 26-36]
Collapse
Affiliation(s)
- Pyung-Hwan Kim
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, Daejeon 35365, Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
104
|
McMurtrey RJ. Multi-compartmental biomaterial scaffolds for patterning neural tissue organoids in models of neurodevelopment and tissue regeneration. J Tissue Eng 2016; 7:2041731416671926. [PMID: 27766141 PMCID: PMC5056621 DOI: 10.1177/2041731416671926] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 09/07/2016] [Indexed: 01/25/2023] Open
Abstract
Biomaterials are becoming an essential tool in the study and application of stem cell research. Various types of biomaterials enable three-dimensional culture of stem cells, and, more recently, also enable high-resolution patterning and organization of multicellular architectures. Biomaterials also hold potential to provide many additional advantages over cell transplants alone in regenerative medicine. This article describes novel designs for functionalized biomaterial constructs that guide tissue development to targeted regional identities and structures. Such designs comprise compartmentalized regions in the biomaterial structure that are functionalized with molecular factors that form concentration gradients through the construct and guide stem cell development, axis patterning, and tissue architecture, including rostral/caudal, ventral/dorsal, or medial/lateral identities of the central nervous system. The ability to recapitulate innate developmental processes in a three-dimensional environment and under specific controlled conditions has vital application to advanced models of neurodevelopment and for repair of specific sites of damaged or diseased neural tissue.
Collapse
|
105
|
Kim PH, Na SS, Lee B, Kim JH, Cho JY. Stanniocalcin 2 enhances mesenchymal stem cell survival by suppressing oxidative stress. BMB Rep 2016; 48:702-7. [PMID: 26424558 PMCID: PMC4791327 DOI: 10.5483/bmbrep.2015.48.12.158] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Indexed: 01/01/2023] Open
Abstract
To overcome the disadvantages of stem cell-based cell therapy like low cell survival at the disease site, we used stanniocalcin 2 (STC2), a family of secreted glycoprotein hormones that function to inhibit apoptosis and oxidative damage and to induce proliferation. STC2 gene was transfected into two kinds of stem cells to prolong cell survival and protect the cells from the damage by oxidative stress. The stem cells expressing STC2 exhibited increased cell viability and improved cell survival as well as elevated expression of the pluripotency and self-renewal markers (Oct4 and Nanog) under sub-lethal oxidative conditions. Up-regulation of CDK2 and CDK4 and down-regulation of cell cycle inhibitors p16 and p21 were observed after the delivery of STC2. Furthermore, STC2 transduction activated pAKT and pERK 1/2 signal pathways. Taken together, the STC2 can be used to enhance cell survival and maintain long-term stemness in therapeutic use of stem cells. [BMB Reports 2015; 48(12): 702-707]
Collapse
Affiliation(s)
- Pyung-Hwan Kim
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, Daejeon 35365, Korea; Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Sang-Su Na
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Bomnaerin Lee
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Joo-Hyun Kim
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
106
|
Magnet-Bead Based MicroRNA Delivery System to Modify CD133 + Stem Cells. Stem Cells Int 2016; 2016:7152761. [PMID: 27795713 PMCID: PMC5067480 DOI: 10.1155/2016/7152761] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/24/2016] [Accepted: 08/30/2016] [Indexed: 12/13/2022] Open
Abstract
Aim. CD133+ stem cells bear huge potential for regenerative medicine. However, low retention in the injured tissue and massive cell death reduce beneficial effects. In order to address these issues, we intended to develop a nonviral system for appropriate cell engineering. Materials and Methods. Modification of human CD133+ stem cells with magnetic polyplexes carrying microRNA was studied in terms of efficiency, safety, and targeting potential. Results. High microRNA uptake rates (~80-90%) were achieved without affecting CD133+ stem cell properties. Modified cells can be magnetically guided. Conclusion. We developed a safe and efficient protocol for CD133+ stem cell modification. Our work may become a basis to improve stem cell therapeutical effects as well as their monitoring with magnetic resonance imaging.
Collapse
|
107
|
Bruyneel AAN, Sehgal A, Malandraki-Miller S, Carr C. Stem Cell Therapy for the Heart: Blind Alley or Magic Bullet? J Cardiovasc Transl Res 2016; 9:405-418. [PMID: 27542008 PMCID: PMC5153828 DOI: 10.1007/s12265-016-9708-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/05/2016] [Indexed: 12/15/2022]
Abstract
When stressed by ageing or disease, the adult human heart is unable to regenerate, leading to scarring and hypertrophy and eventually heart failure. As a result, stem cell therapy has been proposed as an ultimate therapeutic strategy, as stem cells could limit adverse remodelling and give rise to new cardiomyocytes and vasculature. Unfortunately, the results from clinical trials to date have been largely disappointing. In this review, we discuss the current status of the field and describe various limitations and how future work may attempt to resolve these to make way to successful clinical translation.
Collapse
Affiliation(s)
- Arne A N Bruyneel
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | | | | | - Carolyn Carr
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
108
|
Werle SB, Chagastelles P, Pranke P, Casagrande L. The effects of hypoxia on in vitro culture of dental-derived stem cells. Arch Oral Biol 2016; 68:13-20. [DOI: 10.1016/j.archoralbio.2016.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 03/18/2016] [Accepted: 03/20/2016] [Indexed: 12/19/2022]
|
109
|
Baldari S, Di Rocco G, Trivisonno A, Samengo D, Pani G, Toietta G. Promotion of Survival and Engraftment of Transplanted Adipose Tissue-Derived Stromal and Vascular Cells by Overexpression of Manganese Superoxide Dismutase. Int J Mol Sci 2016; 17:ijms17071082. [PMID: 27399681 PMCID: PMC4964458 DOI: 10.3390/ijms17071082] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/17/2016] [Accepted: 06/28/2016] [Indexed: 12/12/2022] Open
Abstract
Short-term persistence of transplanted cells during early post-implant period limits clinical efficacy of cell therapy. Poor cell survival is mainly due to the harsh hypoxic microenvironment transplanted cells face at the site of implantation and to anoikis, driven by cell adhesion loss. We evaluated the hypothesis that viral-mediated expression of a gene conferring hypoxia resistance to cells before transplant could enhance survival of grafted cells in early stages after implant. We used adipose tissue as cell source because it consistently provides high yields of adipose-tissue-derived stromal and vascular cells (ASCs), suitable for regenerative purposes. Luciferase positive cells were transduced with lentiviral vectors expressing either green fluorescent protein as control or human manganese superoxide dismutase (SOD2). Cells were then exposed in vitro to hypoxic conditions, mimicking cell transplantation into an ischemic site. Cells overexpressing SOD2 displayed survival rates significantly greater compared to mock transduced cells. Similar results were also obtained in vivo after implantation into syngeneic mice and assessment of cell engraftment by in vivo bioluminescent imaging. Taken together, these findings suggest that ex vivo gene transfer of SOD2 into ASCs before implantation confers a cytoprotective effect leading to improved survival and engraftment rates, therefore enhancing cell therapy regenerative potential.
Collapse
Affiliation(s)
- Silvia Baldari
- Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute, via E. Chianesi 53, Rome 00144, Italy.
| | - Giuliana Di Rocco
- Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute, via E. Chianesi 53, Rome 00144, Italy.
| | - Angelo Trivisonno
- Department of Surgical Science, Policlinico Umberto I, University of Rome "La Sapienza", Viale Regina Elena 324, Rome 00161, Italy.
| | - Daniela Samengo
- Institute of General Pathology, Laboratory of Cell Signaling, Università Cattolica School of Medicine, Largo F. Vito 1, Rome 00168, Italy.
| | - Giovambattista Pani
- Institute of General Pathology, Laboratory of Cell Signaling, Università Cattolica School of Medicine, Largo F. Vito 1, Rome 00168, Italy.
| | - Gabriele Toietta
- Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute, via E. Chianesi 53, Rome 00144, Italy.
| |
Collapse
|
110
|
Liu S, Zhou J, Zhang X, Liu Y, Chen J, Hu B, Song J, Zhang Y. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration. Int J Mol Sci 2016; 17:ijms17060982. [PMID: 27338364 PMCID: PMC4926512 DOI: 10.3390/ijms17060982] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 12/13/2022] Open
Abstract
Stem cell therapy aims to replace damaged or aged cells with healthy functioning cells in congenital defects, tissue injuries, autoimmune disorders, and neurogenic degenerative diseases. Among various types of stem cells, adult stem cells (i.e., tissue-specific stem cells) commit to becoming the functional cells from their tissue of origin. These cells are the most commonly used in cell-based therapy since they do not confer risk of teratomas, do not require fetal stem cell maneuvers and thus are free of ethical concerns, and they confer low immunogenicity (even if allogenous). The goal of this review is to summarize the current state of the art and advances in using stem cell therapy for tissue repair in solid organs. Here we address key factors in cell preparation, such as the source of adult stem cells, optimal cell types for implantation (universal mesenchymal stem cells vs. tissue-specific stem cells, or induced vs. non-induced stem cells), early or late passages of stem cells, stem cells with endogenous or exogenous growth factors, preconditioning of stem cells (hypoxia, growth factors, or conditioned medium), using various controlled release systems to deliver growth factors with hydrogels or microspheres to provide apposite interactions of stem cells and their niche. We also review several approaches of cell delivery that affect the outcomes of cell therapy, including the appropriate routes of cell administration (systemic, intravenous, or intraperitoneal vs. local administration), timing for cell therapy (immediate vs. a few days after injury), single injection of a large number of cells vs. multiple smaller injections, a single site for injection vs. multiple sites and use of rodents vs. larger animal models. Future directions of stem cell-based therapies are also discussed to guide potential clinical applications.
Collapse
Affiliation(s)
- Shan Liu
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Jingli Zhou
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Xuan Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Yang Liu
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Jin Chen
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Bo Hu
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Jinlin Song
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA.
| |
Collapse
|
111
|
Roth S, Dreixler JC, Mathew B, Balyasnikova I, Mann JR, Boddapati V, Xue L, Lesniak MS. Hypoxic-Preconditioned Bone Marrow Stem Cell Medium Significantly Improves Outcome After Retinal Ischemia in Rats. Invest Ophthalmol Vis Sci 2016; 57:3522-32. [PMID: 27367588 PMCID: PMC4961056 DOI: 10.1167/iovs.15-17381] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 04/28/2016] [Indexed: 12/20/2022] Open
Abstract
PURPOSE We have previously demonstrated the protective effect of bone marrow stem cell (BMSC)-conditioned medium in retinal ischemic injury. We hypothesized here that hypoxic preconditioning of stem cells significantly enhances the neuroprotective effect of the conditioned medium and thereby augments the protective effect in ischemic retina. METHODS Rats were subjected to retinal ischemia by increasing intraocular pressure to 130 to 135 mm Hg for 55 minutes. Hypoxic-preconditioned, hypoxic unconditioned, or normoxic medium was injected into the vitreous 24 hours after ischemia ended. Recovery was assessed 7 days after injections by comparing electroretinography measurements, histologic examination, and apoptosis (TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay). To compare proteins secreted into the medium in the groups and the effect of hypoxic exposure, we used rat cytokine arrays. RESULTS Eyes injected with hypoxic BMSC-conditioned medium 24 hours after ischemia demonstrated significantly enhanced return of retinal function, decreased retinal ganglion cell layer loss, and attenuated apoptosis compared to those administered normoxic or hypoxic unconditioned medium. Hypoxic-preconditioned medium had 21 significantly increased protein levels compared to normoxic medium. CONCLUSIONS The medium from hypoxic-preconditioned BMSCs robustly restored retinal function and prevented cell loss after ischemia when injected 24 hours after ischemia. The protective effect was even more pronounced than in our previous studies of normoxic conditioned medium. Prosurvival signals triggered by the secretome may play a role in this neuroprotective effect.
Collapse
Affiliation(s)
- Steven Roth
- Department of Anesthesiology, University of Illinois, Illinois, United States
- Department of Anesthesia and Critical Care, University of Chicago, Illinois, United States
| | - John C. Dreixler
- Department of Anesthesia and Critical Care, University of Chicago, Illinois, United States
| | - Biji Mathew
- Department of Anesthesiology, University of Illinois, Illinois, United States
| | - Irina Balyasnikova
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
- Surgery, University of Chicago Medicine, University of Chicago, Illinois, United States
| | - Jacob R. Mann
- Department of Anesthesia and Critical Care, University of Chicago, Illinois, United States
| | - Venkat Boddapati
- Department of Anesthesia and Critical Care, University of Chicago, Illinois, United States
| | - Lai Xue
- Surgery, University of Chicago Medicine, University of Chicago, Illinois, United States
| | - Maciej S. Lesniak
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
- Surgery, University of Chicago Medicine, University of Chicago, Illinois, United States
| |
Collapse
|
112
|
Laube M, Stolzing A, Thome UH, Fabian C. Therapeutic potential of mesenchymal stem cells for pulmonary complications associated with preterm birth. Int J Biochem Cell Biol 2016; 74:18-32. [PMID: 26928452 DOI: 10.1016/j.biocel.2016.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 12/22/2022]
Abstract
Preterm infants frequently suffer from pulmonary complications resulting in significant morbidity and mortality. Physiological and structural lung immaturity impairs perinatal lung transition to air breathing resulting in respiratory distress. Mechanical ventilation and oxygen supplementation ensure sufficient oxygen supply but enhance inflammatory processes which might lead to the establishment of a chronic lung disease called bronchopulmonary dysplasia (BPD). Current therapeutic options to prevent or treat BPD are limited and have salient side effects, highlighting the need for new therapeutic approaches. Mesenchymal stem cells (MSCs) have demonstrated therapeutic potential in animal models of BPD. This review focuses on MSC-based therapeutic approaches to treat pulmonary complications and critically compares results obtained in BPD models. Thereby bottlenecks in the translational systems are identified that are preventing progress in combating BPD. Notably, current animal models closely resemble the so-called "old" BPD with profound inflammation and injury, whereas clinical improvements shifted disease pathology towards a "new" BPD in which arrest of lung maturation predominates. Future studies need to evaluate the utility of MSC-based therapies in animal models resembling the "new" BPD though promising in vitro evidence suggests that MSCs do possess the potential to stimulate lung maturation. Furthermore, we address the mode-of-action of MSC-based therapies with regard to lung development and inflammation/fibrosis. Their therapeutic efficacy is mainly attributed to an enhancement of regeneration and immunomodulation due to paracrine effects. In addition, we discuss current improvement strategies by genetic modifications or precondition of MSCs to enhance their therapeutic efficacy which could also prove beneficial for BPD therapies.
Collapse
Affiliation(s)
- Mandy Laube
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Division of Neonatology, University of Leipzig, Leipzig, Germany.
| | - Alexandra Stolzing
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Loughborough University, Wolfson School of Mechanical and Manufacturing Engineering, Centre for Biological Engineering, Loughborough, UK.
| | - Ulrich H Thome
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Division of Neonatology, University of Leipzig, Leipzig, Germany.
| | - Claire Fabian
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Interdisciplinary Centre for Bioinformatics, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
113
|
Liu ZJ, Daftarian P, Kovalski L, Wang B, Tian R, Castilla DM, Dikici E, Perez VL, Deo S, Daunert S, Velazquez OC. Directing and Potentiating Stem Cell-Mediated Angiogenesis and Tissue Repair by Cell Surface E-Selectin Coating. PLoS One 2016; 11:e0154053. [PMID: 27104647 PMCID: PMC4841581 DOI: 10.1371/journal.pone.0154053] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 04/07/2016] [Indexed: 01/12/2023] Open
Abstract
Stem cell therapy has emerged as a promising approach for treatment of a number of diseases, including delayed and non-healing wounds. However, targeted systemic delivery of therapeutic cells to the dysfunctional tissues remains one formidable challenge. Herein, we present a targeted nanocarrier-mediated cell delivery method by coating the surface of the cell to be delivered with dendrimer nanocarriers modified with adhesion molecules. Infused nanocarrier-coated cells reach to destination via recognition and association with the counterpart adhesion molecules highly or selectively expressed on the activated endothelium in diseased tissues. Once anchored on the activated endothelium, nanocarriers-coated transporting cells undergo transendothelial migration, extravasation and homing to the targeted tissues to execute their therapeutic role. We now demonstrate feasibility, efficacy and safety of our targeted nanocarrier for delivery of bone marrow cells (BMC) to cutaneous wound tissues and grafted corneas and its advantages over conventional BMC transplantation in mouse models for wound healing and neovascularization. This versatile platform is suited for targeted systemic delivery of virtually any type of therapeutic cell.
Collapse
Affiliation(s)
- Zhao-Jun Liu
- Department of Surgery, School of Medicine, University of Miami, Coral Gables, Florida, 33136, United States of America
| | - Pirouz Daftarian
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Miami, Coral Gables, Florida, 33136, United States of America
- Dr. JT Macdonald Biomedical Nanotechnology Institute, University of Miami, Coral Gables, Florida, 33136, United States of America
| | - Letícia Kovalski
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Miami, Coral Gables, Florida, 33136, United States of America
| | - Bo Wang
- Department of Surgery, School of Medicine, University of Miami, Coral Gables, Florida, 33136, United States of America
| | - Runxia Tian
- Department of Surgery, School of Medicine, University of Miami, Coral Gables, Florida, 33136, United States of America
| | - Diego M. Castilla
- Department of Surgery, School of Medicine, University of Miami, Coral Gables, Florida, 33136, United States of America
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Miami, Coral Gables, Florida, 33136, United States of America
| | - Victor L. Perez
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Coral Gables, Florida, 33136, United States of America
| | - Sapna Deo
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Miami, Coral Gables, Florida, 33136, United States of America
- Dr. JT Macdonald Biomedical Nanotechnology Institute, University of Miami, Coral Gables, Florida, 33136, United States of America
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Miami, Coral Gables, Florida, 33136, United States of America
- Dr. JT Macdonald Biomedical Nanotechnology Institute, University of Miami, Coral Gables, Florida, 33136, United States of America
- * E-mail: (OV); (SD)
| | - Omaida C. Velazquez
- Department of Surgery, School of Medicine, University of Miami, Coral Gables, Florida, 33136, United States of America
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Miami, Coral Gables, Florida, 33136, United States of America
- * E-mail: (OV); (SD)
| |
Collapse
|
114
|
Kishimoto S, Inoue KI, Nakamura S, Hattori H, Ishihara M, Sakuma M, Toyoda S, Iwaguro H, Taguchi I, Inoue T, Yoshida KI. Low-molecular weight heparin protamine complex augmented the potential of adipose-derived stromal cells to ameliorate limb ischemia. Atherosclerosis 2016; 249:132-9. [PMID: 27100923 DOI: 10.1016/j.atherosclerosis.2016.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 03/16/2016] [Accepted: 04/05/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIMS Heparin/protamine micro/nanoparticles (LH/P-MPs) were recently developed as low-molecular weight, biodegradable carriers for adipose-derived stromal cells (ADSCs). These particles can be used for a locally delivered stem cell therapy that promotes angiogenesis. LH/P-MPs bind to the cell surface of ADSCs and promote cell-to-cell interaction and aggregation of ADSCs. Cultured ADSC/LH/P-MP aggregates remain viable. Here, we examined the ability of these aggregates to rescue limb loss in a mouse model of hindlimb ischemia. METHODS Unilateral hindlimb ischemia was induced in adult male BALB/c mice by ligation of the iliac artery and hindlimb vein. For allotransplantation of ADSCs from the same inbred strain, we injected ADSC alone or ADSC/LH/P-MP aggregates or control medium (sham-treated) directly into the ischemic muscles. Ischemic limb blood perfusion, vessel density, and vessel area were recorded. The extent of ischemic limb necrosis or limb loss was assessed on postoperative days 2, 7, and 14. RESULTS Compared with the sham-treatment control, treatment with ADSCs alone showed modest effects on blood perfusion recovery and increased the number of α-SMA-positive vessels. Response to ADSC/LH/P-MP aggregates was significantly greater than ADSCs alone for every endpoint. ADSC/LH/P-MP aggregates more effectively prevented the loss of ischemic hindlimbs than ADSCs alone or the sham-treatment. CONCLUSION The LH/P-MPs augmented the effects of ADSCs on angiogenesis and reversal of limb ischemia. Use of ADSC/LH/P-MP aggregates offers a novel and convenient treatment method and potentially represents a promising new therapeutic approach to inducing angiogenesis in ischemic diseases.
Collapse
Affiliation(s)
- Satoko Kishimoto
- Research Support Center, Dokkyo Medical University, Mibu, Tochigi, Japan; Center for Regenerative Medicine, Dokkyo Medical University, Mibu, Tochigi, Japan.
| | - Ken-Ichi Inoue
- Research Support Center, Dokkyo Medical University, Mibu, Tochigi, Japan; Center for Regenerative Medicine, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Shingo Nakamura
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, Saitama, Japan
| | - Hidemi Hattori
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, Saitama, Japan
| | - Masayuki Ishihara
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, Saitama, Japan
| | - Masashi Sakuma
- Center for Regenerative Medicine, Dokkyo Medical University, Mibu, Tochigi, Japan; Department of Cardiovascular Medicine, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Shigeru Toyoda
- Center for Regenerative Medicine, Dokkyo Medical University, Mibu, Tochigi, Japan; Department of Cardiovascular Medicine, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Hideki Iwaguro
- Center for Regenerative Medicine, Dokkyo Medical University, Mibu, Tochigi, Japan; Department of Cardiovascular Medicine, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Isao Taguchi
- Center for Regenerative Medicine, Dokkyo Medical University, Mibu, Tochigi, Japan; Department of Cardiology, Koshigaya Hospital, Dokkyo Medical University, Koshigaya, Saitama, Japan
| | - Teruo Inoue
- Research Support Center, Dokkyo Medical University, Mibu, Tochigi, Japan; Center for Regenerative Medicine, Dokkyo Medical University, Mibu, Tochigi, Japan; Department of Cardiovascular Medicine, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Ken-Ichiro Yoshida
- Center for Regenerative Medicine, Dokkyo Medical University, Mibu, Tochigi, Japan
| |
Collapse
|
115
|
Biomanufacturing of human mesenchymal stem cells in cell therapy: Influence of microenvironment on scalable expansion in bioreactors. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.07.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
116
|
McMurtrey RJ. Analytic Models of Oxygen and Nutrient Diffusion, Metabolism Dynamics, and Architecture Optimization in Three-Dimensional Tissue Constructs with Applications and Insights in Cerebral Organoids. Tissue Eng Part C Methods 2016; 22:221-49. [PMID: 26650970 PMCID: PMC5029285 DOI: 10.1089/ten.tec.2015.0375] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/02/2015] [Indexed: 12/12/2022] Open
Abstract
Diffusion models are important in tissue engineering as they enable an understanding of gas, nutrient, and signaling molecule delivery to cells in cell cultures and tissue constructs. As three-dimensional (3D) tissue constructs become larger, more intricate, and more clinically applicable, it will be essential to understand internal dynamics and signaling molecule concentrations throughout the tissue and whether cells are receiving appropriate nutrient delivery. Diffusion characteristics present a significant limitation in many engineered tissues, particularly for avascular tissues and for cells whose viability, differentiation, or function are affected by concentrations of oxygen and nutrients. This article seeks to provide novel analytic solutions for certain cases of steady-state and nonsteady-state diffusion and metabolism in basic 3D construct designs (planar, cylindrical, and spherical forms), solutions that would otherwise require mathematical approximations achieved through numerical methods. This model is applied to cerebral organoids, where it is shown that limitations in diffusion and organoid size can be partially overcome by localizing metabolically active cells to an outer layer in a sphere, a regionalization process that is known to occur through neuroglial precursor migration both in organoids and in early brain development. The given prototypical solutions include a review of metabolic information for many cell types and can be broadly applied to many forms of tissue constructs. This work enables researchers to model oxygen and nutrient delivery to cells, predict cell viability, study dynamics of mass transport in 3D tissue constructs, design constructs with improved diffusion capabilities, and accurately control molecular concentrations in tissue constructs that may be used in studying models of development and disease or for conditioning cells to enhance survival after insults like ischemia or implantation into the body, thereby providing a framework for better understanding and exploring the characteristics and behaviors of engineered tissue constructs.
Collapse
Affiliation(s)
- Richard J. McMurtrey
- Institute of Neural Regeneration & Tissue Engineering, Highland, Utah, United States
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
117
|
Führmann T, Tam R, Ballarin B, Coles B, Elliott Donaghue I, van der Kooy D, Nagy A, Tator C, Morshead C, Shoichet M. Injectable hydrogel promotes early survival of induced pluripotent stem cell-derived oligodendrocytes and attenuates longterm teratoma formation in a spinal cord injury model. Biomaterials 2016; 83:23-36. [DOI: 10.1016/j.biomaterials.2015.12.032] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/14/2015] [Accepted: 12/29/2015] [Indexed: 02/06/2023]
|
118
|
Abdelwahid E, Kalvelyte A, Stulpinas A, de Carvalho KAT, Guarita-Souza LC, Foldes G. Stem cell death and survival in heart regeneration and repair. Apoptosis 2016; 21:252-68. [PMID: 26687129 PMCID: PMC5200890 DOI: 10.1007/s10495-015-1203-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiovascular diseases are major causes of mortality and morbidity. Cardiomyocyte apoptosis disrupts cardiac function and leads to cardiac decompensation and terminal heart failure. Delineating the regulatory signaling pathways that orchestrate cell survival in the heart has significant therapeutic implications. Cardiac tissue has limited capacity to regenerate and repair. Stem cell therapy is a successful approach for repairing and regenerating ischemic cardiac tissue; however, transplanted cells display very high death percentage, a problem that affects success of tissue regeneration. Stem cells display multipotency or pluripotency and undergo self-renewal, however these events are negatively influenced by upregulation of cell death machinery that induces the significant decrease in survival and differentiation signals upon cardiovascular injury. While efforts to identify cell types and molecular pathways that promote cardiac tissue regeneration have been productive, studies that focus on blocking the extensive cell death after transplantation are limited. The control of cell death includes multiple networks rather than one crucial pathway, which underlies the challenge of identifying the interaction between various cellular and biochemical components. This review is aimed at exploiting the molecular mechanisms by which stem cells resist death signals to develop into mature and healthy cardiac cells. Specifically, we focus on a number of factors that control death and survival of stem cells upon transplantation and ultimately affect cardiac regeneration. We also discuss potential survival enhancing strategies and how they could be meaningful in the design of targeted therapies that improve cardiac function.
Collapse
Affiliation(s)
- Eltyeb Abdelwahid
- Feinberg School of Medicine, Feinberg Cardiovascular Research Institute, Northwestern University, 303 E. Chicago Ave., Tarry 14-725, Chicago, IL, 60611, USA.
| | - Audrone Kalvelyte
- Department of Molecular Cell Biology, Vilnius University Institute of Biochemistry, Vilnius, Lithuania
| | - Aurimas Stulpinas
- Department of Molecular Cell Biology, Vilnius University Institute of Biochemistry, Vilnius, Lithuania
| | - Katherine Athayde Teixeira de Carvalho
- Cell Therapy and Biotechnology in Regenerative Medicine Research Group, Pequeno Príncipe Faculty, Pelé Pequeno Príncipe Institute, Curitiba, Paraná, 80250-200, Brazil
| | - Luiz Cesar Guarita-Souza
- Experimental Laboratory of Institute of Biological and Health Sciences of Pontifical Catholic University of Parana, Curitiba, Paraná, 80215-901, Brazil
| | - Gabor Foldes
- National Heart and Lung Institute, Imperial College London, Imperial Centre for Experimental and Translational Medicine, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
119
|
Hotta R, Cheng L, Graham HK, Nagy N, Belkind-Gerson J, Mattheolabakis G, Amiji MM, Goldstein AM. Delivery of enteric neural progenitors with 5-HT4 agonist-loaded nanoparticles and thermosensitive hydrogel enhances cell proliferation and differentiation following transplantation in vivo. Biomaterials 2016; 88:1-11. [PMID: 26922325 DOI: 10.1016/j.biomaterials.2016.02.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/12/2016] [Accepted: 02/15/2016] [Indexed: 12/29/2022]
Abstract
Cell therapy offers an innovative approach for treating enteric neuropathies. Postnatal gut-derived enteric neural stem/progenitor cells (ENSCs) represent a potential autologous source, but have a limited capacity for proliferation and neuronal differentiation. Since serotonin (5-HT) promotes enteric neuronal growth during embryonic development, we hypothesized that serotonin receptor agonism would augment growth of neurons from transplanted ENSCs. Postnatal ENSCs were isolated from 2 to 4 week-old mouse colon and cultured with 5-HT4 receptor agonist (RS67506)-loaded liposomal nanoparticles. ENSCs were co-cultured with mouse colon explants in the presence of RS67506-loaded (n = 3) or empty nanoparticles (n = 3). ENSCs were also transplanted into mouse rectum in vivo with RS67506-loaded (n = 8) or blank nanoparticles (n = 4) confined in a thermosensitive hydrogel, Pluronic F-127. Neuronal density and proliferation were analyzed immunohistochemically. Cultured ENSCs gave rise to significantly more neurons in the presence of RS67506-loaded nanoparticles. Similarly, colon explants had significantly increased neuronal density when RS67506-loaded nanoparticles were present. Finally, following in vivo cell delivery, co-transplantation of ENSCs with 5-HT4 receptor agonist-loaded nanoparticles led to significantly increased neuronal density and proliferation. We conclude that optimization of postnatal ENSCs can support their use in cell-based therapies for neurointestinal diseases.
Collapse
Affiliation(s)
- Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lily Cheng
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Hannah K Graham
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nandor Nagy
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Human Morphology and Developmental Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Jaime Belkind-Gerson
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - George Mattheolabakis
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, MA, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, MA, USA
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
120
|
Huang YJ, Chen P, Lee CY, Yang SY, Lin MT, Lee HS, Wu YM. Protection against acetaminophen-induced acute liver failure by omentum adipose tissue derived stem cells through the mediation of Nrf2 and cytochrome P450 expression. J Biomed Sci 2016; 23:5. [PMID: 26787241 PMCID: PMC4717531 DOI: 10.1186/s12929-016-0231-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 01/12/2016] [Indexed: 01/30/2023] Open
Abstract
Background Acetaminophen (APAP) overdose causes acute liver failure (ALF) in animals and humans via the rapid depletion of intracellular glutathione (GSH) and the generation of excess reactive oxygen species (ROS) that damage hepatocytes. Stem cell therapy is a potential treatment strategy for ALF. Methods We isolated mesenchymal stem cells (MSCs) from mice omentum adipose tissue-derived stem cells (ASCs) and transplanted them into a mouse model of APAP-induced ALF to explore their therapeutic potential. In addition, we performed in vitro co-culture studies with omentum-derived ASCs and primary isolated hepatocytes to demonstrate the hepatoprotective effect of omentum-derived ASCs on hepatocytes that were subjected to APAP-induced damage. Result ASC transplantation significantly improved the survival rate of mice with ALF and attenuated the severity of APAP-induced liver damage by suppressing cytochrome P450 activity to reduce the accumulation of toxic nitrotyrosine and the upregulation of NF-E2-related factor 2 (Nrf2) expression, resulting in an increase in the subsequent antioxidant activity. These effects protected the hepatocytes from APAP-induced damage through the suppression of downstream MAPK signal activation and inflammatory cytokine production. Conclusions our results demonstrate that omentum-derived ASCs are an alternative source of ASCs that regulate the antioxidant response and may represent a beneficial therapeutic strategy for ALF.
Collapse
Affiliation(s)
- Yu-Jen Huang
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan. .,Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
| | - Poda Chen
- Department of Surgery, National Taiwan University Hospital Yun-Lin Branch, Yunlin, Taiwan.
| | - Chih-Yuan Lee
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
| | - Sin-Yu Yang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
| | - Ming-Tsan Lin
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan. .,Department of Medicine Education & Bioethics Graduate Institute of Medical Education, Bioethics National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Hsuan-Shu Lee
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan. .,Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Yao-Ming Wu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan. .,Department of Surgery, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
121
|
Abstract
Bone is one of the few tissues to display a true potential for regeneration. Fracture healing is an obvious example where regeneration occurs through tightly regulated sequences of molecular and cellular events which recapitulate tissue formation seen during embryogenesis. Still in some instances, bone regeneration does not occur properly (i.e. critical size lesions) and an appropriate therapeutic intervention is necessary. Successful replacement of bone by tissue engineering will likely depend on the recapitulation of this flow of events. In fact, bone regeneration requires cross-talk between microenvironmental factors and cells; for example, resident mesenchymal progenitors are recruited and properly guided by soluble and insoluble signaling molecules. Tissue engineering attempts to reproduce and to mimic this natural milieu by delivering cells capable of differentiating into osteoblasts, inducing growth factors and biomaterials to support cellular attachment, proliferation, migration, and matrix deposition. In the last two decades, a significant effort has been made by the scientific community in the development of methods and protocols to repair and regenerate tissues such as bone, cartilage, tendons, and ligaments. In this same period, great advancements have been achieved in the biology of stem cells and on the mechanisms governing "stemness". Unfortunately, after two decades, effective clinical translation does not exist, besides a few limited examples. Many years have passed since cell-based regenerative therapies were first described as "promising approaches", but this definition still engulfs the present literature. Failure to envisage translational cell therapy applications in routine medical practice evidences the existence of unresolved scientific and technical struggles, some of which still puzzle researchers in the field and are presented in this chapter.
Collapse
Affiliation(s)
- Rodolfo Quarto
- Stem Cell Laboratory, Department of Experimental Medicine, University of Genova, c/o Advanced Biotechnology Center, L.go R. Benzi, 10, 16132, Genoa, Italy.
| | - Paolo Giannoni
- Stem Cell Laboratory, Department of Experimental Medicine, University of Genova, c/o Advanced Biotechnology Center, L.go R. Benzi, 10, 16132, Genoa, Italy
| |
Collapse
|
122
|
Allen AB, Zimmermann JA, Burnsed OA, Yakubovich DC, Stevens HY, Gazit Z, McDevitt TC, Guldberg RE. Environmental manipulation to promote stem cell survival in vivo: use of aggregation, oxygen carrier, and BMP-2 co-delivery strategies. J Mater Chem B 2016; 4:3594-3607. [DOI: 10.1039/c5tb02471d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While mesenchymal stem cell (MSC)-based strategies for critically-sized bone defect repair hold promise, poor cell survival in vivo remains a significant barrier to the translation of these therapeutics.
Collapse
Affiliation(s)
- Ashley B. Allen
- Wallace H. Coulter Department of Biomedical Engineering
- Parker H. Petit Institute for Bioengineering & Bioscience
- Georgia Institute of Technology
- Atlanta
- USA
| | - Josh A. Zimmermann
- Wallace H. Coulter Department of Biomedical Engineering
- Parker H. Petit Institute for Bioengineering & Bioscience
- Georgia Institute of Technology
- Atlanta
- USA
| | - Olivia A. Burnsed
- Wallace H. Coulter Department of Biomedical Engineering
- Parker H. Petit Institute for Bioengineering & Bioscience
- Georgia Institute of Technology
- Atlanta
- USA
| | - Doron Cohn Yakubovich
- Skeletal Biotech Laboratory
- The Hebrew University-Hadassah Faculty of Dental Medicine
- Jerusalem
- Israel
| | - Hazel Y. Stevens
- George W. Woodruff School of Mechanical Engineering
- Parker H. Petit Institute for Bioengineering & Bioscience
- Georgia Institute of Technology
- Atlanta
- USA
| | - Zulma Gazit
- Skeletal Biotech Laboratory
- The Hebrew University-Hadassah Faculty of Dental Medicine
- Jerusalem
- Israel
- Regenerative Medicine Institute
| | - Todd C. McDevitt
- Wallace H. Coulter Department of Biomedical Engineering
- Parker H. Petit Institute for Bioengineering & Bioscience
- Georgia Institute of Technology
- Atlanta
- USA
| | - Robert E. Guldberg
- George W. Woodruff School of Mechanical Engineering
- Parker H. Petit Institute for Bioengineering & Bioscience
- Georgia Institute of Technology
- Atlanta
- USA
| |
Collapse
|
123
|
Kim EJ, Choi JS, Kim JS, Choi YC, Cho YW. Injectable and Thermosensitive Soluble Extracellular Matrix and Methylcellulose Hydrogels for Stem Cell Delivery in Skin Wounds. Biomacromolecules 2015; 17:4-11. [PMID: 26607961 DOI: 10.1021/acs.biomac.5b01566] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Extracellular matrix (ECM) provides structural support and biochemical cues for tissue development and regeneration. Here we report a thermosensitive hydrogel composed of soluble ECM (sECM) and methylcellulose (MC) for injectable stem cell delivery. The sECM was prepared by denaturing solid ECM extracted from human adipose tissue and then blended with a MC solution. At low temperatures, the sECM-MC solution displayed a viscous solution state in which the loss modulus (G″) was predominant over the storage modulus (G'). With increasing temperature, G' increased dramatically and eventually exceeded G″ around 34 °C, characteristic of the transition from a liquid-like state to an elastic gel-like state. After a single injection of the stem cell-embedded hydrogel in full thickness cutaneous wound, the wound healed rapidly through re-epithelialization and neovascularization with minimum scar formation. The overall results suggest that in-situ-forming sECM-MC hydrogels are a promising injectable vehicle for stem cell delivery and tissue regeneration.
Collapse
Affiliation(s)
- Eun Ji Kim
- Department of Chemical Engineering, Hanyang University , Ansan, Gyeonggi-do 426-791, Republic of Korea
| | - Ji Suk Choi
- Department of Chemical Engineering, Hanyang University , Ansan, Gyeonggi-do 426-791, Republic of Korea
| | - Jun Sung Kim
- Department of Chemical Engineering, Hanyang University , Ansan, Gyeonggi-do 426-791, Republic of Korea
| | - Young Chan Choi
- Department of Chemical Engineering, Hanyang University , Ansan, Gyeonggi-do 426-791, Republic of Korea
| | - Yong Woo Cho
- Department of Chemical Engineering, Hanyang University , Ansan, Gyeonggi-do 426-791, Republic of Korea
| |
Collapse
|
124
|
Hashemi M, Kalalinia F. Application of encapsulation technology in stem cell therapy. Life Sci 2015; 143:139-46. [DOI: 10.1016/j.lfs.2015.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/15/2015] [Accepted: 11/06/2015] [Indexed: 11/26/2022]
|
125
|
Bader AM, Klose K, Bieback K, Korinth D, Schneider M, Seifert M, Choi YH, Kurtz A, Falk V, Stamm C. Hypoxic Preconditioning Increases Survival and Pro-Angiogenic Capacity of Human Cord Blood Mesenchymal Stromal Cells In Vitro. PLoS One 2015; 10:e0138477. [PMID: 26380983 PMCID: PMC4575058 DOI: 10.1371/journal.pone.0138477] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
Hypoxic preconditioning was shown to improve the therapeutic efficacy of bone marrow-derived multipotent mesenchymal stromal cells (MSCs) upon transplantation in ischemic tissue. Given the interest in clinical applications of umbilical cord blood-derived MSCs, we developed a specific hypoxic preconditioning protocol and investigated its anti-apoptotic and pro-angiogenic effects on cord blood MSCs undergoing simulated ischemia in vitro by subjecting them to hypoxia and nutrient deprivation with or without preceding hypoxic preconditioning. Cell number, metabolic activity, surface marker expression, chromosomal stability, apoptosis (caspases-3/7 activity) and necrosis were determined, and phosphorylation, mRNA expression and protein secretion of selected apoptosis and angiogenesis-regulating factors were quantified. Then, human umbilical vein endothelial cells (HUVEC) were subjected to simulated ischemia in co-culture with hypoxically preconditioned or naïve cord blood MSCs, and HUVEC proliferation was measured. Migration, proliferation and nitric oxide production of HUVECs were determined in presence of cord blood MSC-conditioned medium. Cord blood MSCs proved least sensitive to simulated ischemia when they were preconditioned for 24 h, while their basic behavior, immunophenotype and karyotype in culture remained unchanged. Here, “post-ischemic” cell number and metabolic activity were enhanced and caspase-3/7 activity and lactate dehydrogenase release were reduced as compared to non-preconditioned cells. Phosphorylation of AKT and BAD, mRNA expression of BCL-XL, BAG1 and VEGF, and VEGF protein secretion were higher in preconditioned cells. Hypoxically preconditioned cord blood MSCs enhanced HUVEC proliferation and migration, while nitric oxide production remained unchanged. We conclude that hypoxic preconditioning protects cord blood MSCs by activation of anti-apoptotic signaling mechanisms and enhances their angiogenic potential. Hence, hypoxic preconditioning might be a translationally relevant strategy to increase the tolerance of cord blood MSCs to ischemia and improve their therapeutic efficacy in clinical applications.
Collapse
Affiliation(s)
- Andreas Matthäus Bader
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Kristin Klose
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | | | - Maria Schneider
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Martina Seifert
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | | | - Andreas Kurtz
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | | | - Christof Stamm
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Deutsches Herzzentrum Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
126
|
Hill J, Cave J. Targeting the vasculature to improve neural progenitor transplant survival. Transl Neurosci 2015; 6:162-167. [PMID: 28123800 PMCID: PMC4936624 DOI: 10.1515/tnsci-2015-0016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/05/2015] [Indexed: 12/18/2022] Open
Abstract
Neural progenitor transplantation is a promising therapeutic option for several neurological diseases and injuries. In nearly all human clinical trials and animal models that have tested this strategy, the low survival rate of progenitors after engraftment remains a significant challenge to overcome. Developing methods to improve the survival rate will reduce the number of cells required for transplant and will likely enhance functional improvements produced by the procedure. Here we briefly review the close relationship between the blood vasculature and neural progenitors in both the embryo and adult nervous system. We also discuss previous studies that have explored the role of the vasculature and hypoxic pre-conditioning in neural transplants. From these studies, we suggest that hypoxic pre-conditioning of a progenitor pool containing both neural and endothelial cells will improve engrafted transplanted neuronal survival rates.
Collapse
Affiliation(s)
- Justin Hill
- Burke Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Burke Rehabilitation Hospital, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Ave, New York, NY 10605, USA
| | - John Cave
- Burke Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Ave, New York, NY 10605, USA
| |
Collapse
|
127
|
Controlling Redox Status for Stem Cell Survival, Expansion, and Differentiation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:105135. [PMID: 26273419 PMCID: PMC4530287 DOI: 10.1155/2015/105135] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/06/2014] [Indexed: 01/07/2023]
Abstract
Reactive oxygen species (ROS) have long been considered as pathological agents inducing apoptosis under adverse culture conditions. However, recent findings have challenged this dogma and physiological levels of ROS are now considered as secondary messengers, mediating numerous cellular functions in stem cells. Stem cells represent important tools for tissue engineering, drug screening, and disease modeling. However, the safe use of stem cells for clinical applications still requires culture improvements to obtain functional cells. With the examples of mesenchymal stem cells (MSCs) and pluripotent stem cells (PSCs), this review investigates the roles of ROS in the maintenance of self-renewal, proliferation, and differentiation of stem cells. In addition, this work highlights that the tight control of stem cell microenvironment, including cell organization, and metabolic and mechanical environments, may be an effective approach to regulate endogenous ROS generation. Taken together, this paper indicates the need for better quantification of ROS towards the accurate control of stem cell fate.
Collapse
|
128
|
Cutts J, Nikkhah M, Brafman DA. Biomaterial Approaches for Stem Cell-Based Myocardial Tissue Engineering. Biomark Insights 2015; 10:77-90. [PMID: 26052226 PMCID: PMC4451817 DOI: 10.4137/bmi.s20313] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 12/21/2022] Open
Abstract
Adult and pluripotent stem cells represent a ready supply of cellular raw materials that can be used to generate the functionally mature cells needed to replace damaged or diseased heart tissue. However, the use of stem cells for cardiac regenerative therapies is limited by the low efficiency by which stem cells are differentiated in vitro to cardiac lineages as well as the inability to effectively deliver stem cells and their derivatives to regions of damaged myocardium. In this review, we discuss the various biomaterial-based approaches that are being implemented to direct stem cell fate both in vitro and in vivo. First, we discuss the stem cell types available for cardiac repair and the engineering of naturally and synthetically derived biomaterials to direct their in vitro differentiation to the cell types that comprise heart tissue. Next, we describe biomaterial-based approaches that are being implemented to enhance the in vivo integration and differentiation of stem cells delivered to areas of cardiac damage. Finally, we present emerging trends of using stem cell-based biomaterial approaches to deliver pro-survival factors and fully vascularized tissue to the damaged and diseased cardiac tissue.
Collapse
Affiliation(s)
- Josh Cutts
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - David A Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
129
|
Ishihara M, Kishimoto S, Takikawa M, Hattori H, Nakamura S, Shimizu M. Biomedical application of low molecular weight heparin/protamine nano/micro particles as cell- and growth factor-carriers and coating matrix. Int J Mol Sci 2015; 16:11785-803. [PMID: 26006248 PMCID: PMC4463730 DOI: 10.3390/ijms160511785] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/07/2015] [Accepted: 05/15/2015] [Indexed: 12/22/2022] Open
Abstract
Low molecular weight heparin (LMWH)/protamine (P) nano/micro particles (N/MPs) (LMWH/P N/MPs) were applied as carriers for heparin-binding growth factors (GFs) and for adhesive cells including adipose-derived stromal cells (ADSCs) and bone marrow-derived mesenchymal stem cells (BMSCs). A mixture of LMWH and P yields a dispersion of N/MPs (100 nm–3 μm in diameter). LMWH/P N/MPs can be immobilized onto cell surfaces or extracellular matrix, control the release, activate GFs and protect various GFs. Furthermore, LMWH/P N/MPs can also bind to adhesive cell surfaces, inducing cells and LMWH/P N/MPs-aggregate formation. Those aggregates substantially promoted cellular viability, and induced vascularization and fibrous tissue formation in vivo. The LMWH/P N/MPs, in combination with ADSCs or BMSCs, are effective cell-carriers and are potential promising novel therapeutic agents for inducing vascularization and fibrous tissue formation in ischemic disease by transplantation of the ADSCs and LMWH/P N/MPs-aggregates. LMWH/P N/MPs can also bind to tissue culture plates and adsorb exogenous GFs or GFs from those cells. The LMWH/P N/MPs-coated matrix in the presence of GFs may provide novel biomaterials that can control cellular activity such as growth and differentiation. Furthermore, three-dimensional (3D) cultures of cells including ADSCs and BMSCs using plasma-medium gel with LMWH/P N/MPs exhibited efficient cell proliferation. Thus, LMWH/P N/MPs are an adequate carrier both for GFs and for stromal cells such as ADSCs and BMSCs, and are a functional coating matrix for their cultures.
Collapse
Affiliation(s)
- Masayuki Ishihara
- Division of Biomedical Engineering Research Institute, National Defense Medical College, Saitama 359-8513, Japan.
| | - Satoko Kishimoto
- Research Support Center, Dokkyo Medical University, Tochigi 321-0293, Japan.
| | - Makoto Takikawa
- Department of Medical Engineering, National Defense Medical College, Saitama 359-8513, Japan.
| | - Hidemi Hattori
- Division of Biomedical Engineering Research Institute, National Defense Medical College, Saitama 359-8513, Japan.
| | - Shingo Nakamura
- Division of Biomedical Engineering Research Institute, National Defense Medical College, Saitama 359-8513, Japan.
| | - Masafumi Shimizu
- Department of Surgery, Tokorozawa Meisei Hospital, Saitama 359-1145, Japan.
| |
Collapse
|
130
|
Synergistic protection of N-acetylcysteine and ascorbic acid 2-phosphate on human mesenchymal stem cells against mitoptosis, necroptosis and apoptosis. Sci Rep 2015; 5:9819. [PMID: 25909282 PMCID: PMC4408980 DOI: 10.1038/srep09819] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/17/2015] [Indexed: 12/15/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) contribute to ischemic tissue repair, regeneration, and possess ability to self-renew. However, poor viability of transplanted hMSCs within ischemic tissues has limited its therapeutic efficiency. Therefore, it is urgent to explore new method to improve the viability of the grafted cells. By using a systematic analysis, we reveal the mechanism of synergistic protection of N-acetylcysteine (NAC) and ascorbic acid 2-phosphate (AAP) on hMSCs that were under H2O2-induced oxidative stress. The combined treatment of NAC and AAP (NAC/AAP) reduces reactive oxygen species (ROS) generation, stabilizes mitochondrial membrane potential and decreases mitochondrial fission/fragmentation due to oxidative stress. Mitochondrial fission/fragmentation is a major prologue of mitoptosis. NAC/AAP prevents apoptotic cell death via decreasing the activation of BAX, increasing the expression of BCL2, and reducing cytochrome c release from mitochondria that might lead to the activation of caspase cascade. Stabilization of mitochondria also prevents the release of AIF, and its nuclear translocation which may activate necroptosis via H2AX pathway. The decreasing of mitoptosis is further studied by MicroP image analysis, and is associated with decreased activation of Drp1. In conclusion, NAC/AAP protects mitochondria from H2O2-induced oxidative stress and rescues hMSCs from mitoptosis, necroptosis and apoptosis.
Collapse
|
131
|
McMurtrey RJ. Novel advancements in three-dimensional neural tissue engineering and regenerative medicine. Neural Regen Res 2015; 10:352-4. [PMID: 25878573 PMCID: PMC4396087 DOI: 10.4103/1673-5374.153674] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2015] [Indexed: 12/31/2022] Open
Affiliation(s)
- Richard J McMurtrey
- Institute of Neural Regeneration & Tissue Engineering, Highland, UT 84003, USA ; Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, University of Oxford, UK
| |
Collapse
|
132
|
Damous LL, Nakamuta JS, de Carvalho AETS, Soares JM, de Jesus Simões M, Krieger JE, Baracat EC. Adipose tissue-derived stem cell therapy in rat cryopreserved ovarian grafts. Stem Cell Res Ther 2015; 6:57. [PMID: 25889829 PMCID: PMC4416311 DOI: 10.1186/s13287-015-0068-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/27/2015] [Accepted: 03/25/2015] [Indexed: 01/14/2023] Open
Abstract
The preliminary results of ovarian transplantation in clinical practice are encouraging. However, the follicular depletion caused by ischemic injury is a main concern and is directly related to short-term graft survival. Cell therapy with adipose tissue-derived stem cells (ASCs) could be an alternative to induce early angiogenesis in the graft. This study aimed to evaluate ASCs therapy in rat cryopreserved ovarian grafts. A single dose of rat ASC (rASCs) or vehicle was injected into the bilateral cryopreserved ovaries of twelve adult female rats immediately after an autologous transplant. Daily vaginal smears were performed for estrous cycle evaluation until euthanasia on postoperative day 30. Follicle viability, graft morphology and apoptosis were assessed. No differences were found with respect to estrous cycle resumption and follicle viability (P > 0.05). However, compared with the vehicle-treated grafts, the morphology of the ASCs-treated grafts was impaired, with diffuse atrophy and increased apoptosis (P < 0.05). ASCs direct injected in the stroma of rat cryopreserved ovarian grafts impaired its morphology although may not interfere with the functional resumption on short-term. Further investigations are necessary to evaluated whether it could compromise their viability in the long-term.
Collapse
Affiliation(s)
- Luciana Lamarão Damous
- Gynecology Discipline, Laboratory of Structural and Molecular Gynecology (LIM-58), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Dr Arnaldo av 455, 2nd floor, room 2113, Pacaembu, São Paulo, 01246-903, Brazil. .,, Galvão Bueno St, 499, Bloco A. Apto31, Liberdade, São Paulo, 01506-000, Brazil.
| | - Juliana Sanajotti Nakamuta
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (Incor), Faculdade de Medicina da Universidade de São Paulo, Dr Enéas de Carvalho Aguiar Av 44, 10th floor, Cerqueira Cesar, São Paulo, 05403-000, Brazil.
| | - Ana Elisa Teófilo Saturi de Carvalho
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (Incor), Faculdade de Medicina da Universidade de São Paulo, Dr Enéas de Carvalho Aguiar Av 44, 10th floor, Cerqueira Cesar, São Paulo, 05403-000, Brazil.
| | - José Maria Soares
- Gynecology Discipline, Laboratory of Structural and Molecular Gynecology (LIM-58), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Dr Arnaldo av 455, 2nd floor, room 2113, Pacaembu, São Paulo, 01246-903, Brazil.
| | - Manuel de Jesus Simões
- Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Botucatu St 740. Ed. Lemos Torres, 2nd floor, Vila Clementino, São Paulo, 04023-009, Brazil.
| | - José Eduardo Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (Incor), Faculdade de Medicina da Universidade de São Paulo, Dr Enéas de Carvalho Aguiar Av 44, 10th floor, Cerqueira Cesar, São Paulo, 05403-000, Brazil.
| | - Edmund C Baracat
- Gynecology Discipline, Laboratory of Structural and Molecular Gynecology (LIM-58), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Dr Arnaldo av 455, 2nd floor, room 2113, Pacaembu, São Paulo, 01246-903, Brazil.
| |
Collapse
|
133
|
Grayson WL, Bunnell BA, Martin E, Frazier T, Hung BP, Gimble JM. Stromal cells and stem cells in clinical bone regeneration. Nat Rev Endocrinol 2015; 11:140-50. [PMID: 25560703 PMCID: PMC4338988 DOI: 10.1038/nrendo.2014.234] [Citation(s) in RCA: 297] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stem-cell-mediated bone repair has been used in clinical trials for the regeneration of large craniomaxillofacial defects, to slow the process of bone degeneration in patients with osteonecrosis of the femoral head and for prophylactic treatment of distal tibial fractures. Successful regenerative outcomes in these investigations have provided a solid foundation for wider use of stromal cells in skeletal repair therapy. However, employing stromal cells to facilitate or enhance bone repair is far from being adopted into clinical practice. Scientific, technical, practical and regulatory obstacles prevent the widespread therapeutic use of stromal cells. Ironically, one of the major challenges lies in the limited understanding of the mechanisms via which transplanted cells mediate regeneration. Animal models have been used to provide insight, but these models largely fail to reproduce the nuances of human diseases and bone defects. Consequently, the development of targeted approaches to optimize cell-mediated outcomes is difficult. In this Review, we highlight the successes and challenges reported in several clinical trials that involved the use of bone-marrow-derived mesenchymal or adipose-tissue-derived stromal cells. We identify several obstacles blocking the mainstream use of stromal cells to enhance skeletal repair and highlight technological innovations or areas in which novel techniques might be particularly fruitful in continuing to advance the field of skeletal regenerative medicine.
Collapse
Affiliation(s)
- Warren L Grayson
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Baltimore, MD 21205, USA
| | - Bruce A Bunnell
- Centre for Stem Cell Research and Regenerative Medicine, 1430 Tulane Avenue, SL-99, New Orleans, LA 70112, USA
| | - Elizabeth Martin
- Centre for Stem Cell Research and Regenerative Medicine, 1430 Tulane Avenue, SL-99, New Orleans, LA 70112, USA
| | - Trivia Frazier
- Centre for Stem Cell Research and Regenerative Medicine, 1430 Tulane Avenue, SL-99, New Orleans, LA 70112, USA
| | - Ben P Hung
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Baltimore, MD 21205, USA
| | - Jeffrey M Gimble
- Centre for Stem Cell Research and Regenerative Medicine, 1430 Tulane Avenue, SL-99, New Orleans, LA 70112, USA
| |
Collapse
|
134
|
Tang YH, Ma YY, Zhang ZJ, Wang YT, Yang GY. Opportunities and challenges: stem cell-based therapy for the treatment of ischemic stroke. CNS Neurosci Ther 2015; 21:337-47. [PMID: 25676164 DOI: 10.1111/cns.12386] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 01/01/2023] Open
Abstract
Stem cell-based therapy for ischemic stroke has been widely explored in animal models and provides strong evidence of benefits. In this review, we summarize the types of stem cells, various delivery routes, and tracking tools for stem cell therapy of ischemic stroke. MSCs, EPCs, and NSCs are the most explored cell types for ischemic stroke treatment. Although the mechanisms of stem cell-based therapies are not fully understood, the most possible functions of the transplanted cells are releasing growth factors and regulating microenvironment through paracrine mechanism. Clinical application of stem cell-based therapy is still in its infancy. The next decade of stem cell research in stroke field needs to focus on combining different stem cells and different imaging modalities to fully explore the potential of this therapeutic avenue: from bench to bedside and vice versa.
Collapse
Affiliation(s)
- Yao-Hui Tang
- Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | |
Collapse
|
135
|
Yang CM, Huang YJ, Hsu SH. Enhanced Autophagy of Adipose-Derived Stem Cells Grown on Chitosan Substrates. Biores Open Access 2015; 4:89-96. [PMID: 26309785 PMCID: PMC4497627 DOI: 10.1089/biores.2014.0032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Autophagy is an important protein quality control mechanism for cells under stress conditions to promote cell survival. Modulation of autophagy on biomaterial substrates is rarely reported. In this study, the autophagy of adipose-derived stem cells (ADSCs) cultured on chitosan (CS) substrates was examined. Compared to the traditional monolayer culture, ADSCs cultured on CS substrates showed spheroid formation as well as a prolonged upregulation of autophagosomal marker-microtubule-associated protein 1 light chain 3 (LC3) II protein expression. In addition, the green fluorescent protein tagged-LC3 (GFP-LC3) expressing ADSCs also revealed more GFP-LC3 puncta on CS substrates. The enhanced autophagy on CS substrates was associated with Ca(2+), while ethylene glycol tetraacetic acid (EGTA), a Ca(2+) chelator, repressed the autophagy in a dose-dependent manner. Moreover, ADSC spheroids on CS substrates demonstrated a higher survival rate and autophagy response upon H2O2 treatment. The upstream components of autophagy signal pathway-UNC51-like kinase 1 (Ulk1), autophagy-related protein 13 (Atg13), and autophagy/beclin-1 regulator 1 (Ambra1) genes were more highly expressed in ADSC spheroids before and after adding H2O2 than those in the conventional culture. EGTA also decreased the cell viability and autophagy-associated gene expression for ADSC spheroids on CS substrates after H2O2 treatment. Therefore, we suggest that three-dimensional (3D) cell culture on CS may confer ADSCs the ability to increase the autophagic flux in response to stimulations in a Ca(2+)-dependent manner.
Collapse
Affiliation(s)
- Ching-Ming Yang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Yen-Jang Huang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Shan-hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
136
|
McMurtrey RJ. Patterned and functionalized nanofiber scaffolds in three-dimensional hydrogel constructs enhance neurite outgrowth and directional control. J Neural Eng 2014; 11:066009. [PMID: 25358624 DOI: 10.1088/1741-2560/11/6/066009] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Neural tissue engineering holds incredible potential to restore functional capabilities to damaged neural tissue. It was hypothesized that patterned and functionalized nanofiber scaffolds could control neurite direction and enhance neurite outgrowth. APPROACH A method of creating aligned electrospun nanofibers was implemented and fiber characteristics were analyzed using environmental scanning electron microscopy. Nanofibers were composed of polycaprolactone (PCL) polymer, PCL mixed with gelatin, or PCL with a laminin coating. Three-dimensional hydrogels were then integrated with embedded aligned nanofibers to support neuronal cell cultures. Microscopic images were captured at high-resolution in single and multi-focal planes with eGFP-expressing neuronal SH-SY5Y cells in a fluorescent channel and nanofiber scaffolding in another channel. Neuronal morphology and neurite tracking of nanofibers were then analyzed in detail. MAIN RESULTS Aligned nanofibers were shown to enable significant control over the direction of neurite outgrowth in both two-dimensional (2D) and three-dimensional (3D) neuronal cultures. Laminin-functionalized nanofibers in 3D hyaluronic acid (HA) hydrogels enabled significant alignment of neurites with nanofibers, enabled significant neurite tracking of nanofibers, and significantly increased the distance over which neurites could extend. Specifically, the average length of neurites per cell in 3D HA constructs with laminin-functionalized nanofibers increased by 66% compared to the same laminin fibers on 2D laminin surfaces, increased by 59% compared to 2D laminin-coated surface without fibers, and increased by 1052% compared to HA constructs without fibers. Laminin functionalization of fibers also doubled average neurite length over plain PCL fibers in the same 3D HA constructs. In addition, neurites also demonstrated tracking directly along the fibers, with 66% of neurite lengths directly tracking laminin-coated fibers in 3D HA constructs, which was a 65% relative increase in neurite tracking compared to plain PCL fibers in the same 3D HA constructs and a 213% relative increase over laminin-coated fibers on 2D laminin-coated surfaces. SIGNIFICANCE This work demonstrates the ability to create unique 3D neural tissue constructs using a combined system of hydrogel and nanofiber scaffolding. Importantly, patterned and biofunctionalized nanofiber scaffolds that can control direction and increase length of neurite outgrowth in three-dimensions hold much potential for neural tissue engineering. This approach offers advancements in the development of implantable neural tissue constructs that enable control of neural development and reproduction of neuroanatomical pathways, with the ultimate goal being the achievement of functional neural regeneration.
Collapse
Affiliation(s)
- Richard J McMurtrey
- Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK. Institute of Neural Regeneration and Tissue Engineering, Highland, UT 84003, US
| |
Collapse
|